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Abstract. Mikhail Khovanov defined, for a diagram of an oriented clas-
sical link, a collection of groups labelled by pairs of integers. These groups
were constructed as homology groups of certain chain complexes. The Euler
characteristics of these complexes are coefficients of the Jones polynomial
of the link. The original construction is overloaded with algebraic details.
Most of specialists use adaptations of it stripped off the details. The goal of
this paper is to overview these adaptations and show how to switch between
them. We also discuss a version of Khovanov homology for framed links
and suggest a new grading for it.

1. Introduction

For a diagram D of an oriented link L, Mikhail Khovanov [7] constructed a
collection of groups Hi,j(D) such that

K(L)(q) =
∑
i,j

qj(−1)i dimQ(Hi,j(D)⊗Q),

where K(L) is a version of the Jones polynomial of L. These groups are
constructed as homology groups of certain chain complexes.

The Khovanov homology has proved to be a powerful and useful tool in
low dimensional topology. Recently Jacob Rasmussen [16] has applied it to
problems of estimating the slice genus of knots and links. He defied a knot
invariant which gives a low bound for the slice genus and which, for knots with
only positive crossings, allowed him to find the exact value of the slice genus.
Using this technique, he has found a new proof of Milnor conjecture on the
slice genus of toric knots. This is the first proof which does not depend on the
technique of gauge theory. It is much simpler than all the previously known
proofs.

Khovanov homology is not an isolated phenomenon any more. Since 1999,
when Khovanov [7] discovered it, several similar link homology theories have
been discovered, see [8], [10], [11], [12], [15], [3]. The Khovanov homology
seems to be the simplest of them.
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As Khovanov homology becomes one of the mainstream techniques in topol-
ogy, details of its definition and internal structure deserve careful considera-
tion.

The original construction of Hi,j(D) is overloaded with algebraic details.
More topologist-friendly versions of this construction were presented by Dror
Bar-Natan [2] and the author [18]. The constructions in [2] and [18] differ only
by inessential details from each other and the original paper by Khovanov [7].
One can easily recognize all the details of any of them in the other one.

Nonetheless, in most of the papers on Khovanov homology, the differences
between [2] and [18] are taken too seriously. In this paper I discuss the con-
structions again. I begin with the approach of [18]. Its main idea is to show
how one could invent Khovanov homology starting with the Kauffman bracket
model for the Jones polynomial and a general desire to upgrade (i.e., cat-
egorify) the Jones polynomial. Then I identify this construction with the
construction of [2] and [7].

The Khovanov homology is closer to Kauffman bracket, which is an invariant
of non-oriented, but framed links, rather than to the Jones polynomial, which is
an invariant of oriented, but non-framed links. The corresponding modification
of Khovanov homology is presented in Section 6. This allows us to write down
a categorification of the Kauffman skein relation for the Kauffman bracket.
The skein relation gives rise to a homology sequence.

2. Preliminary exposition of link matters

2.1. Links, their framings and orientations. Let me recall the basic no-
tions. By a link we mean a smooth closed 1-dimensional submanifold of
R3. Links L0, L1 are called (ambient) isotopic if there exists an isotopy
ht : R3 → R3, t ∈ [0, 1], with h0 = id and h1(L0) = L1. Up to isotopy a
link is characterized by its ,diagram i.e., a generic projection of the link to
a plane, decorated at each double point to specify over-crossing and under-
crossing branches. A double point on a link diagram is called a crossing.

By a framing of a link we mean a non-vanishing normal vector field on the
link. We consider framings up to isotopy. A link diagram defines a class of
isotopic framings, which contains both framings annihilated by the projection
and framings whose vectors are projected to non-zero vectors. The framings
of the latter type are called blackboard framings for an obvious reason.

For an oriented framed link (i.e., a link with a distinguished framing) the
self-linking number is the linking number between the link and the result of a
small shift of it along the framing.

The self-linking number depends on the orientation: reversing the orienta-
tion of a single component of a link changes the self-linking number by doubled
linking number of the component with its complement. In particular, in the
case of a knot (a one-component link) the self-linking number does not depend
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on its orientation. (It depends on the orientation of the ambient space, which
we will assume to be fixed.)

A framing of a knot is characterized by its self-linking number up to isotopy.
Hence the isotopy class of a framing is described by self-linking numbers of its
components. Thus a framing of a link can be characterized up to isotopy by
assignment of an integer to each connected component of the link. A framing
of a knot with self-linking number n is called an n-framing.

With a crossing point of a diagram of an oriented link we associate the local
writhe number equal to

• +1 if at the point the diagram looks like , and
• −1 if it looks like .

The sum of the local writhe numbers over all crossing points of a link diagram
D is called the writhe number of D and denoted by w(D).

The writhe number of a link diagram D is equal to the self-linking number
of the corresponding blackboard framing.

Addition of a little kink to a diagram (i.e., the first Reidemeister move)
changes the writhe number by ±1. Therefore any framing of a link can be
realized as a blackboard framing: for this one should add an appropriate
number of kinks.

2.2. The Jones polynomial and Kauffman bracket. In this paper we
will deal with two polynomial link invariants closely related to each other:
the Jones polynomial VL and Kauffman bracket 〈L〉. The Jones polynomial is
defined on the set of oriented links, the Kauffman bracket is defined on the set
of framed links.

The Kauffman bracket of a framed link is a Laurent polynomial in A. It is
defined by the following properties:

(1) Normalization. 〈 unknot with 0-framing 〉 = 1.
(2) Stabilization. 〈L q unknot with 0-framing〉 = (−A2 − A−2)〈L〉,

where q stands for disjoint sum.
(3) Kauffman Skein Relation. 〈 〉 = A〈 〉 + A−1〈 〉, where ,

and stand for links defined by their diagrams with blackboard
framing which coincide outside a disk and in the disk look as their
notations.

The Jones polynomial of an oriented link is a Laurent polynomial in t1/2

defined by the following properties:

(1) Normalization. Vunknot = 1.
(2) Stabilization. VL q unknot = (−t1/2 − t−1/2)VL, where q stands for

disjoint sum.
(3) Jones Skein Relation. t−1V −tV =

(
t1/2 − t−1/2

)
V , where

, and stand for oriented link diagrams coinciding outside a
disk and in the disk looking as their notations.



4 OLEG VIRO

When one speaks about the Kauffman bracket of a link diagram, this means
the Kauffman bracket of the link represented by the diagram and equipped
with the blackboard framing.

If the link is both oriented and framed, both the Jones polynomial and
Kauffman bracket make sense and each of them can be expressed in terms
of the other one and the self-linking number of the framing. Namely, for an
oriented link L with diagram D:

(1) VL(A
−4) = (−A)−3w(D)〈D〉.

2.3. Kauffman state sum. The Kauffman skein relation applied consecu-
tively to all crossings of a link diagram allows one to express the Kauffman
bracket of the diagram as a linear combination of the Kauffman brackets of
collections of circles embedded in the plane. Then the Stabilization and Nor-
malization properties complete the calculation.

This calculation can be rearranged as follows. The summands in the Kauff-
man skein relation correspond to smoothings of the crossing. A smoothing is
associated to a marker, which specifies a pair of vertical angles at the crossing
to be joined under the smoothing, see Figure 1.

Figure 1. Smoothing of a diagram according to markers.

Applying the skein relation at all crossings gives rise to a presentation of
〈D〉 as a large sum in which the summands correspond to distributions of
markers over all crossings. Such a distribution of markers is called a state of
the diagram. A state of a diagram defines a smoothing of the diagram: at each
of its double points the marked angles are united in a connected area.

Denote the result of the smoothing by Ds. This is a union of disjoint circles
embedded in the plane. Denote the number of the circles by |s|.

The two terms on the right hand side of the Kauffman skein relation have
different coefficients (A and A−1). The corresponding markers also are distinct:
the one corresponding to the term with coefficient A connects the verticle an-
gles such that rotation of the upper string towards the lower one through
these angles is counter-clockwise, while for the other the corresponding ro-
tation is clockwise. The markers of the former kind are called positive or
A-markers, those of the latter kind are negative or B-markers. Khovanov
[7] calls the smoothing corresponding to an A-marker a 0-resolution, and the
smoothing corresponding to a B-marker a 1-resolution. Bar-Natan [2] calls
them 0-smoothing and 1-smoothing, respectively. See Figure 2.
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positive negativemarker marker

Figure 2. Markers.

For a state s of a diagram D denote by σ(s) the difference between the
numbers of positive and negative markers. The contribution of a state s to
the Kauffman bracket is Aσ(s)(−A2 − A−2)|s|−1 and

(2) 〈D〉 =
∑

states s of D

Aσ(s)(−A2 − A−2)|s|−1.

Together with (1), this gives

(3) VD(A
−4) = (−A)−3w(D)

∑
states s of D

Aσ(s)(−A2 − A−2)|s|−1.

2.4. Jones polynomial and Kauffman bracket augmented. The nor-
malization adopted in the classical definitions implies that for the empty link
∅ Jones polynomial and Kauffman brackets are not Laurent polynomials:
V∅ = 1

−t1/2−t−1/2 and 〈∅〉 = 1
−A2−A−2 . To turn them into Laurent polynomi-

als, as well as for many other reasons, the normalization property is modified
by requiring that the Jones polynomial and Kauffman bracket of the empty
link is 1. This gives rise to the new version of the Jones polynomial which
is equal to the original one multiplied by −t1/2 − t−1/2 and the new version
of the Kauffman bracket which which is equal to the original one multiplied
by −A2 − A−2. In particular, the new version of the Jones polynomial of the
unknot equals −t1/2 − t−1/2 and the new version of the Kauffman bracket of
the unknot with 0-framing equals −A2 − A−2.

We will call these versions of the Jones polynomial and Kauffman bracket

augmented and denote them by ṼL and 〈̃L〉, respectively.
State sum representations (2) and (3) imply

(4) 〈̃D〉 =
∑

states s of D

Aσ(s)(−A2 − A−2)|s|.

(5) ṼD(A
−4) = (−A)−3w(D)

∑
states s of D

Aσ(s)(−A2 − A−2)|s|.

2.5. Terminological Remarks. In the literature one can find several nor-
malizations of both the Jones polynomial and the Kauffman bracket. They
differ by factors and change of the variable. The terminology concerning the
Jones polynomial and Kauffman bracket is a bit messy. I will consider here
only issues related directly to the construction of Khovanov homology.
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In the paper [2] by Bar-Natan the term Kauffman bracket is used for another
characteristic of a link diagram, which fails to be invariant under the second
Reidemeister move.

This bracket was borrowed from Khovanov’s paper [7], where it was not
called at all, but enjoyed the bracket notation.

Khovanov used variable q = −A−2. In this variable the Kauffman bracket
is a Laurent polynomial in q1/2 with coefficients in the Gaussian numbers
Z[
√
−1]. Probably, just to keep the Kauffman bracket a Laurent polynomial

in q with integer coefficients, Khovanov multiplied it by (−q)c/2, where c is the
number of crossings in the diagram. This compromised its invariance under
the second Reidemeister move, but the invariance was not needed.

In Khovanov’s paper [7], the term Kauffman bracket was used for a rescaled
version of the Jones polynomial f [L] introduced by Kauffman in paper [6] for a
short while, just to prove Theorem 2.8 there, which states that f [K] evaluated
at t−1/4 is the Jones polynomial VK(t) of K.

Kauffman in his paper [6] surely did not use the words “Kauffman bracket”,
but he used the term “bracket polynomial” for a polynomial characteristic of a
link diagram and denoted it with brackets. The name of Kauffman bracket was
then commonly accepted for this polynomial.This is what we call Kauffman
bracket.

There is nothing wrong in modifying polynomial characteristics of link dia-
grams according to the current needs, provided this does not lead to a confu-
sion. I suggest to follow the original terminology as closely as possible, up to
notations of indeterminates in the polynomials.

3. Preliminary reflections on categorifications

We are not going to discuss a general idea of categorification. Instead, let
us concentrate on classical non-trivial examples, which are most instructive
for our purposes.

3.1. Classical examples of categorification. A classical example of cate-
gorification is the invention of homology groups. Homology groups categorify
the Euler characteristic. The process of categorification took quite a long time
and efforts of excellent mathematicians such as Betti, Riemann, Poincaré, Vi-
etoris and Emmi Noether. One can hope to find an inspiration in this example.

The homology groupsHn(X) of a spaceX categorify the Euler characteristic
χ(X) in the sense that

(6) χ(X) =
dimX∑
n=0

(−1)n rkHn(X).

Formula (6) means that the Euler characteristic characterizes numerically the
size of the homology groups. So, if we begin with the Euler characteristic, the
homology groups provide an answer to the question: “What does the Euler
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characteristic count?”, or, more accurately: “What is an algebraic invariant
of a topological space such that the size of this invariant is characterized by
the Euler characteristic?”

The Euler characteristic of, say, a polyhedron X can be defined by formula

(7) χ(X) =
∑

simplices s of
a triangulation of X

(−1)dim(s)

This is a version of the well-known formula

(8) χ(X) =
dimX∑
n=0

(−1)ncn(X),

where cn(X) is the number of n-dimensional simplices in a triangulation of X.
So, the Euler characteristic counts simplices taking into account the parity of
their dimensions. However, the numbers cn(X) depend on triangulation, while
χ(X) does not.

The homology groups Hn(X) do not depend on triangulation. To construct
them, one can first construct the chain groups Cn(X). Recall that Cn(X)
is a free abelian group generated by n-dimensional simplices of some fixed
triangulation of X. This simple formal action seems to be a step in the right
direction. Indeed,

(9) χ(X) =
dimX∑
n=0

(−1)n rkCn(X),

because cn(X) = rkCn(X). However, the groups Cn(X) depend not only on
X, but on the choice of the triangulation.

A crucial step is to pass from chains to homology classes. One needs to
find boundary operators ∂n : Cn(X) → Cn−1(X) such that the compositions
∂n−1 ◦ ∂n would be trivial and the homology groups Hn(X) = Ker ∂n/ Im ∂n+1

would not depend on the triangulation. As soon as this is achieved, we are
done, since for any complex of abelian groups C = {CN → CN−1 → · · · → C0}

N∑
n=0

(−1)n rkHn(C) =
N∑

n=0

(−1)n rkCn.

The advantages of homology groups over the Euler characteristic are well-
known. Homology groups certainly contain much more information about the
space than the Euler characteristic. But the functorial nature of homology
is even more important. Continuous maps between spaces induce homomor-
phisms between their homology groups. Without homology groups very little
can be said about continuous maps in terms of just Euler characteristics.

3.2. Non-uniqueness of categorification. A categorification of the Euler
characteristic is not unique. For example, one can consider homology groups
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with coefficients in a field F . The ranks of groups should then be replaced
then by dimensions over F , so formula (6) turns into

(10) χ(X) =
dimX∑
n=0

(−1)n dimF Hn(X;F ).

Even more categorifications of χ(X) can be obtained by cheap tricks. For
example, one can change the indices (dimensions) of the homology groups
preserving only their parity. Or one can choose any finite sequence of finitely
generated abelian groups Ak with

∑
k(−1)k rkAk = 1 and put HA

n (X) =
⊕k (Ak ⊗Hn−k(X)). Obviously, χ(X) =

∑
n(−1)n rkHA

n (X).

3.3. How should a categorification of a polynomial link invariant
look like? We are going to categorify the augmented Jones polynomial and
the augmented Kauffman bracket. Both are Laurent polynomials in one vari-
able over Z. A Laurent polynomial in one variable is nothing but a sequence
of its coefficients.

One may expect that under categorification, each coefficient, being a numer-
ical invariant of a link, gives rise to a sequence of abelian groups. Therefore a
categorification of the whole polynomial should look like a collection of abelian
groups indexed by pairs of numbers. Say, a categorification of the augmented
Jones polynomial is expected to be a collection of abelian groups H i,j(L) such

that ṼL(t) =
∑

i,j(−1)itj rkH i,j(L).
Instead of a polyhedron, now we have to deal with a link. Triangulation

that served a combinatorial presentation of a polyhedron, is replaced by a link
diagram.

The Kauffman state sum representation (5) of the Jones polynomial looks
similar to the formula (7) for the Euler characteristic in terms of numbers of
simplices. To make it a true counter-part of (7), each homogeneous component
of the right hand side of (5) should be represented as an alternating sum of
ranks of groups for a sequence of abelian groups. Then the groups next to each
other in this sequence should be related by homomorphisms, transforming the
sequence into a chain complex whose homology groups do not change under
Reidemeister moves.

We are going to realize this program.

4. From Kauffman bracket to Khovanov chains

4.1. Normalization problem: homology for the unknot. Since cate-
gorification is not unique, we should feel free to impose additional restrictions,
a sort of normalization, on H i,j(L).
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The normalization property of the augmented Jones polynomial states that
for the unknot it equals −t

1
2 − t−

1
2 . Thus∑

i

(−1)i rkH i,j( unknot ) =

{
−1, if j = ±1

2

0 otherwise.

There is no aesthetically obvious choice for H i,j( unknot ) to satisfy this re-
striction. One of the simplest choices is H i,j = Z if i = 1 and j = ±1

2
and

H i,j = 0 otherwise. However, there are other possibilities, which are, maybe,
not worse, if not better than this one. Say, non-trivial groups may appear at
i = 1, j = 1

2
and i = −1, j = −1

2
.

4.2. Khovanov’s change of variable. Maybe, this ambiguity was the point
which forced Khovanov to change variable in the augmented Jones polynomial.
He replaced t with q = −t1/2. Following Khovanov, let us denote by K(L) the
polynomial in q obtained in this way. It is defined by the following properties:

(1) Normalization. K(unknot) = q + q−1.
(2) Stabilization. K(L q unknot) = (q + q−1)K(L).

(3) Skein Relation. q−2K( )− q2K( ) = (q−1 − q)K( ).

Now the simplest possibility for the value of categorification ofK on the unknot
is obvious:

H i,j =

{
Z, if i = 0 and j = ±1

0, otherwise

As we have chosen to categorify K(L) instead of ṼL, we want to find,
for each link L, a collection of abelian groups Hij(L) such that K(L) =∑

i,j(−1)iqj rkHi,j(L). (We have switched to Khovanov’s notation, because

now we are really talking about the homology groups Hij that he has con-
structed.)

4.3. Enhanced states. The Kauffman state sum (5) for the augmented
Jones polynomial of framed link L presented by link diagram D with black-
board framing turns into

(11) K(L)(q) =
∑

states s of D

(−1)
w(D)−σ(s)

2 q
3w(D)−σ(s)

2 (q + q−1)|s|.

The summands on the right hand side of (11) correspond to states of the
diagram. Hence each summand has a geometric meaning. Unfortunately, each
of them contributes to several monomials of K(L), and therefore it should
contribute to several homology groups. Therefore states cannot be considered
as true counterparts of simplices from the categorification of the Euler charac-
teristic considered in 3.1. We need to invent refinements of states which would
contribute monomials.

The most obvious straightforward way to refine the states is to open brackets
in (q + q−1)|s| and associate the monomials to some geometric objects.
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The smoothened diagram Ds consists of |s| connected components. So, one
can associate each factor (q+q−1) of (q+q−1)|s| with one of the components. A
monomial of the sum obtained by opening brackets in the product corresponds
to a choice of q or q−1 in each of the factors. This gives rise to the following
definition.

By an enhanced state S of a link diagram D we shall mean a collection of
markers constituting a usual Kauffman state s ofD enhanced by an assignment
of a plus or minus sign to each of the circles of Ds. (Recall that Ds is obtained
by the smoothing D according to all the markers of s.)

For an enhanced state S of an oriented link diagram D denote by τ(S) the
difference between the numbers of pluses and minuses assigned to the circles
of Ds. Observe that for any state s of D,

(12) q
3w(D)−σ(s)

2 (q + q−1)|s| =
∑

Enhanced states S
enhancing s

q
3w(D)−σ(s)+2τ(S)

2

Put1

j(S) =
3w(D)− σ(s) + 2τ(S)

2
.

Observe that both σ(s) and w(D) are congruent modulo 2 to the number of
crossing points. Therefore j(S) is an integer. Substituting (12) to (11), we get

(13) K(L)(q) =
∑

enhanced states S of D

(−1)
w(D)−σ(s)

2 qj(S)

4.4. Khovanov chain groups. Denote a free abelian group generated by
enhanced states of a link diagram D by C(D). Denote by Cj(D) the subgroup
of C(D) generated by enhanced states S of D with j(S) = j. Thus C(D) is a
Z-graded free abelian group:

C(D) =
⊕
j∈Z

Cj(D).

For an enhanced state S belonging to a state s of a link diagram D, put

i(S) =
w(D)− σ(s)

2
.

Denote by Ci,j(D) the subgroup of Cj(D) generated by enhanced states S with
i(S) = i. Notice that it follows from (13) that

(14) K(L)(q) =
∞∑

j=−∞

qj
∞∑

i=−∞

(−1)i rk Ci,j(D).

1In [18] the formula for j(S) was slightly different: j(S) = 3w(D)−σ(s)−2τ(S)
2 . This was

caused by the opposite value of the sign of the circles in Ds. In [18] the change of Kauffman’s
variable A to Khovanov’s variable q = −A−2 was made after the definition of τ(S).
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4.5. Linguistic differences to Bar-Natan’s formalism. Enhancements
of states replaced other notions, which appeared to be central in Khovanov’s
construction [7] and its presentation by Bar-Natan [2]. We consider a smaller
set of notions from Bar-Natan’s paper [2].

Briefly, graded groups are used extensively on intermediate stages of the
construction in [7] and [2].

The states of a link diagram D with n crossings correspond to vertices of
the n-dimensional cube. To define this correspondence, one has to fix a (total)
order of crossings and associate to a state s an n-vector (ε1, ε2, . . . , εn), where
εi = 0 if the marker of s at the i-th crossing is positive, and εi = 1 otherwise.

With every vertex α ∈ {0, 1}n of the n-dimensional cube (i.e., with every
state s of D) Bar-Natan associated2 a graded free abelian group Vα. In our
terms, Vα is a free abelian group generated by enhancements of the state s
corresponding to α ∈ {0, 1}n. The grading in Vα is defined by the numbers
i(S) introduced above, in 4.4, for each enhancement S of s. The homogeneous
component of Vα of degree i is the subgroup generated by enhanced states S
with i(S) = i.

The original construction of Vα runs through several steps with more alge-
braic details, which are useful in what follows.

First, Bar-Natan introduced a free abelian group V of rank 2 with generators
v±. They are of degrees ±1 respectively. This turns V into a graded group:
V = V+1 ⊕ V−1, where V±1 is the subgroup of V generated by v±.

By the graded rank of a graded abelian group W = ⊕mWm with homoge-
neous components Wm one means the power series qrkW =

∑
m qm rkWm.

For example, qrkV = q + q−1.
From our perspective, v+ and v− are the two enhancements of a state s with

|s| = 1. In general, to construct Vα Bar-Natan [2] (following Khovanov [7])
takes the |s|-th tensor power of V and shifts the grading appropriately.

The |s|th tensor power V ⊗|s| is generated by vδ1⊗vδ2⊗. . . vδ|s| , where δi = ±.

Obviously, qrkV ⊗|s| = (q+q−1)|s|. The q-rank of Vα has to be the contribution

of the state s to K(L), that is qrkVα = q
3w(D)−σ(s)

2 (q+ q−1)|s|. The group V ⊗|s|

is turned into Vα just by shifting the grading by 3w(D)−σ(s)
2

.
Let us introduce a notation for the shifting. Let ·{l} denote the degree shift

operation: for W = ⊕mWm set W{l}m = Wm−l and W{l} = ⊕mW{l}m, so
that qrkW{l} = ql qrkW . With this notation, Vα = (V ⊗|s|){3w(D)−σ(s)

2
}.

Let us associate factors of V ⊗|s| = V ⊗ V ⊗ · · · ⊗ V with components of Ds.
Each of the standard generators of V ⊗|s| is associated with an enhancement
of s in the obvious way: a generator vδ1 ⊗ vδ2 ⊗ · · · ⊗ vδ|s| corresponds to the
enhancement of s in which the ith component of Ds is equipped with sign δi.

2Bar-Natan wrote about graded vector space, but mentioned in a footnote: “everything
that we do works just fine (with some linguistic differences) over Z”. We switch tacitly back
to abelian groups, i.e., modules over Z, but in the next section we will switch for a short
while to vector spaces over Z2.
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5. From chains to homology

Let D be a diagram of an oriented link L. In [7] Khovanov defined a differ-
ential of bidegree (1, 0) in Ci,j(D) and proved that the corresponding homology
groups Hi,j(D) depend, up to isomorphism, only on L.

Khovanov’s description of the differential is made somewhat complicated
by several auxiliary algebraic constructions. We consider here a simplified
version, first over Z2.

An impatient (or lazy) topologist tends to consider homology with coeffi-
cients in Z2 instead of the full-fledged homology with integer coefficients. This
is a decent way to make a rewarding part of the job. Its result is an indispen-
sible step towards constructing the homology with integer coefficients, but all
difficulties related to signs are delayed.

In the case of Khovanov homology restricting ourselves to considerations
modulo 2 we even do not miss our goal to categorify K(L). Indeed, the
homology groups of C(D;Z2) = C(D) ⊗ Z2 denoted by Hi,j(D;Z2) categorify
already K(L) in the sense that

K(L) =
∑
i,j

(−1)iqj dimZ2 Hi,j(D;Z2).

5.1. Incidence numbers modulo 2. To define the differential d2 of C(D;Z2),
we just describe the matrix elements for d2. In the context of chain complex
the matrix elements are traditionally called incidence numbers.

The group Ci,j(D;Z2) is generated by S ⊗ 1, where S runs over enhanced
states of D with i(S) = i and j(S) = j. We will denote S ⊗ 1 by S, as it does
not make a confusion, but simplifies notation.

For enhanced states S and T , denote their incidence number modulo 2 by
(S : T )2. Then for an enhanced state S

d2(S) =
∑

Enhanced states T

(S : T )2T

The incidence number (S : T )2 is a function of a pair of enhanced states S
and T , which are generators of Ci,j(D;Z2) and Ci+1,j(D;Z2), respectively.

5.2. Restrictions on pairs of incident enhanced states. Enhanced states
with a non-zero incidence number are said to be incident to each other. Pairs
of incident states satisfy natural restrictions. Surprisingly, these restrictions
give exact description of incident states: each pair of enhanced states which is
not eliminated by the restrictions consists of incident states.

5.2.A. If S and T are enhanced states with (S : T )2 6= 0, then j(T ) = j(S)
and i(T ) = i(S) + 1.

Proof. This restriction emerges from our desire to have a differential of bidegree
(1, 0). Thus the differential preserves j and increases i by one. �
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5.2.B . Corollary. If S and T are enhanced states with (S : T )2 6= 0, then
σ(T ) = σ(S)− 2.

Proof. Recall that i(S) = w(D)−σ(S)
2

. Therefore i(T ) = i(S)+1 implies σ(T ) =
σ(S) − 2. In other words, the number of negative markers of T is greater by
one than the number of negative markers of S. �

It is natural to enforce this numerological restriction in the following way:

5.2.C . Assumption on Incident States. The incidence number (S : T )2
is zero unless the markers of S and T differ at only one crossing point of D,
and at this crossing the marker of S is positive, and that of T is negative.

The crossing where the markers of S and T satisfying 5.2.C differ is called
the changing crossing of S and T and denoted by x(S, T ).

Since the markers differ at exactly one crossing, DT is obtained from DS

by a single Morse modification of index 1. Since the Morse modification is
embedded in the plane, it respects the orientations of DS and DT induced
from the domains bounded by DS and DT in the plane. Hence |S|− |T | = ±1.
In other words either DT is obtained from DS either by joining two circles or
by splitting a circle of DS into two circles.

Here is the next natural restriction on incident enhanced states:

5.2.D. Assumption on Incident Enhancements. Enhanced states S
and T are not incident unless the common components of DS and DT have
the same signs in S and T .

5.2.E . Corollary.3 If S and T are enhanced states with (S : T )2 6= 0, then
τ(T ) = τ(S)− 1.

Proof. Indeed, j(T ) = j(S) by 5.2.A, and σ(T ) = σ(S)− 2 by 5.2.B. Hence

j(T ) =
3w(D)− σ(T ) + 2τ(T )

2

= j(S) =
3w(D)− σ(S) + 2τ(S)

2
=

3w(D)− σ(S)− 2 + 2τ(S)

2
,

�
Now we can list all situations satisfying these restrictions (see Figure 3):

5.2.F . Corollary. Let S and T be enhanced states with (S : T )2 6= 0.

(1) If |T | = |S| − 1 and both joining circles of DS are positive then the
resulting circle of T should be positive.

(2) If |T | = |S| − 1 and the joining circles of DS have different signs then
the resulting circle of T should be negative.

3This statement differs from the corresponding statement in [18] due to difference in sign
of τ .
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S

+ +

− +

+ −

T

+

−

−

S

−

+

+

T
−

−

−

+

+

−

Figure 3. Incident enhanced states. Dotted arcs show how
fragments of DS or DT are connected in the whole DS or DT .

(3) If |T | = |S| + 1 and the splitting circle of DS is negative then both of
the circles of DT obtained from it should be negative.

(4) If |T | = |S|+1 and the splitting circle of DS is positive then the circles
of DT obtained from it should be of different signs.

�

5.3. Differential modulo 2. Define d2 : Ci,j(D;Z2) → Ci+1,j(D;Z2) by as-
suming (S : T )2 = 1 in each of the cases listed in 5.2.F and shown in Figure 3.

Another, more algebraic, description can be found in [7] and [2]. The graded
space ⊕i,jCi,j(D;Z2) can be identified with⊕

states s of D

(V ⊗ Z2)
⊗|s|

{
3w(D)− σ(s)

2

}
,

see Section 4.4. The factors in each summand are associated with connected
components of Ds. The signs on the components are associated with the
generators of the corresponding factor. Figure 3 turns into a description of
two maps. The left hand side of Figure 3 describes a multiplication

m : V ⊗ V → V m :

{
v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+
v− ⊗ v+ 7→ v− v− ⊗ v− 7→ 0,

the right hand side a comultiplication

∆ : V → V ⊗ V ∆ :

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−

Of course, these are the restrictions described above in the preceding section
that shape m and ∆.

5.3.A. Theorem. d2 is a differential (i.e., d22 = 0).

Proof. This can be proven as certain identities relating multiplication m and
comultiplication ∆ using the algebraic reformulation above, see [7]. These
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identities are: commutativity and associativity of multiplication m, cocom-
mutativity and coassociativity of comultiplication ∆ and the identity ∆◦m =
(m ⊗ id) ◦ (id⊗∆). However, the proof would involve checking of numerous
identities, which were left as an exercise to a reader both in [7] and [2]. The
algebraic reformulation helps only in naming the identities. A direct check
involving only incidence numbers takes two pages, and we present it.

Since d22(S) =
∑

T,U(S : T )2(T : U)2U, it would suffice to prove that
∑

T (S :

T )2(T : U)2 = 0 for each enhanced state U . A state U for which this sum
is not empty differs from S by two markers. We can localize the problem by
smoothing according to the common markers of S and T and forgetting the
components of the result which do not pass through the marked crossings. At
most three components of DS are left.

Up to homeomorphism, only five possible pictures can appear.

(1) DS consists of three components and DU is connected, so the compo-
nents of DS are united by two Morse modifications:

(2) DS is connected and DU consist of three connected components, so DS

splits by two consecutive Morse modifications:

(3) Both DS and DU are connected, so DS splits by a Morse modification
into two components, which are united by the another Morse modifica-

tion:

(4) Both DS and DU consist of two components, the first Morse modifica-
tion unites the components of DS, and the second splits the result:

(5) Both DS and DU consist of two connected components, the first Morse
modification splits one of components of DS and then the second unites
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the other original component with one of the new components:

In each of these cases the order of Morse modifications can be reversed.
Then one can take into account enhancements, that is, the signs of the

components obtained after the first Morse modification. One has to check
that for any S and T the total number of ways to get T from S is even. All
the possible distributions of signs on the pictures above such that enhancement
states connected with an arrow are adjacent are shown bellow:

+ + + + +

+ +
+

− + + − +

− +
−

+ − + + −

− +
−

+ + − + −

+ −
−

+ +
−

+
−

+ − −
+ +

−

−
+

− + −

+ −
+

−
+

− − +

− −
−

−
−

− − −

+

+ − − + + − − +

−

+
+

+ + −

+ + −

+
+

+ − +

+ − +

+
−

+ − −

− − −

−
+

− + −

− − −
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+ + +

+ + −

+ + +

+ − +

+ − −

− − −

− + −

− − −

We see that if an enhanced state S can be connected to an enhanced state
T by a chain of two adjacencies, there are even number of such chains. �

5.4. Upgrading to integer coefficients. To pass to integer coefficients, one
can use the following three special properties of the adjacency of enhanced
states.

5.4.A. For any pair of enhanced states S and T with (S : T )2 = 1, there
is exactly one crossing at which the markers of S and T differ, and at this
crossing the marker of S is positive.

Recall that for enhanced states S, T with (S : T )2 = 1, the crossing at
which markers of S and T differ is called the changing crossing and denoted
by x(S, T ).

5.4.B . If (S : T )2 = (T : U)2 = 1 then x(S, T ) 6= x(T, U).

Indeed, in T the marker at x(S, T ) is negative, while the marker at x(T, U)
is positive.

5.4.C . For each pair of enhanced states S, U such that there exists an en-
hanced state T with (S : T )2 = (T : U)2 = 1, on the set of such T changing
crossing x(S, T ) takes two different values for equal numbers of times.

These three properties of adjacency of enhanced states are analogous to the
properties of adjacency for faces of a simplex. To use them, there are two
standard ways, which are equivalent to each other.

First, one can order the crossings and define (S : T ) as (−1)n, where n is
the number of negative markers in S at crossings with numbers greater than
x(S, T ). An obvious disadvantage of this approach is that it requires a proof
of independence of homology on the ordering of the crossings.

Another approach is to define orientation of enhanced states and then de-
fine the incidence numbers for oriented enhanced states. By orientation of an
enhanced state we will mean a (linear) ordering of all negative markers consid-
ered up to even permutation. Orientations which differ by odd permutations
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are considered opposite. Orientations of enhanced states can be thought of
as yet another enhancement of states, which allows one to define appropriate
signs of adjacency indices. However, this enhancement does not increase the
number of generators for the chain groups, since the same enhanced state with
opposite orientations as chains differ by multiplication by −1.

For enhanced states S and T with (S : T )2 = 1 oriented by linear orderings of
their negative markers such that the orderings coincide on the common markers
followed by the changing crossing in the ordering for T , define (S : T ) = 1.

One can easily check that if the orientations of all enhanced states are defined
by the orderings of negative markers induced by a linear order of all crossings
then this definition (S : T ) gives the same value as the definition of (S : T )
above.

5.4.D. Theorem. The homomorphism d : Ci,j(D) → Ci+1,j(D) defined by
formula d(S) =

∑
T (S : T )T satisfies d2 = 0.

Proof. Clearly, d2(S) =
∑

U,T (S : T )(T : U)U ; this is identically zero by 5.4.A
- 5.4.C and the definition of (S : T ). �

5.5. Invariance under Reidemeister moves. Of course, the most funda-
mental property of the Khovanov homology groups is their invariance under
Reidemeister move. An explicit construction of the chain maps inducing the
corresponding isomorphisms can be found in paper [4] by Magnus Jacobsson.
The same paper also contains an explicit description of the chain maps induced
by a link cobordisms.

One may wish a little bit more detailed information. Namely, the chain maps
induced by a Reidemeister move are homotopy equivalences. Thus, there exist
chain homotopy maps relating compositions of these maps with the identity
maps. Below this is done for the case of first Reidemeister moves.

We have to distinguish two kinds of first Reidemeister moves:

left-twisted and right-twisted .

5.6. Left-twisted first Reidemeister move. The Khovanov complex of
the diagram obtained by a left-twisted first Reidemeister move splits as a
direct sum of two subcomplexes,

(15) C
( )

=

C
(
−

−
,−

+
− +

−

)
⊕ C

(
+

+
, −

+
,

+
,

−

)
Here for the subcomplexes we use notation similar to the one used in skein

relations. Namely, C
(
+

+
, −

+
,

+
,

−

)
denotes the subcomplex

generated (as a collection of groups) by all enhanced states which near the new-

born crossing look as shown inside the paranthesis. C
(
−

−
,−

+
− +

−

)
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denotes the subcomplex generated by all enhanced states which near the new-

born crossing look as −
−

, and differences of two enhanced states which

near the newborn crossing look as −
+

and +
−

while outside of the

neighborhood coincide with each other.
The first summand on the right hand side of (15) is isomorphic to a Kho-

vanov complex of the diagram before the move. The isomorphism

C
(
−

−
, −

+
− +

−

)
→ C

( )
is defined by formulas:

(16) −
−

7→ − , −
+

− +
−

7→ +

The second summand on the right hand side of (15) is contractible, as

this is a cone over its subcomplex C
(

+
,

−

)
. Thus, the subcomplex

C
(
−

−
, −

+
− +

−

)
is a deformation retract of the whole C

( )
.

The retraction ρ : C
( )

→ C
(
−

−
, −

+
− +

−

)
is defined by for-

mulas

−
−

7→ −
−

,

+
−

7→ +
−

− −
+

−
+

, +
+

,
+

,
−

7→ 0

The homotopy connecting in ◦ρ to the identity, that is a map h : C
( )

→

C
( )

such that d ◦ h+ h ◦ d = id− in ◦ρ, is defined by formulas

−
7→ −

+
,

+
7→ +

+

+
+

, +
−

, −
+

,−
−

7→ 0

Here we assume that the orientations of the enhanced states are defined by
some order of crossings, in which the newborn crossing is the last one.

5.7. Right-twisted first Reidemeister move. The Khovanov complex of
the diagram obtained by a right-twisted first Reidemeister move splits as a
direct sum of two subcomplexes, too:

(17) C
( )

=

C
(
+

+
,−

+

)
⊕ C

(
−

+
+ +

−
,−

−
,

+
,

−

)
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The first summand on the right hand side of (17) is isomorphic to the
Khovanov complex of the diagram before the move. The isomorphism

C
(
+

+
, −

+

)
→ C

( )
is defined by formulas:

+
+

7→ + , −
+

7→ −

.
The second summand on the right hand side of (17) is contractible, as

this is a cone over its subcomplex C
(
+

−
+ −

+
, −

−

)
. Thus, the

subcomplex C
(
+

+
, −

+

)
is a deformation retract of the whole C

( )
.

The retraction ρ : C
( )

→ C
(
+

+
, −

+

)
is defined by formulas

+
+

7→ +
+

,

−
+

7→ −
+

,

+
−

7→ − −
+

−
−

,
+

,
−

7→ 0

The homotopy connecting in ◦ρ to the identity, that is a map h : C
( )

→

C
( )

such that d ◦ h+ h ◦ d = id− in ◦ρ, is defined by formulas

+
−

7→
+

, −
−

7→
−

+
+

, −
+

,
+

,
−

7→ 0

5.8. Enhanced states with polynomial coefficients. Khovanov construc-
ted not only groups Hi,j, but also the graded modules H i over the ring Z[c]
of polynomials with integer coefficients in variable c of degree 2. The grading
is a representation of H i as a direct sum of abelian subgroups H i,j such that
multiplication by c in H i gives rise to a homomorphism H i,j → H i,j+2.

To construct homology groups H i,j, we define the corresponding complex of
graded Z[c]-modules Ci. The module Ci is the sum of its subgroups Ci,j. The
group Ci,j is generated by the formal products ckS, where k ≥ 0 and S is an
oriented enhanced state with i(S) = i and j(S) = j − 2k.

The differential is defined in almost the same way as above. The states
which were adjacent above are adjacent here, as are their products by the
same power of c. Products of oriented enhanced states by different powers of
c are not adjacent, apart from the following situations: ck+1T is adjacent to
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ckS, if the markers of S and T differ exactly at one point, where the marker
of S is positive and that of T negative, the signs of S and T on the common
circles of DS and DT are the same, |T | = |S| + 1, the splitting circle of DS

is negative, and the circles of DT obtained from it are positive, see Figure 4,
where this situation is shown symbolically in the style of Figure 3.

c

+

−

−

Figure 4.

Each group Ci,j is finitely generated, but there are infinitely many non-
trivial groups. Groups H i,j with fixed i and sufficiently large j are isomorphic
to each other.

5.9. Lee’s differentials. In [14] Eun Soo Lee defined a differential Φ of bide-
gree (1, 4) in the Khovanov complex. The corresponding adjacency of enhanced
states are shown in Figure 5. She proved that Φ induces a homology operation
in the Khovanov homology groups, and using this operation, established a con-
jecture on Khovanov homology of alternating knots formulated by Bar-Natan,
Garoufalidis and Khovanov.

− −
+ −

+

+

Figure 5. Lee’s differential Φ.

5.10. Reduced Khovanov homology. As observed by Khovanov [9], a cat-
egorification of the original, non-augmented, Jones polynomial can be obtained
from the Khovanov complex by reduction. Again, Khovanov’s description uses
a bit more algebra than needed.

Here is a simplified version. I have learnt about it from Alexander Shu-
makovitch, see [17].

The reduced Khovanov chain complex is defined for a link diagram D with
a base point d0 chosen on an arc of D.

To construct it, first consider a subcomplex C̃(D, d0) of C(D) generated by
enhanced states S such that the sign of the component of DS containing d0 is
minus.

The choice of minus is not accidental. With − replaced by + it would not
be a subcomplex.
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The Euler characteristic of C̃(D, d0), that is
∑

i,j(−1)iqj rk C̃i,j(D, d0), equals
q−1

q+q−1K(D) = 1
q2+1

K(D). This is not 1
q+q−1K(D), which is the polynomial

obtained from the Jones polynomial VD(t) by substitution q = −t1/2. To fix

this mismatch, we shift C̃(D, d0) appropriately: let C(D, d0) be C̃(D, d0){1}.
Denote the homology groups of C(D, d0) by Hi,j(D, d0).

Up to isomorphism, the groups Hi,j(D, d0) depend only on the isotopy type
of the oriented link with the marked component containing d0.

The groups Hi,j(D, d0) really depend on component of the link containing
d0. The simplest example for which different base components give rise to
non-isomorphic reduced Khovanov homology groups is a disjoint sum of the
unknot and a trefoil knot.

6. Khovanov homology of framed links

In my preprint [18], I suggested a shifting turning the Khovanov homology
of an oriented diagram into a categorification of the Kauffman bracket. For
a link diagram D it gives a bigraded collection of homology groups HI,J(D)
such that

〈D〉(A) =
∑
I,J

(−1)
I
2AJ rkHI,J(D)

The shifting depends on the writhe number, and hence on orientation, while
the groups do not depend on orientation, but depend on framing.

My choice of the grading was not satisfactory, and many people suggested
to change it. Below I make another choice.

6.1. Framed Khovanov homology. Recall that the Kauffman bracket of
a link diagram D is given by the following state sum formula:

〈D〉 =
∑
states
s of D

Aσ(s)(−A2 − A−2)|s| =
∑

enhanced states
S of D

(−1)|S|Aσ(S)−2τ(S)

Observe that |S| ≡ τ(S) (mod 2), and hence

〈D〉 =
∑

enhanced states
S of D

(−1)τ(S)Aσ(S)−2τ(S)

For an enhanced state S of a link diagram D, put

p(S) = τ(S) and q(S) = σ(S)− 2τ(S).

If the link is oriented, and hence w(D) makes sense, then

p(S) = j(S)− w(D)− i(S), q(S) = 3w(D)− 2j(S).

In terms of p(S) and q(S), the Kauffman bracket is expressed as follows:

〈D〉 =
∑

enhanced states
S of D

(−1)p(S)Aq(S)
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Denote the free abelian group generated by enhanced states S of D with
p(S) = p and q(S) = q by Cp,q(D). If one orients the link, the Khovanov chain
groups Ci,j(D) appear, and

Cp,q(D) = C
w(D)−q−2p

2
,
3w(D)−q

2 (D).

Under this identification, the differentials of the Khovanov complex turn into
differentials

d : Cp,q(D) → Cp−1,q(D)

(the construction of the differentials does not involve orientation of the link,
hence it does not matter which orientation is used). Denote the homology
group of the complex obtained by Hp,q(D).

6.2. Skein homology sequence. Recall that Kauffman bracket satisfies the
following Kauffman skein relation:

〈 〉 = A〈 〉+ A−1〈 〉,

where , and stand for link diagrams which coincide outside a disk
and in the disk look as their notations.

Let us categorify this skein relation. Consider the map

α : Cp,q( ) → Cp,q−1( )

which sends an enhanced state S of to the enhanced state of smoothing

along which coincides with the smoothing of along S and signs of the ovals
are also the same. The collection of these maps is a chain homomorphism,
that is, they commute with d. Indeed, the incidence numbers are the same
for an enhanced Kauffman states of and its images in , and the latter
cannot contain in the boundary a state with positive marker at c.

Now consider map
β : Cp,q( ) → Cp,q−1( )

which sends each enhanced state with negative marker at c to 0 and each
enhanced state with positive marker at c to the enhanced state of with the
same smoothing and signs of the ovals. This is again a chain homomorphism.

The homomorphisms α and β form a short exact sequence of complexes:

0 −−−→ C∗,∗( )
α−−−→ C∗,∗−1( )

β−−−→ C∗,∗−2( ) −−−→ 0

It induces a collection of long homology sequences:

(18)

∂−−−→ Hp,q( )
α∗−−−→ Hp,q−1( )

β∗−−−→ Hp,q−2( )
∂−−−→

∂−−−→ Hp−1,q( )
α∗−−−→ Hp−1,q−1( )

β∗−−−→ Hp−1,q−2( )
∂−−−→

A special case of this sequence, which relates the groups of a connected sum
and disjoint sum of knots, can be found in Section 7.4 of Khovanov’s paper
[7]. This special case is the only one which can be formulated for the original
version of homology depending on orientations of links.
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The sequence (18) proved to be useful for calculation of Khovanov homology.
For instance, it was used in [13] and [1]

I have not been able to categorify the Jones skein relation which involves the
Jones polynomial of oriented links. The Jones skein relation can be deduced
from a couple of Kauffman skein relations. However this algebraic manipula-
tion seems to have no categorification.
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