
ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2011, Vol. 273, pp. 252–282. c© Pleiades Publishing, Ltd., 2011.
Original Russian Text c© O.Ya. Viro, 2011, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Vol. 273, pp. 271–303.

On Basic Concepts of Tropical Geometry
O. Ya. Viro a,b

Received April 2010

Abstract—We introduce a binary operation over complex numbers that is a tropical analog of
addition. This operation, together with the ordinary multiplication of complex numbers, satis-
fies axioms that generalize the standard field axioms. The algebraic geometry over a complex
tropical hyperfield thus defined occupies an intermediate position between the classical com-
plex algebraic geometry and tropical geometry. A deformation similar to the Litvinov–Maslov
dequantization of real numbers leads to the degeneration of complex algebraic varieties into
complex tropical varieties, whereas the amoeba of a complex tropical variety turns out to be
the corresponding tropical variety. Similar tropical modifications with multivalued additions
are constructed for other fields as well: for real numbers, p-adic numbers, and quaternions.

DOI: 10.1134/S0081543811040134

1. INTRODUCTION

1.1. Tropical geometry. When one wishes to describe tropical geometry by a single phrase,
one says that it is algebraic geometry over the semifield T = Rmax,+ ∪ {−∞}. The elements of the
semifield T are real numbers augmented with −∞; the role of addition is played by the operation
of taking the maximum of two numbers: (a, b) �→ max(a, b); and the role of multiplication is played
by the ordinary addition of numbers. The role of zero is played by −∞, while the role of unity,
by 0 ∈ R. The standard properties of addition and multiplication of elements of a field are valid
with the following exception: addition is completely noninvertible; i.e., for any a ∈ R, there does
not exist an x ∈ R such that max(a, x) = −∞. This implies the absence of subtraction. Instead,
addition possesses the property of idempotency, max(a, a) = a.

With this definition of tropical geometry, it may seem that the subject is exotic and remote
from the central fields of mathematics. But this is a wrong impression. Tropical geometry is used
for solving difficult classical problems of algebraic geometry over the fields of complex and real
numbers. In fact, it stemmed from the solution of such problems. Tropical varieties appeared
under different names in various mathematical contexts: Bergman’s logarithmic limit sets [1], the
Bieri–Groves sets [3], and Kapranov’s non-Archimedean amoebas [12]. Tropical curves are closely
related to combinatorial patchworking, a powerful method developed by the author [28, 11] for
constructing real algebraic curves with controlled topology. Tropical curves are a key element of a
powerful method developed by Mikhalkin [19] for calculating plane Gromov–Witten invariants.

Although some of the above-mentioned germs of tropical geometry arose long time ago (some
of them can be traced back to Newton), as an independent subject it was realized only about nine
years ago; the very term tropical geometry appeared about 2002. In spite of its early age, tropical
geometry is well presented in the literature. Here are some surveys that give a rather comprehensive
picture of various aspects of tropical geometry at different stages of its development: [25, 26, 9,
13, 20–22, 7]. Closely related to this subject are numerous aspects of algebraic geometry that
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Fig. 1. Tropical line corresponding to the tropical linear form max(x, y, 1).

group around the concept of Newton polytope (see the monograph by Gelfand, Kapranov, and
Zelevinsky [10]), Berkovich’s studies on p-adic analytic spaces (see [2]), and studies on homological
mirror symmetry in the style of Kontsevich and Soibelman [14].

1.2. Tropical varieties. The main objects of study in tropical geometry are quite simple.
To give an idea of these objects, I will restrict myself to tropical hypersurfaces of the space R

n
max,+.

Just as in the classical algebraic geometry, any affine hypersurface is defined by a single polynomial
equation; however, the polynomial should naturally be tropical, i.e., over Rmax,+.

A tropical polynomial is a tropical sum of several tropical monomials, i.e., the maximum of
several tropical monomials. A tropical monomial is a tropical product (i.e., sum) of the coeffi-
cient and tropical powers of the variables. Raising to the kth power in the tropical sense means
just multiplying by k. Thus, a tropical polynomial in n variables in terms of ordinary arithmetic
operations is

p(x1, . . . , xn) = max
k=(k1,...,kn)

(ak + k1x1 + . . . + knxn),

i.e., a convex piecewise linear function.
One could expect that a tropical hypersurface defined by the polynomial p is described by

the equation p(x1, . . . , xn) = −∞, because −∞ plays the role of zero in the tropical semifield T;
however, this equation has no solutions, and one introduces the tropical hypersurface defined by the
polynomial p as the set in which this polynomial is nondifferentiable as a function. In other words,
a point belongs to the tropical hypersurface defined by the tropical polynomial p(x1, . . . , xn) =
maxk=(k1,...,kn)(ak + k1x1 + . . . + knxn) if the value of the polynomial at this point is equal to the
values of at least two linear functions ak +k1x1 + . . .+knxn (i.e., the maximum is attained on more
than one linear function).

For example, the tropical line defined by the tropical linear form max(x, y, 1) (which corresponds
to the classical linear form x + y + 1) is shown in Fig. 1.

1.3. Dequantization. Relations between tropical geometry and other parts of mathematics
are diverse; however, many of them are based on the same phenomenon. There is a continuous
deformation that transforms the semifield R≥0 of nonnegative real numbers with ordinary operations
of addition and multiplication into the tropical semifield T (see [15, 29]). This deformation is called
the Litvinov–Maslov dequantization of real numbers.

Formally speaking, the Litvinov–Maslov dequantization is a family of semifields {Th}h∈[0,∞). As
a set, Th is R for any h. Binary operations ⊕h and �h in the semiring Th are defined as follows:

a ⊕h b =

{
h ln(ea/h + eb/h) for h > 0,

max{a, b} for h = 0,
(1)

a �h b = a + b. (2)

These operations depend continuously on h. For h > 0,

Dh : R>0 → Th : x �→ h ln x
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Fig. 2. The amoeba of a straight line (left) is contracted into a tropical line (right).

is an isomorphism of the semiring {R>0,+, ·} on the semiring {Th,⊕h,�h}. Thus, for h > 0, the
semiring Th is a copy of the semiring R>0 with ordinary operations. The semiring T0 is the tropical
semiring Rmax,+.

Any one-parameter family of objects in which all objects except one are mutually isomorphic,
while this special object is in a sense degenerate, is considered as a kind of quantization of this
degenerate object. In the case of the family Th, this is even more justified because Th was discovered
in connection with quantum mechanics (see [15]). From the mathematical point of view, Th is a
continuous degeneration of the semiring R>0 into Rmax,+. From the quantum point of view, T0 is a
classical object (the idempotent semiring Rmax,+, which is not so classical in mathematics), whereas
Th for h �= 0 are quantum objects (although very classical in mathematics), and the entire family Th

is a quantization of the semiring Rmax,+. The Litvinov–Maslov dequantization continuously deforms
the graph of a polynomial over Th into the graph of the same polynomial over the tropical semiring.

The combination of the relative simplicity of tropical varieties with the possibility of their
subsequent transformation, via the Litvinov–Maslov quantization, into complex and real algebraic
varieties with preservation of many geometric properties allows one to prove the existence of alge-
braic varieties with interesting properties by means of tropical geometry.

However, the Litvinov–Maslov dequantization is applied to algebraic varieties over the field C

somewhat indirectly. What is deformed and then degenerated into a tropical variety is not the
complex variety itself but its amoeba, i.e., the image of a variety V ⊂ (C \ 0)n under the map

Log : (C \ 0)n → R
n : (z1, . . . , zn) �→ (log|z1|, . . . , log|zn|).

For example, the amoeba of a straight line is contracted into a tropical line (Fig. 2).
It is well known to the experts that in many cases an appropriate deformation can also be applied

to the variety itself. Moreover, the limit objects have been analyzed in detail. In particular, to solve
problems of enumerative geometry by tropical techniques, Mikhalkin [19] considered plane complex
tropical curves as images of curves over the field of Puiseux series and as the limits of holomorphic
curves under appropriate degeneration of the complex structure (see [19, Sect. 6]). Mikhalkin
also considered complex tropical hypersurfaces (see [18, Sect. 6.3]). However, these hypersurfaces
appeared as auxiliary objects and were not regarded as algebraic varieties over a field.

1.4. Complex tropical geometry. In this paper, we construct objects that fill the above-
mentioned gap between the classical algebraic geometry over C and tropical geometry. We construct
tropical degeneration of the field C. This degeneration turns out to be somewhat exotic: the
operation of addition in this field is multivalued. Nevertheless, it is largely similar to ordinary
fields, and, in particular, there is algebraic geometry over it.

Nonsingular hypersurfaces in this geometry are topological manifolds; they can be obtained from
complex algebraic hypersurfaces homeomorphic to them by degeneration similar to the Litvinov–
Maslov dequantization, while their amoebas are tropical varieties.

1.5. Hyperfields. Tropical degeneration of the field C satisfies a system of axioms that is
maximally close to the system of field axioms. All the differences are associated exclusively with
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the fact that addition is multivalued. Similar degenerations can be applied to addition in many
other algebraic systems, for example, in the fields of real and p-adic numbers and in the skew field
of quaternions. Here we touch not a single example but an unstudied phenomenon of quite general
nature whose analysis, not to mention evaluation, goes beyond the scope of the present paper.

Acknowledgments. I am grateful to the St. Petersburg Department of the Steklov Mathe-
matical Institute, Russian Academy of Sciences, for constant support which I felt throughout my
whole mathematical career irrespective of the state of my formal relations with the institute. The
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Ya.M. Eliashberg, I.V. Itenberg, L. Katsarkov, and I.G. Zharkov for useful remarks, questions, and
recommendations.

2. ALGEBRA OF MULTIVALUED OPERATIONS

2.1. Multivalued maps. The symbol 2X stands for the set of all subsets of a set X. A mul-
tivalued map of a set X into a set Y is nothing but a map X → 2Y that is treated for some reason
as a map X → Y that does not satisfy the requirement of being single-valued (according to which
each element of the set X is mapped to exactly one element of the set Y ).

Such a deviation from the standards of the language of modern mathematics is usually motivated
by the desire to emphasize the analogy with the situations where the relevant map is single-valued.
For example, in the present study we deal with a generalization of addition when a sum may be
multivalued. The use of the modern set-theoretical terminology would obscure the analogy with
ordinary addition beyond recognition; this fact forces us to employ the nontraditional terminology
of multivalued maps.

A multivalued map f of a set X to a set Y is denoted by f : X � Y .
Just as other deviations from set-theoretical standards, this implies a whole lot of changes in

the conventional definitions and notations. Some changes are straightforward and do not lead to
confusion. For example, f(a) stands for a subset of Y that is the image of an element a ∈ X under
the corresponding map X → 2Y , whereas f(A) for a subset A ⊂ X denotes the subset

⋃
x∈A f(x)

of the set Y rather than the subset {f(x) : x ∈ A} of the set 2Y .
In the same spirit, the composition of multivalued maps f : X � Y and g : Y � Z is the

multivalued map g ◦ f : X � Z that sends a ∈ X to g(f(a)) =
⋃

y∈f(a) g(y).
Other changes are less obvious. For example, what is the preimage of a set B ⊂ Y under

a multivalued map f : X � Y ? Is this {a ∈ X : f(a) ⊂ B} or {a ∈ X : f(a) ∩ B �= ∅}?
Hence, the concept of preimage splits when passing from single-valued to multivalued maps. In
the cases of such splitting, it is necessary to introduce new terms. The set {a ∈ X : f(a) ⊂ B} is
called the upper preimage of a set B under f and is denoted by f+(B), whereas the set {a ∈ X :
f(a)∩B �= ∅} is called the lower preimage of B under f and is denoted by f−(B). These terms are
somewhat strange because f+(B) ⊂ f−(B); i.e., the upper preimage is less than the lower preimage.

When we wish to take refuge in the standard set-theoretical terminology, we will pass from a
multivalued map f : X � Y to the corresponding single-valued map X → 2Y . The latter will be
denoted by f↑.

2.2. Multivalued binary operations. A multivalued binary operation in a set X is a mul-
tivalued map X × X � X with nonempty values, i.e., any map X × X → 2X \ {∅}.
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A binary multivalued operation f : X × X � X is said to be commutative if f(a, b) = f(b, a)
for all a, b ∈ X.

A binary multivalued operation f : X × X � X is said to be associative if f(f(a, b), c) =
f(a, f(b, c)) for all a, b, c ∈ X. Naturally, by f in the last formula one should mean the natural
extension of the operation f to all subsets of the set X, i.e.,

2X × 2X → 2X : (A,B) �→
⋃

a∈A, b∈B

f(a, b).

Let Y ⊂ X, and let f : X × X � X be a multivalued binary operation. A multivalued binary
operation g : Y × Y � Y is said to be induced by the operation f if g(a, b) = f(a, b) ∩ Y for all
a, b ∈ Y . The induced operation is completely determined by the original operation. It exists if and
only if f(a, b)∩Y �= ∅ for any a, b ∈ Y (recall that the definition of a multivalued binary operation
prohibits the set g(a, b) from being empty).

2.3. Multivalued groups. A set X with a multivalued operation (a, b) �→ a � b is called a
(commutative) hypergroup if

(1) the operation � is associative and commutative;

(2) there is an element 0 in X such that 0 � a = a for any a ∈ X;

(3) for each a ∈ X, there exists a unique element −a ∈ X such that 0 ∈ a � (−a).

This is a direct generalization of the notion of abelian group: a hypergroup in which the operation
is single-valued (i.e., a � b consists of a single element for any a and b) is an abelian group.

Of course, nothing prevents one from considering noncommutative hypergroups as well; however,
these hypergroups are not needed in the present study.

Here we use the symbol � (rather than +) because we will usually have to consider the operation
(a, b) �→ a � b together with ordinary addition (a, b) �→ a + b.

2.4. The smallest hypergroup. In the set {0, 1}, define an operation � by the formulas
0 � 0 = 0, 0 � 1 = 1 = 1 � 0, and 1 � 1 = {0, 1}. It is easily checked that this is a hypergroup.
Following Marshall [16], we denote it by Q1. This is a unique hypergroup consisting of two elements
that is not a group.

2.5. Remarks on the history of the notion of hypergroup. Hypergroups appeared re-
peatedly in different contexts and sometimes under different names (such as multigroup or poly-
group). The earliest publications [17, 30] on hypergroups that I could find date back to 1934.
Some authors who defined them apparently did not know of their predecessors. I am grateful to
A.M. Vershik, who helped me out of such confusion.

Often the terms multigroup and hypergroup denoted objects of wider classes. For example,
Dresher and Ore [6] used the term multigroup in a much wider sense, while in their terminology
what we call a hypergroup would be a regular multigroup reversible in itself with an absolute unit.

The definition given above seems to be the narrowest multivalued generalization of the notion
of abelian group. In relatively recent publications, the same notion was considered by Comer [5]
(he used the term polygroup) and Marshall [16].

There is another version of the notion of hypergroup in which the operation takes a fixed number
of values (some of them may coincide with each other). Thus, the operation takes values in the nth
symmetric power of the set rather than in the set of all of its subsets. This version of multigroups
was considered by Wall [31] and, in our days, by Buchstaber and Rees [4].
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Fig. 3. Tropical addition of complex numbers.

2.6. Tropical addition of complex numbers. Let a and b be arbitrary complex numbers.
Set (see Fig. 3)

a � b =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{a} if |a| > |b|,
{b} if |a| < |b|,

{|a|eϕi : ϕ ∈ [α, β]} if a = |a|eαi, b = |a|eβi, β − α < π,

{c ∈ C : |c| ≤ |a|} if a + b = 0.

We will call the set a � b the tropical sum of the numbers a and b.
Theorem 2.A. The set of all complex numbers equipped with the tropical addition is a hyper-

group.
Proof. The commutativity of the tropical addition is obvious. Obviously, the neutral element

is given by 0. For any complex number a, the only complex number b such that 0 ∈ a � b is −a.
Among all the axioms of the hypergroup, only the associativity requires real verification. Let us
formulate it as a separate lemma. �

Lemma 2.B. Tropical addition of complex numbers is associative.
Proof. Let us prove that (a � b) � c = a � (b � c) for any complex numbers a, b, and c. The

following list exhausts all types of triples of complex numbers:

(1) the absolute value of one of the numbers, say, a, is greater than the absolute values of the
other two numbers: |a| > |b|, |c|;

(2) |a| = |c| > |b|;
(3) |a| = |b| > |c| with

(a) a �= −b;
(b) a = −b;

(4) |a| = |b| = |c| with

(a) a + b �= 0 �= b + c;
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(b) either a + b = 0 or b + c = 0, but not both equalities simultaneously;
(c) a + b = 0 = b + c, but a �= 0;
(d) a = b = c = 0.

Let us prove associativity in each of these cases. Within the proof, it is convenient to introduce
additional notations for the sets that arise as tropical sums. When the tropical sum of complex
numbers a and b is an arc (i.e., |a| = |b| and a + b �= 0), we will denote this arc by �(ab).

(1) In the first case (i.e., when |a| > |b|, |c|), the tropical sum is equal to a, the term with the
maximum absolute value. Irrespective of the order of operations, this term dominates the other
terms and turns out to be the final result. �

(2) If |a| > |b| and |b| < |c|, then a � b = a and b � c = c. Therefore, (a � b) � c = a � c and
a � (b � c) = a � c. �

(3a) Since |a| = |b| and a �= −b in this case, we have a � b = �(ab); and since |c| < |a|, we have
c � x = x for any x with |x| = |a|. Therefore, (a � b) � c = (�(ab)) � c = �(ab). On the other hand,
a � (b � c) = a � b = �(ab). �

(3b) We have

(a � −a) � c = {x : |x| ≤ |a|} � c

=

⎛
⎜⎜⎜⎝

{x : |c| < |x| ≤ |a|} ∪
{x : |x| = |c|, x �= −c}∪
{−c}∪
{x : |x| < |c|}

⎞
⎟⎟⎟⎠ � c =

⎛
⎜⎜⎜⎝

{x : |c| < |x| ≤ |a|} ∪
{x : |x| = |c|, x �= −c}∪
{x : |x| ≤ |c|} ∪
{c}

⎞
⎟⎟⎟⎠ = {x : |x| ≤ |a|}.

On the other hand, a � (−a � c) = a � (−a) = {x : |x| ≤ |a|}. �
(4a) We have

(a � b) � c = (�(ab)) � c =
{ {x : |x| ≤ |a|} if −c ∈ (�(ab)),

(�(ac)) ∪ (�(bc)) if −c /∈ (�(ab)).

On the other hand,

a � (b � c) = a � (�(bc)) =
{ {x : |x| ≤ |a|} if −a ∈ (�(bc)),

(�(ab)) ∪ (�(ac)) if −a /∈ (�(bc)).

The conditions −c ∈ (�(ab)) and −a ∈ (�(bc)) are equivalent. Indeed, it is easily seen that
each of these conditions is equivalent to the fact that the convex hull of the three-point set {a, b, c}
contains 0. If this condition is not satisfied, then {a, b, c} is contained in a half of the circle
{x : |x| = |a|}, and then (�(ac)) ∪ (�(bc)) = (�(ab)) ∪ (�(ac)) is the shortest arc of the circle that
contains a, b, and c, i.e., a kind of convex hull of the set {a, b, c} in the semicircle. �

(4b) If |a| = |b| = |c| and a + b = 0 but b + c �= 0, then (a � b) � c = {x : |x| ≤ |a|} � c =
({−c} ∪ {x : x �= −c, |x| ≤ |a|}) � c = {x : |x| ≤ |a|}. On the other hand, we have a � (−a � c) =
a � (�(−a, c)) = {x : |x| ≤ |a|}. �

(4c) If |a| = |b| = |c| �= 0 and a + b = 0 = b + c, then (a � b) � c = (a �−a) � a = a � (−a � a) =
a � (b � c). �

(4d) Does not need a proof. �
Theorem 2.C. Let a1, . . . , an be complex numbers with absolute values equal to r. Then

• either a1 � . . . � an is the closed disk of radius r centered at 0 and is obtained as a sum of at
most three terms among a1, . . . , an and 0 ∈ Conv(a1, . . . , an),
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Fig. 4. Tropical addition of real numbers.

• or a1 � . . . � an is an arc which is contained in a semicircle of radius r centered at 0 and is a
tropical sum of at most two terms among a1, . . . , an.

Proof. For n = 2, this assertion is an immediate corollary to the definition of the tropical sum.
Suppose that the assertion of the lemma is proved for any n < k and prove it for n = k.

By the assumption, the tropical sum of the first k − 1 terms is either the entire closed disk, and
then 0 ∈ Conv(a1, . . . , ak−1), or an arc of the circle that fits in a semicircle. In the first case, the
tropical sum of all k terms is the same disk because −ak ∈ a1 � . . .�ak−1, and 0 ∈ Conv(a1, . . . , ak)
because 0 ∈ Conv(a1, . . . , ak−1).

In the second case, two mutually exclusive situations are possible: either −ak belongs to the arc
a1 � . . . � ak−1, and then a1 � . . . � ak is the disk, or −ak does not belong to the arc a1 � . . . � ak−1.

In the first situation, the diameter of the disk connecting the points ak and −ak divides the
arc a1 � . . . � ak−1 and, hence, also divides the chord connecting the endpoints of this arc. The
center of the disk lies on the segment of this diameter between ak and the chord subtending the arc
a1 � . . . � ak−1. By the induction hypothesis, the endpoints of this arc are some of the first k − 1
terms. Hence, 0 ∈ Conv(a1, . . . , ak).

In the second situation, either ak lies on the arc a1�. . .�ak−1, and then a1�. . .�ak = a1�. . .�ak−1

so that the second alternative holds, or ak does not lie on the arc a1�. . .�ak−1, and then this arc lies
on one side of the diameter connecting ak with −ak. In this case, the whole sum a1 � . . . � ak is an
arc one of whose endpoints is ak and the other is one of the endpoints of the arc a1 � . . .�ak−1. �

Corollary 2.D. The tropical sum of any finite set of complex numbers is equal to the tropical
sum of a subset consisting of at most three terms. If the tropical sum does not contain zero, then
the number of terms can be reduced to two. �

Corollary 2.E. The tropical sum of a finite number of complex numbers contains zero if and
only if zero is contained in the convex hull of those terms that have the maximum absolute value. �

2.7. Tropical addition of real numbers. Tropical addition of complex numbers induces a
binary multivalued operation a �R b = (a � b) ∩ R on R. More explicitly, the set a �R b is described
as follows (see also Fig. 4):

a �R b =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{a} if |a| > |b|,
{b} if |a| < |b|,
{a} if a = b,

[−|a|, |a|] if a = −b.

The operation (a, b) �→ a�R b is called a real tropical sum, or simply a tropical sum if it is clear from
the context that the real version is meant.

It is easy to check that the set R of real numbers equipped with tropical addition is a hypergroup.

2.8. Homomorphisms. Let X and Y be hypergroups. A map f : X → Y is called a (hyper-
group) homomorphism if f(a � b) ⊂ f(a) � f(b) for any a, b ∈ X.
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Example. A non-Archimedean norm K → R satisfies the ultrametric triangle inequality
|a + b| ≤ max(|a|, |b|) for any a, b ∈ K. This means that it is a homomorphism of the additive
group of K into the hypergroup (R,�R) defined in Subsection 2.7.

2.9. Rings and fields with multivalued addition. A set X equipped with a binary mul-
tivalued operation � and (single-valued) multiplication is called a hyperring if it is a commutative
hypergroup with respect to � and the multiplication is associative and commutative, as well as
distributive with respect to �.

A multivalued ring X is called a hyperfield if X \ 0 is a group with respect to multiplication.
Examples of hyperfields. The hypergroup Q1 introduced above in Subsection 2.4 turns into a

hyperfield in a unique way. Recall that Q1 = {0, 1} with the operation � defined by the formulas
0 � 0 = 0, 0 � 1 = 1 = 1 � 0, and 1 � 1 = {0, 1}. Multiplication in Q1 is defined by the formulas
0 · 0 = 0 · 1 = 0 and 1 · 1 = 1.

The hypergroups (R,�R) and (C,�) with ordinary multiplication are hyperfields. When speaking
of hyperfields R and C, we will always bear in mind R and C with ordinary multiplication and with
tropical addition �R and �, respectively. Other similar examples are given in Appendix 1.

Complex conjugation C → C : z �→ z̄ is an automorphism of the hyperfield C.
Triangle hyperfield. In the set R≥0 of nonnegative real numbers, define a multivalued addition �

by the formula
a � b = {c ∈ R≥0 : |a − b| ≤ c ≤ a + b}.

In other words, a � b is the set of all real numbers c such that there exists a triangle with side
lengths a, b, and c.

Theorem 2.F. The set R≥0 with multivalued addition � and ordinary multiplication is a
hyperfield.

Proof. It is obvious that this addition is commutative. To show that it is associative, notice
that both (a � b) � c and a � (b � c) are sets of real numbers x such that there exists a quadrangle
with side lengths a, b, c, and x.

Ordinary multiplication is distributive with respect to �. The role of zero is played by 0. Finally,
for any a ∈ R≥0, the only real number x such that 0 ∈ a � x is the number a itself. �

We will call this hyperfield a triangle hyperfield and denote it by ∇.
Linear order hyperfield. Let X be a multiplicative group with a linear order ≺ such that if

a ≺ b, then ac ≺ bc for any a, b, c ∈ X. Let Y = X ∪ {0}. We extend the order ≺ from X to Y ,
setting 0 ≺ x for any x ∈ X. In Y , we define a multivalued addition ,

(a, b) �→ a b =
{max(a, b) if a �= b,

{x ∈ X : x � a} if a = b.

It is easily seen that X with is a hypergroup in which −a = a for any a ∈ X. Let us extend
multiplication from X to Y by setting x0 = 0 for any x ∈ Y . It is easily seen that Y with
multivalued addition and with this multiplication is a hyperfield.

In the case of the trivial group X = {1}, this construction yields Q1.
Ultrametric triangle hyperfield. This construction, applied to the multiplicative group of pos-

itive real numbers equipped with ordinary order <, defines the structure of a hyperfield in R≥0.
Recall that addition in this construction is defined by the formula

(a, b) �→ a b =
{ max(a, b) if a �= b,

{x ∈ R≥0 : x ≤ a} if a = b,

and multiplication is the ordinary multiplication of real numbers.
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This hyperfield can also be defined in a different way. To this end, we should replace the triangle
inequalities in the construction of the triangle hyperfield by the non-Archimedean (i.e., ultrametric)
triangle inequalities |c| ≤ max(|a|, |b|). We will call this hyperfield an ultrametric triangle hyperfield
and denote it by U∆.

Tropical hyperfield. The map log : R>0 → R extends naturally to a map R≥0 → R ∪ {−∞},
which sends 0 to −∞. Denote this map by the same symbol log. This is a bijection, and the structure
of the ultrametric triangle hyperfield U∆ is translated by log to the set R ∪ {−∞}. Denote the
hyperfield obtained by Y and call it the tropical hyperfield.

The tropical hyperfield can also be obtained by the construction of a linear order hyperfield
applied to the additive group of all real numbers with ordinary order <. The addition in this
hyperfield differs from the addition (a, b) �→ max(a, b) in the semifield T only on the diagonal:
max(a, a) = a �= a a = {x ∈ T : x ≤ a}; note that max(a, a) ∈ a a.

Example of a hyperring : integer numbers. In the set Z of integers, the tropical addition induced
by the tropical addition in C turns Z into a hypergroup; combined with ordinary multiplication, it
turns Z into a hyperring, but not into a hyperfield.

The notion of hyperfield is a direct generalization of the notion of field: a field is nothing but a
hyperfield with single-valued addition. I could find only one publication [16] in which the notion of
hyperfield was addressed.1 Below, this notion arises naturally as the degeneration of a field under
tropical deformation.

In the set R≥0 of nonnegative real numbers, tropical addition � induces the ordinary operation
max of taking the maximum of two numbers. Note that a �R b ⊂ R≥0 for any a, b ∈ R≥0. Thus,
the semifield R≥0,max,× arises as a subset of the hyperfield R that is closed with respect to both
binary operations, and its binary operations are identical to the operations of the hyperfield R. In
particular, the inclusion R≥0,max,× → R�R,× is a homomorphism.

Caution. There is a natural map in the opposite direction, R → R≥0 : x �→ |x|. It is a right
inverse of inclusion. However, it is not a homomorphism for �. Indeed, x � (−x) = [−|x|, |x|] for
any x ∈ R; next, the map x �→ |x| sends [−|x|, |x|] to [0, |x|], but |x| � |−x| = |x|, which is different
from [−|x|, |x|] for x �= 0.

The map R → R≥0 : x �→ |x| is a homomorphism of the hyperfield of real tropical numbers to
the ultrametric triangle hyperfield. Moreover, the same map is a homomorphism of the field of real
numbers to the triangle hyperfield.

The map C → R≥0 : x �→ |x| is a homomorphism of the hyperfield of complex tropical numbers
to the ultrametric triangle hyperfield. Moreover, the same map is a homomorphism of the ordinary
field of complex numbers to the triangle hyperfield.

2.10. Tropical complex numbers and polynomials. A map w that is defined and dis-
cussed in this and the next subsections was actually introduced by Mikhalkin [19] for his definition
of complex tropical curves. However, the algebraic properties were left out of sight because the
tropical addition was not discussed.

Let p(X) ∈ C[X] be a polynomial in one variable X with complex coefficients, p(X) =∑n
k=0 akX

k, where ak ∈ C, an �= 0. Set w(p) = an
|an|e

n. This defines a map C[X] → C : p �→ w(p).

Theorem 2.G. The map w is a homomorphism of the polynomial ring C[X] to the hyperfield
of tropical complex numbers C�,×; i.e., w(p + q) ∈ w(p) � w(q) and w(pq) = w(p)w(q) for any
p, q ∈ C[X].

Proof. The fact that w is a multiplicative homomorphism is obvious. Indeed, the value of w
on a polynomial is equal to its value on the leading term of this polynomial; the leading term of

1Hyperfields were introduced by Marc Krasner [32] in 1956.
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a
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Fig. 5. Construction of u, v, w ∈ C such that A = uXr, B = vXr, and C = wXr with r = log|a| and
w(A) = a, w(B) = b, and w(C) = c, A + B = C, where a, b, c ∈ C are given numbers.

the product of polynomials is the product of the leading terms of the factors; and the value of the
map w on a monomial p(X) = aXn is calculated by the formula p(e)

|p(1)| , which obviously defines a
multiplicative homomorphism.

Let us prove that w(p+ q) ∈ w(p)�w(q) for any p, q ∈ C[X]. If the degrees of the leading terms
of the polynomials p and q are different, then the leading term of the polynomial p + q is equal to
the leading term of one of the polynomials p and q whose exponent is greater; this immediately
implies that w(p + q) = w(p) � w(q) in this case.

If the degrees of the leading terms of the polynomials p and q are equal and these terms have
nonopposite coefficients and therefore do not cancel each other out under addition, then the leading
term of the polynomial p + q is the sum of the leading terms of the polynomials p and q. Its
exponent is equal to the exponents of the leading terms of the polynomials p and q, the coefficient
is equal to the sum of the leading coefficients of the polynomials p and q, but the argument of its
coefficient is not defined by the arguments of the leading coefficients of the polynomials p and q
because the argument of the sum of two complex numbers is not defined by the arguments of the
summands. It can take any value in the open interval between the arguments of the summands. In
particular, it takes values in the set of arguments of numbers from w(p) � w(q).

If the degrees of the leading terms of the polynomials p and q are equal and these terms have
opposite coefficients and therefore may cancel each other out under addition, then the leading term
of the polynomial p + q either is the sum of the leading terms of the polynomials p and q, or is
obtained from lower degree terms and cannot be calculated by the leading terms. The only thing
that can be said about this term based only on w(p) and w(q) (i.e., based on the arguments of the
leading coefficients and their degrees) is that the degree of this term is not greater than the degrees
of the summands; however, in the present case this implies that w(p + q) ∈ w(p) � w(q). �

2.11. Tropical complex numbers and complex polynomials with real exponents.
The image of the homomorphism w consists only of those complex numbers whose moduli are
powers of the number e. However, a similar construction can also provide a map to the whole C. To
this end, it suffices to replace ordinary polynomials by polynomials with arbitrary real exponents,
i.e., to start with the group algebra C[R] of the additive group of real numbers rather than with
C[X]. An element of this algebra can be represented as

∑
k akX

rk , where ak ∈ C and rk ∈ R.
The formal variable X indicates a transition from the additive notation for addition in R to the
multiplicative notation in C[R], where additive notation is reserved for a formal sum.

The elements of the algebra C[R] can be interpreted as functions C → C. To this end, replac-
ing X by eT , we transform

∑
k akX

rk into a sum of exponential functions
∑

k ake
rkT .

The map w : C[X] → C extends to C[R] in an obvious way: from the sum
∑

k akX
rk , we take

the term with the greatest exponent, say, anXrn , and apply the same formula an
|an|e

rn to it. The map
obtained is an epimorphism of the ring C[R] onto the hyperfield of tropical complex numbers C�,×.
The proof of the fact that this is a homomorphism repeats word for word the proof of Theorem 2.G.

This construction illustrates how tropical addition of complex numbers is obtained from the
ordinary addition of polynomials. Here it is quite clear why it should be multivalued. For complex
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numbers a and b with |a| = |b|, a �= −b, and any c from the open arc (a � b) \ {a, b}, there exist
A,B,C ∈ C[R] such that w(A) = a, w(B) = b, and w(C) = c (see Fig. 5). Opposite complex
numbers (i.e., numbers a, b ∈ C such that a + b = 0) are represented as the images under w of
polynomials A,B ∈ C[R] whose leading terms are mutually opposite and therefore cancel each
other out under the addition of these polynomials. The leading term of the sum A + B is by no
means controlled by the leading terms of the summands A and B, except that its order is not greater
than the order of the leading terms of the summands.

3. TROPICAL COMPLEX NUMBERS AS A RESULT OF DEQUANTIZATION

3.1. Subtropical deformation of the field of complex numbers. For any positive real h,
let Sh : C → C be a map defined by the formula

z �→

⎧⎨
⎩ |z| 1

h
z

|z| for z �= 0,

0 for z = 0.

This is an invertible map. The inverse map is defined by the formula

S−1
h : z �→

⎧⎨
⎩ |z|h z

|z| for z �= 0,

0 for z = 0.

Obviously, the map Sh is an isomorphism with respect to multiplication: Sh(ab) = Sh(a)Sh(b).
However, it does not commute with addition. To make the map Sh into an isomorphism with
respect to addition as well, we redefine addition on the domain of definition of this map, i.e., induce
a binary operation on the set of complex numbers:

a ⊕h b = S−1
h (Sh(a) + Sh(b)).

Thus, we obtain a field Ch = C⊕h,× (which is nothing but a copy of the field C) and an isomorphism
Sh : Ch → C.

Remark. A similar deformation of the complex torus (C \ 0)n (rather than of the field C)
was used by Mikhalkin, in particular, to establish relations between tropical and complex algebraic
geometries (see [19, Sect. 6]).

3.2. Limit of addition under subtropical deformation. One can easily verify that, as h
tends to zero, a ⊕h b tends to a certain limit. Namely,

• if |a| > |b|, then limh→0(a ⊕h b) = a;
• if |a| = |b| and a + b �= 0, then limh→0(a ⊕h b) = |a| a+b

|a+b| ;

• if a + b = 0, then limh→0(a ⊕h b) = 0.

Denote limh→0(a ⊕h b) by a ⊕0 b (see Fig. 6).
The operation (a, b) �→ a ⊕0 b possesses a number of nice properties. It is commutative and

distributive with respect to the ordinary multiplication of complex numbers, and zero behaves
properly: a⊕0 0 = a for any a ∈ C. Finally, for any a ∈ C, there exists a unique complex number b
such that a ⊕0 b = 0, and this b is nothing else than −a.

However, the operation (a, b) �→ a⊕0 b is far from perfect: first, as a function of the variables a
and b, it is not continuous, and, second, it is not associative. To verify the latter, let us compare
(−1 ⊕0 i) ⊕0 1 and −1 ⊕0 (i ⊕0 1):

(−1 ⊕0 i) ⊕0 1 =
(
exp(πi) ⊕0 exp

(πi

2

))
⊕0 1 = exp

(3πi

4

)
⊕0 exp(0) = exp

(3πi

8

)
.
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Fig. 6. Limit a ⊕0 b of sums a ⊕h b as h → 0.

On the other hand,

−1 ⊕0 (i ⊕0 1) = exp(πi) ⊕0

(
exp

(πi

2

)
⊕0 exp(0)

)
= exp(πi) ⊕0 exp

(πi

4

)
= exp

(5πi

8

)
.

The tropical addition introduced in Subsection 2.6 above is free of this drawback. It is associative
(see Lemma 2.B). But it is multivalued. Among its advantages is a kind of continuity. Just as ⊕0,
it is a limit of the operations ⊕h. However, it should be explained in what sense it is a limit and in
what sense it is continuous, because the relevant definitions and theorems in general topology are
not commonly known (see Section 4).

3.3. Subtropical deformation and asymptotic behavior. Under subtropical deforma-
tion, a point z moves along a straight line with exponentially varying speed:

z �→ z

|z| |z|
1
h ,

where h can be interpreted as time. This law of motion can be rewritten as

T �→ aerT ,

where a = z
|z| and erT = |z| 1

h ; i.e., rT = 1
h log|z|, T = 1

h , and r = log|z|. The motion is defined by
two parameters: the complex number a, which defines the direction of motion, and the real param-
eter r, which defines the speed. The number z is recovered by these parameters as follows: z = aer.

From this viewpoint, the operation ⊕h looks as follows: starting with the numbers z = aer and
w = bes, we construct aerT and besT , add them up, and seek c and t such that aerT + besT = cetT .
Then z ⊕ 1

T
w = cet.

Since the parameters c and t define the motion and we consider this motion for large T , the
matter concerns the asymptotic behavior of the curve T �→ aerT + besT from the viewpoint of the
comparison scale T �→ aerT . An answer to the question about the asymptotics of the sum is given
by the operation ⊕0. However, this operation is not continuous; hence, the answer is unstable, and
it makes sense to consider what happens with the asymptotics of the sum under perturbations of
the summands.
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As a perturbation of the function T �→ aerT , we can consider a curve defined by an arbitrary
exponential polynomial

T �→
∑

k

ake
rkT (3)

with arbitrary complex coefficients ak and real rk. In the comparison scale T �→ aerT , the asymptotic
behavior of function (3) is determined by its leading term, i.e., by the term of sum (3) with the
maximum rk. Moreover, the role of the absolute value of the coefficient of the leading term is
negligible if we do not try to improve our comparison scale. However, the asymptotic behavior
of the sum is not always determined by the asymptotic behavior of the summands, and the set of
asymptotics that arise under addition of functions with given asymptotics defines a binary operation
on the set of asymptotics. Thus, we return to the material of Subsection 2.11 and see that, to speak
of the asymptotics of the sum, we should turn to the homomorphism w.

4. TOPOLOGY OF MULTIVALUED MAPS

It is impossible to obtain a multivalued function as the limit of a family of single-valued functions
fh : X → Y while remaining in any space of single-valued functions X → Y . However, this can be
done by replacing functions by their graphs considered as subsets of the space X × Y . To speak
of the limits of graphs of a family of functions, one needs a topological structure in the space of
subsets of the space X × Y .

In the set of all subsets of a topological space, there exist different natural topological structures;
however, there is no structure among them that would be satisfactory in all respects. The most
classical among them are three topological structures introduced by Vietoris [27] in 1922. In our
situation, none of these structures is suitable for passing to the limit, but a modification proposed by
Fell [8] works and gives the graph of tropical addition. Tropical addition turns out to be continuous
with respect to the upper topologies of Vietoris and Fell, and this provides important properties of
tropical polynomial functions.

4.1. Vietoris topologies. The upper Vietoris topology in the set 2X of all subsets of a topo-
logical space X is the topology generated by sets of the form 2U ⊂ 2X , where U is open in X.
A neighborhood of a set A ⊂ X in the upper Vietoris topology should contain all subsets of some
set U that is open in X and contains the set A.

This is a somewhat unusual topology. For example, it is far from being Hausdorff: in this
topology, intersecting sets cannot have disjoint neighborhoods. Therefore, the limits in the upper
Vietoris topology are, as a rule, nonunique. In particular, increasing the limit (i.e., adding new
points to it), we obtain other limits. This fact is likely to be responsible for the word upper in the
name of the topology.

There is also a lower Vietoris topology. The lower Vietoris topology in the set 2X of all subsets
of a topological space X is the topology generated by sets of the form 2X \ 2C , where C is a closed
subset of the space X. In other words, the lower Vietoris topology is generated by sets of the form
{Y ⊂ X : Y ∩ U �= ∅}, where U is an open set of the space X. In the lower Vietoris topology,
closed sets are formed from the closed sets of the original space most naturally; a closed set C ⊂ X
gives a set 2C ⊂ 2X , which is closed in the lower Vietoris topology. Recall that open sets in the
upper Vietoris topology are generated in exactly the same way by open sets of the original space.
A neighborhood of a set A ∈ 2X in the lower Vietoris topology should contain all sets that intersect
several open sets U1, . . . , Un ⊂ X intersecting A. The limit in the lower Vietoris topology is not
unique in general either, but for the opposite reason: it remains a limit under decrease (i.e., under
the removal of points).
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The topology induced by the upper and lower Vietoris topologies is called simply the Vietoris
topology.

4.2. What is not good in the Vietoris topologies. Take the plane R
2 as X. Consider

a subset P of the space 2X whose elements are straight lines parallel to the abscissa axis: P =
{La ⊂ R

2 : La = {(x, y) ∈ R
2 : y = a}}. It is natural to expect that the space P with any

reasonable topological structure is homeomorphic to a straight line.
However, the upper Vietoris topology of the space 2X induces a discrete topology in P . Indeed,

the straight line La on the plane has a neighborhood {(x, y) : |x(y − a)| < 1}, which contains only
one horizontal line. The corresponding neighborhood of the straight line La in 2X intersects P only
at the point La. Hence, each point of the set P is open in the induced topology.

Since the Vietoris topology contains the upper Vietoris topology, it also induces a discrete
topology in P . In fact, the graphs of the operations ⊕h do not converge to the graph of tropical
addition in the upper Vietoris topology of the space C

3 for the same reason: there is a too large
supply of open sets. The graph of tropical addition of complex numbers can be represented as the
intersection of all limits of the graphs of operations ⊕h as h → 0 in the upper Vietoris topology.
Another natural approach is to relax the topology. An appropriate natural relaxation, the upper
Fell topology, is discussed in Appendix 2 of the present paper. However, the most important means
to deal with the objects of complex tropical geometry are provided by the upper Vietoris topology.

It is easily seen that the lower Vietoris topology induces in P the desired topology of a straight
line. However, it has a drawback (described in Theorem 4.A below) that is much more significant
from the viewpoint of the present study.

4.3. Semicontinuity of tropical addition. A multivalued map X � Y is said to be
• upper semicontinuous if the corresponding map f↑ : X → 2Y is continuous with respect to the

upper Vietoris topology in 2Y ;
• lower semicontinuous if f↑ : X → 2Y is continuous with respect to the lower Vietoris topology

in 2Y ;
• continuous if f↑ : X → 2Y is continuous with respect to the Vietoris topology in 2Y (i.e.,

X � Y is both upper and lower semicontinuous).
Recall that the set {a ∈ X : f(a) ⊂ B} is called the upper preimage of a set B under f , and the

set {a ∈ X : f(a) ∩ B �= ∅} is called the lower preimage of a set B under f .
It is easily seen that f : X � Y is upper (respectively, lower) semicontinuous if and only if the

upper (respectively, lower) preimage of any open set in Y is open in X.
Theorem 4.A. Tropical addition C×C � C : (a, b) �→ a�b is not lower semicontinuous (i.e.,

the corresponding map C × C → 2C is not a continuous map with respect to the classical topology
in C

2 and the lower Vietoris topology in 2C).
Proof. To prove this theorem, it suffices to produce a set that is open in the lower Vietoris

topology and whose preimage is not open in the classical topology of the space C
2. Take, for

example, the set H consisting of sets A that intersect the open disk of radius 1 centered at 0. Its
preimage under our map is the set of pairs of complex numbers whose tropical sum intersects this
disk. It is easily seen that this preimage consists of those pairs of complex numbers (a, b) that
satisfy one of the two following conditions: either |a| < 1 and |b| < 1, or a = −b. It is clear that
this set is not open. �

Theorem 4.B. Tropical addition C × C � C : (a, b) �→ a � b is upper semicontinuous (i.e.,
the corresponding map C × C → 2C is continuous with respect to the classical topology in C

2 and
the upper Vietoris topology in 2C).

Proof. Let us prove the local continuity; i.e., let us prove that for any neighborhood V ⊂ 2C

of the image a � b of a point (a, b), there exists a neighborhood U ⊂ C
2 of the point (a, b) whose
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image is contained in V . In the upper Vietoris topology, the neighborhood basis of a set A consists
of sets of all subsets of open sets W ⊃ A, so that indeed it suffices to find, for an arbitrarily close
neighborhood W ⊃ a � b, a neighborhood U of the point (a, b) in C

2 such that x � y ⊂ W for any
point (x, y) ∈ U .

Consider separately each of the three types of images of the point (a, b) under tropical addition.
If |a| > |b|, then a � b = a. Any neighborhood of the set a contains an open disk with center at

the point a. Let us reduce this disk, if necessary, so that its radius r becomes less than 1
2(|a| − |b|).

Take, as W , an open disk Br(a) of radius r centered at the point a. Then, as U , we can take the
neighborhood Br(a) × Br(b) of the point (a, b). It is clear that Br(a) � Br(b) ⊂ Br(a).

If |a| = |b| and a + b �= 0, then a � b is the shortest arc C connecting a with b in the circle
centered at zero. Let r be a positive real number so small that the disks Br(a) and Br(b) do not
contain points symmetric to each other with respect to zero. Any neighborhood of the arc C in C

contains W = Bρ(a) � Bρ(b) with some ρ ∈ (0, r). Take the neighborhood Bρ(a) × Bρ(b) of the
point (a, b) as U .

If |a| = |b| and a + b = 0, then a � b is the closed disk of radius |a| centered at zero. Any
neighborhood of this disk in C contains a concentric open disk of some radius r > |a|. Take this
disk as U . Its image under tropical addition is obviously equal to the disk itself. �

4.4. Properties of upper semicontinuous multivalued maps. According to Theorem 4.B,
tropical addition is upper semicontinuous. Since we have to deal with this addition, we will need a
few simple and well-known properties of upper semicontinuous maps.

First of all, note that for single-valued maps the concept of upper semicontinuity is equivalent
to ordinary continuity.

Moreover, it is obvious that a composition of upper semicontinuous maps is upper semicontin-
uous.

These two assertions immediately imply that a multivalued function defined by a complex trop-
ical polynomial (i.e., by a tropical sum of monomials with complex coefficients) is upper semicon-
tinuous.

Theorem 4.C. Let X and Y be topological spaces, f : X � Y be an upper semicontinuous
multivalued map, and C ⊂ Y be a closed set. Then the set {a ∈ X : f(a) ∩ C �= ∅} is closed.

Proof. The set {B ∈ 2Y : B ⊂ Y \ C} is open in the upper Vietoris topology of the space 2Y .
Since the multivalued map f is upper semicontinuous, the preimage {a ∈ X : f(a) ⊂ Y \ C} of
this set under the single-valued version X → 2Y of the multivalued map f is open. Hence, the set
{a ∈ X : f(a) ∩ C �= ∅} = X \ {a ∈ X : f(a) ⊂ X \ C} is closed. �

Corollary 4.D. For any complex or real tropical polynomial �k=(k1,...,kn) akx
k1
1 . . . xkn

k1
, the set

defined by the condition 0 ∈ �k=(k1,...,kn) akx
k1
1 . . . xkn

k1
in C

n or R
n, respectively, is closed. �

Finally, I present two well-known theorems on upper semicontinuous maps without proof.

Theorem 4.E. The image of a connected set under an upper semicontinuous map is connected
if the images of points under this map are connected. �

Theorem 4.F. The image of a compact set under an upper semicontinuous map is compact if
the images of points under this map are compact. �

Corollary 4.G. For any tropical polynomial �k=(k1,...,kn) akx
k1
1 . . . xkn

k1
, the multivalued map

defined by it is upper semicontinuous. It sends connected sets into connected sets and compacts sets
into compact sets. In particular, the graphs of tropical polynomials are connected. �

Corollary 4.G applies to both complex and real tropical polynomials and to the multivalued
maps C

n � C and R
n � R defined by them.
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5. COMPLEX TROPICAL EQUATIONS AND VARIETIES

5.1. Irreducible similar terms. Since addition in a hyperfield is multivalued, habitual re-
flexes acquired at primary school may be misleading. We know that

x + 1 + (−1) = x.

Is this so in a hyperfield? Does the equality

x � 1 � (−1) = x

hold? The answer is “it depends on x!” In any case,

x ∈ x � 1 � (−1),

but if |x| ≤ 1, then
x � 1 � (−1) = 1 � (−1) = {z ∈ C : |z| ≤ 1}.

Compare the real graphs of the functions y = x (Fig. 7a) and y = x � 1 � (−1) (Fig. 7b).
Thus, the addition of similar terms, which is habitual from childhood, requires care and may

generally cause errors in tropical complex and real algebras.
Now, consider an example showing that sometimes cancellation of similar terms is nevertheless

possible. Is it true that
x2 � −1 = (x � 1)(x � −1)?

At first glance, not, because, opening the brackets on the right-hand side of this equality, we obtain
x2 � x � (−x) � (−1), and, to obtain the left-hand side, we would like to cancel the similar terms x
and −x, which, as we know, is risky. However, the equality nevertheless holds for any x. Indeed,
x2 is a dominant term for |x| ≥ 1, and then the terms x and −x make no contribution to the sum,
whereas for |x| ≤ 1 the dominant term is −1, so the terms x and −x for no values of x influence
the sum and can be removed (Fig. 8).

A tropical polynomial is said to be clean if it has no monomials with equal exponents. A tropical
polynomial is said to be cleanable if some of its monomials can be removed without changing the
multivalued function defined by the polynomial so that the resulting polynomial is clean. For
example, as we have seen, the polynomial x2 � x � (−x) � (−1) is cleanable, and the result of
cleaning is x2 � (−1).

5.2. Equations over a hyperfield. Expressions involving multivalued addition define, as a
rule, multivalued functions. How should one understand, say, the equation f(x, y) = g(x, y) both
sides of which contain such expressions? To solve such an equation means to find the values of
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Fig. 7. Real graphs of the functions (a) y = x and (b) y = x � 1 � (−1).
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Fig. 8. Graph of the function x2 � x � (−x) � (−1) = x2 � (−1).

unknowns for which the values of the multivalued functions f(x, y) and g(x, y) intersect, while the
sets of all values do not necessarily coincide.

In particular, to solve the equation f(x, y) = 0 with a multivalued function f(x, y) on the left-
hand side and zero on the right-hand side means to find values of unknowns for which 0 ∈ f(x, y).

Due to the last hypergroup axiom, the equations f(x, y) = g(x, y) and f(x, y) � (−g(x, y)) = 0
are equivalent, which agrees with experience in dealing with ordinary equations. However, as we
have seen in the previous subsection, in the case of multivalued functions it is not legitimate to
transform equations in a more general way by adding the same expression to both sides. Indeed,
the equation x = 0 has a unique solution, whereas the equation x�1 = 1 has many solutions: each x
with |x| ≤ 1 is a solution. Equivalent are the equations x � 1 = 1 and x � 1 � (−1) = 0.

As a rule, we will consider only equations of the form f(x, y, . . .) = 0. As already mentioned,
such an equation should be understood as 0 ∈ f(x, y, . . .). In view of Theorem 4.C, the set of
solutions of such an equation with upper semicontinuous multivalued function f is closed.

5.3. Monomials. A tropical polynomial is a tropical sum of ordinary monomials. A monomial
has no roots in the complex torus (C\0)n and represents a single-valued function (C\0)n → C : z �→
m(z) = azk1

1 . . . zkn
n . It is convenient to consider a monomial together with the function log|m(z)|,

which is factored through the map

Log : (C \ 0)n → R
n : (z1, . . . , zn) �→

(
log|z1|, . . . , log|zn|

)
and yields a linear function

Log m : R
n → R : (x1, . . . , xn) �→ log|a| +

n∑
i=1

kixi.

On a fiber of the map Log, which is naturally identified with the torus (S1)n, a monomial defines
a character (z1, . . . , zn) �→ zk1

1 . . . zkn
n multiplied by a constant (by the coefficient a).

5.4. Binomial equations. As was mentioned in Subsection 5.2 above, the binomial equation

m1(z) � m2(z) = 0,

where m1(z) and m2(z) are monomials, is equivalent to the equation m1(z) = −m2(z). In this
case, tropical addition disappears and we deal with an ordinary equation over the field of complex
numbers.

The equality m1(z) = −m2(z) may only hold for those values of the variable z for which
|m1(z)| = |m2(z)|. Hence, the tropical hypersurface defined by the equation azp1

1 . . . zpn
n �
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bzq1
1 . . . zqn

n = 0 is contained in the preimage under Log of the hyperplane

log|a| +
n∑

i=1

pixi = log|b| +
n∑

i=1

qixi.

Let us consider what happens in the fiber of the fibration Log : (C \ 0)n → R
n over a point of this

hyperplane. The points of the fiber Log−1(x) are represented as

z = (z1, . . . , zn) = (ex1+iϕ1, . . . , exn+iϕn).

The original equation turns into a linear relation between two characters

azp1
1 . . . zpn

n = −bzq1
1 . . . zqn

n .

In the phase coordinates ϕk, this equation is linear:

α + (p1 − q1)ϕ1 + . . . + (pn − qn)ϕn = 0 mod 2π, (4)

where − a/b
|a|/|b| = eiα.

The difference p − q of the vectors p = (p1, . . . , pn) and q = (q1, . . . , qn) composed of the
exponents in the monomials is a normal vector to the hyperplane defined by equation (4). If
the vector p− q is primitive, i.e., if its coordinates are relatively prime, then equation (4) defines a
hypertorus (i.e., a subtorus of codimension 1) in the torus Log−1(x1, . . . , xn). If p− q = mv, where
m is a positive integer and v is a primitive integer vector, then equation (4) defines m parallel
hypertori of the torus Log−1(x1, . . . , xn).

The hypertori arising in this manner in different fibers are identified with each other by the
natural trivialization of the fibration Log via the phase coordinates. Indeed, the coordinates of the
point x are not involved in equation (4).

5.5. Principal part of a tropical polynomial at a point. Consider a clean trop-
ical polynomial p(z1, . . . , zn) = �k=(k1,...,kn)∈I akz

k1
1 . . . zkn

n with complex coefficients, and let
w = (w1, . . . , wn) ∈ C

n. Denote by p(w) the tropical polynomial composed of those monomials
of the tropical polynomial p whose absolute values at the point w are maximal among the absolute
values of all monomials of the tropical polynomial p. In formulas,

p(w)(z) = �
k=(k1,...,kn)∈I(w)

akz
k1
1 . . . zkn

n ,

where I(w) = {k ∈ I : |akw
k1
1 . . . wkn

n | = maxj∈I |ajw
j1
1 . . . wjn

n |}.
It is obvious that p(w) = p(w)(w). Moreover, there exists a neighborhood U of w such that the

multivalued functions z �→ p(z) and z �→ p(w)(z) coincide on U . Therefore, in a local analysis of
the hypersurface defined by the equation p(z) = 0, one can replace p(z) = 0 by a simpler equation
p(w)(z) = 0.

We call the number of monomials in p(w) the size of the tropical polynomial p at w, and call
the Newton polytope of the tropical polynomial p(w) the Newton polytope of p at w. Denote the
size of the tropical polynomial p at w by rp(w). It is clear that if 0 ∈ p(w), then rp(w) ≥ 2.

Note that the set of monomials appearing in p(w) depends only on the absolute values of the
coordinates of the point w and therefore remains invariant within a fiber of the fibration Log.
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5.6. Amoebas of complex tropical varieties. Recall that the amoeba of a variety V ⊂
(C \ 0)n is the image of the variety V under the map

Log : (C \ 0)n → R
n : (z1, . . . , zn) �→ (log|z1|, . . . , log|zn|).

It is clear that this concept applies not only to classical complex varieties, but also to sets defined
by complex tropical equations.

By the amoeba of a clean complex tropical polynomial

p(z1, . . . , zn) = �
k=(k1,...,kn)∈I

akz
k1
1 . . . zkn

n

with complex coefficients we mean the Rmax,+-polynomial

max{log|ak| + k1x1 + . . . + knxn : k ∈ I}.

Denote this Rmax,+-polynomial by Log p. (In the particular case of monomials, this notation was
introduced in Subsection 5.3 above.)

Recall that a tropical hypersurface defined by an Rmax,+-polynomial max{bk +k1x1 + . . .+knxn:
k ∈ I} is the set of points at which at least two of the linear functions bk + k1x1 + . . . + knxn are
equal to max{bk + k1x1 + . . . + knxn : k ∈ I}.

Denote by Vp the complex tropical hypersurface {z ∈ (C \ 0)n : p(z) = 0} defined by a complex
tropical polynomial p.

Theorem 5.A. Let
p(z) = �

k=(k1,...,kn)∈I
akz

k1
1 . . . zkn

n

be a clean tropical polynomial with complex coefficients. Then the amoeba Log(Vp) of the complex
tropical hypersurface Vp is a tropical hypersurface defined by the amoeba Log p of the tropical complex
polynomial p.

Proof. It is clear that Log(Vp) is contained in the tropical hypersurface defined by the amoeba
Log p of the tropical complex polynomial p. Indeed, at the points of the space (C \ 0)n that are
not mapped by Log onto the tropical hypersurface T defined by the Rmax,+-polynomial Log p, the
size of the tropical polynomial p is 1 (the absolute value of one of the monomials in p is greater
than the absolute values of other monomials); therefore, the tropical sum of all monomials cannot
contain zero.

Let us prove that each point of the tropical hypersurface T belongs to Log(Vp). Let x ∈ T and
S = Log−1(x) ⊂ (C\0)n. Take two monomials in the principal part of p at the points of the fiber S.
This is possible because the size of the tropical polynomial p on Log−1(T ) is greater than 1. As we
have seen in Subsection 5.2, there is a point in S at which the sum of these monomials vanishes.
Then the tropical sum of all monomials contains zero. �

5.7. Roots of complex tropical polynomials in one variable. Let p(z) = �n
k=0akz

k be
a clean complex tropical polynomial in one variable, and let w be a complex number at which the
size of the tropical polynomial p is greater than 1. Let us see what may be the set of solutions to
the equation p(z) = 0 in the circle C = Log−1 Log(w).

Without loss of generality, we may assume that p = pw. If the number of monomials in this
tropical polynomial is two, then the answer to the question immediately follows from the results of
Subsection 5.4: the number of roots of the equation p(z) = 0 in C is equal to the difference of the
exponents of the monomials, and the roots themselves are uniformly distributed on the circle C.

If the number of monomials is greater than two, then roots always exist. Indeed, the tropical
sum of two monomials with the same absolute values on the fiber C of the Log-fibration necessarily
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Fig. 9. Graph of the function 1 � x � x2.

has a root (cf. the proof of Theorem 5.A), and if the tropical sum of two monomials contains zero,
then the tropical addition of new monomials with the same absolute value to this sum does not
change the sum.

However, here we observe a new phenomenon: as a rule, the sum of more than two terms has
infinitely many roots on such a fiber, and the set of roots has a nonempty interior in C. I know
only one (up to simple transformations) exception to this rule: the tropical polynomial 1 � z �−z2

on the circle |z| = 1 has only two roots (z = ±1).
Infinite sets of roots with nonempty interior in C arise as follows. If three monomials have equal

absolute values on C at some point z0 ∈ C and the interior of the convex hull of their values contains
zero, then the tropical sum of these monomials also contains zero (see Corollary 2.E) and, in some
neighborhood of the point z0 on C, in view of the continuity of the monomials, zero still belongs to
the convex hull of the values of the monomials and to the tropical sum of these three monomials.

For example, the tropical polynomial 1�z�z2 on the circle |z| = 1 has zero value at all points with
Re z ≤ 0. These are, however, all the roots of this complex tropical polynomial. Figure 9 shows the
real graph of this polynomial. It is connected (as it should be according to Theorem 4.G), intersects
the abscissa axis at a single point (the other roots are imaginary), but is anomalous in another
sense: it is not a one-dimensional manifold.

Thus, the structure of roots of a complex tropical polynomial in one variable may radically
differ from that of ordinary complex polynomials. However, complex tropical polynomials in one
variable that exhibit this phenomenon, i.e., those with the size at some point greater than 2, are
quite degenerate. In a nondegenerate situation, the size of a complex tropical polynomial in one
variable at a point is not greater than 2, and then the number of its roots is equal to the degree of
the polynomial, just as in the classical case.

Note also that real tropical polynomials in one variable have a finite number of roots because
the real analog of the circle |z| = const consists of two points.

5.8. Complex tropical line. Consider the trinomial equation

z � w � 1 = 0. (5)

According to Theorem 5.A, the amoeba of the set defined by equation (5) is a tropical line (see
Fig. 1).

Over the internal points of the rays, the principal part of the tropical polynomial z � w � 1
consists of two terms: over the points of the horizontal ray, these are w � 1; over the points of the
vertical ray, these are z � 1; and over the points of the oblique ray, these are z �w. The intersection
of the torus Log−1(x, y) with the complex tropical curve over the points of these rays is described
by the equations ψ = π, ϕ = π, and ϕ = ψ ± π, respectively, in the coordinates ϕ = −i log z

|z|
and ψ = −i log w

|w| . Thus, over every point of the horizontal ray, we have the parallel ψ = π of the
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Fig. 10. Sets of points corresponding to equation (5) in the square parameterizing the torus.
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Fig. 11. Illustration of how Fig. 10b is obtained.

torus; over every point of the vertical ray, we have the meridian ϕ = π; and over every point of the
oblique ray, we have the diagonal circle ϕ = ψ ± π. In the square parameterizing the torus, these
circles look as shown in Fig. 10a. Over the common initial point of all the three rays, equation (5)
defines a domain consisting of two triangles (Fig. 10b).

Figure 11 provides a proof of the fact that Fig. 10b indeed represents a part of our tropical line
situated over the initial point of the three rays.

It can easily be verified that the union of the three cylinders projected onto the rays with these
two triangles makes up a pair of pants (i.e., a sphere with three holes).

We have studied the part of the complex tropical line z � w � 1 = 0 available for analysis by
means of its amoeba. This is the part contained in the complex torus (C \ 0)2, on which the map
Log is defined. However, the equation z � w � 1 = 0 makes sense on the entire complex plane C

2.
On the coordinate axes z = 0 and w = 0, it defines one point on each: on the axis z = 0, this is the
point (0, 1), and on the axis w = 0, this is (1, 0). Adding these two points to the pants transforms
the latter into a plane (the points fill two holes, i.e., sew up the pants legs).

We can proceed further and consider a complex tropical projective line. To this end, just as in
classical geometry, we should pass to projective homogeneous coordinates (z0 : z1 : z2) and to the
homogeneous version z1 � z2 � z0 = 0 of the equation z � w � 1 = 0. This procedure adds the last
point to our line, thus transforming it into a sphere.

Note that the topology of all three types of complex tropical lines—torus line in (C \ 0)2, affine
in C

2, and projective in CP2—does not differ at all from the topology of the respective types of the
classical complex straight line. However, the geometry is different: the tropical line is nonsmooth;
it has corners.
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5.9. Classical spaces in complex tropical geometry. Up to the end of the previous sub-
section, we considered the zero sets of complex tropical polynomials either in the affine space C

n

or in the complex torus (C \ 0)n. However, at the end of the previous subsection, the complex
projective tropical line appeared.

Tropical polynomials may be homogeneous, i.e., composed of monomials of the same degree.
When all variables are multiplied by the same number, the value of the tropical sum of monomials
of the same degree is multiplied by a power of this number, and if the value of the tropical sum
contains zero before multiplication, then it will also contain zero after multiplication. Thus, the
equation p(z0, . . . , zn) = 0, where p is a tropical homogeneous polynomial, defines a set in CPn. This
set is naturally called a tropical complex projective hypersurface. The complex tropical projective
line on the plane that appeared in the previous subsection is one of the simplest examples.

Complex projective spaces belong to a wider class of complex algebraic varieties, namely, the
class of complex toric varieties, on which tropical polynomials may yield equations. The point
is that a toric variety can be defined by an atlas of local coordinate systems and the definition
of transition functions between them does not require the addition operation: these functions are
purely monomial. Therefore, a tropical polynomial defined in one of these local coordinate systems
naturally remains a tropical polynomial under transition to another system. Each of its constituent
monomials is just transformed separately.

Although the sets of points of complex toric varieties remain the same as in the classical complex
algebraic geometry, the structure sheaf is replaced by a totally different one, because the role of
addition in tropical geometry is played by tropical addition, and the role of polynomials, by tropical
polynomials.

The supply of main spaces is also changed under transition from the classical complex to the
complex tropical geometry. For example, it includes the complex tropical line considered above.

Complex toric varieties are convenient from the tropical point of view for one more reason: they
are covered by complex tori, and in each complex torus the map Log is defined.

5.10. Complex tropical hyperplane. Consider a direct generalization of the complex trop-
ical line, namely, the set H defined by the equation

z0 � z1 � . . . � zn = 0 (6)

in the complex projective space CPn. Our primary interest lies in the local structure and the
topology of this set.

Theorem 5.B. The subspace H of the space CPn is a topological manifold of dimension 2n−2.
I am going to publish a detailed proof of this theorem in a separate article. Here we restrict

ourselves to a few remarks on the structure of the set H.
At every point w = (w0 : w1 : . . . : wn) ∈ CPn, the tropical polynomial p(z) = z0 � z1 � . . . � zn

has a principal part p(w)(z) = zk1 � zk2 � . . . � zkm and size m. Recall that the principal part of
a tropical polynomial at a point w is the tropical sum of those of its monomials that have the
maximum absolute value at w among all monomials of this tropical polynomial. The size of a
tropical polynomial at w is the number of monomials of its principal part at this point.

At every point w ∈ H, the principal part p(w) of the tropical polynomial p vanishes; by The-
orem 2.D, this implies that there are at most three monomials in p(w) whose tropical sum is zero.
Denote by s(w) the minimum number of such monomials. For every w ∈ H, this number is either 2
or 3. For w ∈ H, set d(w) = rp(w) − s(w). Denote by Hd the set of points w ∈ H at which
d(w) = d.

Lemma 5.C. The set H0 is a smooth subvariety of the space CPn of dimension 2n − 2; it is
open and dense in H.
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Proof. Let w ∈ H0. If s(w) = 2, then wi = −wj for some i and j and |wk| < |wi| for any
k �= i, j. Then, in some neighborhood of the point w in H, the equation zi = −zj defines H, and
this neighborhood is contained in H0. We see that in the neighborhood of such a point, H = H0 is
an open set of the complex nontropical hyperplane.

If s(w) = 3, then |wi| = |wj | = |wk| and 0 ∈ IntConv(wi, wj , wk) for some i, j, and k and
|wm| < |wk| for any m �= i, j, k. Then, in some neighborhood of the point w in H, the equations |zi| =
|zj | = |zk| define H, and this neighborhood is contained in H0. We see that in the neighborhood of
such a point, H = H0 is an open set in a real smooth algebraic subvariety of real codimension 2.

Now, let w be an arbitrary point of the set H. At this point we have p(w) = 0. Hence, according
to Theorem 2.D, there are at most three monomials in p(w) whose tropical sum contains zero. Each
monomial in p is one of the coordinates. In an arbitrarily small neighborhood of the point w,
there exists a point at which s(w) coordinates from p(w) have zero tropical sum (these are the same
coordinates as those of w with zero tropical sum), while the other coordinates have slightly smaller
absolute values. This point belongs to H0. This proves that H0 is dense in H. �

The set H0 is partitioned into disjoint open sets in each of which the polynomial p has a
fixed principal part. We will call these open sets the principal strata of the set H. According to
Lemma 5.C, the closures of the principal strata cover the whole H.

The closures of principal strata have a very simple structure. These are semialgebraic sets
without singularities; more precisely, they are smooth varieties with boundary and corners along
the boundary. They are locally diffeomorphic to the product of several copies of the line R and the
half-line R≥0. At a boundary point, the set of tangent vectors directed inside the stratum is a cone
isomorphic to such a product. This can easily be shown with the use of nearly the same arguments
as those in the proof of Lemma 5.C; however, we first make a change of scenery because this will
also be useful for the subsequent local analysis of the whole set H.

Note that the principal part of equation (6) at any point looks like the whole equation but
contains a smaller number of coordinates. In the neighborhood of a point, the complex tropical
hyperplane is defined by the principal part of the equation and is therefore locally homeomorphic
to the product of the neighborhood of the point of the complex tropical hyperplane in the space
of lower dimension by a complex affine space of appropriate dimension. Therefore, when studying
the local structure of the complex tropical hyperplane and its strata, one can restrict oneself to the
points at which the size of the equation is maximal, i.e., is n + 1 in the case of the complex tropical
hyperplane of the space CPn. The points at which the size of the polynomial p is n + 1 fill the
torus T defined by the equation |z0| = |z1| = . . . = |zn|. (Of course, not all points of the torus T
belong to H.)

So, let w ∈ H and p(w) = p. Then definitely w /∈ H0, but w ∈ ClH0. The homogeneous
coordinates w0, w1, . . . , wn of the point w have the same absolute values. It will be convenient to
interpret them as a configuration of points on a circle. Denote this configuration by W . In terms
of this configuration we will describe both the strata of the set H that are adjacent to w and the
cones in the tangent space that are composed of vectors directed inside these strata.

First of all, we list the principal strata that are adjacent to w. They are of two types: with
s = 3 and with s = 2.

The principal strata of the set H that are adjacent to w and on which s = 3 are in one-to-
one correspondence with triples of points wi, wj , wk such that 0 ∈ Conv(wi, wj , wk). The close
(to w) points z of the closure of the principal stratum H i,j,k

0 corresponding to the triple wi, wj , wk

have homogeneous coordinates that are close to the corresponding homogeneous coordinates of the
point w and satisfy the following conditions: |zi| = |zj | = |zk| = |wi| and |zm| ≤ |wi| for m �= i, j, k.
The tangent vectors directed inside this stratum form a convex cone affinely isomorphic to the
product of the space R

n by a cone over an (n − 3)-simplex.
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The principal strata of the set H that are adjacent to w and on which s = 2 are in one-to-one
correspondence with pairs of points wi, wj such that wi = −wj . The close (to w) points z of the
closure of the principal stratum H i,j

0 corresponding to the pair wi, wj have homogeneous coordinates
that are close to the corresponding homogeneous coordinates of the point w and satisfy the following
conditions: zi = −zj and |zm| ≤ |zi| for all m. The tangent vectors directed inside this stratum
form a convex cone that is affinely isomorphic to the product of the space R

n−1 by a cone over an
(n − 2)-simplex.

Note that the strata H i,j,k
0 are preserved under a small perturbation of the point w, whereas

the strata H i,j
0 arise for exceptional w, namely, when the pair of points wi, wj consists of antipodes.

The strata of positive codimension admit a similar description.
The number of triangles that enclose zero and have vertices in the set W (and, hence, the

number of cones that cover H locally) depends on the configuration of the points w0, w1, . . . , wn

on the circle. The simplest configuration appears when there is a diameter such that two of these
points, say, wi and wj , are located on one side of this diameter close to its opposite endpoints, while
the other points are located on the other side of the diameter and not very close to its endpoints.
Such a configuration arises when a point configuration on the circle whose convex hull does not
contain zero is deformed and one of the sides of the convex hull passes through zero.

Then any triangle with vertices in W that encloses zero has two vertices at wi and wj, whereas
the third vertex can be any of the remaining n − 1 points. Any two such triangles have a common
side [wiwj ], so the corresponding cones intersect along a face of highest dimension. On the whole,
all the cones constitute a structure isomorphic to the structure of faces of an (n − 2)-simplex. The
point under consideration enters the boundaries of n−1 strata H i,j,k

0 . Each of these strata is locally
a cone over an (n− 3)-simplex multiplied by R

n, and their union is a cone over the boundary of an
(n− 2)-simplex multiplied by R

n. Thus, at the points of the type under consideration, the set H is
locally Euclidean.

To study the structure of the set at other points, it suffices to analyze how its local stratification
changes under the motion of the point w. It is easily seen, for example, that when one of the
points wi passes through −wj, a Pachner transformation [23] is applied to the partition of the
tangent cone to H at the point w into principal strata. At the instant of passage, there arises a
stratum of type H i,j

0 , which immediately disappears. However, the topological type of the tangent
cone to H at the point w is preserved. Similar arguments concerning deeper degenerations of the
configuration W prove Theorem 5.B.

5.11. Nonsingular complex tropical hypersurfaces. A clean tropical complex polynomial
in n variables is said to be nonsingular if, at every point of the space (C\0)n, the Newton polytope
of its principal part is a primitive simplex of dimension ≤n. A simplex with vertices at points with
integer coordinates is said to be primitive if the vectors connecting one of its vertices with the other
vertices form a basis of the intersection of the integer lattice with the minimal affine space that
contains this simplex.

Theorem 5.D. A set X defined in (C \ 0)n by a nonsingular tropical complex polynomial p is
a topological manifold of dimension 2n − 2.

Reduction to a linear equation. Let w ∈ (C \ 0)n be a point of the set X, and let

p(w)(z) = µ0(z) � µ1(z) � . . . � µm(z)

be the principal part of the tropical polynomial p at w. Since p is nonsingular, the ratios of
monomials ui = µi(z)

µ0(z) with i = 1, . . . ,m define a submersion (C\0)n → (C\0)m. Let us extend this
submersion to a diffeomorphism (C \ 0)n → (C \ 0)n by adding some monomials um+1, . . . , un to
u1, . . . , um. We will consider this diffeomorphism as a local system of coordinates in the neighbor-
hood of the point w. Although the coordinates are defined globally, they are necessary for the local
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analysis of the set X in the neighborhood of the point w, where p = p(w) and the set X coincides
with the set defined by the equation p(w) = 0. Denote this set by Y .

In the coordinates u1, . . . , un, the set Y is defined by the equation 1 � u1 � . . . � um = 0, and
the absolute values of the first m coordinates of the point w are equal to 1. The values of the
last n − m coordinates are inessential because they do not enter the equation and the set Y has
a structure of a cylindrical set with (n − m)-dimensional generatrices parallel to the last n − m
complex coordinate axes.

Thus, the assertion of the theorem reduces to the fact that the complex linear tropical equation
1 � u1 � . . . � um = 0 defines a topological manifold of (real) dimension 2n− 2 in the space (C \ 0)n.
This follows from Theorem 5.B. �

5.12. The Zharkov–Itenberg–Mikhalkin conjecture on the tropical limits of Hodge
structures. Complex tropical hypersurfaces, just as more complicated complex tropical varieties
left beyond the scope of the present paper, possess a natural amoeba map onto the respective
tropical varieties (over Rmax,+) (see Subsection 5.6 above). The latter, being polyhedra, possess
natural skeletons. The preimages of the skeletons under the amoeba projection constitute a natural
filtration of a complex tropical variety. It gives a filtration of the homological groups of this variety.

Let X be a complex tropical variety and Xq be the preimage of the q-dimensional skeleton of
the tropical variety under the amoeba projection. Define Hq

n(X) = Im(in∗ : Hn(Xq) → Hn(X)) and
set Hp,q(X) = Hq

p+q(X)/Hq−1
p+q (X). According to the conjecture formulated under different (and,

apparently, more general) assumptions by Itenberg, Zharkov, and Mikhalkin, the group Hp,q(X)⊗C

is isomorphic to the Hodge group Hp,q(Xh) of a complex variety that degenerates into X.

Appendix 1. OTHER TROPICAL ADDITIONS

A1.1. Tropical addition of quaternions. Denote by H the skew field of quaternions
{x + yi + zj + tk : x, y, z, t ∈ R}. Let a, b ∈ H. By analogy with the construction of Subsection 2.7,
we set

a � b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{a} if |a| > |b|,
{b} if |a| < |b|,
The set of points of the shortest arc of
the geodesic connecting the quaternions
a and b on the sphere {c ∈ H : |c| = |a|} if |a| = |b|, a + b �= 0,

The ball {c ∈ H : |c| ≤ |a|} if a + b = 0.

The set a � b is called the tropical sum of quaternions a and b.
Theorem A1.A. The set H equipped with tropical addition is a commutative hypergroup.
The proof repeats the proof of Theorem 2.A almost word for word. �
It is easily seen that multiplication of quaternions is distributive with respect to tropical addition,

so we have a skew hyperfield.

A1.2. Vector spaces. The construction of tropical addition of quaternions is a particular
case of a more general construction. In an arbitrary normed vector space V over C, define the
following operation (a, b) �→ a � b:

a � b =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{a} if |a| > |b|,
{b} if |a| < |b|,

Cl
{

|a|
|αa + βb|(αa + βb) ∈ V : α, β ∈ R>0

}
if |a| = |b|, a + b �= 0,

{c ∈ V : |c| ≤ |a|} if a + b = 0.
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This operation makes V into a hypergroup and is distributive with respect to the multiplication
of vectors by complex numbers. In this case, av � bv = (a� b)v. In other words, V becomes a vector
space over the hyperfield of tropical complex numbers in the sense of the following definition.

Let F be a hyperfield. A set V with a multivalued binary operation (v,w) �→ v � w and with
an action (a, v) �→ av, a ∈ F , v ∈ V , of the multiplicative semigroup of the hyperfield F is called a
vector space over F if

• the operation � defines the structure of a commutative hypergroup in V ;
• (ab)v = a(bv) for all a, b ∈ F and v ∈ V ;
• 1v = v for all v ∈ V ;
• a(v � w) = av � aw for all a ∈ F and v,w ∈ V ;
• (a � b)v = av � bv for all a, b ∈ F and v ∈ V .

Of course, any hyperfield is a vector space over itself. A copy of this vector space is contained in
any vector space over the hyperfield. Indeed, if V is a vector space over a hyperfield F and w ∈ V ,
then the subset W = {aw : a ∈ F} is a vector subspace of the space V in the obvious sense, and the
map F → V : a �→ aw is an isomorphism of F , considered as a vector space over the hyperfield F ,
onto W .

Just as in the category of vector spaces over a field, the Cartesian product V × W of vector
spaces V and W over a hyperfield F is naturally equipped with the structure of a vector space
over F :

(v1, w1) � (v2, w2) = {(v,w) : v ∈ v1 � v2, w ∈ w1 � w2}, a(v,w) = (av, aw).

Note, however, the following contrast with vector spaces over a field. If a vector space over a
hyperfield is generated by a finite number of its elements, then it is not necessarily isomorphic to the
Cartesian product of its subspaces each of which is generated by a single element. Indeed, the vector
space over the hyperfield of tropical complex numbers constructed as above from a two-dimensional
normed vector space over C is not isomorphic to the product of two copies of this hyperfield.

A1.3. Fields of monomials. The following example has been inspired by the work of Brett
Parker [24], which was also motivated by the desire to understand the tropical degeneration of
complex structures.

What if we apply the same construction as in Subsection 2.11 but do not ignore the absolute
value of the monomial? Consider the set of monomials atr with complex coefficients a �= 0 and real
exponents r. Let us adjoin zero to this set. Formally, this is (C \ 0)× R ∪ {0}. Denote it by P and
define arithmetic operations on it.

Multiplication is defined as the ordinary multiplication of monomials. The set of nonzero mono-
mials is an abelian group with respect to multiplication, and it is naturally isomorphic to the product
of the multiplicative group of nonzero complex numbers by the additive group of all real numbers.

Addition is multivalued and is defined as follows:

atr � bts =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

atr if r > s,

bts if s > r,

(a + b)tr if s = r, a + b �= 0,

{ctu : u < r, c ∈ C \ {0}} ∪ {0} if s = r, a + b = 0,

0 � x = x.

It is clear that this addition is commutative, distributive with respect to multiplication, possesses
a neutral element 0, and, for any monomial x, there is a unique y such that x � y � 0. Let us check
the associativity.
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If one of the three terms vanishes, then the associativity holds, and the proof is straightforward:
(x � 0) � y = x � y = x � (0 � y).

Consider three nonzero monomials atu, btv, and ctw. The following list exhausts all the possi-
bilities:

(1) the exponent of one of the monomials is greater than the exponents of the other two, say
u > v,w;

(2) two exponents, say u and v, are equal, while the third is less, and a + b �= 0;
(3) two exponents, say u and v, are equal, while the third is less, and a + b = 0;
(4) all three exponents are equal, and, in addition,

(a) none of the sums a + b, b + c, or a + b + c vanishes;
(b) the sum of two coefficients vanishes, say a + b = 0 (but a + b + c �= 0);
(c) a + b + c = 0.

Let us prove associativity in each of these cases.
(1) The sum is equal to the term with the greatest exponent irrespective of the order in which

the operations are performed: for any order, this term dominates the other terms and turns out to
be the final result. �

(2) (atu �btu)�ctw = (a+b)tu �ctw = (a+b)tu; on the other hand, atu �(btu �ctw) = atu �btu =
(a + b)tu. �

(3) We have

(atu � −atu) � ctw = ({xtr : r < u} ∪ {0}) � ctw

=

⎛
⎜⎜⎜⎝

{xtr : w < r < u}∪
{xtr : r = w, x �= −c}∪
{−ctw}∪
{xtr : r < w} ∪ {0}

⎞
⎟⎟⎟⎠ � ctw =

⎛
⎜⎜⎜⎝

{xtr : w < r < u}∪
{xtw : x �= 0, x �= c}∪
{xtr : r < w} ∪ {0}∪
{ctw}

⎞
⎟⎟⎟⎠ = {xtr : r < u} ∪ {0};

on the other hand,

atu � (−atu � ctw) = atu � (−atu) = {xtr : r < u} ∪ {0}. �

(4a) (atu � btu) � ctu = (a + b)tu � ctu = (a + b + c)tu and atu � (btu � ctu) = atu � (b + c)tu =
(a + b + c)tu. �

(4b) If a + b = 0 and none of the sums b + c or a + b + c vanishes, then (atu � −atu) � ctu =
({xtr : r < u}∪{0})� ctu = ctu; on the other hand, atu � (−atu � ctu) = atu � (−a+ c)tu = ctu. �

(4c) If all three exponents are equal and a + b + c = 0, then

(atu � btu) � ctu = (a + b)tu � ctu = (−c)tu � ctu = {xtr : r < u} ∪ {0};

on the other hand,

atu � (btu � ctu) = atu � (b + c)tu = atu � (−a)tu = {xtr : r < u} ∪ {0}. �

Remark. There are numerous variants of the construction considered above. For example, in
the definition of the tropical addition of monomials, all inequalities can be replaced by the reverse
inequalities. Another possibility is to restrict the analysis to monomials whose exponents take only
rational or only integer values. More generally, the exponents can be taken from any linearly ordered
abelian group.
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A1.4. Tropical addition of p-adic numbers. The construction of Subsection 2.11 admits
a modification that can be applied to any field with non-Archimedean valuation. In every such field,
we can define a tropical addition that, together with the original multiplication, yields the structure
of a tropical field. Below, this scheme is implemented only in the case of the field of p-adic numbers.
The general case will be considered elsewhere.

Recall that a p-adic number is defined as a series

∞∑
n=−v(a)

anpn,

where an takes values in the set of integers from the interval [0, p − 1] and a−v(a) �= 0. Define a
tropical sum of p-adic numbers a =

∑∞
n=−v(a) anpn and b =

∑∞
n=−v(b) bnpn by the formula

a � b =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a if v(a) > v(b),

b if v(b) > v(a),

a + b if v(a) = v(b), a−v(a) + b−v(b) �= p,

{x : v(x) < v(a)} if v(a) = v(b), a−v(a) + b−v(b) = p.

(7)

Just as in the previous subsection, one can prove that this operation is associative and, together
with ordinary multiplication, yields the structure of a tropical field in the set of p-adic numbers.

Appendix 2. THE UPPER FELL TOPOLOGY

A2.1. The upper Fell topology. It is easy to show that the graph of tropical addition is
not the limit of the graphs of operations (a, b) �→ a⊕h b with respect to the upper Vietoris topology.
This drawback, as well as some other drawbacks of the upper Vietoris topology mentioned above,
can be overcome by a small change in its definition.

The upper Fell topology in the set 2X of all subsets of a topological space X is the topology
induced by sets of the form 2U ⊂ 2X , where U is the complement of a compact subset of the
space X.

The Fell topology is defined as the topology induced by the upper Fell topology and the lower
Vietoris topology. It inherits drawbacks from the lower Vietoris topology and will not interest
us here.

Note that if the space X is compact and Hausdorff, then the upper Fell topology coincides with
the upper Vietoris topology. However, in the example in Subsection 4.2, the upper Fell topology
induces a topology with the desired properties.

More generally, if X is a smooth manifold and Ft : M → X is a smooth isotopy of embeddings
of a manifold M in X, then the curve t �→ Ft(M) in the space 2X with the upper Fell topology
is continuous. In particular, the family of graphs Γh ⊂ C

3 of binary operations ⊕h with h > 0
represents a continuous map R>0 → 2C3 .

We want to understand what limit object may appear as a degeneration of a submanifold (for
example, the graph Γh of addition ⊕h) under a limit transition with respect to the upper Fell
topology.

A2.2. Limits in the upper Fell topology. Let X be a topological space and R>0 → 2X :
h �→ Fh be an arbitrary map, i.e., an arbitrary family of sets parameterized by positive real numbers.
Here we do not assume any continuity of this family with respect to any topology of the space 2X .

In spite of the absence of any assumptions, Fh has a limit as h → 0; i.e., there exists a set
A ⊂ X such that Fh → A as h → 0 with respect to the upper Fell topology. For example, A = X is
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a limit in the upper Fell topology for any family Fh of subsets of the space X. However, we would
like to distinguish a more interesting special limit.

Denote by L the set
{a ∈ X : ∃hn → 0, ∃xn ∈ Fhn , xn → a}, (8)

i.e., the set of limits of converging sequences of points from Fh as h → 0.
Theorem A2.A. Let X be a locally compact regular topological space satisfying the first axiom

of countability. Then L is the least (with respect to inclusion) closed limit of the family of sets Fh

as h → 0 in the upper Fell topology.
This theorem follows immediately from Lemmas A2.B, A2.C, and A2.D given below.
Lemma A2.B. If the space X satisfies the first axiom of countability, then the set L is

closed in X. �
Lemma A2.C. If the space X satisfies the first axiom of countability, then L is a limit of the

sets Fh as h → 0 in the upper Fell topology. �
Lemma A2.D. If the space X is locally compact and regular, then L is contained in any closed

set that is a limit of the family of sets Fh as h → 0 in the upper Fell topology. �
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