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The ways that mathematical theories find to the core of
mainstream mathematical curriculums are strongly influenced by
accidental circumstances.
Individuals shape Mathematics.
The shapes are not perfect.
Often basic definitions could be made more convenient than the
present ones.

I do not mean to criticize Calculus, although it is awful.

Take fresher examples:
differentiable manifolds and finite topological spaces.

I am going to emphasize opportunities,
but need to motivate the positive things by some criticism.

The opportunities are not lost yet.
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The modern definition of differentiable manifold was given in the
book by O. Veblen and J.H.C. Whitehead The foundations of
differential geometry. Cambridge tracts in mathematics and
mathermatical physics.
Published in 1932 by Cambridge University Press.
Inspired by H.Weyl’s book on Riemann surfaces Die Idee der
Riemannschen Fläche published in 1913.
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The traditional definition of smooth structures is quite long
and different from definitions of similar and closely related
structures studied in algebraic geometry and topology.

Smooth structures are traditionally defined only on manifolds.
This deprives us of flexibility that we enjoy in general topology,
where any set-theoretic construction has a topological
counter-part:
a subset 7→ a subspace,
a quotient set 7→ a quotient space, etc.

The image of a differential manifold under a differentiable map
may be not a manifold, and hence not eligible to bear any trace of
a differential structure.
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The notion of differential space was developed in the sixties,
but has not found a way to the mainstream Mathematics.

Why? Was it not a right time for this?
Were there not right people?
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Let X be a set and r be a natural number or ∞ .
A differential structure of class Cr on X

not differentiable, but differential,
for nobody is going to differentiate it!
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of functions X → R such that:
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Let X be a set and r be a natural number or ∞ .
A differential structure of class Cr on X is an algebra Cr(X)
of functions X → R such that:

1. Composition of functions belonging to Cr(X) with
Cr -differentiable function belongs to Cr(X) .

In other words, (g ◦ f : X → R) ∈ Cr(X)
if f : X → U is defined by f1, . . . , fn ∈ Cr(X) ,
U ⊂ R

n is an open set,
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of functions X → R such that:

1. Composition of functions belonging to Cr(X) with
Cr -differentiable function belongs to Cr(X) .

In other words, (g ◦ f : X → R) ∈ Cr(X)
if f : X → U is defined by f1, . . . , fn ∈ Cr(X) ,
U ⊂ R

n is an open set,
and g : U → R is a Cr -map.

2. f ∈ Cr(X) if near each point of X it coincides with a
function belonging to Cr(X) .

In other words, f ∈ Cr(X) if for each a ∈ X there exist
g, h ∈ Cr(X) such that h(a) > 0 and f(x) = g(x) for
each x with h(x) > 0 .
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A pair consisting of a set X and a differential structure of class
Cr on X is called a differential space of class Cr , or just a
Cr-space.

Examples
1. Any smooth manifold X with algebra Cr(X) of
Cr-differentiable functions.
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2. Discrete space. Any X and all functions X → R .
3. Indiscrete space. Any X and all constant functions X → R .
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A pair consisting of a set X and a differential structure of class
Cr on X is called a differential space of class Cr , or just a
Cr-space.

Examples
1. Any smooth manifold X with algebra Cr(X) of
Cr-differentiable functions.
2. Discrete space. Any X and all functions X → R .
3. Indiscrete space. Any X and all constant functions X → R .
4. Topological space. A topological space X with all continuous
functions X → R .
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if f ◦ φ ∈ Cr(X) for any φ ∈ Cr(Y ) .
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Let X and Y be Cr-spaces.

f : X → Y is called a Cr-map
if f ◦ φ ∈ Cr(X) for any φ ∈ Cr(Y ) .

A Cr-map f : X → Y induces f∗ : Cr(Y ) → Cr(X) .
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f : X → Y is called a Cr-map
if f ◦ φ ∈ Cr(X) for any φ ∈ Cr(Y ) .

A Cr-map f : X → Y induces f∗ : Cr(Y ) → Cr(X) .

Cr-spaces and Cr-maps constitute a category.
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Let X and Y be Cr-spaces.

f : X → Y is called a Cr-map
if f ◦ φ ∈ Cr(X) for any φ ∈ Cr(Y ) .

A Cr-map f : X → Y induces f∗ : Cr(Y ) → Cr(X) .

Cr-spaces and Cr-maps constitute a category.

Isomorphisms of the category are called Cr-diffeomorphims.
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there exists a minimal Cr-structure on X containing F .
It is said to be generated by F .

For example, coordinate projections Rn → R generate the
standard differential structure on Rn .
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For any set F of real valued functions on a set X ,
there exists a minimal Cr-structure on X containing F .
It is said to be generated by F .

For example, coordinate projections Rn → R generate the
standard differential structure on Rn .

The Cr-structure generated by a Cs-structure C with s < r
coincides with C .
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For any set F of real valued functions on a set X ,
there exists a minimal Cr-structure on X containing F .
It is said to be generated by F .

For example, coordinate projections Rn → R generate the
standard differential structure on Rn .

The Cr-structure generated by a Cs-structure C with s < r
coincides with C .

For example, a C0-structure

which is nothing but a topological structure.
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For any set F of real valued functions on a set X ,
there exists a minimal Cr-structure on X containing F .
It is said to be generated by F .

For example, coordinate projections Rn → R generate the
standard differential structure on Rn .

The Cr-structure generated by a Cs-structure C with s < r
coincides with C .

For example, a C0-structure is a Cr-structure for any r .
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there exists a minimal Cr-structure on X containing F .
It is said to be generated by F .

For example, coordinate projections Rn → R generate the
standard differential structure on Rn .

The Cr-structure generated by a Cs-structure C with s < r
coincides with C .

For example, a C0-structure is a Cr-structure for any r .
On the other hand, when decreasing r ,
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For any set F of real valued functions on a set X ,
there exists a minimal Cr-structure on X containing F .
It is said to be generated by F .

For example, coordinate projections Rn → R generate the
standard differential structure on Rn .

The Cr-structure generated by a Cs-structure C with s < r
coincides with C .

For example, a C0-structure is a Cr-structure for any r .
On the other hand, when decreasing r ,
we have to add new functions.

A Cr-structure A generated as a Cr-structure by a Cs-structure
B with s > r is called a relaxation of B .
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For any set F of real valued functions on a set X ,
there exists a minimal Cr-structure on X containing F .
It is said to be generated by F .

For example, coordinate projections Rn → R generate the
standard differential structure on Rn .

The Cr-structure generated by a Cs-structure C with s < r
coincides with C .

For example, a C0-structure is a Cr-structure for any r .
On the other hand, when decreasing r ,
we have to add new functions.

A Cr-structure A generated as a Cr-structure by a Cs-structure
B with s > r is called a relaxation of B .
Then B is called a refinement of A .
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For example, if X = R and A = R>0 = {x | x > 0} ,
the function A → R : x 7→ 1

x
is not a restriction of any function

continuous on R ,
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Let X be a differential space and A ⊂ X .
Restrictions to A of functions differentiable on X
do not necessarily constitute a differential structure on A .

For example, if X = R and A = R>0 = {x | x > 0} ,
the function A → R : x 7→ 1

x
is not a restriction of any function

continuous on R ,
but in a neighborhood of any point it is a restriction of a function
differentiable on R .
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Restrictions to A of functions differentiable on X
do not necessarily constitute a differential structure on A .

For example, if X = R and A = R>0 = {x | x > 0} ,
the function A → R : x 7→ 1

x
is not a restriction of any function

continuous on R ,
but in a neighborhood of any point it is a restriction of a function
differentiable on R .

Restrictions to A of functions differentiable on X generate a
differential structure.
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Restrictions to A of functions differentiable on X
do not necessarily constitute a differential structure on A .

For example, if X = R and A = R>0 = {x | x > 0} ,
the function A → R : x 7→ 1

x
is not a restriction of any function

continuous on R ,
but in a neighborhood of any point it is a restriction of a function
differentiable on R .

Restrictions to A of functions differentiable on X generate a
differential structure. This structure is said to be induced on A
by the structure of X
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Let X be a differential space and A ⊂ X .
Restrictions to A of functions differentiable on X
do not necessarily constitute a differential structure on A .

For example, if X = R and A = R>0 = {x | x > 0} ,
the function A → R : x 7→ 1

x
is not a restriction of any function

continuous on R ,
but in a neighborhood of any point it is a restriction of a function
differentiable on R .

Restrictions to A of functions differentiable on X generate a
differential structure. This structure is said to be induced on A
by the structure of X ,
and A equipped with this structure is called a (differential)
subspace of X.
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Let X be a differential space and A ⊂ X .
Restrictions to A of functions differentiable on X
do not necessarily constitute a differential structure on A .

For example, if X = R and A = R>0 = {x | x > 0} ,
the function A → R : x 7→ 1

x
is not a restriction of any function

continuous on R ,
but in a neighborhood of any point it is a restriction of a function
differentiable on R .

Restrictions to A of functions differentiable on X generate a
differential structure. This structure is said to be induced on A
by the structure of X ,
and A equipped with this structure is called a (differential)
subspace of X.

Whitney Problem: Describe the differential structure induced on a
closed X ⊂ R

n .
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For a differential space X , functions f1, . . . , fn define a
differential embedding f : X → Rn : x 7→ (f1(x), . . . , fn(x))
iff f1, . . . , fn generate Cr(X) and f is injective.
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F : R
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is to generate it by
{f ◦ prX | f ∈ Cr(X)} ∪ {g ◦ prY | g ∈ Cr(Y )} .

Factorization. Let X be a Cr-space and

∼ be an equivalence relation in X .
The Cr-structure in the quotient set X/∼
canonically defined by Cr(X)
consists of f : X/∼ → R such that
(f ◦ pr : X → R) ∈ Cr(X) .
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It is easier to define cotangent vectors.
Let X be a differential space and p ∈ X . Functions vanishing
at p form a maximal ideal mp of R-algebra Cr(X) . The
cotangent space T ∗

p (X) is mp/m
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A metric gives rise to many functions: distances from points.
However on a Riemannian manifold they are not differentiable.

In a sufficiently small neighborhood of a point, distances from
other points form local coordinate system.

Let X be a metric space. A function f : X → R is
differentiable at p ∈ X if for any neighborhood U of p there
exist points q1, . . . , qn ∈ U and real numbers a1 , . . . , an such
that

|f(x) − f(p) −
∑

ai(dist(qi, x) − dist(qi, p))|

dist(x, p)
→ 0

as x → p .
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A metric gives rise to many functions: distances from points.
However on a Riemannian manifold they are not differentiable.

In a sufficiently small neighborhood of a point, distances from
other points form local coordinate system.

Let X be a metric space. A function f : X → R is
differentiable at p ∈ X if for any neighborhood U of p there
exist points q1, . . . , qn ∈ U and real numbers a1 , . . . , an such
that

|f(x) − f(p) −
∑

ai(dist(qi, x) − dist(qi, p))|

dist(x, p)
→ 0

as x → p . Is this definition good? At least,
it recovers the smooth structure of a Riemannian manifold.
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Topology seams to be the only fields in Mathematics that
hesitates of its own finite objects, finite topological spaces. Finite
sets, finite dimensional vector spaces, finite fields, finite
projective spaces, etc. are appreciated by their host theories.

Who is guilty? Interest towards Analysis? Hausdorff axiom?
Topology textbooks?

An average mathematician is well aware at best
about two kinds of finite topological spaces:
discrete and indiscrete.

Let us take a look at the rest of them.
They are not that bad!
At early days of topology, they were the main objects of the
Combinatorial Topology.
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What is the next group?
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra
any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The
quotient space Q is a finite topological space.

Q knows everything on P .
Especially if the partition was a triangulation.
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Q knows everything on P . Each point of Q represents a face
ofP .
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra
any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The
quotient space Q is a finite topological space.

Q knows everything on P . Each point of Q represents a face
ofP . Points representing vertices are closed.
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra
any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The
quotient space Q is a finite topological space.

Q knows everything on P . Each point of Q represents a face
ofP . Points representing vertices are closed.
The closure of a point x ∈ Q consists of points corresponding to
the faces of the corresponding face of P .
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra
any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The
quotient space Q is a finite topological space.

Q knows everything on P . Each point of Q represents a face
ofP . Points representing vertices are closed.
The closure of a point x ∈ Q consists of points corresponding to
the faces of the corresponding face of P .
Each point in a finite space has minimal neighborhood.



Space of faces

• Human factor

Differential Spaces

Finite Topological
Spaces

• Hesitation of finite
spaces

• Fundamental group

• Space of faces

• Homotopy

• Digital plane and
Jordan Theorem

• Arbitrary finite space

• Baricentric
subdivision

21 / 25

Let P be a compact polyhedron
represented as the union of closed convex polyhedra
any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The
quotient space Q is a finite topological space.

Q knows everything on P . Each point of Q represents a face
ofP . Points representing vertices are closed.
The closure of a point x ∈ Q consists of points corresponding to
the faces of the corresponding face of P .
Each point in a finite space has minimal neighborhood,
the intersection of all of its neighborhoods.
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represented as the union of closed convex polyhedra
any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The
quotient space Q is a finite topological space.

Q knows everything on P . Each point of Q represents a face
ofP . Points representing vertices are closed.
The closure of a point x ∈ Q consists of points corresponding to
the faces of the corresponding face of P .
Each point in a finite space has minimal neighborhood.
In Q the minimal neighborhood of a point corresponds to the
star of corresponding face.
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra
any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The
quotient space Q is a finite topological space.

Q knows everything on P . Each point of Q represents a face
ofP . Points representing vertices are closed.
The closure of a point x ∈ Q consists of points corresponding to
the faces of the corresponding face of P .
Each point in a finite space has minimal neighborhood.
In Q the minimal neighborhood of a point corresponds to the
star of corresponding face.
The star St(σ) of a face σ is the union of all faces Σ
such that ∂Σ ⊃ σ .
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represented as the union of closed convex polyhedra
any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The
quotient space Q is a finite topological space.

Q knows everything on P . Each point of Q represents a face
ofP . Points representing vertices are closed.
The closure of a point x ∈ Q consists of points corresponding to
the faces of the corresponding face of P .
Each point in a finite space has minimal neighborhood.
In Q the minimal neighborhood of a point corresponds to the
star of corresponding face. Faces in P are partially ordered by
adjacency: Σ > σ iff Cl(Σ) ⊃ σ .
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra
any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The
quotient space Q is a finite topological space.

Q knows everything on P . Each point of Q represents a face
ofP . Points representing vertices are closed.
The closure of a point x ∈ Q consists of points corresponding to
the faces of the corresponding face of P .
Each point in a finite space has minimal neighborhood.
In Q the minimal neighborhood of a point corresponds to the
star of corresponding face. Faces in P are partially ordered by
adjacency: Σ > σ iff Cl(Σ) ⊃ σ .
This partial order defines and is defined by the topology of Q .
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Let P be a compact polyhedron
represented as the union of closed convex polyhedra
any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The
quotient space Q is a finite topological space.

Q knows everything on P . Each point of Q represents a face
ofP . Points representing vertices are closed.
The closure of a point x ∈ Q consists of points corresponding to
the faces of the corresponding face of P .
Each point in a finite space has minimal neighborhood.
In Q the minimal neighborhood of a point corresponds to the
star of corresponding face. Faces in P are partially ordered by
adjacency: Σ > σ iff Cl(Σ) ⊃ σ .
This partial order defines and is defined by the topology of Q .

P can be recovered from Q .



Homotopy

• Human factor

Differential Spaces

Finite Topological
Spaces

• Hesitation of finite
spaces

• Fundamental group

• Space of faces

• Homotopy

• Digital plane and
Jordan Theorem

• Arbitrary finite space

• Baricentric
subdivision

22 / 25

Let P be a triangulated polyhedron
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Let P be a triangulated polyhedron,

Q the space of its simplices
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P )
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P ),

pr : P → Q the natural projection.
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P ),

pr : P → Q the natural projection.

For topological spaces X and Y denote by π(X,Y )
the set of homotopy classes of maps X → Y .
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P ),

pr : P → Q the natural projection.

For topological spaces X and Y denote by π(X,Y )
the set of homotopy classes of maps X → Y .

Theorem. For any topological space X , composition with pr
defines a bijection π(X,P ) → π(X,Q) .
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P ),

pr : P → Q the natural projection.

For topological spaces X and Y denote by π(X,Y )
the set of homotopy classes of maps X → Y .

Theorem. For any topological space X , composition with pr
defines a bijection π(X,P ) → π(X,Q) .

Corollary. All homotopy and singular homology groups of P
and Q are isomorphic.
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Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P ),

pr : P → Q the natural projection.

For topological spaces X and Y denote by π(X,Y )
the set of homotopy classes of maps X → Y .

Theorem. For any topological space X , composition with pr
defines a bijection π(X,P ) → π(X,Q) .

Corollary. All homotopy and singular homology groups of P
and Q are isomorphic.

Corollary. Any compact polyhedron is weak homotopy
equivalent to a finite topological space.
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Digital line D is the quotient space of R by partition to points of
Z and open intervals (n, n + 1) .
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Z and open intervals (n, n + 1) .
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Digital line D is the quotient space of R by partition to points of
Z and open intervals (n, n + 1) .
Digital plane is D2 .
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Digital line D is the quotient space of R by partition to points of
Z and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R

2 by the
partition formed by integer points, open unit intervals connecting
them, and open unit squares.
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Digital line D is the quotient space of R by partition to points of
Z and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R

2 by the
partition formed by integer points, open unit intervals connecting
them, and open unit squares.
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Digital line D is the quotient space of R by partition to points of
Z and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R

2 by the
partition formed by integer points, open unit intervals connecting
them, and open unit squares.

Digital circle of length d is the quotient space of the circle
S1 ⊂ C by the partition formed by complex roots of unity of
degree d and open arcs connecting the roots next to each other.
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Digital line D is the quotient space of R by partition to points of
Z and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R

2 by the
partition formed by integer points, open unit intervals connecting
them, and open unit squares.

Digital circle
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Digital line D is the quotient space of R by partition to points of
Z and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R

2 by the
partition formed by integer points, open unit intervals connecting
them, and open unit squares.

Digital Jordan Theorem. (Khalimsky, Kiselman) A digital circle
embedded in the digital plane divides it into two connected sets.
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Digital line D is the quotient space of R by partition to points of
Z and open intervals (n, n + 1) .
Digital plane is D2 . It is the quotient space of R

2 by the
partition formed by integer points, open unit intervals connecting
them, and open unit squares.

Digital Jordan Theorem. (Khalimsky, Kiselman) A digital circle
embedded in the digital plane divides it into two connected sets.

Not finite, but locally finite.



Arbitrary finite space

• Human factor

Differential Spaces

Finite Topological
Spaces

• Hesitation of finite
spaces

• Fundamental group

• Space of faces

• Homotopy

• Digital plane and
Jordan Theorem

• Arbitrary finite space

• Baricentric
subdivision

24 / 25

In any topological space there is T0-equivalence relation:

x ∼ y if x and y have the same neighborhoods.
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In any topological space there is T0-equivalence relation:

x ∼ y if x and y have the same neighborhoods.
The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0:
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In any topological space there is T0-equivalence relation:

x ∼ y if x and y have the same neighborhoods.
The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0:
for any pair of points x , y at least one of them
has a neighborhood not containing the other one.
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In any topological space there is T0-equivalence relation:

x ∼ y if x and y have the same neighborhoods.
The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0.
In any T0-space the relation x ∈ Cl y is a partial order.
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In any topological space there is T0-equivalence relation:

x ∼ y if x and y have the same neighborhoods.
The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0.
In any T0-space the relation x ∈ Cl y is a partial order.
Remark. Without T0 axiom this is only a preorder, that is
transitive and reflexive, but not antisymmetric.
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In any topological space there is T0-equivalence relation:

x ∼ y if x and y have the same neighborhoods.
The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0.
In any T0-space the relation x ∈ Cl y is a partial order.
Remark. Without T0 axiom this is only a preorder, that is
transitive and reflexive, but not antisymmetric
(if x and y are T0-equivalent, then both x ∈ Cl y and
y ∈ Cl x ).
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In any topological space there is T0-equivalence relation:

x ∼ y if x and y have the same neighborhoods.
The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0.
In any T0-space the relation x ∈ Cl y is a partial order.

Any partial order defines a poset topology generated by sets
{x | a ≺ x} .
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In any topological space there is T0-equivalence relation:

x ∼ y if x and y have the same neighborhoods.
The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0.
In any T0-space the relation x ∈ Cl y is a partial order.

Any partial order defines a poset topology generated by sets
{x | a ≺ x} .

A topology is a poset topology iff the Kolmogorov axiom holds
true and each point has the smallest neighborhood.
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In any topological space there is T0-equivalence relation:

x ∼ y if x and y have the same neighborhoods.
The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0.
In any T0-space the relation x ∈ Cl y is a partial order.

Any partial order defines a poset topology generated by sets
{x | a ≺ x} .

A topology is a poset topology iff the Kolmogorov axiom holds
true and each point has the smallest neighborhood.

In particular, topology in a finite space is a poset topology iff this
is a T0-space.
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In any topological space there is T0-equivalence relation:

x ∼ y if x and y have the same neighborhoods.
The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0.
In any T0-space the relation x ∈ Cl y is a partial order.

Any partial order defines a poset topology generated by sets
{x | a ≺ x} .

A topology is a poset topology iff the Kolmogorov axiom holds
true and each point has the smallest neighborhood.

In particular, topology in a finite space is a poset topology iff this
is a T0-space.
An arbitrary finite topological space is composed of clusters of
T0-equivalent points.
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In any topological space there is T0-equivalence relation:

x ∼ y if x and y have the same neighborhoods.
The quotient space by the T0-equivalence relation satisfies
the Kolmogorov separation axiom T0.
In any T0-space the relation x ∈ Cl y is a partial order.

Any partial order defines a poset topology generated by sets
{x | a ≺ x} .

A topology is a poset topology iff the Kolmogorov axiom holds
true and each point has the smallest neighborhood.

In particular, topology in a finite space is a poset topology iff this
is a T0-space.
An arbitrary finite topological space is composed of clusters of
T0-equivalent points. The clusters are partially ordered and the
order determines the topology.
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How far is a poset topology from the face space of a polyhedron?
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How far is a poset topology from the face space of a polyhedron?
Not really far, just one step construction.
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How far is a poset topology from the face space of a polyhedron?
Let (X,≺) be a poset.
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How far is a poset topology from the face space of a polyhedron?
Let (X,≺) be a poset. Consider
X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} .
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How far is a poset topology from the face space of a polyhedron?
Let (X,≺) be a poset. Consider
X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.
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How far is a poset topology from the face space of a polyhedron?
Let (X,≺) be a poset. Consider
X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.
X ′ is partially ordered by inclusion.
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How far is a poset topology from the face space of a polyhedron?
Let (X,≺) be a poset. Consider
X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.
X ′ is partially ordered by inclusion.
Poset (X ′,⊂) is called the baricentric subdivision of (X,≺) .
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Let (X,≺) be a poset. Consider
X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.
X ′ is partially ordered by inclusion.
Poset (X ′,⊂) is called the baricentric subdivision of (X,≺) .
The baricentric subdivision of any finite poset is the space of
simplices of a compact triangulated polyhedron.
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How far is a poset topology from the face space of a polyhedron?
Let (X,≺) be a poset. Consider
X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.
X ′ is partially ordered by inclusion.
Poset (X ′,⊂) is called the baricentric subdivision of (X,≺) .
The baricentric subdivision of any finite poset is the space of
simplices of a compact triangulated polyhedron.
This construction is used in combinatorics to define homology
groups of a poset.
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How far is a poset topology from the face space of a polyhedron?
Let (X,≺) be a poset. Consider
X ′ = {a1 ≺ a2 ≺ · · · ≺ an | ai ∈ X} , the set of all non-empty
finite subsets of X in each of which ≺ defines a linear order.
X ′ is partially ordered by inclusion.
Poset (X ′,⊂) is called the baricentric subdivision of (X,≺) .
The baricentric subdivision of any finite poset is the space of
simplices of a compact triangulated polyhedron.
This construction is used in combinatorics to define homology
groups of a poset.

Theorem. Any finite topological space is weak homotopy
equivalent to a compact polyhedron.
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