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Felix Klein, Über eine neue Art von Riemann’schen Flächen,

Mathematische Annalen, 10, (1876), 398-416:

A real algebraic curve of type I does not admit any development.

Type I = divides its complexification.

Example: A curve of type I.



Klein enigma

Table of Contents 2 / 15
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Mathematische Annalen, 10, (1876), 398-416:

“A real algebraic curve of type I does not admit any development.”

Type I = divides into 2 halves. Type II = does not divide.

Digression: how to build a curve of type II.



Klein enigma

Table of Contents 2 / 15
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Mathematische Annalen, 10, (1876), 398-416:

“A real algebraic curve of type I does not admit any development.”

Type I = divides into 2 halves. Type II = does not divide.

This was a Morse modification of index 2.



Klein enigma

Table of Contents 2 / 15
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Felix Klein, Über eine neue Art von Riemann’schen Flächen,

Mathematische Annalen, 10, (1876), 398-416:

“A real algebraic curve of type I does not admit any development.”

Type I = divides into 2 halves. Type II = does not divide.

An elaborate and fruitful discussion 35 years ago resulted in

understanding of the Klein’s “development” as

a Morse-Lefschetz modification of a real algebraic curve

which increases the number of real components.

Theorem. A real algebraic curve of type I cannot increase the number

of its real components in a single Morse-Lefschetz modification.

The talk is about this theorem and its high-dimensional generalizations.
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Topology of curves of type I is subject to many restrictions.

Everything beautiful is fragile.

Some even thinks “beautiful is not viable”!

Sometimes beautiful dominate.

Most curves can be obtained by downgrading of type I curves.

The distribution of isotopy classes of non-singular plane projective

curves between the types in low degrees.

degree type I type II

1 1 0

2 1 1

3 1 1

4 2 4

5 3 6

6 14 50
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A curve of type I has a pair of distinguished orientations .

Theorem.

In a Morse-Lefschetz modification of index 1 on a curve of type I,

a complex orientation of the initial curve does not extend to the result.

Like this: Not like that:

Proof. By the Morse Lemma,

any two Morse modifications of the same indices are locally diffeomorphic.

Hence, it suffices to consider one example.

Hyperbola is of type I. �
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Theorem. A curve of type I cannot increase the number of its

components in a single Morse-Lefschetz modification.

Proof. A Morse-Lefschetz modification of index 0 is impossible in Type I,

because the vanishing cycle has no real point,

and connects conjugate points avoiding real curve.

A Morse modification of index 1 along S0 meeting 2 components

replaces them by a single component.

A Morse modification of index 1 on a single component

can be one of two sorts.

The first does not change the number of components.

The second increases it, but is not allowed by complex orientations .

A Morse modification of index 2 removes a real component.

�
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Let A be a non-singular real algebraic curve.

Forms. In H1(AC;Z/2) there are two symmetric bilinear forms:

intersection form x ◦ y , and conjugation form x ◦ conj
∗
y .

A is of type I ⇐⇒ the conjugation form is even and AR 6= ∅ .

Involution. The action of conj∗ in H1(AC;Z/2) splits to direct sum of

copies of I = (Z/2, id) and U =

(
(Z/2)2,

(
0 1
1 0

))
.

The number of summands of the second type is
b∗(AC)− b∗(AR)

2
.

A Morse-Lefschetz modification of A with vanishing cycle e replaces

x 7→ conj
∗
x in H1(AC;Z/2) by x 7→ conj

∗
x+ (e ◦ x)e .

e splits out either in I ⊕ I or in U ⊕ U . The modification replaces

I ⊕ I 7→ U and U ⊕ U 7→ U ⊕ U .

Thus the b∗(AR) does not increase. �
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What is the right high-dimensional counter-part

for the number of connected components of a closed curve?

Still, the number of connected components?

Other Betti numbers bk(X) = dimZ/2(X ;Z/2) ?

The total Betti number b∗(X) = dimZ/2 H∗(X ;Z/2) ?

Why not χ(X) , or Hk(X) , or π1(X) ?

Betti numbers are most relevant , due to their sensitivity to surgeries!

A single surgery of index i changes at most two Betti numbers.

b∗ either increases by 2 , or decreases by 2 , or does not change.

If b∗ does not change, then n = 2i− 1 .

Otherwise,

Si−1 bounds in X =⇒ bi(X) and bn−i(X) increase by 1 .

Si−1 does not bound =⇒ bi−1(X) and bn−i+1(X) decrease by 1 .
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A non-empty real algebraic curve AR divides its complexification AC

⇐⇒ AR is zero-homologous mod 2 in AC .

A real algebraic variety A is said to be of type I if

AR is non-empty and zero-homologous mod 2 in AC .

A real algebraic variety A is said to be of type II if

either AR = ∅ , or AR does not realize any remarkable homology class.

If n = dimA is odd,

then the only remarkable class in Hn(AC;Z/2) is 0 .

If n = dimA is even,

then any B ⊂ A with dimB = n/2 gives [BC] ∈ Hn(AC;Z/2) .

and extra types emerge

A is of type I ⇐⇒ the conjugation form is even and AR 6= ∅ .
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A Stiefel k-orientation of an On -bundle ξ is o ∈ H̃k(Vn,n−k(ξ);Z/2)

such that its restriction to H̃k(Vn,n−k;Z/2) is non-trivial for any fiber.

A Stiefel k -orientation of an n -manifold X
assigns an element of Z/2 to an (n− k) -framed k -cycle.

It assigns the same to cobounding cycles, and 1mod 2 to

const : Sk → X framed by a generator of H̃k(Vn,n−k;Z/2) .

Stiefel 0-orientation = semi-orientation (an orientation up to reversing).

Stiefel 1-orientation + orientation = Spin-structure.
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then AR has a distinguished Stiefel k -orientation for each k ≤ n .

Take any k-cycle c ⊂ AR framed with n− k -vector fields v1 . . . vn−k .

iv2

iv2

c c1

c1c

e1conj(e1)

iv1−iv1

−iv1 iv1

c2
c2

c2

Multiply vj by i =
√
−1 . Push c along iv1 from AR to

c1 ⊂ AC r AR and find e1 ⊂ AC r AR with ∂e1 = c1 .

Reflect e1 by conj . Complete e1 ∪ conj(e1) to a cycle c2 along iv2 .
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then AR has a distinguished Stiefel k -orientation for each k ≤ n .

Take any k-cycle c ⊂ AR framed with n− k -vector fields v1 . . . vn−k .

dim cj = k + j − 1 , dim cn−k = n− 1 . The linking number
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If A is an n -dimensional affine complete intersection of type I,

then AR has a distinguished Stiefel k -orientation for each k ≤ n .

Take any k-cycle c ⊂ AR framed with n− k -vector fields v1 . . . vn−k .

dim cj = k + j − 1 , dim cn−k = n− 1 . The linking number

lkAC
(AR, cn−k) ∈ Z/2 is the value of the Stiefel k -orientation on the

framed cycle (c, v1, . . . , vn−k) .

If dimA ≤ 2 , then the construction requires much milder assumptions.

If dimA = 1 , then nothing besides type I is required,

and the result is the complex semi-orientation.

In the case of a surface of type I with b1(AC) = 0 the result is Stiefel

k -orientations with k = 0, 1 , i.e., a semi-orientation and Spin-structure.
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Let A be an n -dimensional affine complete intersection of type I.

Let S ⊂ AR be a real vanishing sphere of a Morse-Lefschetz

modification of index i , and v be the natural framing of S .

Let o be the complex Stiefel (n+ 1− i) -orientation of AR .

Then o(S, v) = 0 .

Proof. Use the complex vanishing cycle for evaluating o(S, v) . �

This forbids the Morse modifications, due to complex orientation.
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Torus turns into Klein bottle with a handle.
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Theorem. If A is a real algebraic surface of type I with b1(AC) = 0, then

b0(AR) cannot increase under a single Morse-Lefschetz modification.

However, b1(AR) (and b∗(AR) ) of such surface can increase.

The simplest example:

two-fold covering of the projective plane ramified in quartic.

Torus turns into Klein bottle with a handle.

Theorem. If A is a real algebraic surface of type I with b1(AC) = 0, and

A ⊂ B, where B is a non-singular real algebraic 3-variety with

orientable BR, then b∗(AR) cannot increase under a single embedded

Morse-Lefschetz modification of A in B.
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Let p+ q = n+ 2 and Qp,q ⊂ RP n+1 be a non-singular
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bn(CQp,q) =

{
0, if n is odd

2, if n is even
b∗(Qp,q) = 2p

If n is odd, all Qp,q are of type I.

Counter-examples to Klein in each odd dimension ≥ 3 .
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bn(CQp,q) =

{
0, if n is odd

2, if n is even
b∗(Qp,q) = 2p

If n is odd, all Qp,q are of type I.

Counter-examples to Klein in each odd dimension ≥ 3 .

If n is odd, then Qp,q are of type I iff p and q are even.
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Let p+ q = n+ 2 and Qp,q ⊂ RP n+1 be a non-singular

n -dimensional quadric of signature (p, q) , p < q .

bn(CQp,q) =

{
0, if n is odd

2, if n is even
b∗(Qp,q) = 2p

If n is odd, all Qp,q are of type I.

Counter-examples to Klein in each odd dimension ≥ 3 .

If n is odd, then Qp,q are of type I iff p and q are even.

Counter-examples to Klein in each even dimension ≥ 4 .
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For a a real algebraic subvariety A of a projective space Pm , denote

by l(A) the maximal i such that the inclusion homomorphism

Hi(AR;Z/2) → Hi(RP
m;Z/2)

is not trivial.
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Then in a single Morse-Lefschetz modification

b∗(AR) does not increase unless l(A) increases.
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b∗(AR) cannot increase in a Morse-Lefschetz modification.
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For a a real algebraic subvariety A of a projective space Pm , denote

by l(A) the maximal i such that the inclusion homomorphism

Hi(AR;Z/2) → Hi(RP
m;Z/2)

is not trivial.

Theorem. Let A be an odd-dimensional complete intersection of type I.

Then in a single Morse-Lefschetz modification

b∗(AR) does not increase unless l(A) increases.

Corollary. If A is a type I odd-dimensional subvariety of a sphere, then

b∗(AR) cannot increase in a Morse-Lefschetz modification.

The same holds true in even dimensions, if the total degree is even.

This is a work in progress.
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