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Many objects studied in geometry are defined in real

coordinates by equations.

Often, the equations make sense even for complex values of

coordinates, and define the corresponding objects in the

complex space.

The new complex objects are even nicer.

When possible, mathematicians tend to switch to them.

Real objects are replaced by their complex counter-parts,

complexifications. This is called complexification.

Another option is to consider the original objects embedded

into its complexification. More difficult, but nonetheless

rewarding!

I will call this to encomplex and try to show its difficulties and

advantages on a simple material of curves.
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A real plane curve is a generically immersed circle,

immersion S1 # R2, belongs to Differential Geometry,

presumably has no complexification.

There are results on generic plane curves with a global

topological flavor.

One of the most classical of them is the Whitney

classification of curves up to regular homotopy.

The next masterpiece is Arnold’s theory on three first order

invariants of generic plane curves.

I am going to encomplex them in this talk.
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A generic immersion S1 # R2 is not assumed to have a

complexification.

Require algebraicity, and you get complex points.

What’s in a complex view?

• Geometry hidden in complexification: genus, moduli,

type (of complex conjugation).

Type I: the set of real points divides the set of complex points

into two connected components.
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A generic immersion S1 # R2 is not assumed to have a
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• Geometry hidden in complexification: genus, moduli,

type.

Type II: the set of real points does not divide the set of

complex points.
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Whitney number is related to complex asymptotes.
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A generic immersion S1 # R2 is not assumed to have a

complexification.

Require algebraicity, and you get complex points.

What’s in a complex view?

• Geometry hidden in complexification: genus, moduli,

type.

• Interaction between real and complex.

Arnold’s invariant J
−

is related to

the number of imaginary intersection points of complex halves.
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A generic immersion S1 # R2 is not assumed to have a

complexification.

Require algebraicity, and you get complex points.

What’s in a complex view?

• Geometry hidden in complexification: genus, moduli,

type.

• Interaction between real and complex.

• Results on real curves inspired by results on curves with

complexification.

Formula for J
−

:

J−(C) = 1 −

∫

R2r eC

(ind eC
(x))2 dχ(x).
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What’s in a complex view?

• Geometry hidden in complexification: genus, moduli,

type.

• Interaction between real and complex.

• Results on real curves inspired by results on curves with

complexification.

• A world parallel to Real Geometry.

Arnold’s strangeness of rational real algebraic curves.
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A generic immersion S1 # R2 is not assumed to have a

complexification.

Require algebraicity, and you get complex points.

What’s in a complex view?

• Geometry hidden in complexification: genus, moduli,

type.

• Interaction between real and complex.

• Results on real curves inspired by results on curves with

complexification.

• A world parallel to Real Geometry.

The simplest complexification of curves are rational curves:

genus zero, no moduli, polynomial parametrization.
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= rotation number of the velocity vector

= degree of the Gauss map C → S1.

Example.

w(C) = 0
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For an oriented smooth closed immersed curve C on plane

w(C), Whitney number

= rotation number of the velocity vector

= degree of the Gauss map C → S1.

Whitney Theorem.

w(C) determines C : S1 # R
2 up to regular homotopy.



choice of curves

Introduction

Whitney number

• Whitney number

• choice of curves

• complex line at infinity

• Theorem 1
• in terms of
asymptotes

• near a kiss

• proof of Theorem 1
• improving Whitney
number

Writhe

Arnold invariants

Encomplexing J
−

8 / 33

Consider irreducible plane affine

real algebraic curves A such that



choice of curves

Introduction

Whitney number

• Whitney number

• choice of curves

• complex line at infinity

• Theorem 1
• in terms of
asymptotes

• near a kiss

• proof of Theorem 1
• improving Whitney
number

Writhe

Arnold invariants

Encomplexing J
−

8 / 33

Consider irreducible plane affine

real algebraic curves A such that:

• RA is compact,

•

•



choice of curves

Introduction

Whitney number

• Whitney number

• choice of curves

• complex line at infinity

• Theorem 1
• in terms of
asymptotes

• near a kiss

• proof of Theorem 1
• improving Whitney
number

Writhe

Arnold invariants

Encomplexing J
−

8 / 33

Consider irreducible plane affine

real algebraic curves A such that:
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•
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• RA is zero homologous modulo 2 in CA ⊂ CP 2

If RA is zero homologous in CA then A is said to be of type I.

(Felix Klein)

Any real rational curve with infinite RA is of type I.



choice of curves

Introduction

Whitney number

• Whitney number

• choice of curves

• complex line at infinity

• Theorem 1
• in terms of
asymptotes

• near a kiss

• proof of Theorem 1
• improving Whitney
number

Writhe

Arnold invariants

Encomplexing J
−

8 / 33

Consider irreducible plane affine

real algebraic curves A such that:

• RA is compact,

• all real singularities are ’s,

• RA is zero homologous modulo 2 in CA ⊂ CP 2

If RA is zero homologous in CA then A is said to be of type I.

(Felix Klein)

Any normal A of genus g such that RA has g + 1

components is of type I.
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Consider irreducible plane affine

real algebraic curves A such that:

• RA is compact,

• all real singularities are ’s,

• RA is zero homologous modulo 2 in CA ⊂ CP 2

If RA is zero homologous in CA then A is said to be of type I.

(Felix Klein)

Type I implies:

b0(R normalized A) ≡ genus(A) + 1 mod 2.
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∂CA+ = RA is called a complex orientation. (V.A.Rokhlin)
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Consider irreducible plane affine

real algebraic curves A such that:

• RA is compact,

• all real singularities are ’s,

• RA is zero homologous modulo 2 in CA ⊂ CP 2

If RA is zero homologous in CA then A is said to be of type I.

(Felix Klein)

The orientation of RA induced from CA+ ⊂ CA with

∂CA+ = RA is called a complex orientation. (V.A.Rokhlin)

Denote RA equipped with the orientation induced from

CA+ ⊂ CA by RA+.
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CP 1
∞

= CP 2 r C2, RP 1
∞

= RP 2 r R2

Denote RP 1
∞

equipped with the orientation induced by the

standard orientation of R2 by RP 1
∞+.

say, counter-clockwise orientation of R
2.
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Let A be a plane affine real algebraic curve of type I,

such that

• RA is compact,

• all real singularities are ’s.

Then w(RA+) = CA+ ◦ CP 1
∞+ − CA+ ◦ CP 1

∞−
.
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Let A be a plane affine real algebraic curve of type I,

such that

• RA is compact,

• all real singularities are ’s.

Then w(RA+) = CA+ ◦ CP 1
∞+ − CA+ ◦ CP 1

∞−
.

Corollary. |w(RA)| ≤ 1

2
deg A.

Indeed, |w(RA)| = |CA+ ◦ CP 1
∞+ − CA+ ◦ CP 1

∞−
|

≤ |CA+ ◦ CP 1
∞+ + CA+ ◦ CP 1

∞−
|

= |CA+ ◦ CP 1
∞
|

= 1

2
deg A.
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corresponds to an asymptote of CA ∩ C2.
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An imaginary line disjoint with RP 1
∞

meets

either CP 1
∞+ or CP 1

∞−
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If CA ⋔ CP 1
∞

, then each point of CA ∩ CP 1
∞

corresponds to an asymptote of CA ∩ C2.

Asymptotes are imaginary.

An imaginary line disjoint with RP 1
∞

meets

either CP 1
∞+ or CP 1

∞−
.

Theorem 1 says:

w(RA+) equals the difference between the numbers

of the asymptotes of CA+ ∩ C2 of these two sorts.
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−

p

Then CA+ meets CB+ at an imaginary point near p,
while CA

−
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Lemma (Imaginary intersection after a real kiss)
Let A and B be curves of type I,
with RA+ and RB+ almost kissing each other
near a point p.

RB+RA+

p
RB+RA

−

p

Then CA+ meets CB+ at an imaginary point near p,
while CA

−
does not.

Proof. Look at the scene complexly from the left hand side.

Pictures:

CA+ CB+

CA
−

CB+
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Choose a generic point p on RP 1
∞

and rotate oriented real line L

around p counting changes of CA+ ◦ CL+ − CA+ ◦ CL
−

.
We consider only imaginary intersection points.
(Although we start with RL = RP 1

∞
and RP 1

∞
∩ RA = ∅,

RL sweeps the whole RA while moving).
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Consider, for example, the following curve:
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−
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−
) = +1,
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ldeg = +1

At each of the moments, ∆(CA+ ◦ CL+ − CA+ ◦ CL
−
) = −ldeg.

The full change of CA+ ◦ CL+ − CA+ ◦ CL− is −2w(RA),
since we have summed up −ldeg over the preimages of 2 points.
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around p counting changes of CA+ ◦ CL+ − CA+ ◦ CL
−
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−
changes, when RL gets tangent to RA.

At these moments, evaluate also local degree ldeg of Gauss map
RA → S1.

The full change of CA+ ◦ CL+ − CA+ ◦ CL
−

is −2w(RA).

On the other hand, the full change is
−2(CA+ ◦ CP 1

∞+ − CA+ ◦ CP 1
∞−

)

Indeed, we have turned RP 1
∞

by π,
its orientation has reversed, and CA+ ◦ CL+ − CA+ ◦ CL

−
evolved

from CA+ ◦ CP 1
∞+ − CA+ ◦ CP 1

∞−
to

CA+ ◦ CP 1
∞−

− CA+ ◦ CP 1
∞+ = −(CA+ ◦ CP 1

∞+ − CA+ ◦ CP 1
∞−
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Choose a generic point p on RP 1
∞

and rotate oriented real line L

around p counting changes of CA+ ◦ CL+ − CA+ ◦ CL
−

.
CA+ ◦ CL+ − CA+ ◦ CL

−
changes, when RL gets tangent to RA.

At these moments, evaluate also local degree ldeg of Gauss map
RA → S1.

The full change of CA+ ◦ CL+ − CA+ ◦ CL
−

is −2w(RA).

On the other hand, the full change is
−2(CA+ ◦ CP 1

∞+ − CA+ ◦ CP 1
∞−

)

Thus, w(RA) = CA+ ◦ CP 1
∞+ − CA+ ◦ CP 1

∞−
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seems to be more stable than the Whitney number itself:
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that:

However, this move is impossible for algebraic curves

of type I. A real double point cannot disappear by becoming

imaginary alone. Instead, it can turn into a double point

isolated on RA with imaginary complex conjugate branches.

A double real point with imaginary branches is not allowed in

Theorem 1. Allow such points, but take into account their

contribution to w(RA+). Only one of the branches passing

through it, belongs to CA+. Its intersection number with R2 is

to be added to w(RA+). Improved w(RA+) is more invariant,

and Theorem 1 holds true for it.
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At a crossing an oriented link diagram looks
either like this: or like that: .
(Local) writhe: w( ) = +1 , w( ) − 1.
Writhe of an oriented link diagram is the sum of local writhes
over all crossings. It is not invariant: the first Reidemeister

move changes it by one.
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For an algebraic link the move

cannot happen.
The first real algebraic Reidemeister move looks like that:

A crossing turns into a
solitary real crossing of
two complex conjugate
imaginary branches.

There is a writhe of a solitary crossing such that the total
writhe does not change.
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point, nor a point of self-tangency.
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An immersion S1 # R2 is generic, if has neither triple point,

nor a point of self-tangency. It has only ordinary double points

of transversal self-intersection.

A triple point of an immersion is ordinary, if the branches at

the point are transversal to each other.

A self-tangency point of an immersion is ordinary, if the

branches have distinct curvatures at the point.

A self-tangency point of an immersion is called direct, if the

velocity vectors are pointing the same direction; otherwise it is

inverse.

All non-generic immersions form a discriminant hypersurface,

or just discriminant in the space of all immersions.
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• the set ST+ of all immersions without triple points, with only
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−

of all immersions without triple points, with only

one non-transversal double point, and this is an ordinary

inverse self-tangency point.
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• the set ST+ of all immersions without triple points, with only

one non-transversal double point, and this is an ordinary direct

self-tangency point.

• the set ST
−

of all immersions without triple points, with only

one non-transversal double point, and this is an ordinary

inverse self-tangency point.

• the set TP of all immersions which have only one triple

point, this point is ordinary,
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• the set ST+ of all immersions without triple points, with only

one non-transversal double point, and this is an ordinary direct

self-tangency point.

• the set ST
−

of all immersions without triple points, with only

one non-transversal double point, and this is an ordinary

inverse self-tangency point.

• the set TP of all immersions which have only one triple

point, this point is ordinary, besides this point, there are only

ordinary double points.
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The discriminant is stratified. There are 3 main strata:

• the set ST+ of all immersions without triple points, with only

one non-transversal double point, and this is an ordinary direct

self-tangency point.

• the set ST
−

of all immersions without triple points, with only

one non-transversal double point, and this is an ordinary

inverse self-tangency point.

• the set TP of all immersions which have only one triple

point, this point is ordinary, besides this point, there are only

ordinary double points.

A generic path in the space of immersions (i.e. a generic

regular homotopy)
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one non-transversal double point, and this is an ordinary direct
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• the set ST
−

of all immersions without triple points, with only

one non-transversal double point, and this is an ordinary

inverse self-tangency point.

• the set TP of all immersions which have only one triple

point, this point is ordinary, besides this point, there are only

ordinary double points.

A generic path in the space of immersions intersects the

discriminant in a finite number of points,
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The discriminant is stratified. There are 3 main strata:

• the set ST+ of all immersions without triple points, with only

one non-transversal double point, and this is an ordinary direct

self-tangency point.

• the set ST
−

of all immersions without triple points, with only

one non-transversal double point, and this is an ordinary

inverse self-tangency point.

• the set TP of all immersions which have only one triple

point, this point is ordinary, besides this point, there are only

ordinary double points.

A generic path in the space of immersions intersects the

discriminant in a finite number of points, these points belong

to the main strata.
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Changes experienced by an immersion when it goes through
one of the strata were called perestrojkas by Arnold.
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−

Triple point perestrojka. Passing through TP
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For generic C : S1 # R2, Arnold introduced numerical
characteristics J+(C), J−(C) and St(C) defined by the
following properties:
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For generic C : S1 # R2, Arnold introduced numerical
characteristics J+(C), J−(C) and St(C) defined by the
following properties:
• invariance under regular homotopy in the class of generic
immersions.
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For generic C : S1 # R2, Arnold introduced numerical
characteristics J+(C), J−(C) and St(C) defined by the
following properties:
• invariance under regular homotopy in the class of generic
immersions.
• the following increments under perestojkas:

perestrojka J+ J
−

St

direct self-tangency +2 0 0
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For generic C : S1 # R2, Arnold introduced numerical
characteristics J+(C), J−(C) and St(C) defined by the
following properties:
• invariance under regular homotopy in the class of generic
immersions.
• the following increments under perestojkas:

perestrojka J+ J
−

St

direct self-tangency +2 0 0
inverse self-tangency 0 −2 0
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For generic C : S1 # R2, Arnold introduced numerical
characteristics J+(C), J−(C) and St(C) defined by the
following properties:
• invariance under regular homotopy in the class of generic
immersions.
• the following increments under perestojkas:

perestrojka J+ J
−

St

direct self-tangency +2 0 0
inverse self-tangency 0 −2 0
triple point 0 0 +1
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For generic C : S1 # R2, Arnold introduced numerical
characteristics J+(C), J−(C) and St(C) defined by the
following properties:
• invariance under regular homotopy in the class of generic
immersions.
• the following increments under perestojkas:

perestrojka J+ J
−

St

direct self-tangency +2 0 0
inverse self-tangency 0 −2 0
triple point 0 0 +1

• For curves
K1 K2 K3 K4K0

· · ·

the invariants take the following values:
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For generic C : S1 # R2, Arnold introduced numerical
characteristics J+(C), J−(C) and St(C) defined by the
following properties:
• invariance under regular homotopy in the class of generic
immersions.
• the following increments under perestojkas:

perestrojka J+ J
−

St

direct self-tangency +2 0 0
inverse self-tangency 0 −2 0
triple point 0 0 +1

J+(K0) = 0, J+(Ki+1) = −2i (i = 0, 1, . . . );
J−(K0) = −1, J−(Ki+1) = −3i (i = 0, 1, . . . );
St(K0) = 0, St(Ki+1) = i (i = 0, 1, . . . ).
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Consider irreducible real curves of degree d
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genus g
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Consider irreducible real plane projective curves of degree d,

genus g and type I , equipped with complex orientations.



choice of curves

Introduction

Whitney number

Writhe

Arnold invariants

Encomplexing J
−

• choice of curves

• new perestrojkas

• Smoothing of curve

• Index of point

• Complex orientation
formula
• intersection of
complex halves

• encomplexing J
−

• back to immersed
circles

• J+

• last slide

24 / 33

Consider irreducible real plane projective curves of degree d,

genus g and type I , equipped with complex orientations.

A generic curve A of this kind has only non-degenerate

double singular points
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Consider irreducible real plane projective curves of degree d,

genus g and type I , equipped with complex orientations.

A generic curve A of this kind has only non-degenerate

double singular points , they can be of the following 4 types:
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genus g and type I , equipped with complex orientations.

A generic curve A of this kind has only non-degenerate
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Consider irreducible real plane projective curves of degree d,

genus g and type I , equipped with complex orientations.

A generic curve A of this kind has only non-degenerate

double singular points , they can be of the following 4 types:

• real double points with two real branches ,

• solitary real double point with two imaginary conjugate

branches,

isolated point in RA, local normal form x2 + y2 = 0.
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Consider irreducible real plane projective curves of degree d,

genus g and type I , equipped with complex orientations.

A generic curve A of this kind has only non-degenerate

double singular points , they can be of the following 4 types:

• real double points with two real branches ,

• solitary real double point with two imaginary conjugate

branches,

At a solitary ordinary double point, the choice of CA+

determines a local orientation of RP 2
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Consider irreducible real plane projective curves of degree d,

genus g and type I , equipped with complex orientations.

A generic curve A of this kind has only non-degenerate

double singular points , they can be of the following 4 types:

• real double points with two real branches ,

• solitary real double point with two imaginary conjugate

branches,

At a solitary ordinary double point, the choice of CA+

determines a local orientation of RP 2

such that RP 2 equipped with this local orientation intersects

CA+ at this point with intersection number +1.
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Consider irreducible real plane projective curves of degree d,

genus g and type I , equipped with complex orientations.

A generic curve A of this kind has only non-degenerate

double singular points , they can be of the following 4 types:

• real double points with two real branches ,

• solitary real double point with two imaginary conjugate

branches,

At a solitary ordinary double point, the choice of CA+

determines a local orientation of RP 2.

Another way to get the local orientation:

perturb the curve keeping type I and converting the solitary

point into an oval.
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Consider irreducible real plane projective curves of degree d,

genus g and type I , equipped with complex orientations.

A generic curve A of this kind has only non-degenerate

double singular points , they can be of the following 4 types:

• real double points with two real branches ,

• solitary real double point with two imaginary conjugate

branches,

At a solitary ordinary double point, the choice of CA+

determines a local orientation of RP 2.

Another way to get the local orientation:

perturb the curve keeping type I and converting the solitary

point into an oval. The complex orientation of this oval gives

the local orientation of RP 2.
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Consider irreducible real plane projective curves of degree d,

genus g and type I , equipped with complex orientations.

A generic curve A of this kind has only non-degenerate

double singular points , they can be of the following 4 types:

• real double points with two real branches ,

• solitary real double point with two imaginary conjugate

branches,

• imaginary double point of self-intersection of CA+,
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Consider irreducible real plane projective curves of degree d,

genus g and type I , equipped with complex orientations.

A generic curve A of this kind has only non-degenerate

double singular points , they can be of the following 4 types:

• real double points with two real branches ,

• solitary real double point with two imaginary conjugate

branches,

• imaginary double point of self-intersection of CA+,

• imaginary intersection point of CA+ and CA−.
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Consider irreducible real plane projective curves of degree d,

genus g and type I , equipped with complex orientations.

A generic curve A of this kind has only non-degenerate

double singular points , they can be of the following 4 types:

• real double points with two real branches ,

• solitary real double point with two imaginary conjugate

branches,

• imaginary double point of self-intersection of CA+,

• imaginary intersection point of CA+ and CA−. Denote the

number of the latter points by σ.
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Generic RA experiences perestrojkas considered above plus
the following three new ones.
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Solitary self-tangency perestrojka.
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Generic RA experiences perestrojkas considered above plus
the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.

Cusp perestrojka.
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Smoothen a generic curve of type I according to the complex

orientation: A 7→ Ã
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Smoothen a generic curve of type I according to the complex

orientation: A 7→ Ã

7→ 7→
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For oriented closed curve C ⊂ RP 2 and x ∈ RP 2 r C ,
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For oriented closed curve C ⊂ RP 2 and x ∈ RP 2 r C ,

define non-negative integer or half-integer indC(x):
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For oriented closed curve C ⊂ RP 2 and x ∈ RP 2 r C ,

define non-negative integer or half-integer indC(x):

C realizes 2 · indC(x)-fold generator of

H1(RP 2
r {x}) = Z.
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For oriented closed curve C ⊂ RP 2 and x ∈ RP 2 r C ,

define non-negative integer or half-integer indC(x):

C realizes 2 · indC(x)-fold generator of

H1(RP 2
r {x}) = Z.

Examples:

1. indRP 1(x) = 1

2
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For oriented closed curve C ⊂ RP 2 and x ∈ RP 2 r C ,

define non-negative integer or half-integer indC(x):

C realizes 2 · indC(x)-fold generator of

H1(RP 2
r {x}) = Z.

Examples:

1. indRP 1(x) = 1

2

2. If C is a circle x2
1 + x2

2 = x2
0 and x is a point in the disk

bounded by C , then indC(x) = 1 independently on

orientation of C .
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For oriented closed curve C ⊂ RP 2 and x ∈ RP 2 r C ,

define non-negative integer or half-integer indC(x):

C realizes 2 · indC(x)-fold generator of

H1(RP 2
r {x}) = Z.

Examples:

1. indRP 1(x) = 1

2

2. If C is a circle x2
1 + x2

2 = x2
0 and x is a point in the disk

bounded by C , then indC(x) = 1 .

3. If C consists of two concentric circles, and x is their

common center, then indC(x) is either 0 or 2.
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Let A be generic real plane projective algebraic curve of

degree d and type I.



Complex orientation formula

Introduction

Whitney number

Writhe

Arnold invariants

Encomplexing J
−

• choice of curves

• new perestrojkas

• Smoothing of curve

• Index of point

• Complex orientation
formula
• intersection of
complex halves

• encomplexing J
−

• back to immersed
circles

• J+

• last slide

28 / 33

Let A be generic real plane projective algebraic curve of

degree d and type I.

Then
d2

4
= σ +

∫

RP 2r fRA

(ind fRA
(x))2 dχ(x)
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Let A be generic real plane projective algebraic curve of

degree d and type I.

Then
d2

4
= σ +

∫

RP 2r fRA

(ind fRA
(x))2 dχ(x)

here σ is the number of imaginary double points of A,

where CA+ and CA
−

meet,
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Let A be generic real plane projective algebraic curve of

degree d and type I.

Then
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4
= σ +

∫

RP 2r fRA

(ind fRA
(x))2 dχ(x)

here σ is the number of imaginary double points of A,

where CA+ and CA
−

meet,

and the integral is against the Euler characteristic.
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Let A be generic real plane projective algebraic curve of

degree d and type I.

Then
d2

4
= σ +

∫

RP 2r fRA

(ind fRA
(x))2 dχ(x)

here σ is the number of imaginary double points of A,

where CA+ and CA
−

meet,

and the integral is against the Euler characteristic.

Integral
∫

f(x) dχ(x) is defined for f which is a finite

linear combination of characteristic functions,
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Let A be generic real plane projective algebraic curve of

degree d and type I.

Then
d2

4
= σ +

∫

RP 2r fRA

(ind fRA
(x))2 dχ(x)

here σ is the number of imaginary double points of A,

where CA+ and CA
−

meet,

and the integral is against the Euler characteristic.

Integral
∫

f(x) dχ(x) is defined for f which is a finite

linear combination of characteristic functions,

f =
∑

r

i=1
λi Si

, by formula

∫
f(x) dχ(x) =

r∑

i=1

λiχ(Si).
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Denote by σ the number of imaginary intersection points of
CA+ and CA

−
and study its behavior under perestrojkas.
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Denote by σ the number of imaginary intersection points of
CA+ and CA

−
and study its behavior under perestrojkas.

, σ does not change.
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Denote by σ the number of imaginary intersection points of
CA+ and CA

−
and study its behavior under perestrojkas.

, σ does not change.

, σ decreases by 2.
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Denote by σ the number of imaginary intersection points of
CA+ and CA

−
and study its behavior under perestrojkas.

, σ does not change.

, σ decreases by 2.

, σ does not change.

, σ decreases by 2.

, σ increases by 2.



intersection of complex halves

Introduction

Whitney number

Writhe

Arnold invariants

Encomplexing J
−

• choice of curves

• new perestrojkas

• Smoothing of curve

• Index of point

• Complex orientation
formula
• intersection of
complex halves

• encomplexing J
−

• back to immersed
circles

• J+

• last slide

29 / 33

Denote by σ the number of imaginary intersection points of
CA+ and CA

−
and study its behavior under perestrojkas.

, σ does not change.

, σ decreases by 2.

, σ does not change.

, σ decreases by 2.

, σ increases by 2.

, σ does not change.
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Notice that σ behaves in the same way as J
−

under direct

and inverse self-tangency and triple point perestrojkas with

only real branches involved.
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Notice that σ behaves in the same way as J
−

under direct

and inverse self-tangency and triple point perestrojkas with

only real branches involved.

Thus, σ can be considered as an encomplexed J
−

.
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Notice that σ behaves in the same way as J
−

under direct

and inverse self-tangency and triple point perestrojkas with

only real branches involved.

Thus, σ can be considered as an encomplexed J
−

.

Complex orientation formula can be rewritten as a formula

for σ:

σ =
d2

4
−

∫

RP 2r fRA

(ind fRA
(x))2 dχ(x).
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Integral −
∫

RP 2r fRA
(ind fRA

(x))2 dχ(x) has the same

behavior under direct and inverse self-tangency and triple

point perestrojkas as σ and J
−

.
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Integral −
∫

RP 2r fRA
(ind fRA

(x))2 dχ(x) has the same

behavior under direct and inverse self-tangency and triple

point perestrojkas as σ and J
−

.

This suggests to compare J
−
(C) with

−

∫

R2rC̃

(ind
C̃
(x))2 dχ(x)

for a generic immersed circle C.
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Integral −
∫

RP 2r fRA
(ind fRA

(x))2 dχ(x) has the same

behavior under direct and inverse self-tangency and triple

point perestrojkas as σ and J
−

.

This suggests to compare J
−
(C) with

−

∫

R2rC̃

(ind
C̃
(x))2 dχ(x)

for a generic immersed circle C.

Theorem. For any generic immersed circle C

J
−
(C) = 1 −

∫

R2r eC

(ind eC
(x))2 dχ(x).
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Corollary. For any generic immersed circle C with n

double points

J+(C) = 1 + n −

∫

R2r eC

(ind eC
(x))2 dχ(x).
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The beginning of the story
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The beginning of the story , or the end of it?
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