Global complex obstructions to a real Morse modification (Klein's enigma)

Oleg Viro
a joint work with Slava Kharlamov

July 5, 2017

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
A real algebraic curve of type I does not admit any development.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:

A real algebraic curve of type \mid does not admit any development. or growth?

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:

A real algebraic curve of type I does not admit any development.
(German: "sind entwicklungsfähig nicht" - is not viable)

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:

A real algebraic curve of type I does not admit any development.
Type I = divides its complexification.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:

A real algebraic curve of type I does not admit any development.
Type I = divides its complexification.
Example: A curve of type I.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development." Type I = divides into 2 halves. Type II = does not divide.
Example: A curve of type I.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development."
Type I = divides into 2 halves.
Type II = does not divide.
Digression: how to build a curve of type II.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development." Type I = divides into 2 halves. Type II = does not divide.
Digression: how to build a curve of type II. Erase a real component.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development."
Type I = divides into 2 halves. Type II = does not divide.
Digression: how to build a curve of type II. Erase a real component.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development."
Type I = divides into 2 halves. Type II = does not divide.
Digression: how to build a curve of type II. Erase a real component.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development."
Type I = divides into 2 halves. Type II = does not divide.
Digression: how to build a curve of type II. Erase a real component.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development."
Type I = divides into 2 halves. Type II = does not divide.
Digression: how to build a curve of type II. Erase a real component.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development." Type I = divides into 2 halves. Type II = does not divide.
Digression: how to build a curve of type II. Done!

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development."
Type I = divides into 2 halves.
Type II = does not divide.
This was a Morse modification of index 2.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development." Type I = divides into 2 halves. Type II = does not divide.
This was a Morse modification of index 2.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development."
Type I = divides into 2 halves.
Type II = does not divide.
This was a Morse modification of index 2.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development." Type I = divides into 2 halves. Type II = does not divide.
This was a Morse modification of index 2.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development."
Type $\mathrm{I}=$ divides into 2 halves.
Type II = does not divide.

An elaborate and fruitful discussion 35 years ago resulted in understanding of the Klein's "development" as

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development."
Type I = divides into 2 halves. Type II = does not divide.

An elaborate and fruitful discussion 35 years ago resulted in understanding of the Klein's "development" as
a Morse-Lefschetz modification of a real algebraic curve which increases the number of real components.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development."
Type I = divides into 2 halves. Type II = does not divide.

An elaborate and fruitful discussion 35 years ago resulted in understanding of the Klein's "development" as
a Morse-Lefschetz modification of a real algebraic curve which increases the number of real components.

Theorem. A real algebraic curve of type I cannot increase the number of its real components in a single Morse-Lefschetz modification.

Klein enigma

Felix Klein, Über eine neue Art von Riemann'schen Flächen, Mathematische Annalen, 10, (1876), 398-416:
"A real algebraic curve of type I does not admit any development."
Type I = divides into 2 halves. Type II = does not divide.

An elaborate and fruitful discussion 35 years ago resulted in understanding of the Klein's "development" as
a Morse-Lefschetz modification of a real algebraic curve which increases the number of real components.

Theorem. A real algebraic curve of type I cannot increase the number of its real components in a single Morse-Lefschetz modification.

The talk is about this theorem and its high-dimensional generalizations.

Type I curves

Topology of curves of type I is subject to many restrictions.

Type I curves

Topology of curves of type I is subject to many restrictions. Everything beautiful is fragile.

Type I curves

Topology of curves of type I is subject to many restrictions. Everything beautiful is fragile.

Some even thinks "beautiful is not viable"!

Type I curves

Topology of curves of type I is subject to many restrictions.
Everything beautiful is fragile.
Some even thinks "beautiful is not viable"!
Sometimes beautiful dominate.

Type I curves

Topology of curves of type I is subject to many restrictions. Everything beautiful is fragile.

Some even thinks "beautiful is not viable"!
Sometimes beautiful dominate.
Most curves can be obtained by downgrading of type I curves.

Type I curves

Topology of curves of type I is subject to many restrictions. Everything beautiful is fragile.

Some even thinks "beautiful is not viable"!
Sometimes beautiful dominate.
Most curves can be obtained by downgrading of type I curves.

The distribution of isotopy classes of non-singular plane projective curves between the types in low degrees.

degree	type I	type II
1	1	0
2	1	1
3	1	1
4	2	4
5	3	6
6	14	50

Complex orientations

A curve of type I has a pair of distinguished orientations.

Complex orientations

A curve of type I has a pair of distinguished orientations.

Complex orientations

A curve of type I has a pair of distinguished orientations.

Complex orientations

A curve of type I has a pair of distinguished orientations.

Complex orientations

A curve of type I has a pair of distinguished orientations.

Complex orientations

A curve of type I has a pair of distinguished orientations.

Complex orientations

A curve of type I has a pair of distinguished orientations.

Complex orientations

A curve of type I has a pair of distinguished orientations.
Theorem.
In a Morse-Lefschetz modification of index 1 on a curve of type I, a complex orientation of the initial curve does not extend to the result.

Complex orientations

A curve of type I has a pair of distinguished orientations.

Theorem.

In a Morse-Lefschetz modification of index 1 on a curve of type I, a complex orientation of the initial curve does not extend to the result.

Like this:

Complex orientations

A curve of type I has a pair of distinguished orientations.

Theorem.

In a Morse-Lefschetz modification of index 1 on a curve of type I, a complex orientation of the initial curve does not extend to the result.

Like this:

Complex orientations

A curve of type I has a pair of distinguished orientations.

Theorem.

In a Morse-Lefschetz modification of index 1 on a curve of type I, a complex orientation of the initial curve does not extend to the result.

Like this:

Complex orientations

A curve of type I has a pair of distinguished orientations.

Theorem.

In a Morse-Lefschetz modification of index 1 on a curve of type I, a complex orientation of the initial curve does not extend to the result.

Like this:

Not like that:

Complex orientations

A curve of type I has a pair of distinguished orientations.

Theorem.

In a Morse-Lefschetz modification of index 1 on a curve of type I, a complex orientation of the initial curve does not extend to the result.

Like this:

Not like that:

Complex orientations

A curve of type I has a pair of distinguished orientations.

Theorem.

In a Morse-Lefschetz modification of index 1 on a curve of type I, a complex orientation of the initial curve does not extend to the result.

Like this:

Not like that:

Complex orientations

A curve of type I has a pair of distinguished orientations.

Theorem.

In a Morse-Lefschetz modification of index 1 on a curve of type I, a complex orientation of the initial curve does not extend to the result.

Like this:

Not like that:

Proof. By the Morse Lemma,
any two Morse modifications of the same indices are locally diffeomorphic. Hence, it suffices to consider one example.

Complex orientations

A curve of type I has a pair of distinguished orientations.

Theorem.

In a Morse-Lefschetz modification of index 1 on a curve of type I, a complex orientation of the initial curve does not extend to the result.

Like this:

Not like that:

Proof. By the Morse Lemma,
any two Morse modifications of the same indices are locally diffeomorphic. Hence, it suffices to consider one example.

Hyperbola is of type I.

Complex orientations

A curve of type I has a pair of distinguished orientations.

Theorem.

In a Morse-Lefschetz modification of index 1 on a curve of type I, a complex orientation of the initial curve does not extend to the result.

Like this:

Not like that:

Proof. By the Morse Lemma,
any two Morse modifications of the same indices are locally diffeomorphic. Hence, it suffices to consider one example.

Hyperbola is of type I.

Complex orientations

A curve of type I has a pair of distinguished orientations.

Theorem.

In a Morse-Lefschetz modification of index 1 on a curve of type I, a complex orientation of the initial curve does not extend to the result.

Like this:

Not like that:

Proof. By the Morse Lemma,
any two Morse modifications of the same indices are locally diffeomorphic. Hence, it suffices to consider one example.

Hyperbola is of type I.

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point, and connects conjugate points avoiding real curve.

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components replaces them by a single component.

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components replaces them by a single component.

Indeed,

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components replaces them by a single component.

Indeed,

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components
replaces them by a single component.
Indeed,

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components
replaces them by a single component.
A Morse modification of index 1 on a single component
can be one of two sorts.

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components replaces them by a single component.
A Morse modification of index 1 on a single component
can be one of two sorts.
first:

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components replaces them by a single component.
A Morse modification of index 1 on a single component
can be one of two sorts.
first:

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components replaces them by a single component.
A Morse modification of index 1 on a single component
can be one of two sorts.
first:

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components
replaces them by a single component.
A Morse modification of index 1 on a single component
can be one of two sorts.
first:

second:

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components
replaces them by a single component.
A Morse modification of index 1 on a single component
can be one of two sorts.
first:

second:

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components replaces them by a single component.
A Morse modification of index 1 on a single component
can be one of two sorts.
The first does not change the number of components.

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components replaces them by a single component.
A Morse modification of index 1 on a single component
can be one of two sorts.
The first does not change the number of components.
The second increases it, but is not allowed by complex orientations .

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components replaces them by a single component.
A Morse modification of index 1 on a single component
can be one of two sorts.
The first does not change the number of components.
The second increases it, but is not allowed by complex orientations.

In dimension one

Theorem. A curve of type I cannot increase the number of its components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I, because the vanishing cycle has no real point,
and connects conjugate points avoiding real curve.
A Morse modification of index 1 along S^{0} meeting 2 components replaces them by a single component.
A Morse modification of index 1 on a single component
can be one of two sorts.
The first does not change the number of components.
The second increases it, but is not allowed by complex orientations .
A Morse modification of index 2 removes a real component.

$\underline{\text { Homological proof }}$

Let A be a non-singular real algebraic curve.

Homological proof

Let A be a non-singular real algebraic curve.
Forms. In $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ there are two symmetric bilinear forms:
intersection form $x \circ y$, and conjugation form $x \circ \operatorname{conj}_{*} y$.

Homological proof

Let A be a non-singular real algebraic curve.
Forms. In $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ there are two symmetric bilinear forms: intersection form $x \circ y$, and conjugation form $x \circ \operatorname{conj}_{*} y$.
A is of type $\mathrm{I} \Longleftrightarrow$ the conjugation form is even and $A_{\mathbb{R}} \neq \varnothing$.

Homological proof

Let A be a non-singular real algebraic curve.
Forms. In $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ there are two symmetric bilinear forms: intersection form $x \circ y$, and conjugation form $x \circ \operatorname{conj}_{*} y$.
A is of type $\mathrm{I} \Longleftrightarrow$ the conjugation form is even and $A_{\mathbb{R}} \neq \varnothing$.
Involution. The action of conj_{*} in $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ splits to direct sum of
copies of $I=(\mathbb{Z} / 2$, id $)$ and $U=\left((\mathbb{Z} / 2)^{2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$.

Homological proof

Let A be a non-singular real algebraic curve.
Forms. In $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ there are two symmetric bilinear forms:
intersection form $x \circ y$, and conjugation form $x \circ \operatorname{conj}_{*} y$.
A is of type $\mathrm{I} \Longleftrightarrow$ the conjugation form is even and $A_{\mathbb{R}} \neq \varnothing$.
Involution. The action of conj_{*} in $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ splits to direct sum of
copies of $I=(\mathbb{Z} / 2$, id $)$ and $U=\left((\mathbb{Z} / 2)^{2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$.
The number of summands of the second type is $\frac{b_{*}\left(A_{\mathbb{C}}\right)-b_{*}\left(A_{\mathbb{R}}\right)}{2}$.

Homological proof

Let A be a non-singular real algebraic curve.
Forms. In $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ there are two symmetric bilinear forms:
intersection form $x \circ y$, and conjugation form $x \circ \operatorname{conj}_{*} y$.
A is of type $\mathrm{I} \Longleftrightarrow$ the conjugation form is even and $A_{\mathbb{R}} \neq \varnothing$.
Involution. The action of conj_{*} in $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ splits to direct sum of
copies of $I=(\mathbb{Z} / 2$, id $)$ and $U=\left((\mathbb{Z} / 2)^{2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$.
The number of summands of the second type is $\frac{b_{*}\left(A_{\mathbb{C}}\right)-b_{*}\left(A_{\mathbb{R}}\right)}{2}$.
A Morse-Lefschetz modification of A with vanishing cycle e replaces $x \mapsto \operatorname{conj}_{*} x$ in $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ by $x \mapsto \operatorname{conj}_{*} x+(e \circ x) e$.

Homological proof

Let A be a non-singular real algebraic curve.
Forms. In $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ there are two symmetric bilinear forms:
intersection form $x \circ y$, and conjugation form $x \circ \operatorname{conj}_{*} y$.
A is of type $\mathrm{I} \Longleftrightarrow$ the conjugation form is even and $A_{\mathbb{R}} \neq \varnothing$.
Involution. The action of conj_{*} in $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ splits to direct sum of
copies of $I=(\mathbb{Z} / 2$, id $)$ and $U=\left((\mathbb{Z} / 2)^{2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$.
The number of summands of the second type is $\frac{b_{*}\left(A_{\mathbb{C}}\right)-b_{*}\left(A_{\mathbb{R}}\right)}{2}$.
A Morse-Lefschetz modification of A with vanishing cycle e replaces $x \mapsto \operatorname{conj}_{*} x$ in $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ by $x \mapsto \operatorname{conj}_{*} x+(e \circ x) e$.
e splits out either in $I \oplus I$ or in $U \oplus U$.

Homological proof

Let A be a non-singular real algebraic curve.
Forms. In $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ there are two symmetric bilinear forms:
intersection form $x \circ y$, and conjugation form $x \circ \operatorname{conj}_{*} y$.
A is of type $\mathrm{I} \Longleftrightarrow$ the conjugation form is even and $A_{\mathbb{R}} \neq \varnothing$.
Involution. The action of conj_{*} in $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ splits to direct sum of
copies of $I=(\mathbb{Z} / 2$, id $)$ and $U=\left((\mathbb{Z} /)^{2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$.
The number of summands of the second type is $\frac{b_{*}\left(A_{\mathbb{C}}\right)-b_{*}\left(A_{\mathbb{R}}\right)}{2}$.
A Morse-Lefschetz modification of A with vanishing cycle e replaces $x \mapsto \operatorname{conj}_{*} x$ in $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ by $x \mapsto \operatorname{conj}_{*} x+(e \circ x) e$.
e splits out either in $I \oplus I$ or in $U \oplus U$. The modification replaces $I \oplus I \mapsto U$ and $U \oplus U \mapsto U \oplus U$.

Homological proof

Let A be a non-singular real algebraic curve.
Forms. In $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ there are two symmetric bilinear forms:
intersection form $x \circ y$, and conjugation form $x \circ \operatorname{conj}_{*} y$.
A is of type $\mathrm{I} \Longleftrightarrow$ the conjugation form is even and $A_{\mathbb{R}} \neq \varnothing$.
Involution. The action of conj_{*} in $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ splits to direct sum of
copies of $I=(\mathbb{Z} / 2$, id $)$ and $U=\left((\mathbb{Z} /)^{2},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$.
The number of summands of the second type is $\frac{b_{*}\left(A_{\mathbb{C}}\right)-b_{*}\left(A_{\mathbb{R}}\right)}{2}$.
A Morse-Lefschetz modification of A with vanishing cycle e replaces $x \mapsto \operatorname{conj}_{*} x$ in $H_{1}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ by $x \mapsto \operatorname{conj}_{*} x+(e \circ x) e$.
e splits out either in $I \oplus I$ or in $U \oplus U$. The modification replaces $I \oplus I \mapsto U$ and $U \oplus U \mapsto U \oplus U$.

Thus the $b_{*}\left(A_{\mathbb{R}}\right)$ does not increase.

The choice of criteria

The choice of criteria

What is the right high-dimensional counter-part
for the number of connected components of a closed curve?

The choice of criteria

What is the right high-dimensional counter-part
for the number of connected components of a closed curve?
Still, the number of connected components?

The choice of criteria

What is the right high-dimensional counter-part
for the number of connected components of a closed curve?
Still, the number of connected components?
Other Betti numbers $b_{k}(X)=\operatorname{dim}_{\mathbb{Z} / 2}(X ; \mathbb{Z} / 2)$?

The choice of criteria

What is the right high-dimensional counter-part
for the number of connected components of a closed curve?
Still, the number of connected components?
Other Betti numbers $b_{k}(X)=\operatorname{dim}_{\mathbb{Z} / 2}(X ; \mathbb{Z} / 2)$?
The total Betti number $b_{*}(X)=\operatorname{dim}_{\mathbb{Z} / 2} H_{*}(X ; \mathbb{Z} / 2)$?

The choice of criteria

What is the right high-dimensional counter-part
for the number of connected components of a closed curve?
Still, the number of connected components?
Other Betti numbers $b_{k}(X)=\operatorname{dim}_{\mathbb{Z} / 2}(X ; \mathbb{Z} / 2)$?
The total Betti number $b_{*}(X)=\operatorname{dim}_{\mathbb{Z} / 2} H_{*}(X ; \mathbb{Z} / 2)$?
Why not $\chi(X)$, or $H_{k}(X)$, or $\pi_{1}(X)$?

The choice of criteria

What is the right high-dimensional counter-part
for the number of connected components of a closed curve?
Still, the number of connected components?
Other Betti numbers $b_{k}(X)=\operatorname{dim}_{\mathbb{Z} / 2}(X ; \mathbb{Z} / 2)$?
The total Betti number $b_{*}(X)=\operatorname{dim}_{\mathbb{Z} / 2} H_{*}(X ; \mathbb{Z} / 2)$?
Why not $\chi(X)$, or $H_{k}(X)$, or $\pi_{1}(X)$?
Betti numbers are most relevant, due to their sensitivity to surgeries!

The choice of criteria

What is the right high-dimensional counter-part
for the number of connected components of a closed curve?
Still, the number of connected components?
Other Betti numbers $b_{k}(X)=\operatorname{dim}_{\mathbb{Z} / 2}(X ; \mathbb{Z} / 2)$?
The total Betti number $b_{*}(X)=\operatorname{dim}_{\mathbb{Z} / 2} H_{*}(X ; \mathbb{Z} / 2)$?
Why not $\chi(X)$, or $H_{k}(X)$, or $\pi_{1}(X)$?
Betti numbers are most relevant, due to their sensitivity to surgeries!
A single surgery of index i changes at most two Betti numbers.

The choice of criteria

What is the right high-dimensional counter-part
for the number of connected components of a closed curve?
Still, the number of connected components?
Other Betti numbers $b_{k}(X)=\operatorname{dim}_{\mathbb{Z} / 2}(X ; \mathbb{Z} / 2)$?
The total Betti number $b_{*}(X)=\operatorname{dim}_{\mathbb{Z} / 2} H_{*}(X ; \mathbb{Z} / 2)$?
Why not $\chi(X)$, or $H_{k}(X)$, or $\pi_{1}(X)$?
Betti numbers are most relevant, due to their sensitivity to surgeries!
A single surgery of index i changes at most two Betti numbers.
b_{*} either increases by 2 , or decreases by 2 , or does not change.

The choice of criteria

What is the right high-dimensional counter-part
for the number of connected components of a closed curve?
Still, the number of connected components?
Other Betti numbers $b_{k}(X)=\operatorname{dim}_{\mathbb{Z} / 2}(X ; \mathbb{Z} / 2)$?
The total Betti number $b_{*}(X)=\operatorname{dim}_{\mathbb{Z} / 2} H_{*}(X ; \mathbb{Z} / 2)$?
Why not $\chi(X)$, or $H_{k}(X)$, or $\pi_{1}(X)$?
Betti numbers are most relevant, due to their sensitivity to surgeries!
A single surgery of index i changes at most two Betti numbers.
b_{*} either increases by 2 , or decreases by 2 , or does not change.
If b_{*} does not change, then $n=2 i-1$.

The choice of criteria

What is the right high-dimensional counter-part
for the number of connected components of a closed curve?
Still, the number of connected components?
Other Betti numbers $b_{k}(X)=\operatorname{dim}_{\mathbb{Z} / 2}(X ; \mathbb{Z} / 2)$?
The total Betti number $b_{*}(X)=\operatorname{dim}_{\mathbb{Z} / 2} H_{*}(X ; \mathbb{Z} / 2)$?
Why not $\chi(X)$, or $H_{k}(X)$, or $\pi_{1}(X)$?
Betti numbers are most relevant, due to their sensitivity to surgeries!
A single surgery of index i changes at most two Betti numbers.
b_{*} either increases by 2 , or decreases by 2 , or does not change.
If b_{*} does not change, then $n=2 i-1$.
Otherwise,
S^{i-1} bounds in $X \Longrightarrow b_{i}(X)$ and $b_{n-i}(X)$ increase by 1.

The choice of criteria

What is the right high-dimensional counter-part
for the number of connected components of a closed curve?
Still, the number of connected components?
Other Betti numbers $b_{k}(X)=\operatorname{dim}_{\mathbb{Z} / 2}(X ; \mathbb{Z} / 2)$?
The total Betti number $b_{*}(X)=\operatorname{dim}_{\mathbb{Z} / 2} H_{*}(X ; \mathbb{Z} / 2)$?
Why not $\chi(X)$, or $H_{k}(X)$, or $\pi_{1}(X)$?
Betti numbers are most relevant, due to their sensitivity to surgeries!
A single surgery of index i changes at most two Betti numbers.
b_{*} either increases by 2 , or decreases by 2 , or does not change.
If b_{*} does not change, then $n=2 i-1$.
Otherwise,
S^{i-1} bounds in $X \Longrightarrow b_{i}(X)$ and $b_{n-i}(X)$ increase by 1.
S^{i-1} does not bound $\Longrightarrow b_{i-1}(X)$ and $b_{n-i+1}(X)$ decrease by 1 .

Types of real algebraic varieties

The original definition of type I does not make sense in high dimensions.

Types of real algebraic varieties

The original definition of type I does not make sense in high dimensions.
The real part $A_{\mathbb{R}}$ cannot divide the complexification $A_{\mathbb{C}}$, as $\operatorname{codim}_{A_{\mathbb{C}}} A_{\mathbb{R}}=\operatorname{dim} A>1$.

Types of real algebraic varieties

A non-empty real algebraic curve $A_{\mathbb{R}}$ divides its complexification $A_{\mathbb{C}}$ $\Longleftrightarrow A_{\mathbb{R}}$ is zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.

Types of real algebraic varieties

A non-empty real algebraic curve $A_{\mathbb{R}}$ divides its complexification $A_{\mathbb{C}}$ $\Longleftrightarrow A_{\mathbb{R}}$ is zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.
A real algebraic variety A is said to be of type I if
$A_{\mathbb{R}}$ is non-empty and zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.

Types of real algebraic varieties

A non-empty real algebraic curve $A_{\mathbb{R}}$ divides its complexification $A_{\mathbb{C}}$ $\Longleftrightarrow A_{\mathbb{R}}$ is zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.
A real algebraic variety A is said to be of type I if
$A_{\mathbb{R}}$ is non-empty and zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.
A real algebraic variety A is said to be of type II if either $A_{\mathbb{R}}=\varnothing$, or $A_{\mathbb{R}}$ does not realize any remarkable homology class.

Types of real algebraic varieties

A non-empty real algebraic curve $A_{\mathbb{R}}$ divides its complexification $A_{\mathbb{C}}$ $\Longleftrightarrow A_{\mathbb{R}}$ is zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.
A real algebraic variety A is said to be of type I if
$A_{\mathbb{R}}$ is non-empty and zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.
A real algebraic variety A is said to be of type II if either $A_{\mathbb{R}}=\varnothing$, or $A_{\mathbb{R}}$ does not realize any remarkable homology class.

If $n=\operatorname{dim} A$ is odd, then the only remarkable class in $H_{n}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ is 0.

Types of real algebraic varieties

A non-empty real algebraic curve $A_{\mathbb{R}}$ divides its complexification $A_{\mathbb{C}}$ $\Longleftrightarrow A_{\mathbb{R}}$ is zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.
A real algebraic variety A is said to be of type I if
$A_{\mathbb{R}}$ is non-empty and zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.

A real algebraic variety A is said to be of type II if either $A_{\mathbb{R}}=\varnothing$, or $A_{\mathbb{R}}$ does not realize any remarkable homology class.

If $n=\operatorname{dim} A$ is odd, then the only remarkable class in $H_{n}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ is 0 .
If $n=\operatorname{dim} A$ is even, then any $B \subset A$ with $\operatorname{dim} B=n / 2$ gives $\left[B_{\mathbb{C}}\right] \in H_{n}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$.

Types of real algebraic varieties

A non-empty real algebraic curve $A_{\mathbb{R}}$ divides its complexification $A_{\mathbb{C}}$ $\Longleftrightarrow A_{\mathbb{R}}$ is zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.
A real algebraic variety A is said to be of type I if
$A_{\mathbb{R}}$ is non-empty and zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.
A real algebraic variety A is said to be of type II if either $A_{\mathbb{R}}=\varnothing$, or $A_{\mathbb{R}}$ does not realize any remarkable homology class.

If $n=\operatorname{dim} A$ is odd, then the only remarkable class in $H_{n}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ is 0 .
If $n=\operatorname{dim} A$ is even, then any $B \subset A$ with $\operatorname{dim} B=n / 2$ gives $\left[B_{\mathbb{C}}\right] \in H_{n}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$.
and extra types emerge

Types of real algebraic varieties

A non-empty real algebraic curve $A_{\mathbb{R}}$ divides its complexification $A_{\mathbb{C}}$ $\Longleftrightarrow A_{\mathbb{R}}$ is zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.
A real algebraic variety A is said to be of type I if
$A_{\mathbb{R}}$ is non-empty and zero-homologous $\bmod 2$ in $A_{\mathbb{C}}$.

A real algebraic variety A is said to be of type II if either $A_{\mathbb{R}}=\varnothing$, or $A_{\mathbb{R}}$ does not realize any remarkable homology class.

If $n=\operatorname{dim} A$ is odd, then the only remarkable class in $H_{n}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$ is 0 .
If $n=\operatorname{dim} A$ is even, then any $B \subset A$ with $\operatorname{dim} B=n / 2$ gives $\left[B_{\mathbb{C}}\right] \in H_{n}\left(A_{\mathbb{C}} ; \mathbb{Z} / 2\right)$. and extra types emerge
A is of type $\mathrm{I} \Longleftrightarrow$ the conjugation form is even and $A_{\mathbb{R}} \neq \varnothing$.

Stiefel orientations

Stiefel orientations generalize both orientations and Spin-structures.

Stiefel orientations

A Stiefel k-orientation of an O_{n}-bundle ξ is $o \in H^{k}\left(V_{n, n-k}(\xi) ; \mathbb{Z} / 2\right)$ such that its restriction to $\widetilde{H^{k}}\left(V_{n, n-k} ; \mathbb{Z} / 2\right)$ is non-trivial for any fiber.

Stiefel orientations

A Stiefel k-orientation of an O_{n}-bundle ξ is $o \in H^{k}\left(V_{n, n-k}(\xi) ; \mathbb{Z} / 2\right)$ such that its restriction to $\widetilde{H^{k}}\left(V_{n, n-k} ; \mathbb{Z} / 2\right)$ is non-trivial for any fiber.
A Stiefel k-orientation of an n-manifold X assigns an element of $\mathbb{Z} / 2$ to an $(n-k)$-framed k-cycle.

Stiefel orientations

A Stiefel k-orientation of an O_{n}-bundle ξ is $o \in \widetilde{H^{k}}\left(V_{n, n-k}(\xi) ; \mathbb{Z} / 2\right)$ such that its restriction to $\widetilde{H^{k}}\left(V_{n, n-k} ; \mathbb{Z} / 2\right)$ is non-trivial for any fiber.
A Stiefel k-orientation of an n-manifold X assigns an element of $\mathbb{Z} / 2$ to an $(n-k)$-framed k-cycle.
It assigns the same to cobounding cycles

Stiefel orientations

A Stiefel k-orientation of an O_{n}-bundle ξ is $o \in \widetilde{H^{k}}\left(V_{n, n-k}(\xi) ; \mathbb{Z} / 2\right)$
such that its restriction to $\widetilde{H^{k}}\left(V_{n, n-k} ; \mathbb{Z} / 2\right)$ is non-trivial for any fiber.
A Stiefel k-orientation of an n-manifold X assigns an element of $\mathbb{Z} / 2$ to an $(n-k)$-framed k-cycle.
It assigns the same to cobounding cycles, and $1 \bmod 2$ to const : $S^{k} \rightarrow X$ framed by a generator of $\widetilde{H_{k}}\left(V_{n, n-k} ; \mathbb{Z} / 2\right)$.

Stiefel orientations

A Stiefel k-orientation of an O_{n}-bundle ξ is $o \in \widetilde{H^{k}}\left(V_{n, n-k}(\xi) ; \mathbb{Z} / 2\right)$ such that its restriction to $\widetilde{H^{k}}\left(V_{n, n-k} ; \mathbb{Z} / 2\right)$ is non-trivial for any fiber.
A Stiefel k-orientation of an n-manifold X assigns an element of $\mathbb{Z} / 2$ to an $(n-k)$-framed k-cycle.
It assigns the same to cobounding cycles, and $1 \bmod 2$ to const : $S^{k} \rightarrow X$ framed by a generator of $\widetilde{H_{k}}\left(V_{n, n-k} ; \mathbb{Z} / 2\right)$.
Stiefel 0-orientation $=$ semi-orientation (an orientation up to reversing).

Stiefel orientations

A Stiefel k-orientation of an O_{n}-bundle ξ is $o \in \widetilde{H^{k}\left(V_{n, n-k}(\xi) ; \mathbb{Z} / 2\right)}$
such that its restriction to $\widetilde{H^{k}}\left(V_{n, n-k} ; \mathbb{Z} / 2\right)$ is non-trivial for any fiber.
A Stiefel k-orientation of an n-manifold X assigns an element of $\mathbb{Z} / 2$ to an $(n-k)$-framed k-cycle.
It assigns the same to cobounding cycles, and $1 \bmod 2$ to

$$
\text { const : } S^{k} \rightarrow X \text { framed by a generator of } \widetilde{H_{k}}\left(V_{n, n-k} ; \mathbb{Z} / 2\right) .
$$

Stiefel 0-orientation = semi-orientation (an orientation up to reversing).
Stiefel 1-orientation + orientation = Spin-structure.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$. Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.
Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.
Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

Multiply v_{j} by $i=\sqrt{-1}$.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.
Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

Multiply v_{j} by $i=\sqrt{-1}$.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.
Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

Multiply v_{j} by $i=\sqrt{-1}$. Push c along $i v_{1}$ from $A_{\mathbb{R}}$ to $c_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ and find $e_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ with $\partial e_{1}=c_{1}$.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.
Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

Multiply v_{j} by $i=\sqrt{-1}$. Push c along $i v_{1}$ from $A_{\mathbb{R}}$ to $c_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ and find $e_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ with $\partial e_{1}=c_{1}$.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.
Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

Multiply v_{j} by $i=\sqrt{-1}$. Push c along $i v_{1}$ from $A_{\mathbb{R}}$ to $c_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ and find $e_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ with $\partial e_{1}=c_{1}$. Reflect e_{1} by conj.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.
Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

Multiply v_{j} by $i=\sqrt{-1}$. Push c along $i v_{1}$ from $A_{\mathbb{R}}$ to $c_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ and find $e_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ with $\partial e_{1}=c_{1}$. Reflect e_{1} by conj.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.
Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

Multiply v_{j} by $i=\sqrt{-1}$. Push c along $i v_{1}$ from $A_{\mathbb{R}}$ to $c_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ and find $e_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ with $\partial e_{1}=c_{1}$. Reflect e_{1} by conj. Complete $e_{1} \cup \operatorname{conj}\left(e_{1}\right)$ to a cycle c_{2} along $i v_{2}$.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.
Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

Multiply v_{j} by $i=\sqrt{-1}$. Push c along $i v_{1}$ from $A_{\mathbb{R}}$ to $c_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ and find $e_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ with $\partial e_{1}=c_{1}$. Reflect e_{1} by conj. Complete $e_{1} \cup \operatorname{conj}\left(e_{1}\right)$ to a cycle c_{2} along $i v_{2}$.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.
Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

Multiply v_{j} by $i=\sqrt{-1}$. Push c along $i v_{1}$ from $A_{\mathbb{R}}$ to $c_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ and find $e_{1} \subset A_{\mathbb{C}} \backslash A_{\mathbb{R}}$ with $\partial e_{1}=c_{1}$. Reflect e_{1} by conj. Complete $e_{1} \cup \operatorname{conj}\left(e_{1}\right)$ to a cycle c_{2} along $i v_{2}$. Construct similarly cycles c_{3}, \ldots, c_{n-k}.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$.
Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$.

$\operatorname{dim} c_{j}=k+j-1, \operatorname{dim} c_{n-k}=n-1$. The linking number
$\mathrm{lk}_{A_{\mathbb{C}}}\left(A_{\mathbb{R}}, c_{n-k}\right) \in \mathbb{Z} /{ }_{2}$ is the value of the Stiefel k-orientation on the framed cycle $\left(c, v_{1}, \ldots, v_{n-k}\right)$.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$. Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$. $\operatorname{dim} c_{j}=k+j-1, \operatorname{dim} c_{n-k}=n-1$. The linking number $\mathrm{lk}_{A_{\mathbb{C}}}\left(A_{\mathbb{R}}, c_{n-k}\right) \in \mathbb{Z} / 2$ is the value of the Stiefel k-orientation on the framed cycle $\left(c, v_{1}, \ldots, v_{n-k}\right)$.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$. Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$. $\operatorname{dim} c_{j}=k+j-1, \operatorname{dim} c_{n-k}=n-1$. The linking number $\mathrm{lk}_{A_{\mathbb{C}}}\left(A_{\mathbb{R}}, c_{n-k}\right) \in \mathbb{Z} / 2$ is the value of the Stiefel k-orientation on the framed cycle $\left(c, v_{1}, \ldots, v_{n-k}\right)$.

If $\operatorname{dim} A \leq 2$, then the construction requires much milder assumptions.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$. Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$. $\operatorname{dim} c_{j}=k+j-1, \operatorname{dim} c_{n-k}=n-1$. The linking number $\mathrm{lk}_{A_{\mathbb{C}}}\left(A_{\mathbb{R}}, c_{n-k}\right) \in \mathbb{Z} / 2$ is the value of the Stiefel k-orientation on the framed cycle $\left(c, v_{1}, \ldots, v_{n-k}\right)$.

If $\operatorname{dim} A \leq 2$, then the construction requires much milder assumptions.
If $\operatorname{dim} A=1$, then nothing besides type I is required, and the result is the complex semi-orientation.

Complex Stiefel orientations

If A is an n-dimensional affine complete intersection of type I, then $A_{\mathbb{R}}$ has a distinguished Stiefel k-orientation for each $k \leq n$. Take any k-cycle $c \subset A_{\mathbb{R}}$ framed with $n-k$-vector fields $v_{1} \ldots v_{n-k}$. $\operatorname{dim} c_{j}=k+j-1, \operatorname{dim} c_{n-k}=n-1$. The linking number $\mathrm{lk}_{A_{\mathbb{C}}}\left(A_{\mathbb{R}}, c_{n-k}\right) \in \mathbb{Z} / 2$ is the value of the Stiefel k-orientation on the framed cycle $\left(c, v_{1}, \ldots, v_{n-k}\right)$.

If $\operatorname{dim} A \leq 2$, then the construction requires much milder assumptions.
If $\operatorname{dim} A=1$, then nothing besides type I is required, and the result is the complex semi-orientation.

In the case of a surface of type I with $b_{1}\left(A_{\mathbb{C}}\right)=0$ the result is Stiefel k-orientations with $k=0,1$, i.e., a semi-orientation and Spin-structure.

Complex Stiefel orientation on vanishing sphere

Let A be an n-dimensional affine complete intersection of type I.

Complex Stiefel orientation on vanishing sphere

Let A be an n-dimensional affine complete intersection of type I.
Let $S \subset A_{\mathbb{R}}$ be a real vanishing sphere of a Morse-Lefschetz modification of index i, and v be the natural framing of S.

Complex Stiefel orientation on vanishing sphere

Let A be an n-dimensional affine complete intersection of type I.
Let $S \subset A_{\mathbb{R}}$ be a real vanishing sphere of a Morse-Lefschetz modification of index i, and v be the natural framing of S.

Let o be the complex Stiefel $(n+1-i)$-orientation of $A_{\mathbb{R}}$.
Then $o(S, v)=0$.

Complex Stiefel orientation on vanishing sphere

Let A be an n-dimensional affine complete intersection of type I.
Let $S \subset A_{\mathbb{R}}$ be a real vanishing sphere of a Morse-Lefschetz modification of index i, and v be the natural framing of S.

Let o be the complex Stiefel $(n+1-i)$-orientation of $A_{\mathbb{R}}$.
Then $o(S, v)=0$.
Proof. Use the complex vanishing cycle for evaluating $o(S, v)$.

Complex Stiefel orientation on vanishing sphere

Let A be an n-dimensional affine complete intersection of type I.
Let $S \subset A_{\mathbb{R}}$ be a real vanishing sphere of a Morse-Lefschetz modification of index i, and v be the natural framing of S.

Let o be the complex Stiefel $(n+1-i)$-orientation of $A_{\mathbb{R}}$.
Then $o(S, v)=0$.
Proof. Use the complex vanishing cycle for evaluating $o(S, v)$.
This forbids the Morse modifications

Complex Stiefel orientation on vanishing sphere

Let A be an n-dimensional affine complete intersection of type I.
Let $S \subset A_{\mathbb{R}}$ be a real vanishing sphere of a Morse-Lefschetz modification of index i, and v be the natural framing of S.

Let o be the complex Stiefel $(n+1-i)$-orientation of $A_{\mathbb{R}}$.
Then $o(S, v)=0$.
Proof. Use the complex vanishing cycle for evaluating $o(S, v)$.
This forbids the Morse modifications

Complex Stiefel orientation on vanishing sphere

Let A be an n-dimensional affine complete intersection of type I.
Let $S \subset A_{\mathbb{R}}$ be a real vanishing sphere of a Morse-Lefschetz modification of index i, and v be the natural framing of S.

Let o be the complex Stiefel $(n+1-i)$-orientation of $A_{\mathbb{R}}$.
Then $o(S, v)=0$.
Proof. Use the complex vanishing cycle for evaluating $o(S, v)$.
This forbids the Morse modifications

Complex Stiefel orientation on vanishing sphere

Let A be an n-dimensional affine complete intersection of type I.
Let $S \subset A_{\mathbb{R}}$ be a real vanishing sphere of a Morse-Lefschetz modification of index i, and v be the natural framing of S.

Let o be the complex Stiefel $(n+1-i)$-orientation of $A_{\mathbb{R}}$.
Then $o(S, v)=0$.
Proof. Use the complex vanishing cycle for evaluating $o(S, v)$.
This forbids the Morse modifications, due to complex orientation.

Surfaces

Theorem. If A is a real algebraic surface of type I with $b_{1}\left(A_{\mathbb{C}}\right)=0$, then $b_{0}\left(A_{\mathbb{R}}\right)$ cannot increase under a single Morse-Lefschetz modification.

Surfaces

Theorem. If A is a real algebraic surface of type I with $b_{1}\left(A_{\mathbb{C}}\right)=0$, then $b_{0}\left(A_{\mathbb{R}}\right)$ cannot increase under a single Morse-Lefschetz modification.

However, $b_{1}\left(A_{\mathbb{R}}\right)$ (and $b_{*}\left(A_{\mathbb{R}}\right)$) of such surface can increase.

Surfaces

Theorem. If A is a real algebraic surface of type I with $b_{1}\left(A_{\mathbb{C}}\right)=0$, then $b_{0}\left(A_{\mathbb{R}}\right)$ cannot increase under a single Morse-Lefschetz modification.

However, $b_{1}\left(A_{\mathbb{R}}\right)$ (and $b_{*}\left(A_{\mathbb{R}}\right)$) of such surface can increase.
The simplest example:
two-fold covering of the projective plane ramified in quartic.
Torus turns into Klein bottle with a handle.

Surfaces

Theorem. If A is a real algebraic surface of type I with $b_{1}\left(A_{\mathbb{C}}\right)=0$, then $b_{0}\left(A_{\mathbb{R}}\right)$ cannot increase under a single Morse-Lefschetz modification.

However, $b_{1}\left(A_{\mathbb{R}}\right)$ (and $b_{*}\left(A_{\mathbb{R}}\right)$) of such surface can increase.
The simplest example:
two-fold covering of the projective plane ramified in quartic.
Torus turns into Klein bottle with a handle.

Surfaces

Theorem. If A is a real algebraic surface of type I with $b_{1}\left(A_{\mathbb{C}}\right)=0$, then $b_{0}\left(A_{\mathbb{R}}\right)$ cannot increase under a single Morse-Lefschetz modification.

However, $b_{1}\left(A_{\mathbb{R}}\right)$ (and $b_{*}\left(A_{\mathbb{R}}\right)$) of such surface can increase.
The simplest example:
two-fold covering of the projective plane ramified in quartic.
Torus turns into Klein bottle with a handle.

Surfaces

Theorem. If A is a real algebraic surface of type I with $b_{1}\left(A_{\mathbb{C}}\right)=0$, then $b_{0}\left(A_{\mathbb{R}}\right)$ cannot increase under a single Morse-Lefschetz modification.

However, $b_{1}\left(A_{\mathbb{R}}\right)$ (and $b_{*}\left(A_{\mathbb{R}}\right)$) of such surface can increase.
The simplest example:
two-fold covering of the projective plane ramified in quartic.
Torus turns into Klein bottle with a handle.

Surfaces

Theorem. If A is a real algebraic surface of type I with $b_{1}\left(A_{\mathbb{C}}\right)=0$, then $b_{0}\left(A_{\mathbb{R}}\right)$ cannot increase under a single Morse-Lefschetz modification.

However, $b_{1}\left(A_{\mathbb{R}}\right)$ (and $b_{*}\left(A_{\mathbb{R}}\right)$) of such surface can increase.
The simplest example:
two-fold covering of the projective plane ramified in quartic.
Torus turns into Klein bottle with a handle.
Theorem. If A is a real algebraic surface of type I with $b_{1}\left(A_{\mathbb{C}}\right)=0$, and $A \subset B$, where B is a non-singular real algebraic 3 -variety with orientable $B_{\mathbb{R}}$, then $b_{*}\left(A_{\mathbb{R}}\right)$ cannot increase under a single embedded Morse-Lefschetz modification of A in B.

Quadrics

Let $p+q=n+2$ and $Q_{p, q} \subset \mathbb{R} P^{n+1}$ be a non-singular n-dimensional quadric of signature $(p, q), p<q$.

Quadrics

Let $p+q=n+2$ and $Q_{p, q} \subset \mathbb{R} P^{n+1}$ be a non-singular n-dimensional quadric of signature $(p, q), p<q$.

$$
b_{n}\left(\mathbb{C} Q_{p, q}\right)=\left\{\begin{array}{l}
0, \text { if } n \text { is odd } \\
2, \text { if } n \text { is even }
\end{array} \quad b_{*}\left(Q_{p, q}\right)=2 p\right.
$$

Quadrics

Let $p+q=n+2$ and $Q_{p, q} \subset \mathbb{R} P^{n+1}$ be a non-singular n-dimensional quadric of signature $(p, q), p<q$.

$$
b_{n}\left(\mathbb{C} Q_{p, q}\right)=\left\{\begin{array}{l}
0, \text { if } n \text { is odd } \\
2, \text { if } n \text { is even }
\end{array} \quad b_{*}\left(Q_{p, q}\right)=2 p\right.
$$

If n is odd, all $Q_{p, q}$ are of type I.

Quadrics

Let $p+q=n+2$ and $Q_{p, q} \subset \mathbb{R} P^{n+1}$ be a non-singular n-dimensional quadric of signature $(p, q), p<q$.

$$
b_{n}\left(\mathbb{C} Q_{p, q}\right)=\left\{\begin{array}{l}
0, \text { if } n \text { is odd } \\
2, \text { if } n \text { is even }
\end{array} \quad b_{*}\left(Q_{p, q}\right)=2 p\right.
$$

If n is odd, all $Q_{p, q}$ are of type I.
Counter-examples to Klein in each odd dimension ≥ 3.

Quadrics

Let $p+q=n+2$ and $Q_{p, q} \subset \mathbb{R} P^{n+1}$ be a non-singular n-dimensional quadric of signature $(p, q), p<q$.

$$
b_{n}\left(\mathbb{C} Q_{p, q}\right)=\left\{\begin{array}{l}
0, \text { if } n \text { is odd } \\
2, \text { if } n \text { is even }
\end{array} \quad b_{*}\left(Q_{p, q}\right)=2 p\right.
$$

If n is odd, all $Q_{p, q}$ are of type I.
Counter-examples to Klein in each odd dimension ≥ 3.
If n is odd, then $Q_{p, q}$ are of type I iff p and q are even.

Quadrics

Let $p+q=n+2$ and $Q_{p, q} \subset \mathbb{R} P^{n+1}$ be a non-singular n-dimensional quadric of signature $(p, q), p<q$.

$$
b_{n}\left(\mathbb{C} Q_{p, q}\right)=\left\{\begin{array}{l}
0, \text { if } n \text { is odd } \\
2, \text { if } n \text { is even }
\end{array} \quad b_{*}\left(Q_{p, q}\right)=2 p\right.
$$

If n is odd, all $Q_{p, q}$ are of type I.
Counter-examples to Klein in each odd dimension ≥ 3.
If n is odd, then $Q_{p, q}$ are of type I iff p and q are even.
Counter-examples to Klein in each even dimension ≥ 4.

Correction for the enigma

For a a real algebraic subvariety A of a projective space P^{m}, denote by $l(A)$ the maximal i such that the inclusion homomorphism

$$
H_{i}\left(A_{\mathbb{R}} ; \mathbb{Z} / 2\right) \rightarrow H_{i}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right)
$$

is not trivial.

Correction for the enigma

For a a real algebraic subvariety A of a projective space P^{m}, denote by $l(A)$ the maximal i such that the inclusion homomorphism

$$
H_{i}\left(A_{\mathbb{R}} ; \mathbb{Z} / 2\right) \rightarrow H_{i}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right)
$$

is not trivial.
Theorem. Let A be an odd-dimensional complete intersection of type I.

Correction for the enigma

For a a real algebraic subvariety A of a projective space P^{m}, denote by $l(A)$ the maximal i such that the inclusion homomorphism

$$
H_{i}\left(A_{\mathbb{R}} ; \mathbb{Z} / 2\right) \rightarrow H_{i}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right)
$$

is not trivial.
Theorem. Let A be an odd-dimensional complete intersection of type I.
Then in a single Morse-Lefschetz modification
$b_{*}\left(A_{\mathbb{R}}\right)$ does not increase unless $l(A)$ increases.

Correction for the enigma

For a a real algebraic subvariety A of a projective space P^{m}, denote by $l(A)$ the maximal i such that the inclusion homomorphism

$$
H_{i}\left(A_{\mathbb{R}} ; \mathbb{Z} / 2\right) \rightarrow H_{i}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right)
$$

is not trivial.
Theorem. Let A be an odd-dimensional complete intersection of type I.
Then in a single Morse-Lefschetz modification
$b_{*}\left(A_{\mathbb{R}}\right)$ does not increase unless $l(A)$ increases.
Corollary. If A is a type I odd-dimensional subvariety of a sphere, then $b_{*}\left(A_{\mathbb{R}}\right)$ cannot increase in a Morse-Lefschetz modification.

Correction for the enigma

For a a real algebraic subvariety A of a projective space P^{m}, denote by $l(A)$ the maximal i such that the inclusion homomorphism

$$
H_{i}\left(A_{\mathbb{R}} ; \mathbb{Z} / 2\right) \rightarrow H_{i}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right)
$$

is not trivial.
Theorem. Let A be an odd-dimensional complete intersection of type I.
Then in a single Morse-Lefschetz modification $b_{*}\left(A_{\mathbb{R}}\right)$ does not increase unless $l(A)$ increases.

Corollary. If A is a type I odd-dimensional subvariety of a sphere, then $b_{*}\left(A_{\mathbb{R}}\right)$ cannot increase in a Morse-Lefschetz modification.

The same holds true in even dimensions, if the total degree is even.

Correction for the enigma

For a a real algebraic subvariety A of a projective space P^{m}, denote by $l(A)$ the maximal i such that the inclusion homomorphism

$$
H_{i}\left(A_{\mathbb{R}} ; \mathbb{Z} / 2\right) \rightarrow H_{i}\left(\mathbb{R} P^{m} ; \mathbb{Z} / 2\right)
$$

is not trivial.
Theorem. Let A be an odd-dimensional complete intersection of type I.
Then in a single Morse-Lefschetz modification $b_{*}\left(A_{\mathbb{R}}\right)$ does not increase unless $l(A)$ increases.

Corollary. If A is a type I odd-dimensional subvariety of a sphere, then $b_{*}\left(A_{\mathbb{R}}\right)$ cannot increase in a Morse-Lefschetz modification.

The same holds true in even dimensions, if the total degree is even.
This is a work in progress.

Table of Contents

Klein enigma
Type I curves
Complex orientations
In dimension one
Homological proof
The choice of criteria
Types of real algebraic varieties
Stiefel orientations
Complex Stiefel orientations
Complex Stiefel orientation on vanishing sphere
Surfaces
Quadrics
Correction for the enigma

