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Complex tropical geometry

About strange objects which lie behind the basic objects of t he tropical

geometry, just between tropical and classical algebraic ge ometries

Oleg Viro

November 30, 2009
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I introduce a new multivalued addition of complex numbers.

Together with the usual multiplication, this addition satisfies
axioms which generalize the usual field axioms.

Non-singular varieties defined over this degenerated field of
complex numbers are topological manifolds

and have amoebas which are tropical varieties.
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A binary multi-valued operation in X : a map X × X → 2X
r {∅} .

A set X with a multi-valued operation (a, b) 7→ a ⊤ b is a commutative
mv-group if

1. ⊤ is commutative;
2. ⊤ is associative;
3.
4.

A binary multi-valued operation f : X × X → 2X naturally extends to
2X × 2X → 2X : (A,B) 7→ ∪a∈A,b∈Bf(a, b) .

f : X × X → 2X is associative
if f(f(a, b), c) = f(a, f(b, c)) for any a, b, c ∈ X .



Multi-valued groups

Table of Contents 4 / 24

A binary multi-valued operation in X : a map X × X → 2X
r {∅} .

A set X with a multi-valued operation (a, b) 7→ a ⊤ b is a commutative
mv-group if

1. ⊤ is commutative;
2. ⊤ is associative;
3. X contains 0 such that 0 ⊤ a = a for any a ∈ X ;
4.



Multi-valued groups

Table of Contents 4 / 24

A binary multi-valued operation in X : a map X × X → 2X
r {∅} .

A set X with a multi-valued operation (a, b) 7→ a ⊤ b is a commutative
mv-group if

1. ⊤ is commutative;
2. ⊤ is associative;
3. X contains 0 such that 0 ⊤ a = a for any a ∈ X ;
4. for each a ∈ X there exists a unique −a ∈ X such that

0 ∈ a ⊤ (−a) .



Multi-valued groups

Table of Contents 4 / 24

A binary multi-valued operation in X : a map X × X → 2X
r {∅} .

A set X with a multi-valued operation (a, b) 7→ a ⊤ b is a commutative
mv-group if

1. ⊤ is commutative;
2. ⊤ is associative;
3. X contains 0 such that 0 ⊤ a = a for any a ∈ X ;
4. for each a ∈ X there exists a unique −a ∈ X such that

0 ∈ a ⊤ (−a) .

Any abelian group is an mv-group.
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{a}, if |a| > |b|;
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{|a|eϕi | ϕ ∈ [α, β]}, if a = |a|eαi, b = |a|eβi,

β − α < π;

{c ∈ C | |c| ≤ |a|}, if a + b = 0.

(C,⊤) is an mv-group.
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Let Y ⊂ X and f : X × X → 2X be binary multivalued operation.

A binary multivalued operation g : Y × Y → 2Y is induced by f if
g(a, b) = f(a, b) ∩ Y for any a, b ∈ Y .

g is determined by f .

g exists iff f(a, b) ∩ Y 6= ∅ for any a, b ∈ Y

Recall that the definition of multivalued binary operation prohibits
g(a, b) to be empty.
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The tropical addition in C induces a tropical addition in R .
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(R,⊤) is an mv-group.
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A map f : X → Y is called an (mv-group) homomorphism if
f(a ⊤ b) ⊂ f(a) ⊤ f(b) for any a, b ∈ X .

Example. A non-archimedean norm K → R satisfies the ultra-metric
triangle inequality

|a + b| ≤ max(a, b) for any a, b ∈ K .
This is a homomorphism from K to mv-group (R,⊤) .

Let (X,⊤) be an mv-group and Y ⊂ X

If Y ∩ (a ⊤ b) 6= ∅ for any a, b ∈ Y , ⊤Y is induced on Y by ⊤ ,

0 ∈ Y and a ∈ Y =⇒ −a ∈ Y ,

then (Y,⊤Y ) is an mv-group ( mv-subgroup of X )
and Y →֒ X is a homomorphism.
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A set X with a binary multi-valued addition ⊤ and a (uni-valent)
multiplication is called a mv-ring if
• (X,⊤) is a commutative mv-group,
• the multiplication is associative and commutative and
• distributivity holds true for the multiplication and ⊤.

An mv-ring X is an mv-field if X r 0 is a multiplicative group.

Mv-groups (R,⊤) and (C,⊤) with the usual multiplication are
mv-fields.

R≥0 is closed under the mv-field operations in R .

⊤ induces max .

R≥0,max,× is a subsemifield of R⊤,× ⊂ C⊤,× .
Recall: log : R⊤,× → T = Rmax,+ ∪ −∞ is an isomorphism.
A natural map in the opposite direction: R⊤ → R≥0,max : x 7→ |x|
is not a homomorphism.
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An element of C[R] is a formal linear combination
∑

n anqrn ,
where an ∈ C and rn ∈ R .

A formal variable q symbolizes conversion
from additive notation in R to multiplicative notation in C[R] .

Substitution q = eh transforms
∑

n anqrn to
∑

n ane
hrn and provides

an interpretation as functions C → C .

Let aMqrM be the summand of
∑

n anqrn with greatest rn .

Define a map C[R] → C which takes
∑

n anqrn to
aM

|aM |
erM .

This is a homomorphism f : C[R] → C⊤,× :

f(a + b) ∈ f(a) ⊤ f(b) and f(ab) = f(a)f(b) .
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For h > 0 consider a map Sh: C → C

z 7→

{

|z|
1

h
z
|z|

= |z|
1−h

h z, if z 6= 0;

0, if z = 0.

the inverse map:

S−1
h : z 7→

{

|z|h z
|z|

= |z|h−1z, if z 6= 0;

0, if z = 0

Induce an operation in the source via Sh :
z +h w = S−1

h (Sh(z) + Sh(w))

If |z| > |w| , then limh→0(z +h w) = z .
If |z| = |w| and z + w 6= 0 , then limh→0(z +h w) = |z| z+w

|z+w|
.

If z + w = 0 , then limh→0(z +h w) = 0 .
Denote limh→0(z +h w) by z +0 w .
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Good properties of +0 :
• commutative,
• distributive (with the standard multiplication)
• 0 ∈ C is its neutral element.
• Each element has a unique inverse.

Bad properties:
• discontinuous,
• not associative.

Need a wiser limit.

There is one that
fixes all the defects,

but gives a multivalued ⊤ !
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If X is first countable and regular, then LIMh→0 Fh

is the set of limits of xh ∈ Fh as h → 0 .
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Let X be a topological space.
Upper Vietoris topology in the set 2X of all subsets of X

is generated by sets 2U ⊂ 2X with U open in X .
For any family Fh ⊂ X with h ∈ (0, 1]

there exists A ⊂ X such that Fh → A as h → 0 .

Denote by LIMh→0 Fh

the intersection of all closed A ⊂ X such that Fh → A as h → 0 .
If Fh ∈ X × Y are graphs of univalent continuous maps X → Y ,

then LIMh→0 Fh is a graph of a multivalent map.
If the images of points are compact , and the graph is closed,

then the multivalent map is upper semi-continuous.
If the images of points are connected and the map is upper

semi-continuous, then the image of a connected set is connected.
If the images of points are compact and the map is upper

semi-continuous, then the image of a compact set is compact.
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Let Γh ⊂ C3 be a graph of +h for h > 0 :
Γh = {(a, b, c) ∈ C3 | a +h b = c} .

LIMh→0 Γh is the graph of ⊤ .
Let zn and wn be sequences of complex numbers,

zn → z and wn → w .
Let hn be a sequence of positive real numbers, hn → 0 .

If the sequence zn +hn
wn converges, then zn +hn

wn → z ⊤ w .

Any element of z ⊤ w can be represented as such a limit.

The image of a point is either a point, or a closed arc, or a closed disk.

Hence, ⊤ is upper semi-continuous and
maps a connected set to a connected set

and a compact set to a compact set.
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Is x2
⊤−1 = (x ⊤ 1)(x ⊤−1) ? Yes, x2

⊤ −1 = x2
⊤ x ⊤ −x ⊤ −1 .

0 1 2−2 −1

1

2

−1
The graph of a polynomial is connected.

Because a polynomial is upper semi-continuous and has connected values.
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How do several complex numbers with the same absolute values
give zero?

0 ∈ a ⊤ b ⊤ c ⊤ . . . ⊤ x iff 0 ∈ Conv(a, b, c, . . . , x).

What if they have different absolute values?
Then only those with the greatest one matter!
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(C r 0)n is convenient to consider fibred over R
n via the map

Log : (C r {0})n → Rn : (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|).

Let
p(z1, . . . , zn) = ⊤

k=(k1,...kn)∈I
akz

k1

1 . . . zkn

n

be a pure ⊤-polynomial. Let

q(x1, . . . , xn) = max{log |ak| + k1 log |x1| + · · · + kn log |xn| | k ∈ I}
be its tropical version (in a sense, Log!(p) ?).

Let Vp = {z ∈ (C r 0)n | 0 ∈ p(z)} and
Tq ⊂ R

n be a tropical hypersurface defined by q .

Then Log(Vp) = Tq .
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Let p be a polynomial in n variables, generic in the sense that
at each point x ∈ Cn the Newton polyhedron of its leading terms

is a simplex of the minimal volume.
Then for sufficiently small h > 0 the set
Vh(p) = {x ∈ Cn

h | p(x) = 0} is a non-singular hypersurface
isotopic to V (p) = {x ∈ Cn | 0 ∈ p(x)} .

In particular, V (p) is a topological manifold.

There is a real version of this statement.



Complex tropical geometry

Table of Contents 23 / 24

I suggest to call complex tropical geometry the algebraic geometry
over the mv-field of tropical complex numbers.



Complex tropical geometry

Table of Contents 23 / 24

I suggest to call complex tropical geometry the algebraic geometry
over the mv-field of tropical complex numbers.

real tropical geometry the algebraic geometry
over the mv-field of tropical real numbers.



Complex tropical geometry

Table of Contents 23 / 24

I suggest to call complex tropical geometry the algebraic geometry
over the mv-field of tropical complex numbers.

real tropical geometry the algebraic geometry
over the mv-field of tropical real numbers.

There are lots of open questions.



Complex tropical geometry

Table of Contents 23 / 24

I suggest to call complex tropical geometry the algebraic geometry
over the mv-field of tropical complex numbers.

real tropical geometry the algebraic geometry
over the mv-field of tropical real numbers.

There are lots of open questions.
First, what are infinitesimal structures

in the complex and real tropical varieties.?



Complex tropical geometry

Table of Contents 23 / 24

I suggest to call complex tropical geometry the algebraic geometry
over the mv-field of tropical complex numbers.

real tropical geometry the algebraic geometry
over the mv-field of tropical real numbers.

There are lots of open questions.
First, what are infinitesimal structures

in the complex and real tropical varieties.?
Tangent bundles?



Complex tropical geometry

Table of Contents 23 / 24

I suggest to call complex tropical geometry the algebraic geometry
over the mv-field of tropical complex numbers.

real tropical geometry the algebraic geometry
over the mv-field of tropical real numbers.

There are lots of open questions.
First, what are infinitesimal structures

in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?



Complex tropical geometry

Table of Contents 23 / 24

I suggest to call complex tropical geometry the algebraic geometry
over the mv-field of tropical complex numbers.

real tropical geometry the algebraic geometry
over the mv-field of tropical real numbers.

There are lots of open questions.
First, what are infinitesimal structures

in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?

Second, what happens at singular points?



Complex tropical geometry

Table of Contents 23 / 24

I suggest to call complex tropical geometry the algebraic geometry
over the mv-field of tropical complex numbers.

real tropical geometry the algebraic geometry
over the mv-field of tropical real numbers.

There are lots of open questions.
First, what are infinitesimal structures

in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?

Second, what happens at singular points?
Does the tropical deformation smash them completely?



Complex tropical geometry

Table of Contents 23 / 24

I suggest to call complex tropical geometry the algebraic geometry
over the mv-field of tropical complex numbers.

real tropical geometry the algebraic geometry
over the mv-field of tropical real numbers.

There are lots of open questions.
First, what are infinitesimal structures

in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?

Second, what happens at singular points?
Does the tropical deformation smash them completely?

Third, is there other mv-fields responsible for the fate of
higher germs of complex varieties in the tropical deformation?



Complex tropical geometry

Table of Contents 23 / 24

I suggest to call complex tropical geometry the algebraic geometry
over the mv-field of tropical complex numbers.

real tropical geometry the algebraic geometry
over the mv-field of tropical real numbers.

There are lots of open questions.
First, what are infinitesimal structures

in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?

Second, what happens at singular points?
Does the tropical deformation smash them completely?

Third, is there other mv-fields responsible for the fate of
higher germs of complex varieties in the tropical deformation?

Fourth, what are abstract varieties?



Complex tropical geometry

Table of Contents 23 / 24

I suggest to call complex tropical geometry the algebraic geometry
over the mv-field of tropical complex numbers.

real tropical geometry the algebraic geometry
over the mv-field of tropical real numbers.

There are lots of open questions.
First, what are infinitesimal structures

in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?

Second, what happens at singular points?
Does the tropical deformation smash them completely?

Third, is there other mv-fields responsible for the fate of
higher germs of complex varieties in the tropical deformation?

Fourth, what are abstract varieties?
This is a work in progress.
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