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Abstract. In this paper elementary characteristics for mutual positions of

several disjoint closed smooth hypersurfaces in a projective space are studied.
In terms of these characteristics, new restrictions on topology of real algebraic
hypersurfaces of a given degree are formulated.

There is a small simple fragment, which appears repeatedly in papers on the
topology of real plane projective algebraic curves. This is a purely topological
description of possible mutual positions of several disjoint circles in the projective
plane. Since one of the main problems on the topology of real plane projective
algebraic curves is what topological pictures are realized by curves of a given degree,
it is necessary to fix first terms in which these pictures can be discussed.

The goal of this paper is to generalize this to the case of hypersurfaces of a
projective space.

In the case of plane projective curves the whole topology can be described in
homological terms (although they are not called in this way, being simpler than
almost everything related to homology): a circle can be positioned in the projective
plane one- or two-sidedly and a two-sided circle can encircle another one. In higher
dimensions there is topology which cannot be expressed in homology. This happens
even in the next dimension: handles of surfaces in RP 3 can be knotted. However
it makes sense to look first at the homological part of the story, since it catches
the simplest and roughest phenomena. By the way, in the knot theory, which is
considered a model for studying differences between embeddings, the homology
part appears only after auxiliary geometric construction. Probably, this is why it
is usually underestimated. However even a lean homology of the projective space
provides additional ways of linking and knotting surfaces in the projective space,
and makes the story more complicated than a similar story for surfaces in Euclidean
space.

A connected hypersurface supports a part of homology of the projective space.
This part is described by a single number called the rank of the hypersurface. There
are restrictions on mutual position of disjoint hypersurfaces and lines meeting them
formulated in terms of the ranks. Connected components of the complement of
several disjoint hypersurfaces give rise to the graph of adjacency, which is a tree,
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and contains subtrees defined in a natural way. This approach to the topological
situation pays off: it provides terms for formulations of new restrictions on the
topology of real algebraic hypersurfaces of a given degree in a projective space.

I begin with facts, which may be considered well-known. These facts are dis-
cussed with details because they are related to specific features of the projective
space. It occupies the first two sections. In Section 3 various graphs describing
the mutual position of connected components of a hypersurface in the projective
space are introduced. Section 4 contains applications to topology of real algebraic
hypersurfaces. These applications are simple corollaries of the Bézout theorem, but
their formulations become possible due to the definitions of Section 3. In Section 5
the upper bound of the number of noncontractible components of a real algebraic
surface of a given degree in RP 3 are discussed.

1. Connected Hypersurfaces

1.1. Two-Sided and One-Sided Hypersurfaces. For brevity, we shall refer to
smooth closed two-dimensional submanifolds of the real projective space RP 3 as
surfaces when there is no danger of confusion. We shall consider also an immediate
generalization: smooth closed (n− 1)-dimensional submanifolds of RPn. They will
be referred to as hypersurfaces of RPn.

Since the homology group Hn−1(RPn; Z2) is Z2, a connected hypersurface can
be situated in RPn in two ways: either zero-homologous, or realizing the nontrivial
homology class.

In the first case, the hypersurface divides the projective space into two connected
domains, being the boundary for both of them. Hence, the hypersurface divides its
tubular neighborhood, i.e. is two-sided.

In the second case, the complement of the hypersurface in the projective space
is connected. (Indeed, if it were not connected, the hypersurface would bound and
thereby realize the zero homology class.)

Moreover, a non-zero-homologous hypersurface is one-sided, i.e., does not sepa-
rate even its tubular neighborhood.

This can be shown in many ways. For example, if the hypersurface were two-
sided and its complement were connected, there would exist a nontrivial infinite
cyclic covering of RPn, which would contradict the fact that π1(RPn) = Z2. The
infinite cyclic covering could be constructed by gluing an infinite sequence of copies
of RPn cut along the surface: each copy has to be glued along one of the sides of
the cut to the other side of the cut in the next copy.

1.2. Orientability of Hypersurface. A connected two-sided hypersurface in RP 2n−1

is orientable, since it bounds a part of the ambient space, which is orientable.
Therefore a connected two-sided surface in RP 3 is homeomorphic to sphere or

sphere with handles. There is no restriction on the number of handles: one can
take an embedded sphere bounding a small ball, and adjoin to it any number of
handles.

A one-sided even-dimensional hypersurface is nonorientable. Indeed, its normal
bundle is nonorientable, while the restriction of the tangent bundle of RPn to
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the hypersurface is orientable (since an odd-dimensional projective space is). The
restriction of the tangent bundle of RPn to the hypersurface is the Whitney sum of
the normal and tangent bundles of the hypersurface. Therefore it cannot happen
that only one of these three bundles is not orientable.

A one-sided odd-dimensional hypersurface is orientable. Indeed, it realizes the
nontrivial homology class, which is dual to the first Stiefel-Whitney class (i.e.,
there is an orientation of the complement which jumps as one passes through the
hypersurface), and any hypersurfaces realizing the homology class dual to the first
Stiefel-Whitney class is orientable (the orientation of the complement induces from
the both sides of the hypersurface the same orientation).

A two-sided odd-dimensional hypersurface is nonorientable, unless it contains
no loop noncontractible in the ambient space. Indeed, if such a loop exists, it is
disorienting in the ambient space, and the restriction of the normal bundle to it is
trivial, for the hypersurface is two-sided. Therefore, the loop is disorienting for the
hypersurface. On any loop contractible in the ambient space all the three bundles
are orientable.

1.3. Topological Type of One-Sided Surface. Contrary to the case of two-
sided surfaces, in the case of one-sided surfaces there is an additional restriction on
their topological types, which is, in fact, a counter-part for orientability of two-sided
surfaces.

1.3.A. The Euler characteristic of a connected one-sided surface in RP 3 is odd.

In particular, it is impossible to embed a Klein bottle to RP 3. (The Euler
characteristic of a connected two-side surfaced in RP 3 is even. However, this is not
an additional restriction on its topology, but follows from orientability: the Euler
characteristic of any closed oriented surface is even.) By topological classification
of closed surfaces, a nonorientable connected surface with odd Euler characteristic
is homeomorphic to the projective plane or to the projective plane with handles.
Any surface of this sort can be embedded into RP 3: for the projective plane RP 3 is
the native ambient space, and one can adjoin to it in RP 3 any number of handles.

Proof of 1.3.A. Let S be a connected one-sided surface in RP 3. By a small
shift, it can be made transversal to the projective plane RP 2 standardly embedded
into RP 3. Since both surfaces are one-sided, they realize the same homology class
in RP 3. Therefore their union bounds in RP 3: one can color the complement
RP 3 r (S ∪RP 2) into two colors in such a way that the components adjacent from
the different sides to the same (two-dimensional) piece of S ∪ RP 2 would be of
different colors. It is a kind of checkerboard coloring.

Consider the disjoint sum Q of the closures of those components of RP 3 r (S ∪
RP 2) which are colored with the same color. It is a compact 3-manifold. It is
oriented since each of the components inherits orientation from RP 3. The boundary
of this 3-manifold is composed of pieces of S and RP 2. It can be thought of as
the result of cutting both surfaces along their intersection curve and regluing. The
intersection curve is replaced by its two copies, while the rest of S and RP 2 does
not change. Since the intersection curve consists of circles, its Euler characteristic



4

is zero. Therefore χ(∂Q) = χ(S) + χ(RP 2) = χ(S) + 1. On the other hand, χ(∂Q)
is even since ∂Q is a closed oriented surface (∂Q inherits an orientation from Q).
Thus χ(S) is odd.

This proof works in a more general setup giving rise to the following theorem.

1.3.B. The Euler characteristic of a connected one-sided hypersurface in RP 2n+1

is odd.

1.4. Contractibility. A one-sided connected surface in RP 3 contains a loop which
is not contractible in RP 3. Such a loop can be detected in the following way: Con-
sider the intersection of the surface with any one-sided transversal surface (e. g.,
RP 2 or a surface obtained from the original one by a small shift). The homol-
ogy class of the intersection curve is the self-intersection of the nonzero element of
H2(RP 3 ; Z2). Since the self-intersection is the nonzero element of H1(RP 3 ; Z2),
the intersection curve contains a component noncontractible in RP 3.

A two-sided connected surface in RP 3 can contain no loops noncontractible in
RP 3 (this happens, for instance, if the surface lies in an affine part of RP 3). Of
course, if a surface contains a loop noncontractible in RP 3, the surface is not
contractible in RP 3 itself. Moreover, then it meets any one-sided surface, since the
noncontractible loop realizes the nonzero element of H1(RP 3 ; Z2) and this element
has nonzero intersection number with the homology class realized by a one-sided
surface.

If any loop on a connected surface S embedded in RP 3 is contractible in RP 3

(which means that the embedding homomorphism π1(S) → π1(RP 3) is trivial),
then there is no obstruction to contract the embedding, i.e., to construct a homo-
topy between the embedding S → RP 3 and a constant map. One can take a cell
decomposition of S, contract the 1-skeleton (extending the homotopy to the whole
S), and then contract the map of the 2-cell, which is possible, since π2(RP 3) = 0.
A surface of this sort is called contractible (in RP 3).

1.4.A Remark. It may happen, however, that there is no isotopy relating the em-
bedding of a contractible surface to a map to an affine part of RP 3. The simplest
example of a contractible torus which cannot be moved by an isotopy to an affine
part of RP 3 is shown in Figure 1. See Drobotukhina’s paper [3], where the corre-
sponding problem for knots in RP 3 is discussed.

1.5. Rank of Hypersurface. The division of two-sided surfaces into contractible
and noncontractible ones can be thought of as a refinement of the division of all the
surfaces into one- and two-sided. Indeed, one-sided surfaces can be characterized
as those for which the inclusion induces nontrivial homomorphisms in homology of
Z2 coefficients in dimensions ≤ 2; two-sided noncontractible surfaces are those for
which the inclusion homomorphism in dimension 2 is trivial, while in dimensions
≤ 1 it is not; for two-sided contractible surfaces only the inclusion homomorphism
in dimension 0 is not trivial.

Define the rank of a hypersurface to be the maximal integer r such that the
homomorphism induced in r-dimensional homology (with Z2 coefficients) by the
inclusion of the hypersurface into the projective space is not trivial. Notice that
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Figure 1. An affine part of a torus embedded into the three-
dimensional projective space in such a way that the embedding is
homotopic to a constant map, but not isotopic to an embedding
with image fitting in an affine part of the space.

a hypersurface is one-sided iff its rank is equal to its dimension, and a two-sided
surface is not contractible iff its rank is 1.

A hypersurface S of rank r in RPn intersects any projective subspace of dimen-
sion ≥ n−r. This follows from the structure of the intersection ring of the projective
space. Indeed, the nontrivial class of dimension r has nontrivial intersection with
all the nontrivial classes of dimension ≥ n− r in H∗(RPn). This argument proves
more, namely: the intersection of a hypersurface of rank r in RPn with a transver-
sal projective subspace L of dimension k ≥ n − r is a hypersurface of L with rank
r − n+ k.

The rank is involved in many restrictions on topology of real algebraic hypersur-
faces of a given degree. See Kharlamov [11], Nikulin [14]

1.6. Complement. As it was stated above, the complement RPn r S of a con-
nected hypersurface S two-sidedly embedded in RPn consists of two connected
components. If S has rank r (< n − 1), then the inclusion homomorphisms for
both components to the ambient space are not trivial up to dimension r. Indeed, a
cycle on S non-zero-homologous in the ambient space can be pushed to each of the
components, since S is two-sided.

In the higher dimensions only one component contains a cycle non-homologous
to zero in the ambient space. This follows from exactness of the Mayer-Vietoris
sequence. Indeed, if both components had non-zero-homologous cycles, these cycles
would not be homologous in the union: this would happen only if the intersection
had a nontrivial homology class mapped by the inclusion homomorphisms to the
classes in the components. But in each dimension the homology group of the
projective space contains only one nontrivial element.

All the higher-dimensional homology classes are located in the same component,
since all of them are realized by the intersections of projective subspaces with the
cycle realizing the (n− 1)-dimensional class and located in one of the components.

The component of the complement that supports the nontrivial high-dimensional
homology classes of the projective space is said to be exterior and the other one
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interior. This distinction does not exist for two-sided hypersurfaces of the maximal
rank (=n− 1). In this case the components may be positioned in the same way.

The simplest example of this situation is provided by a one-sheeted hyperboloid
in RP 3. It is homeomorphic to torus and its complement consists of two solid
tori. So, this is a Heegaard decomposition of RP 3. There exists an isotopy of
RP 3 made of projective transformation exchanging the components. (One-sheeted
hyperboloid can be moved in RP 3 to a position, in which it intersects the affine
space in a hyperbolic paraboloid defined by equation xy = z. The hyperbolic
paraboloid is invariant under rotation by π around the axesOX (i.e., transformation
(x, y, z) 7→ (x,−y,−z)), which exchanges the components of the complement.)

A connected surface decomposing RP 3 into two handlebodies is called a Hee-
gaard surface. Heegaard surfaces are the most unknotted surfaces among two-sided
noncontractible connected surfaces. They may be thought of as unknotted noncon-
tractible surfaces.

A contractible connected surface S in RP 3 is said to be unknotted, if it is con-
tained in a ball B embedded into RP 3 and divides this ball into a ball with handles
(which is the interior of S) and a ball with handles with an open ball deleted. Any
two unknotted contractible surfaces of the same genus are ambiently isotopic in
RP 3. Indeed, first the balls containing them can be identified by an ambient iso-
topy (see, e. g., Hirsch [8], Section 8.3), then it follows from uniqueness of Heegaard
decomposition of sphere that there is an orientation preserving homeomorphism of
the ball mapping one of the surfaces to the other. Any orientation preserving
homeomorphism of a 3-ball is isotopic to the identity.

2. Linking Numbers

2.1. Linking Numbers of Cycles. Recall the definitions and basic facts related
to linking numbers. Linking number is a classical term, which has numerous mean-
ings, even in the context of this paper. All of them are based on the following
geometric construction.

Let a and b be disjoint cycles in RPn with integer coefficients of dimensions p
and q , respectively, with p + q = n − 1. Take a rational chain c transversal to a
and having boundary ∂c = b. The intersection number of a and c is the linking
number lk(a, b) of a and b. It does not depend on the choice of c. Of course, if b
is homologous to zero as a cycle with integer coefficients, then c can be taken with
integer coefficients and the intersection number is an integer. Otherwise it may be
a half-integer. For example, the linking number of two skew lines in RP 3 is ± 1

2 . In
this case for c one can take a (projective) plane containing b with coefficient ±1

2 .

This example can be generalized to the case of arbitrary smooth b as follows:
choose a point p in RPn r b and construct a cone C over b with vertex p. This is a
cone in the projective sense, i.e., the union of projective lines passing through p and
points of b. As in the case of line, it is adjacent to b from two sides. For creating
c, it must be equipped with the appropriate orientation and multiplicity 1

2 .
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2.2. Linking Number via Counting Lines. This c gives rise to the following
rule for calculating lk(a, b) for disjoint smooth closed cycles a, b, cf. [3]. Fix a point
p ∈ RPn r (a ∪ b). By a choice of p one can meet the following conditions:

• the number of lines passing through p and intersecting a and b is finite,
• each of these lines meets each of a and b in a single point,
• each of these lines is not contained in the tangent planes to a and b at the

intersection of the line with a and b.

Let l be one of the lines connecting a and b and passing through p, and let a0,
b0 be its intersection points with l. Choose one of the two segments of l with end
points a0, b0 and denote it by s. Let V = {v1, . . . , vp} and W = {w1, . . . , wq} be
the bases of tangent spaces of a and b at a0 and b0, respectively, which are positive
with respect to the orientations of a and b. Let L be a vector tangent to l at a0 and
directed inside s. Let W ′ = {w′

1, . . . , w
′
q} be a sequence of vectors at a0 such that

w′
i is tangent to the plane containing l and wi and directed to the same side of s as

wi in an affine part of the plane containing s and wi. See Figure 2. The vectors of
V , L, W ′ comprise a basis of the tangent space Ta0RPn. The value taken by the
orientation of RPn on this frame is associated with l. One can easily check that:

The sum of the values associated with all the lines passing through p and meeting
a, b is 2 lk(a, b).

Figure 2. Construction of the frame V , L, W ′.

2.3. Linking Numbers in Homology of RPn. The linking number defined
above does depend on the cycles, for various disjoint representatives of their ho-
mology classes the linking number varies. However, it does not change modulo 1
and defines a bilinear form Hp(RPn) ×Hq(RPn) → Q/Z. The value of this form
on classes α ∈ Hp(RPn) and β ∈ Hq(RPn) is called the linking number of α, β and
denoted by lk(α, β). Of course, the linking number of 0 ∈ Hp(RPn) with any class
is 0, while the linking number of the only non-trivial classes is 1

2 .

2.4. Linking Pairing Between Subsets. One can catch more homological sense
of the geometric construction above by consideration disjoint sets A,B ⊂ RPn

containing cycles a, b respectively. The linking number of the cycles a, b (in RPn)
depends only on the classes α ∈ Hp(A), β ∈ Hq(B). It is called the linking number
of α and β and denoted by lk(α, β). The corresponding map

lk : Hp(A)×Hq(B) → Z[1/2]

is bilinear and called linking pairing.
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It can be defined in more modern terms of the intersection number pairing

Hp(RPn rB)×Hq+1(RPn, B;Q) → Q

of the Alexander-Pontryagin duality as the intersection number of the image of
α under the inclusion homomorphism Hp(A) → Hp(RPn r B) with the rational
homology class γ ∈ Hq+1(RPn, B;Q) whose image under the differential

Hq+1(RPn, B;Q) → Hq(B;Q)

of the rational homology sequence of pair (RPn, B) is equal to the image of β under
the coefficient homomorphism Hq(B) → Hq(B;Q).

2.4.A. Let A, B be disjoint subsets of RP 3. If the linking pairing lk : Hp(A) ×
Hq(B) → Z[12 ] is not trivial, then for any point P ∈ RPn there exists a line passing
through P and intersecting A and B.

Proof. Indeed, for any cycles a ⊂ A, b ⊂ B with lk(a, b) 6= 0 there exists a line
passing through P and meeting a and b.

2.4.B Corollary. If A, B are disjoint sets such that the inclusion homomor-
phisms Hp(A) → H1(RPn) and Hq(B) → Hq(RPn) are not trivial, then for any
point P ∈ RPn there exists a line passing through P and intersecting A and B.

3. Mutual Position of Components

3.1. In Presence of One-Sided Component. At most one connected compo-
nent of a (closed) hypersurface in RPn may be one-sided. Moreover, if a hypersur-
face has a one-sided component then all other components are of rank 0. Indeed,
one-sided connected hypersurface realizes the nonzero element of Hn−1(RPn ; Z2),
which intersects any nonzero homology class of positive dimension in RPn.

The components of rank 0 are naturally ordered: a component can contain
other component in its interior and this gives rise to a partial order in the set
of components of rank 0. If the interior of A contains B, then one says that A
envelopes B.

3.2. Main Components. This is easy to generalize. At most one component of
a hypersurface in RPn may be of rank r > n/2. If such a component exists, it is
called the main component. The rank of any other component is at most n− r− 1.
The components different from the main one are ordered as above. (The rank of
any one of them is less than n − 1, hence its complement consists of interior and
exterior components.)

A special situation can appear in the case of a surface in RP 3. If it contains no
one-sided component, it may contain several components of rank 1 (i.e., two-sided
noncontractible components.) Since each of them divides the projective space into
halves, which are homology equivalent, here is no way to say that one of them
envelopes another one. All the components of rank 1 are said to be main.
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3.3. Region Trees. The connected components of a hypersurface in RPn divide
RPn into connected regions. Let us construct a graph of adjacency of these regions:
assign a vertex to each of the regions and connect two regions with an edge if
the corresponding regions are adjacent to the same two-sided component of the
hypersurface. Since the projective space is connected and its fundamental group is
finite, the graph is contractible, i.e., it is a tree. It is called the region tree of the
hypersurface.

For a region we define the rank exactly as for a connected hypersurface (cf. 1.5):
this is the maximal integer r such that the homomorphism induced in homology
with Z2 coefficients of dimension r by the inclusion of the region to the projective
space is not trivial.

The regions of rank ≥ k and components of the hypersurface of rank ≥ k comprise
a subtree of the region tree. This follows from the fact that each Hk(RPn ; Z2) is Z2

via consideration of the Mayer-Vietoris sequence, as above in Section 1.6, when we
proved that only one connected component of a connected two-sided hypersurface
of rank k can support a nontrivial homology class of RPn of dimension > k.

This subtree is called the rank k region tree. It is obviously isomorphic to the
region tree of the hypersurface composed of the components of the original hyper-
surface having rank ≥ k.

3.3.A. Let A and B be regions of ranks k and n − k − d − 1 respectively for a
hypersurface in RPn. Then for any projective subspace P of dimension d there
exists a projective subspace of dimension d+1 containing P and intersecting A and
B.

Proof. Let a be a k-dimensional cycle in A and b a (n−k−d− 1)-dimensional
cycle in B realizing nonzero Z2-homology classes of RPn. If P intersects a, then
take a point in b and consider the cone over P centered at this point. This is
obviously a desired space.

If P and a are disjoint, consider the join of a and P (i.e., the union of all the
lines joining a and P ). This is a cycle of dimension k+1+d, which can be obtained
by taking d + 1 times a cone: the first time, the cone over a with a vertex in P ,
then the cone over this cone with vertex at other point of P , etc. Each time we
get a cycle of the next dimension realizing a nonzero homology class. The final one
intersects b since the nonzero classes of dimensions k + 1 + d and n− k − d− 1 in
RPn has nonzero intersection number.

3.3.B Corollary: Apparently Intersecting Regions. Let A and B be regions
of ranks k and n−k−1 respectively for a hypersurface in RPn. Then for any point
P there exists a line passing through P and intersecting A and B.

The direct proof of 3.3.B contained in the proof of 3.3.A resembles the linking
number arguments. Indeed, there is a similar way to use more delicate linking
numbers. The necessary notions are prepared in the following section. I do not
know a similar refinement for 3.3.A.
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3.4. Trees of Linked Regions.

3.4.A. Let p, q, n be integers with p+ q = n− 1. Consider a hypersurface in RPn

and the set of regions B which have non-trivial linking pairing Hp(A)×Hq(B) →
Z[ 12 ] with a given region A. In the region tree they comprise together with A the set
of vertices of a subtree.

Proof. Let B be a region such that the linking pairing

lk : Hp(A)×Hq(B) → Z[12 ](1)

is not trivial and R be a region which corresponds to a vertex of the region tree
positioned between the vertices corresponding to A and B. Since the linking pairing
(1) is not trivial, there exists a cycle b in B such that any chain c in RPn with
∂c = b has a non-zero intersection number with some cycle in A.

Since R separates A from B in RPn, c ∩ R separates ∂c = b from c ∩ a. Take
a cycle d in c ∩ R separating ∂c = b from c ∩ a. This is a cycle in R non-trivially
linked with b.

The subtree of the region tree described in 3.4.A is called the tree of regions
(p, q)-linked with A.

3.4.B Remark. If n = 3 and A is a noncontractible region then the tree of re-
gions (1, 1)-linked with A contains all the vertices corresponding to noncontractible
regions, and hence the domain tree.

4. Restrictions on Topology of Real Algebraic Hypersurfaces

4.1. Nonsingular Real Algebraic Hypersurfaces. Recall basic definitions re-
lated to real algebraic hypersurfaces. By a real algebraic hypersurface of degree
m in the n-dimensional projective space we shall mean a real homogeneous poly-
nomial of degree m in n + 1 variables considered up to a constant factor. A real
point of a real algebraic hypersurface represented by a polynomial F is a point
(x0 : x1 : · · · : xn) ∈ RPn such that F (x0, x1, . . . , xn) = 0. Similarly one defines
complex point (x0 : x1 : · · · : xn) ∈ CPn of a real algebraic hypersurface. The set of
real points of a real algebraic hypersurface A is denoted by RA, the set of complex
points is denoted by CA. A point (x0 : x1 : · · · : xn) of the hypersurface represented
by a polynomial F is called a singular point of the surface if all the partial deriva-
tives of F vanish at (x0, x1, . . . , xn). A hypersurface is said to be nonsingular if it
has no singular points (neither real nor complex). Real algebraic hypersurfaces of
degree m comprise a space, which is a real projective space. Nonsingular surfaces
make open dense subset of this space, hence they have to be studied first. Here is
the coarsest classification topological problem about them.

4.1.A Topological Classification Problem. Up to homeomorphism, what are
the possible sets of real points of a nonsingular real projective algebraic hypersurface
of degree m in RPn?

A more refined problem:
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4.1.B Ambient Topological Classification Problem. Up to homeomorphism,
what are the possible pairs (RPn,RA) where A is a nonsingular real projective al-
gebraic hypersurface of degree m in RPn?

These problems are included into Hilbert’s sixteenth problem, with an emphasis
on the special cases of plane curves and surfaces in RP 3, see [7], [1] and [15].

For n = 2 (plane curves) 4.1.A was solved by Harnack [5] for all m, while 4.1.B
has been solved only for m ≤ 7. For n = 3 (surfaces in RP 3) both 4.1.A and 4.1.B
have been solved only for m ≤ 4, for n ≥ 4 the solutions for 4.1.A and 4.1.B are
known only for m ≤ 2.

For m ≤ 3 and n = 2, 3 solutions of 4.1.A and 4.1.B coincide, but for m = 4 they
are different. The simplest example for plane projective curves is a pair of curves
of degree 4 each of which consists of two circles, but in one case they are outside
each other, in the other one of them envelopes the other one. Both curves can be
obtained by a small perturbation of two disjoint circles. (Perturbation is needed, if
one wishes to have curves having no singular points even in the complex domain).

For n = 3 the simplest example is the following pair of nonsingular surfaces of
degree 4 which are homeomorphic to torus. The first of them is defined by equation

(x2
1 + x2

2 + x2
3 + 3x2

0)
2 − 16(x2

1 + x2
2)x

2
0 = 0

the second is the union of one-sheeted hyperboloid and an imaginary quadric (per-
turbed, if you wish to have a surface having no singular points even in the complex
domain).

The simplest source for restrictions on topology of algebraic surfaces of a given
degree is the Bézout theorem. According to it the set of real points of a nonsingular
projective hypersurface of degree m and a real line either have at most m common
points or the line is contained in the hypersurface, and if the line intersects the
set of real points of the hypersurface transversally, then the number of intersection
points is congruent to m modulo 2. Topological corollaries of this theorem and
its generalizations were extensively discussed in literature since at least, Hilbert’s
paper [6], see, e.g., in my survey article [16], Theorems 1.3.B-1.3.E and 2.5.A-2.5.D.
However, these and other theorems of this kind are better formulated in terms of
the regions trees introduced in Section 3 above, see Section 4.4.

4.2. Homology Class Realized by Hypersurface. We start with the most
classical topological corollary of the Bézout theorem, for which the region tree is
irrelevant.

4.2.A. The set of real points of a nonsingular hypersurface of degree m is one-
sided, if m is odd, and two-sided, if m is even.

Indeed, by the Bézout theorem a generic line meets a hypersurface of degree m
in a number of points congruent to m modulo 2. On the other hand, whether a
topological hypersurface in RP 3 is one-sided or two-sided, can be detected by its
intersection number modulo 2 with a generic line: a hypersurface is one-sided, iff
its intersection number with a generic line is odd.
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4.3. Cubic Hypersurfaces. Here are other well-known restrictions on cubic sur-
faces.

4.3.A On Number of Cubic’s Components. The set of real points of a non-
singular hypersurface of degree three consists of at most two components.

Proof. Assume that there are at least three components. Only one of them is
one-sided, the other two are of rank 0. Connect with a line the two contractible
components. Since they are zero-homologous, the line should intersect each of
them with even intersection number. Therefore the total number of intersection
points (counted with multiplicities) of the line and the surface is at least four.
This contradicts to the Bézout theorem, according to which it should be at most
three.

4.3.B On Two-Component Cubics. If the set of real points of a nonsingular
hypersurface of degree 3 in RPn consists of two components, then the components
are homeomorphic to the sphere Sn−1 and projective space RPn−1.

Proof. Choose a point inside the contractible component. Any line passing
through this point intersects the contractible component at least in two points.
These points are geometrically distinct, since the line should intersect also the one-
sided component. On the other hand, the total number of intersection points is at
most three according to the Bézout theorem. Therefore any line passing through
the selected point intersects one-sided component exactly in one point and two-
sided component exactly in two points. The set of all real lines passing through
the point is RPn−1. Drawing a line through the selected point and a real point
of the surface defines a one-to-one map of the one-sided component onto RPn−1

and two-to-one map of the two-sided component onto RPn−1. Since the lines are
not tangent to the hypersurface, the maps are local diffeomorphisms. Therefore
the former is a diffeomorphism and the latter, a two-fold covering. This covering is
not trivial, since when one rotates the line by π, the intersection points exchange.
Therefore the two-sided component is diffeomorphic to Sn−1.

4.4. Restrictions on Diameters of Trees. Theorem 4.3.A is generalized to the
following Theorem. In literature it is formulated in terms of depth of a nest made
of components, see, e.g. [16] Theorem 1.3.C.

4.4.A Diameter of Region Tree. The diameter of the region tree1 of a nonsin-
gular hypersurface of degree m is at most [m/2].

Proof. Choose two vertices of the region tree the most distant from each other.
Choose a point in each of the corresponding regions and connect the points by a
line. The obvious image of the line in the region tree is a loop, which passes through
the vertices most distant from each other and runs over at most m edges.

1Here by the diameter of a tree we understand the maximal number of edges in a simple chain
of edges of the tree connecting two vertices, i.e., the diameter of the tree with respect to the inner

metric such that each edge has length 1.
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4.4.B Extremal Property of 4.4.A. (Cf. 4.3.B and [16], 1.3.C.) If the diame-
ter of the region tree of a nonsingular hypersurface of degree m is [m/2] then the
tree is embeddable into a line and the hypersurface consists of m/2 spheres envelop-
ing each other, if m is even, or a projective space and (m−1)/2 spheres enveloping
each other, if m is odd.

The following theorem seems to be new.

4.4.C 3-Diameter. Let A be a nonsingular hypersurface of even degree m in RPn

with n > 2. Let v1, . . . vs with s ≤ 3 be vertices of the region tree of RA. Assume
that v1, v2 correspond to regions either with non-trivial linking pairing, or with the
sum of ranks equal n− 1. Then the number of edges in the minimal tree containing
v1, . . . , vs is at most m/2.

Proof. Choose a point P inside the region corresponding to v3, if s = 3 or just
somewhere if s < 3. If the sum of the ranks is n − 1, then by 3.3.B there exists
a line passing through P and meeting both L1 and L2. If the linking pairing is
not trivial, then in each of the regions corresponding v1 and v2 take an embedded
cycles which have non-zero linking number in RPn. Denote these circles by L1 and
L2 respectively. By 2.4.A there exists a line passing through P and meeting both
L1 and L2.

Thus in either case there exists a line intersecting all the three regions. The
corresponding loop in the region tree passes through each edge off the minimal
subtree of the region tree containing v1, . . . , vs at least twice. On the other hand,
by the Bézout theorem it can pass edges at most m times.

4.4.D Corollary. Let A be a nonsingular surface of even degree m. Let v1, v2,
v3 be vertices of the region tree of RA and v1, v2 correspond to non-contractible
regions. Then the number of edges in the minimal tree containing v1, v2 and v3 is
at most m/2.

The following Corollary of 4.4.A and 4.4.D is well-known.

4.4.E Corollary. The set of real points of a nonsingular surface of degree 4 has at
most two noncontractible components. If the number of noncontractible components
is 2, then there is no other component. If the number of noncontractible components
is 1 then the contractible components lie in the same domain outside each other.

Proof. The case of 3 components such that at least two of them are noncon-
tractible is prohibited by 4.4.C. The case of 1 noncontractible component follows
from 4.4.A

4.4.F Remark. In fact, if a nonsingular quartic surface has two noncontractible
components then each of them is homeomorphic to torus. It follows from an ex-
tremal property of the refined Arnold inequality, see [12]. I do not know, if it can
be deduced from the Bézout theorem. However, if one assumes that the domains
of the complement which are not adjacent to both components contain lines, then
it is not difficult to find homeomorphisms between the components of the surface
and the torus, which is the product of these two lines. Cf. the proof of 4.3.B. This



14

seems to be related to Arnold’s problem on topology of hyperbolic surfaces in RP 3,
see [2].

4.4.G 5-Diameter of Region Tree on Plane. (Cf. [16], 2.5.B) Let A be a
plane nonsingular curve of degree m. Let v1, . . . , vs with s ≤ 5 be vertices of
the region tree of RA. Then the number of edges in the minimal tree containing v1,
. . . , vs is at most m.

Proof. Draw a conic through points chosen in the regions corresponding to v1,
. . . , vs.

4.4.H 5-Diameter of Region Tree in High Dimensions. Let A be a non-
singular hypersurface of even degree m in RPn. Let v1, . . . , vs with s ≤ 5 be
vertices of the region tree of RA and at most three of the regions corresponding
to v1, . . . , vs have rank < n − 2. Then the number of edges in the minimal tree
containing v1, . . . , vs is at most m.

Proof. Choose points in the regions with rank< n−2 and draw a plane through
these points. This plane intersects the regions corresponding to the rest of v1, . . . ,
vs, for they have rank n − 2. Choose points in the intersection of the plane with
these regions and draw a conic through the 5 chosen points.

Notice that for dimension ≥ 4 there is at most one region of rank ≥ n−2. Hence
in 4.4.H the number s can be at most 4. For n = 3 the number of regions under
consideration can be 5, and in this case two of regions should be noncontractible.

It seems to be impossible to formulate in a compact way all the corollaries of the
Bézout theorem of this sort. Bézout theorem belongs to Algebraic Geometry, while
the corollaries are formulated topologically. The transition necessarily involves a
loss of the contents. Region trees provide terms just slightly more adequate for this
transition than the terms used before. A systematic intervention of a real version
of the Schubert calculus may give rise to further more sophisticated formulations
for higher-dimensional cases.

5. Problem on Number of Noncontractible Components

5.1. Harnack’s Inequality and Problem. Surprisingly, the Bézout theorem
gave much lesser restrictions in the case of surfaces than in the case of plane curves.

Recall, that the Harnack inequality [5] which was the very first result of general
kind on the topology of real plane projective algebraic curves of degree m was
deduced from the Bézout’s theorem. The Harnack inequality says that the set
of real points of a nonsingular plane projective curve of degree m has at most
1
2 (m − 1)(m − 2) + 1 connected components. Harnack, in the paper [5], where
he discovered the Harnack inequality, asked if there exists a similar inequality for
surfaces in the three-dimensional projective space. This question is known as the
Harnack problem.

For the case of cubic surfaces the maximal number of components is 2 and this
is proved using the Bézout theorem. Generalization of this approach to the higher
degrees gives an estimate of diameter of regions tree 4.4.A, but not an estimate
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of the number of connected components. For quartic surfaces the number is 10.
This was proved by Kharlamov [10] by methods much more sophisticated than the
Bézout’s theorem. The answer for higher degrees is unknown. The best known
polynomial estimate is 5

12m
3 − 3

2m
2 + 25

12m. It is obtained as a sum of the Smith-
Thom inequality

dimZ2H∗(RA;Z2) ≤ dimZ2H(CA;Z2) = m3 − 4m2 + 6m

and the Comessatti-Petrovsky-Oleinik inequality

χ(RA) ≤ h1,1(CA) =
2

3
m3 − 2m2 +

7

3
m.

For m = 5 it gives 25, while the best known example consists of 22 components [9].

5.2. Number of Noncontractible Components. At first glance the question
on the maximal number of noncontractible components of the set of real points of
a real projective surface of degree m is similar to the Harnack problem. However,
this number is estimated by a quadratic function of m.

5.2.A. The number of noncontractible connected components of the set of real
points of a real projective surface of degree m is not greater than 1

2 (m−1)(m−2)+1.

Proof. Take any plane transversal to the surface. Each noncontractible com-
ponent intersects it. Therefore the number of components of the intersection is not
less the number of noncontractible components of the surface. On the other hand,
the intersection is the set of real points of a nonsingular plane projective curve off
degree m and by the Harnack inequality the number of its components is at most
1
2 (m− 1)(m− 2) + 1.

5.2.B Remark. Of course, Theorem 5.2.A is not trivial only for even m: a surface
of odd degree has only one noncontractible component.

It would be interesting also to estimate the number of components of rank r of a
hypersurface of even degree m in RPn. The sharp estimate is known for r > n/2:
it is one, see Section 3.2.

5.3. Surfaces of Even Degree with Many Noncontractible Components.
For m = 4 the estimation of Theorem 5.2.A is not sharp: it gives 4, while by
Theorem 4.4.E the number of noncontractible components is at most 2.

For the higher degrees the question remains open. The best examples that I know
have about twice less noncontractible components than Theorem 5.2.A suggests.
More precisely, 1

4 (m− 2)2 + 1 noncontractible components. These surfaces can be
constructed by a version of classical construction basically due to Harnack [5] as
follows.

Let us start from a one-sheeted hyperboloid A. This is the first surface in the
series under construction. Let it be defined by a polynomial H.

To construct the next one, take a real curve C1 on A, which can be cut on A by a
surface of degree 2 and has the set of real points consisting of two disjoint branches
isotopic on RA to its generatrix. This curve can be obtained as the union of two real
generatrices of one family and two imaginary conjugate generatrices of the other
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one. Let F1 a real homogeneous polynomial of degree 2 in 4 variables which defines
a surface cutting A in C1. Then the polynomial H + ε1F1 with sufficiently small
ε1 > 0 defines a hyperboloid which is close to A and intersects it in C1.

Take the union of the original hyperboloid and the new one. It is defined by
H(H + ε1F1). The second surface of our series is obtained from this union by a
small perturbation.

Take a real curve C2 on A. It has to be cut on A by a surface of degree 4 and
have the set of real points consisting of 4 branches isotopic on RA to a generatrix
and contained in a single component of RArRC1. This curve can be obtained as
the union of 4 real generatrices of one family and 2 pairs of imaginary conjugate
generatrices of the other one. Let F2 is a real homogeneous polynomial of degree 4
in 4 variables, which defines a surface cutting A in C2. The surface A1 defined by
polynomial

H(H + ε1F1) + ε2F2

with sufficiently small ε2 > 0 is the second surface in the series under construction.
It is easy to see that its real part is isotopic to disjoint union of 2 one-sheeted
hyperboloids.

Take the union of the original hyperboloid A and A1. It is defined by

H(H(H + ε1F1) + ε2F2).

The third surface of our series is obtained from this union by a small perturbation.
To make the perturbation, let us take a real curve C3 on A. It has to be cut on

A by a surface of degree 6 and have the set of real points consisting of 6 branches
isotopic on RA to a generatrix and contained in a single component of RArRC2.
This curve can be obtained as the union of 6 real generatrices of one family and
3 pairs of imaginary conjugate generatrices of the other one. Let F3 is a real
homogeneous polynomial of degree 6 in 4 variables, which defines a surface cutting
A in C3. The surface A2 defined by polynomial

H(H(H + ε1F1) + ε2F2) + ε3F3

with sufficiently small ε3 > 0 is the third surface in the series under construction.
It is easy to see that its real part is isotopic to disjoint union of 5 one-sheeted
hyperboloids.

Then the construction continues in the same way. The set of real points of a
surface of degree m constructed in this way consists of 1

4 (m−2)2+1 noncontractible
components homeomorphic to torus.

This construction can be modified to change topological types of components and
add some contractible components. However, I do not see any possibility to increase
the number of noncontractible components. I would rather expect an improvement
of Theorem 5.2.A.
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