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Abstract We discuss a possibility to get an invariant of a smooth structure on a
closed simply connected 4-manifold from homotopy invariants of the space of loops
smoothly embedded into the manifold.
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1 Introduction

1.1 Diffeomorphic Versus Homeomorphic in High Dimensions

There are smooth manifolds, which are homeomorphic, but not diffeomorphic. It
happens to manifolds of dimension >3. This phenomenon was discovered by Milnor
(1956) for the 7-dimensional sphere S7 in the fifties. A technique for classification
of smooth structures on a manifold of dimension >4 was developed in the sixties.
Homeomorphic, but not diffeomorphic manifolds were found in all dimensions >4,
see Kervaire and Milnor (1963), Barden (1965) and Siebenmann (1971). A substantial
part of the technique used in these works is not applicable in dimension 4.

1.2 Closed Simply Connected 4-Manifolds

In the eighties Freedman (1982) gave a topological classification of closed simply
connected 4-manifolds and Donaldson (1987) proved that some smooth closed simply
connected 4-manifolds, which are homeomorphic according to Freedman’s results, are
not diffeomorphic.
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For smooth closed simply connected 4-manifolds, the only homotopy invariant is
the intersection form in the second homology with integer coefficients: two mani-
folds of this kind are homotopy equivalent iff their intersection forms are isomorphic
(Whitehead 1949; Pontryagin 1949).

As Freedman (1982) proved, for manifolds of this type, homeomorphism is equiva-
lent to homotopy equivalence. Thus, two smooth closed simply connected 4-manifolds
are homeomorphic iff their intersection forms are isomorphic.

In contrast, on many closed simply connected 4-manifolds there are infinitely many
smooth structures. Of course, the number of smooth structures on a closed 4-manifold
cannot be uncountable (on a non-compact 4-manifold it can, as is the case for R

4).
There is no conjectural classification scheme for smooth structures on any closed 4-
manifold. Stern (2006) entitled his survey paper by a question “Will we ever classify
simply-connected smooth 4-manifolds?”. In the introduction to his paper he wrote:
“The subject is rich in examples that demonstrate a wide variety of disparate phenom-
ena. Yet it is precisely this richness which, at the time of these lectures, gives us little
hope to even conjecture a classification scheme.”

1.3 Invariants Distinguishing Smooth Structures

Proving that homeomorphic manifolds of dimension 4 are not diffeomorphic required
absolutely new tools. All the invariants, that have been used so far for proving that some
homeomorphic simply connected closed smooth 4-manifolds are not diffeomorphic,
are deeply rooted in analysis. They are based on counting solutions of some nonlinear
partial differential equations. Most of the results on non-existence of diffeomorphisms
between homeomorphic simply connected 4-manifolds have been obtained using the
Donaldson and Seiberg–Witten invariants.

It is a long term challenge for topologists to find invariants which would distinguish
smooth structures on a 4-manifold, but would be independent on analytic tools. This
is not just an aesthetic issue: the analytic tools are not convenient in some situation.

For example, in dimension 4 smooth structures are closely related to PL-structures
(piecewise linear structures). In any dimension a smooth structure on a manifold
determines on it a specific PL-structure uniquely defined up to PL-homeomorphism.
In dimensions ≤6 any PL-structure can be obtained in this way from a smooth struc-
ture and the smooth structure is unique up to diffeomorphism, see Siebenmann (1971).
Hence any invariant of a smooth structure on a 4-manifold depends only on the PL-
structure. However, in order to prove that two homeomorphic PL-manifolds of dimen-
sion 4 are not PL-homeomorphic, now one has to equip them with smooth structures,
and then calculate the invariants. The techniques for calculation are not easy, espe-
cially if the smooth structure is not defined naturally (say, as the underlying structure
on a complex surface), but just obtained by smoothing of a PL-structure.

It is worth mentioning a partial success of efforts towards eliminating of analysis.
An invariant of smooth 4-manifolds, the Ozsváth and Szabó (2006) mixed invari-
ant, conjecturally coinciding with the Seiberg–Witten invariant, has been redefined
(Manolescu et al. 2009) in purely combinatorial terms. However, on one hand, it is
difficult to calculate even for comparatively simple 4-manifolds, so it not an effec-
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tive tool for distinguishing smooth structures, on the other hand, its combinatorial
description has not clarified its nature, has not related it to the rest of topology.

All the known invariants distinguishing smooth structures on closed simply con-
nected 4-manifold X require non-trivial intersection form on H2(X). In particular,
for the 4-sphere these invariants give nothing, they cannot help in disproving of
the 4-dimensional differential Poincaré conjecture, according to which any closed
4-dimensional manifold homeomorphic to S4 is diffeomorphic to S4.

Thus, a development of new approaches to building invariants of smooth structures
is desirable.

2 Seiberg–Witten Versus Alexander

One of the most powerful invariants, which distinguish smooth structures on a 4-
manifold, is the Seiberg–Witten invariant. It can be presented in several forms. In par-
ticular, the Seiberg–Witten invariant of a smooth closed simply-connected 4-manifold
X can be identified with an element SW X of Z[H2(X)], the integer group algebra of
the second homology group H2(X).

This identification makes the Seiberg–Witten invariant resembling the Alexander
polynomial of a link. For a classical link L ⊂ S3, the Alexander polynomial is an
element of Z[H1(S3

� L)], the integer group algebra of the first homology group.
The Alexander polynomial can be defined in many ways. In particular, it admits

purely topological definitions.
The similarity between Seiberg–Witten invariant and Alexander polynomial gives

a hope to find either a definition of Seiberg–Witten invariant free of heavy analysis, or,
at least, to invent similar invariants that solve the same problems, but are defined and
calculated in ways more traditional for topology. This hope is supported by a relation
between the Seiberg–Witten invariant and the Alexander polynomial discovered by
Fintushel and Stern (1998).

3 Fintushel–Stern Knot Surgery of a 4-Manifold

Let X be any simply connected closed smooth 4-manifold. Suppose that X contains a
smoothly embedded torus T with simply connected complement X � T and with zero
self-intersection number T ◦ T . Since T ◦ T = 0, the normal bundle of T is trivial,
and a tubular neighborhood of T can be identified with T × D2.

A knot surgery on T takes away from X the interior of a tubular neighborhood
T × D2 of T and attaches S1 × (S3

� NK ) instead, where NK is an open tubular
neighborhood of a smooth knot K ⊂ S3. Observe that the boundary of S3

� NK is
diffeomorphic to the 2-torus S1 × S1, and hence the boundary of the inserted piece
S1 × (S3

� NK ) is diffeomorphic to the 3-torus S1 × S1 × S1 as well as the bound-
ary T × ∂ D2 of the piece removed. The attaching is performed by a diffeomorphism
S1 ×∂(S3

� NK ) → T ×∂ D2 which maps {pt}×l, where l is a longitude, i.e., a circle
bounding in S3

� K , to a fiber {pt}×∂ D2. This requirement on the attaching map does
not determine the map up to diffeotopy, and hence does not necessarily determine X K

up to diffeomorphism. However, by the following theorem, under some assumptions,
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all the manifolds obtained from the same (X, T ) and K ⊂ S3 by knot surgeries have
the same Seiberg–Witten invariant.

Theorem 1 (Fintushel and Stern 1998) Let X be a simply connected closed smooth 4-
manifold with b+(X) > 1, let X contain a smoothly embedded torus T with T ◦T = 0
and simply connected complement X � T . Let K be a knot in S3. Then the result X K

of a knot surgery is homeomorphic to X and

SW X K = SW X · �K (t2),

where t ∈ H2(X) is the homology class realized by T and �K is the symmetrized
Alexander polynomial of K .

Present definitions of the Seiberg–Witten invariant are not applicable to (S3
�

K ) × S1 or (S3
� NK ) × S1. So, one cannot speak about SW (S3

�K )×S1 . However,
if the SW was extended to this setup and satisfied a reasonable additivity property,
Fintushel–Stern Theorem would suggests that SW (S3

�K )×S1 should be �K .

4 Is SW X the Alexander Polynomial of Something?

The Alexander polynomial of a classical knot K is the order of Z[H1(S3
� K )]-

module H1(S̃3 � K ), where S̃3 � K → S3
� K is the infinite cyclic covering. The

automorphism group of this covering is H1(S3
� K ) = Z, it acts in the homology

group H1(S̃3 � K ), turning it into a Z[Z] = Z[t, t−1]-module.
This module is called the Alexander module of K . It is finitely generated and

admits a square matrix of relations. The determinant of this matrix is the Alexander
polynomial. It is defined up to multiplication by units of Z[Z] (that is by monomials
±tk).

According to this construction, the Alexander polynomial happens to belong to
Z[H1(S3

� K )]. The Seiberg–Witten invariant of X belongs to Z[H2(X)]. What could
be a space Y such that H1(Y ) = H2(X)?

5 The Loop Space �X?

There is an obvious candidate for such Y , the loop space �X of X . Indeed, πi (�X) =
πi+1(X), and, in particular, π1(�X) = π2(X); in the case of simply connected X ,
π2(X) is isomorphic to H2(X) by the Hurewicz theorem. Thus π1(�X) = H2(X).
Therefore π1(�X) is commutative, and hence H1(�X) = π1(�X) = H2(X).

However, the loop space per se cannot do the job:

– First, the homotopy type of�X depends only on the homotopy type of X . Therefore
homotopy invariants of �X cannot distinguish smooth structures on X .

– Second, �X is an H -space. Therefore π1(�X) acts on H∗(̃�X) trivially.
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6 The Knot Space?

How to improve �X?
First, let us make it closer to the smooth structure of X . The loop space �X contains

the space �Di f f X of differentiable loops S1 → X that have at the base point fixed
non-vanishing differential. The replacement of �X by �Di f f X does not change the
homotopy type: well-known approximation theorems imply that �Di f f X is a defor-
mation retract of �X .

Let K X ⊂ �Di f f X be the subspace which consists of loops that are smooth
embeddings. Denote �Di f f X � K X by DX . Observe that codim�Di f f X DX = 2,
hence the inclusion homomorphism π1(K X) → π1(�Di f f X) = π1(�X) is onto.

Obvious suggestion: consider the covering K̃ X → K X induced by the universal
covering �̃X → �X . The automorphism group of the covering �̃X → �X is
H1(�X) = H2(X). Therefore H∗(̃�X) and H∗(̃K X) are modules over Z[H1(�X)] =
Z[H2(X)].

The action of H1(�X) in H∗(̃�X) is trivial, since �X is an H -space, while
K X is not an H -space and H∗(̃K X) may be an interesting Z[H2(X)]-
module. It has a broad range of invariants belonging to Z[H2(X)] similar to the
Alexander polynomial. Indeed, if X is simply connected, then H2(X) is a free
abelian group of finite rank r , and Z[H2(X)] is isomorphic to the ring �r =
Z[t1, t−1

1 , t2, t−1
2 , . . . tr , t−1

r ] of Laurent polynomial in r variables with integer coef-
ficients, the same ring as in the situation of the Alexander module of a classical
link.

A finitely generated module M over �r gives rise to a filtration of Z[H2(X)]

Fitt0(M) ⊂ Fitt1(M) ⊂ · · · ⊂ Z[H2(X)]

by Fitting ideals. The i th Fitting ideal Fitti (M) is generated by the minors (determi-
nants of submatrices) of order r − i of the matrix of defining relations for M In the
topological literature Fitting ideals are called also elementary ideals. A generator of
the minimal principal ideal containing Fitti (M) is denoted by �i (M).

In the context of link theory, when �r = H1(S3
� L), where L is an r -component

link and M = H1(S̃3 � L) where (S̃3 � L) is the maximal abelian covering space of
S3

� L , the Laurent polynomial �i (M) is called the i th Alexander polynomial of L .
The 0th Alexander polynomial is one of the oldest link invariants. It was introduced
by Alexander (1928).

Similarly, for a smooth simply connected closed 4-manifold X , each Hi (̃K X),
as a module over Z[H2(X)], gives rise to a sequence of Laurent polynomials. They
resemble the Seiberg–Witten invariant. At least, they belong to the same Z[H2(X)].
The modules Hi (̃K X) are also invariants of X .

The problem: Does there exist homeomorphic smooth simply connected closed 4-
manifolds X1, X2 such that H∗(K̃ X1) and H∗(K̃ X2) are not isomorphic?
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7 Is this Plausible?

The author discussed the problem with many leading specialists in the field and asked
them this question. The answers spread over a broad spectrum. Only one expert
expressed a definitely negative opinion. On the other end, there were also very enthu-
siastic reactions.

The most convincing argument is that for different smooth structures on the same
topological manifold X a topologically observable difference between smooth struc-
tures was the minimal genus of a smoothly embedded surface realizing an element of
H2(X). For any smooth structure each class can be realized by an immersed sphere with
transverse self-intersection (by the Hurewicz theorem and transversality), but the min-
imal number of double point of such immersion depends on the structure. It is greater
than or equal to the minimal genus of a smoothly embedded surface realizing the class.

An immersion f : S2 → X can be used to produce a loop in the space of loops
�Di f f X . A loop in �Di f f S2 sweeping the whole S2 composed with f gives a loop
in �Di f f X . Generically this gives a loop in K X , because under a generic choice of
loop in �Di f f S2, points in the preimage of a double point of f are passed at differ-
ent moments. However, in families of loops realizing elements of high-dimensional
homology groups Hk(�Di f f S2) = Z these pairs of points appear on some of the

loops. Such a family does not realize a homology class in K X or K̃ X .

8 Vassiliev Invariants for 4-Manifolds?

How to calculate Hi (̃K X)? One may apply Vassiliev’s (1994) idea, which led to
discovery of the Vassiliev knot invariants: start the calculation with a study of the dual
cohomology, the cohomology of the space of singular knots. The space of singular
knots has a rich geometric structure.

The space DX consists of differentiable loops that are not embeddings. It fits to the
collection of discriminant hypersurfaces studied by Vassiliev (1994). The universal
covering �̃X → �X defines a covering D̃X → DX .

Resolve singularities of the discriminant DX , as Vassiliev did. This gives rise to a
filtration in H∗(̃DX). The first terms of these filtration are easier to calculate than the
whole cohomology group.

At first glance, the situation is much more complicated than in the original setup in
the theory of Vassiliev knot invariants. Let us examine the extra difficulties.

First, instead of the space of singular knots, we have to deal with its covering space.
What does happen, when we pass from knots to points of a covering space?

In general, if p : X → B is a covering, b0 ∈ B, x0 ∈ X are points such that
p(x0) = b0 and X is path connected, then a point x ∈ X is uniquely determined by
its image p(x) ∈ B, a path s : I → B such that s(0) = b0, and its covering path
s̃ : I → X starts at x0 and finishes at x . The path s is defined up to path homotopy
and multiplying by loops covered by loops in X .

In particular, a point of �̃X (no matter if it belongs to K̃ X or D̃X ) is defined by a
loop u : S1 → X and a continuous map f : D2 → X with f |S1 = u considered up to
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homotopy which is fixed on S1. The action of H2(X) in �̃X is realized in this model
as addition to the homotopy class of f homotopy classes of maps S2 → X realizing
elements of H2(X).

Second, the space of all loops in the Vassiliev setup is contractible (Recall that
loops there have the base point and the tangent vector at the base point fixed). This
allowed to apply the Alexander duality between the homology of the discriminant
and cohomology of its complement, the space of knots. This was done in a finite
dimensional (say, polynomial) approximation of the loop space.

Here the loop space is not contractible. Therefore, the Alexander duality is not
applicable. However, it may be replaced by the Alexander–Poincaré duality between

the homology of K̃ X and a relative cohomology, the cohomology of (�̃Di f f X , D̃X).

9 An Alternative Approach: String Topology

The homology of loop space �Di f f X and its universal covering accommodate a rich
structure of the string topology operations (Chas and Sullivan 1999). Geometrically,
one can expect that this structure incorporates the same information as the natural
filtration of the discriminant and the Alexander–Poincaré duality. Apparently the con-
nection have not been investigated. Nonetheless, it would be natural to expect that the
string topology is as strong as the invariants discussed above.

Problem. Is the string topology sensitive to smooth structures on 4-manifolds?
It would be interesting also to find direct relations between the Vassiliev invariants

theory and the string topology in the setup of classical knot theory.
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