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Homology with coefficients in local system,
a C -bundle with a fixed flat connection,
that is an operation of parallel transport.
It is defined by the monodromy representation π1(X) → C× .
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Homology with coefficients in local system.
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∑
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where σ are simplices and aσ is a flat section over σ .
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where σ are simplices and aσ is a flat section over σ .

Differential involves restrictions of the sections to the faces.
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Homology with coefficients in local system.

Singular model: chains are
∑

σ aσσ ,
σ are singular simplices and
aσ is a flat section of the pull back of the coefficient bundle.
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Homology with coefficients in local system.

Singular model: chains are
∑

σ aσσ ,
σ are singular simplices and
aσ is a flat section of the pull back of the coefficient bundle.
Differential involves pull backs of the sections to the faces.
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Theory is parallel to the untwisted homology theory.
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Homology with coefficients in local system.
Theory is parallel to the untwisted homology theory,
but H0 may be trivial .
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Homology with coefficients in local system.

H0 may be trivial .

Example. X = S1 , with non-trivial monodromy
π1(X) = Z → C× , say µ : 1 7→ a 6= 1 .
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∂σ1 = (a− 1)σ0 6= 0
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∂σ1 = (a− 1)σ0 6= 0 , and H1(X; Cµ) = H0(X; Cµ) = 0 .
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Generalization. X = S1 × Y , π1(X) = Z × π1(Y ) .
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Twisted homology

• Twisted homology

• Duality

• Unitary local
coefficients

• Signatures

• Link signatures

• Digression on higher
dim links.
• Estimates of twisted
homology

• Span inequalities

• Slice inequalities

2 / 10

Homology with coefficients in local system.

H0 may be trivial .

Example. X = S1 , with non-trivial monodromy
π1(X) = Z → C× , say µ : 1 7→ a 6= 1 . Then
∂σ1 = (a− 1)σ0 6= 0 , and H1(X; Cµ) = H0(X; Cµ) = 0 .

Generalization. X = S1 × Y , π1(X) = Z × π1(Y ) .
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Furthermore, the same holds true for any locally trivial fibration
with fiber S1 and non-trivial monodromy along the fiber.
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Homology with coefficients in local system.

H0 may be trivial .

Example. X = S1 , with non-trivial monodromy
π1(X) = Z → C× , say µ : 1 7→ a 6= 1 . Then
∂σ1 = (a− 1)σ0 6= 0 , and H1(X; Cµ) = H0(X; Cµ) = 0 .

Generalization. X = S1 × Y , π1(X) = Z × π1(Y ) .
The monodromy is ϕ× ψ : Z × π1(Y ) → C× .
Then C∗(X; Cϕ×ψ) = C∗(S

1; Cϕ) ⊗ C∗(Y ; Cψ) and

H∗(X; Cϕ×ψ)= 0 ⊗H∗(Y ; Cψ) = 0.

Furthermore, the same holds true for any locally trivial fibration
with fiber S1 and non-trivial monodromy along the fiber.
Pieces of a space of this kind are

invisible for twisted homology.
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Let X be a connected oriented compact manifold of dim n .
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Hn(X, ∂X) = Z , Hn(X, ∂X; C) = C ,
an orientation of X = a generator of Hn(X, ∂X) .
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Let X be a connected oriented compact manifold of dim n .

Hn(X, ∂X) = Z , Hn(X, ∂X; C) = C ,
an orientation of X = a generator of Hn(X, ∂X) .
Poincaré duality isomorphisms:

Hp(X; Cµ) → Hn−p(X, ∂X; Cµ) and

Hp(X, ∂X; Cµ) → Hn−p(X; Cµ) .
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Hn(X, ∂X) = Z , Hn(X, ∂X; C) = C ,
an orientation of X = a generator of Hn(X, ∂X) .
Poincaré duality isomorphisms:

Hp(X; Cµ) → Hn−p(X, ∂X; Cµ) and

Hp(X, ∂X; Cµ) → Hn−p(X; Cµ) .
Pairings of local coefficient systems: Cµ ⊗ Cµ−1 = C

induces a non-singular bilinear intersection pairing
Hp(X, ∂X; Cµ) ⊗Hn−p(X; Cµ−1) → C .
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Representation µ : π1(X) → C× is unitary if µ−1 = µ̄ .
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Representation µ : π1(X) → C× is unitary if µ−1 = µ̄ .

pointwise: (µ(α))−1 = µ(α) for any α ∈ π1(X) .
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Representation µ : π1(X) → C× is unitary if µ−1 = µ̄ .
If µ is unitary, then the conjugation induces a semilinear bijection
Hq(X; Cµ) → Hq(X; Cµ̄) = Hq(X; Cµ−1) .
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If µ is unitary, then the conjugation induces a semilinear bijection
Hq(X; Cµ) → Hq(X; Cµ̄) = Hq(X; Cµ−1) .

In the case of oriented compact n -dimensional manifold,
it turns a non-singular bilinear intersection pairing
Hp(X, ∂X; Cµ) ⊗Hn−p(X; Cµ−1) → C

into a non-singular sesqui-linear intersection pairing
Hp(X, ∂X; Cµ) ⊗Hn−p(X; Cµ) → C .
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composed with relativization, it gives
Hp(X; Cµ) ⊗Hn−p(X; Cµ) → C .
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In the middle dimension this is
a Hermitian or skew-Hermitian form.
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a Hermitian or skew-Hermitian form.
If ∂X = ∅ ,

then the intersection pairing is non-singular.
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Representation µ : π1(X) → C× is unitary if µ−1 = µ̄ .
If µ is unitary, then the conjugation induces a semilinear bijection
Hq(X; Cµ) → Hq(X; Cµ̄) = Hq(X; Cµ−1) .

In the case of oriented compact n -dimensional manifold,
it turns a non-singular bilinear intersection pairing
Hp(X, ∂X; Cµ) ⊗Hn−p(X; Cµ−1) → C

into a non-singular sesqui-linear intersection pairing
Hp(X, ∂X; Cµ) ⊗Hn−p(X; Cµ) → C ,

composed with relativization, it gives
Hp(X; Cµ) ⊗Hn−p(X; Cµ) → C .
In the middle dimension this is
a Hermitian or skew-Hermitian form.
If ∂X = ∅ , or ∂X is fibered with fibre S1 ,

then the intersection pairing is non-singular.
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Let M be a compact oriented 2n -dimensional manifold
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Let M be a compact oriented 2n -dimensional manifold,

L1, . . . , Lk its oriented compact (2n− 2) -dimensional
submanifolds transversal to each other
with ∂Li = Li ∩ ∂M , let L = ∪iLi .
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Let µ ∈ Hom(H1(M rL),C×) , and Cµ be the corresponding
local coefficient system on M r L .
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submanifolds transversal to each other
with ∂Li = Li ∩ ∂M , let L = ∪iLi .
Let µ ∈ Hom(H1(M rL),C×) , and Cµ be the corresponding
local coefficient system on M r L .

If n is even, then denote by σµ(M r L) the signature of the
Hermitian intersection form in Hn(M r L; Cµ) .
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Let M be a compact oriented 2n -dimensional manifold,

L1, . . . , Lk its oriented compact (2n− 2) -dimensional
submanifolds transversal to each other
with ∂Li = Li ∩ ∂M , let L = ∪iLi .
Let µ ∈ Hom(H1(M rL),C×) , and Cµ be the corresponding
local coefficient system on M r L .

If n is even, then denote by σµ(M r L) the signature of the
Hermitian intersection form in Hn(M r L; Cµ) .

If n is odd, then denote by σµ(M r L) the signature of the
Hermitian form obtained from the skew-Hermitian intersection
form in Hn(M r L; Cµ) multiplied by

√
−1 .
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Properties of signatures
1. If W is an oriented compact manifold, M = ∂W ,
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Let M be a compact oriented 2n -dimensional manifold,

L1, . . . , Lk its oriented compact (2n− 2) -dimensional
submanifolds transversal to each other
with ∂Li = Li ∩ ∂M , let L = ∪iLi .
Let µ ∈ Hom(H1(M rL),C×) , and Cµ be the corresponding
local coefficient system on M r L .

Properties of signatures
1. If W is an oriented compact manifold, M = ∂W ,

In particular, ∂M = ∅ and ∂Li = ∅
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Properties of signatures
1. If W is an oriented compact manifold, M = ∂W , and
Fi ⊂W are compact oriented transversal to each other,
Li = ∂Fi , then σµ(M r L) = 0 .
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i . Let
M ∩M ′ = ∂M ∩ ∂M ′ be a compact manifold of dimension
2n− 1 and the orientations induced on M ∩M ′ from M and
M ′ are opposite to each other.
Let µ′ ∈ Hom(H1(M

′ r L′),C×) , and Cµ′ be the
corresponding local coefficient system on M ′ r L′ and
Cµ|M∩M ′ = Cµ′|M∩M ′ . Assume that ∂(M ∩M ′) is fibered
with fibers circles on which µ is non-trivial.
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M ∩M ′ = ∂M ∩ ∂M ′ be a compact manifold of dimension
2n− 1 and the orientations induced on M ∩M ′ from M and
M ′ are opposite to each other.
Let µ′ ∈ Hom(H1(M

′ r L′),C×) , and Cµ′ be the
corresponding local coefficient system on M ′ r L′ and
Cµ|M∩M ′ = Cµ′|M∩M ′ . Assume that ∂(M ∩M ′) is fibered
with fibers circles on which µ is non-trivial. Then
σµ∪µ′((M ∪M ′) r (L ∪ L′)) = σµ(M r L) + σµ′(M

′ r L′) .
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Corollary. σµ(M r L) is invariant with respect to cobordisms
of (M ;L1, . . . , Lk;µ) .
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Let L = L1 ∪ · · · ∪ Lm ⊂ S3 be a classical link.
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Let L = L1 ∪ · · · ∪ Lm ⊂ S3 be a classical link.

ζi ∈ C , |ζi| = 1 , ζ = (ζ1, . . . , ζm) ∈ (S1)m and

µ : π1(S
3 r L) → C× takes a meridian of Li to ζi .
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Let Fi ⊂ D4 be smooth oriented surfaces transversal to each
other with ∂Fi = Fi ∩ ∂D4 = Li . Extend µ to D4 r ∪iFi .
In H2(D

4 r ∪iFi; Cµ) there is a Hermitian intersection form.
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4 r ∪iFi; Cµ) there is a Hermitian intersection form.

Theorem. Its signature σζ(L) does not depend on F1, . . . , Fm .
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i ∩ ∂D4 = li is cobordant to Fi .
The cobordisms Wi ⊂ D4 × I can be made pairwise
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between D4 r ∪iN(Fi) and D4 r ∪iN(F ′

i ) . The boundary of
the cobordism consists of D4 r ∪iN(Fi) , D4 r ∪iN(F ′

i ) and
a homologically negligible part ∂(N(∪iWi)) , the boundary of a
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The same arguments work for L = ∪mi=1Li , where Li are
oriented submanifolds of codimension 2 of S2n−1 transversal to
each other, and Fi are submanifolds of D2n transversal to each
other.
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In H2(D
4 r ∪iFi; Cµ) there is a Hermitian intersection form.

Theorem. Its signature σζ(L) does not depend on F1, . . . , Fm .
�

The same arguments work for L = ∪mi=1Li , where Li are
oriented submanifolds of codimension 2 of S2n−1 transversal to
each other, and Fi are submanifolds of D2n transversal to each
other.

If n is odd, then the intersection form in Hn(D
2n r ∪iFi; Cµ)

is skew-Hermitian. Multiply it by i =
√
−1 and denote the

signature of the Hermitian form by σζ(L) .
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where K is a smooth submanifold diffeomorphic to Sn−2 .

One may require K to be only homeomorphic to Sn−2 , not
diffeomorphic ,
or just a homology sphere of dimension n− 2 ,
or a submanifold of dimension n− 2 with Sn rK
fibered over S1 .
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classical knots and links.
The closest generalization of classical knots are pairs (Sn,K) ,
where K is a smooth submanifold diffeomorphic to Sn−2 .

The codimension two is most important.
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There is a spectrum of objects considered generalizations of
classical knots and links.
The closest generalization of classical knots are pairs (Sn,K) ,
where K is a smooth submanifold diffeomorphic to Sn−2 .

The closest higher-dimensional counter-part of classical links are
pairs (Sn, L) , where L is a collection of its disjoint smooth
submanifolds diffeomorphic to Sn−2 .

Then the restrictions to submanifolds are weakened.

but they are usually required to be disjoint.
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There is a spectrum of objects considered generalizations of
classical knots and links.
The closest generalization of classical knots are pairs (Sn,K) ,
where K is a smooth submanifold diffeomorphic to Sn−2 .

I suggest to allow transversal intersections of the submanifolds.
Other reasons:
1. In the classical dimension it is easy to be disjoint. Generic
submanifolds of codimension 2 in a manifold of dimension > 3
intersect.
2. A link of an algebraic hypersurface H ⊂ Cn with n ≥ 3
cannot be a union of disjoint submanifolds.
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Sometimes one may want to get rid of twisted homology.

If twisted homology does not vanish itself, it may be desirable to
find something larger, but better understood.

We will show that often the dimensions of twisted homology are
estimated by the dimensions of untwisted ones.
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Lemma 1. (The principal algebraic lemma of the Morse
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dimensional vector spaces over a field F
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s=r (−1)s−r dimF Hs(C) =

=
∑

2n+r

s=r (−1)s−r dimF Cs − rk ∂r−1 − rk ∂2n+r.
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s=r (−1)s−r dimF Hs(C) =

=
∑

2n+r

s=r (−1)s−r dimF Cs − rk ∂r−1 − rk ∂2n+r.

Proof. For n = 0 : Since Hs(C) = Ker ∂s/ Im ∂s+1 , we have
dimHs(C) = dim Ker ∂s − dim Im ∂s+1 .



Estimates of twisted homology

• Twisted homology

• Duality

• Unitary local
coefficients

• Signatures

• Link signatures

• Digression on higher
dim links.
• Estimates of twisted
homology

• Span inequalities

• Slice inequalities

8 / 10

Lemma 1. (The principal algebraic lemma of the Morse

theory.) For a complex C : · · · → Ci
∂i→ Ci−1 → of finite

dimensional vector spaces over a field F
∑

2n+r
s=r (−1)s−r dimF Hs(C) =

=
∑

2n+r

s=r (−1)s−r dimF Cs − rk ∂r−1 − rk ∂2n+r.
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Further, dim Im ∂s+1 = rk ∂s+1 , and
dim Ker ∂s = dimCs − rk ∂s . Hence,
dimHs = dimCs − rk ∂s − rk ∂s+1
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dimHs(C) = dim Ker ∂s − dim Im ∂s+1 .
Further, dim Im ∂s+1 = rk ∂s+1 , and
dim Ker ∂s = dimCs − rk ∂s . Hence,
dimHs = dimCs − rk ∂s − rk ∂s+1

In general case, make alternating summation of this for
s = r, . . . , 2n+ s . �
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∑

2n+r

s=r (−1)s−r dimF Cs − rk ∂r−1 − rk ∂2n+r. �

Lemma 2. Let P and Q be fields, R ⊂ Q a subring and
h : R → P a ring homomorphism.
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Lemma 2. Let P and Q be fields, R ⊂ Q a subring and
h : R → P a ring homomorphism. Let
C : · · · → Cp → Cp−1 → · · · → C1 → C0 be a complex of
free finitely generated R -modules. Then for any n and r∑

2n+r

s=r (−1)s−r dimQHs(C ⊗R Q)
≤ ∑

2n+r

s=r (−1)s−r dimP Hs(C ⊗h P ) . �
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Proof. dimQCi ⊗ RQ = dimP Ci ⊗ hP , rk ∂Qi ≥ rk ∂Pi . �
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free finitely generated R -modules. Then for any n and r∑

2n+r

s=r (−1)s−r dimQHs(C ⊗R Q)
≤

∑
2n+r

s=r (−1)s−r dimP Hs(C ⊗h P ) .

Theorem. Let X be a finite cw-complex, µ : H1(X) → C× a
homomorphism. If Imµ ⊂ C× generates a subring R of C

and there is a ring homomorphism h : R→ P , where P is a
field, such that hµ(H1(X)) = 1 , then∑

2n+r

s=r (−1)s−r dimHs(X; Cµ)
≤

∑
2n+r

s=r (−1)s−r dimP Hs(X;P ) . �



Estimates of twisted homology

• Twisted homology

• Duality

• Unitary local
coefficients

• Signatures

• Link signatures

• Digression on higher
dim links.
• Estimates of twisted
homology

• Span inequalities

• Slice inequalities

8 / 10

Theorem. Let X be a finite cw-complex, µ : H1(X) → C× a
homomorphism. If Imµ ⊂ C× generates a subring R of C

and there is a ring homomorphism h : R→ P , where P is a
field, such that hµ(H1(X)) = 1 , then∑

2n+r

s=r (−1)s−r dimHs(X; Cµ)
≤ ∑

2n+r

s=r (−1)s−r dimP Hs(X;P ) . �

Special cases: 1. H1(X) is generated by g ,

µ(g) is an algebraic number,

f is the minimal integer polynomial with relatively prime
coefficients which annihilates µ(g) .
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Special cases: 1. H1(X) is generated by g ,

µ(g) is an algebraic number,

f is the minimal integer polynomial with relatively prime
coefficients which annihilates µ(g) .
Assume p is a prime number which divides f(1) .
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Special cases: 1. H1(X) is generated by g ,

µ(g) is an algebraic number,

f is the minimal integer polynomial with relatively prime
coefficients which annihilates µ(g) .
Assume p is a prime number which divides f(1) .
Then R = Z[µ(g)] , P = Z/p and
h : Z[µ(g)] → Z/p, µ(g) 7→ 1 .
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s=r (−1)s−r dimHs(X; Cµ)
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2n+r

s=r (−1)s−r dimP Hs(X;P ) . �

Special cases: 2. H1(X) is generated by g1, . . . , gk ,

µ(g1), . . . , µ(gk) are algebraic numbers,

fi is the minimal integer polynomial with relatively prime
coefficients which annihilates µ(gi) .
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fi is the minimal integer polynomial with relatively prime
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s=r (−1)s−r dimHs(X; Cµ)
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s=r (−1)s−r dimP Hs(X;P ) . �

Special cases: 3. H1(X) is generated by g ,

µ(g) is a transcendental number.
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Theorem. Let X be a finite cw-complex, µ : H1(X) → C× a
homomorphism. If Imµ ⊂ C× generates a subring R of C

and there is a ring homomorphism h : R→ P , where P is a
field, such that hµ(H1(X)) = 1 , then∑

2n+r

s=r (−1)s−r dimHs(X; Cµ)
≤ ∑

2n+r

s=r (−1)s−r dimP Hs(X;P ) . �

Special cases: 3. H1(X) is generated by g ,

µ(g) is a transcendental number.
Then R = Z[µ(g)] , P = Q and
h : Z[µ(g)] → Q, µ(g) 7→ 1 .

For generic µ(g) twisted homology are not greater than
untwisted.



Estimates of twisted homology

• Twisted homology

• Duality

• Unitary local
coefficients

• Signatures

• Link signatures

• Digression on higher
dim links.
• Estimates of twisted
homology

• Span inequalities

• Slice inequalities

8 / 10

Theorem. Let X be a finite cw-complex, µ : H1(X) → C× a
homomorphism. If Imµ ⊂ C× generates a subring R of C

and there is a ring homomorphism h : R→ P , where P is a
field, such that hµ(H1(X)) = 1 , then∑

2n+r

s=r (−1)s−r dimHs(X; Cµ)
≤ ∑

2n+r

s=r (−1)s−r dimP Hs(X;P ) . �

Theorem. H1(X) is generated by g1, . . . , gk ,

µ, ν : H1(X) → C× be homomorphisms,
µ(g1), . . . , µ(gk), ν(g1), . . . , ν(gk) be transcendental numbers
such that (µ(g1), . . . , µ(gk)) ∈ Ck is a general point of a
variety V and (ν(g1), . . . , ν(gk)) ∈ Ck is a general point of a
subvariety W ⊂ V . Then
∑

2n+r

s=r (−1)s−r dimHs(X; Cµ)
≤ ∑

2n+r

s=r (−1)s−r dimHs(X; Cν) . �
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Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .
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Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
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each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
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Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
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fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
Let Fi ⊂ D2n be oriented compact smooth submanifolds
transversal to each other, with ∂Fi = Fi ∩ ∂D2n = Li .
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fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
Let Fi ⊂ D2n be oriented compact smooth submanifolds
transversal to each other, with ∂Fi = Fi ∩ ∂D2n = Li .
Put F = ∪iFi . Extend µ : π1(S

2n−1 r L) → C× to
µ : π1(D

2n r F ) → C× .
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Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
Let Fi ⊂ D2n be oriented compact smooth submanifolds
transversal to each other, with ∂Fi = Fi ∩ ∂D2n = Li .
Put F = ∪iFi . Extend µ : π1(S

2n−1 r L) → C× to
µ : π1(D

2n r F ) → C× .

Obviously,

|σζ(L)| ≤ dimHn(D
2n r F ; Cµ) ≤ Hn(D

2n r F ; Z/p)
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each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
Let Fi ⊂ D2n be oriented compact smooth submanifolds
transversal to each other, with ∂Fi = Fi ∩ ∂D2n = Li .
Put F = ∪iFi . Extend µ : π1(S

2n−1 r L) → C× to
µ : π1(D

2n r F ) → C× .

Obviously,

|σζ(L)| ≤ dimHn(D
2n r F ; Cµ) ≤ Hn(D

2n r F ; Z/p)
= dimHn−1(F ; Z/p) .
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Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
Let Fi ⊂ D2n be oriented compact smooth submanifolds
transversal to each other, with ∂Fi = Fi ∩ ∂D2n = Li .
Put F = ∪iFi . Extend µ : π1(S

2n−1 r L) → C× to
µ : π1(D

2n r F ) → C× .

Obviously,

|σζ(L)| ≤ dimHn(D
2n r F ; Cµ) ≤ Hn(D

2n r F ; Z/p)
= dimHn−1(F ; Z/p) . Thus, |σζ(L)| ≤ dimHn−1(F ; Z/p) .
Similarly one can prove:
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Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
Let Fi ⊂ D2n be oriented compact smooth submanifolds
transversal to each other, with ∂Fi = Fi ∩ ∂D2n = Li .
Put F = ∪iFi . Extend µ : π1(S

2n−1 r L) → C× to
µ : π1(D

2n r F ) → C× .

Theorem. For any integer r with 0 ≤ r ≤ n
2
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Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
Let Fi ⊂ D2n be oriented compact smooth submanifolds
transversal to each other, with ∂Fi = Fi ∩ ∂D2n = Li .
Put F = ∪iFi . Extend µ : π1(S

2n−1 r L) → C× to
µ : π1(D

2n r F ) → C× .

Theorem. For any integer r with 0 ≤ r ≤ n
2

|σζ(L)| +
∑

2r

s=0
(−1)s dimHr−1−s(S

2n−1 r L; Cζ)
≤

∑
2r

s=0
(−1)s dimHn−1+s(F,L; Z/p)

+
∑

2r

s=0
(−1)s dimHn−2−s(F,L; Z/p)
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Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
Let Fi ⊂ D2n be oriented compact smooth submanifolds
transversal to each other, with ∂Fi = Fi ∩ ∂D2n = Li .

The r th nullity nrζ(L) is defined as
∑

2r

s=0
(−1)s dimHn+s(S

2n−1 r ∪mi=1Li; Cµ) .
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Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
Let Fi ⊂ D2n be oriented compact smooth submanifolds
transversal to each other, with ∂Fi = Fi ∩ ∂D2n = Li .

Theorem. For any integer r with 0 ≤ r ≤ n
2

|σζ(L)| + nrζ(L) ≤
∑

2r

s=0
(−1)s dimHn−1+s(F,L; Z/p)

+
∑

2r

s=0
(−1)s dimHn−2−s(F,L; Z/p)
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Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
Let Fi ⊂ D2n be oriented compact smooth submanifolds
transversal to each other, with ∂Fi = Fi ∩ ∂D2n = Li .

In particular, |σζ(L)| + dimHn(S
2n−1 r L; Cµ)

≤ dimHn(F,L; Z/p) + dimHn−1(F,L; Z/p)
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Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
Let Fi ⊂ D2n be oriented compact smooth submanifolds
transversal to each other, with ∂Fi = Fi ∩ ∂D2n = Li .

That is |σζ(L)| + n0
ζ(L)

≤ dimHn(F,L; Z/p) + dimHn−1(F,L; Z/p)
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Again, let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal
to each other submanifolds of codimension 2,
L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .
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fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .

Let Λi ⊂ S2n be oriented closed smooth submanifolds
transversal to each other and to S2n−1 , with ∂Λi ∩S2n−1 = Li .
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fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .

Let Λi ⊂ S2n be oriented closed smooth submanifolds
transversal to each other and to S2n−1 , with ∂Λi ∩S2n−1 = Li .
Put Λ = ∪iΛi . Extend µ : π1(S

2n−1 r L) → C× to
µ : π1(S

2n r Λ) → C× .
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Again, let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal
to each other submanifolds of codimension 2,
L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .

Let Λi ⊂ S2n be oriented closed smooth submanifolds
transversal to each other and to S2n−1 , with ∂Λi ∩S2n−1 = Li .
Put Λ = ∪iΛi . Extend µ : π1(S

2n−1 r L) → C× to
µ : π1(S

2n r Λ) → C× .
Theorem. |σζ(L)| ≤ 1

2
dimHn−1(Λ; Z/p)



Slice inequalities

• Twisted homology

• Duality

• Unitary local
coefficients

• Signatures

• Link signatures

• Digression on higher
dim links.
• Estimates of twisted
homology

• Span inequalities

• Slice inequalities

10 / 10

Again, let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal
to each other submanifolds of codimension 2,
L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .

Let Λi ⊂ S2n be oriented closed smooth submanifolds
transversal to each other and to S2n−1 , with ∂Λi ∩S2n−1 = Li .
Put Λ = ∪iΛi . Extend µ : π1(S

2n−1 r L) → C× to
µ : π1(S

2n r Λ) → C× .
Theorem. |σζ(L)| ≤ 1

2
dimHn−1(Λ; Z/p)

|σζ(L)| + n0
ζ(L)

≤ 1

2
dimHn−1(Λ; Z/p) + dimHn−2(Λ r L; Z/p)
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Again, let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal
to each other submanifolds of codimension 2,
L = L1 ∪ · · · ∪ Lm .

Let ζi ∈ C be algebraic numbers with |ζi| = 1 , and

fi be irreducible integer polynomials with fi(ζi) = 0 .
Suppose prime number p divides fi(1) for i = 1, . . . ,m .
Let µ : π1(S

2n−1 r L) → C× take a meridian of Li to ζi .

Let Λi ⊂ S2n be oriented closed smooth submanifolds
transversal to each other and to S2n−1 , with ∂Λi ∩S2n−1 = Li .
Put Λ = ∪iΛi . Extend µ : π1(S

2n−1 r L) → C× to
µ : π1(S

2n r Λ) → C× .
Theorem. |σζ(L)| ≤ 1

2
dimHn−1(Λ; Z/p)

|σζ(L)| + nrζ(L) ≤ 1

2

∑
2r

s=−2r(−1)s dimHn−1+s(Λ; Z/p)

+
∑

2r
s=0

(−1)s dimHn−2−s(Λ r L; Z/p)
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