Patchworking Algebraic Curves
Disproves the Ragsdale Conjecture

Ilia Itenberg and Oleg Viro

Real algebraic curves seem to be quite distant from com-
binatorial geometry. In this article we intend to demon-
strate how to build algebraic curves in a combinatorial
fashion: to patchwork them from pieces which essen-
tially are lines. One can trace related constructions back
to Newton’s consideration of branches at a singular
point of a curve. Nonetheless, an explicit formulation is
not familiar to many mathematicians.

This technique was developed by the second author
in the beginning of the eighties. Using it, the first au-
thor has recently found counterexamples to the oldest
and most famous conjecture on the topology of real al-
gebraic curves. The conjecture was formulated as early
as 1906 by V. Ragsdale [14] on the basis of experimen-
tal material provided by A. Harnack’s and D. Hilbert's
constructions [5,6].

A Combinatorial Look at Patchworking

Initial Data. Let m be a positive integer (it will be the
degree of the curve under construction) and T be the tri-
angle in R? with vertices (0, 0), (m, 0), (0, m). Let T be a
triangulation of T with vertices having integer coordi-
nates and equipped with signs. The sign (plus or minus) -
at the vertex with coordinates (7, j) is denoted by o;;.

Construction of a Piecewise Linear Curve. Take copies
T, =s/T), T, =s5,D), T, =s(D)

of T, where s = s, ° s, and s,, s, are reflections with re-
spect to the coordinate axes. Denote by T, the square
TUT,UT,U T, Extend the triangulation 7 to a sym-
metric triangulation of T, and the distribution of signs
0;; to a distribution at the vertices of the extended tri-
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Figure 1. Initial data and the result of combinatorial patch-
working of it.

angulation by the following rule: o; jo.;,5;€'8' = 1, where
€ 8 = *1. In other words, passing from a vertex to its
mirror image with respect to an axis we preserve its sign
if the distance from the vertex to the axis is even, and
change the sign if the distance is odd.

If a triangle of the triangulation of T, has vertices of
different signs, select a midline separating pluses from
minuses. Denote by L the union of the selected midlines.
It is a collection of polygonal lines contained in T,. The

Z,

pair (T, L) is called the result of affine combinatorial patch-
working. Glue the sides of T, by s. The resulting space
T is homeomorphic to the real projective plane RP2
Denote by £ the image of L in ¥, and call the pair
(L, Q) the result of projective combinatorial patchworking.
(See, for example, Figures 1-3).

Let us introduce an additional assumption: the trian-
gulation 7 of T is convex. This means that there exists a
convex piecewise-linear function T — R which is linear
on each triangle of 7and not linear on the union of any
two triangles of 7.

PATCHWORK THEOREM: Under the assumptions above
on the triangulation 7 of T, there exist a nonsingular real al-
gebraic plane affine curve of degree m and a homeomorphism
of the plane R? onto the interior of the square T, mapping the
set of real points of this curve onto L. Furthermore, there ex-
ists a homeomorphism RP>— ¥ mapping the set of real
points of the corresponding projective curve onto L.

Real Plane Algebraic Curves

The word curve is known to be one of the most am-
biguous in mathematics. Thus, we had better specify the

A
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Figure 2. Patchwork of a counterexample to the Ragsdale Conjecture with degree 10 and p = 32.
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Figure 3. Patchwork of a counterexample to the Ragsdale Conjecture with degree 10 and #n = 32.

type of curves to be considered. They are real algebraic
plane curves, i.e., plane curves defined by equations
f =0, where f is a polynomial over the field R of real
numbers. The constructions below give us real polyno-
mials f(x, y) of a given degree such that the curves f(x,
y) = 0 are positioned in a complicated way (for this de-
gree) in the plane R2

For many reasons we prefer projective curves. To a
reader who is not comfortable with the projective plane,
we offer the following motivations and definitions.

It was probably Isaac Newton [10] who first observed
that a curve f(x, ¥) = 0 in the plane R? is a more com-
plicated object (e.g., to classify) than the cone generated
by it in R® If m is the degree of f, then the cone is de-
fined by the equation z"f(x/z, y/z) = 0. Newton [10]
found 99 classes of curves of degree 3 on R? but at the
end of his text he noted that curves of all 99 classes can
be obtained as plane sections of only 5 cubic cones.

In the 19th century this observation and similar ones
led to the notion of the projective plane and the idea
that it is simpler to study curves in the projective plane
than in the affine plane.

The real projective plane RP? can be defined as the set
of lines in R® passing through the origin (0, 0, 0). The

line passing through (0, 0, 0) and (x,, x4, x,) is denoted
by (xp: x; : x,); the numbers x,, x;, and x, are called ho-
mogeneous coordinates of (xy: X : X,). '

A cone in R® with vertex (0, 0, 0) can be thought of as
a collection of lines passing through (0,0,0). This is a
curve in the projective plane provided that the collec-
tion is one-parameter. An equation F(x, y, z) = 0, where
F is a homogeneous real polynomial, defines a cone in
R® with vertex (0, 0, 0) and hence a curve in the projec-
tive plane RP?.
- Take a curve on R? defined by an equation f(x, y) = 0
of degree m, shift it with its plane to the plane z = 1in
R’, and consider lines passing through it and the origin
(0, 0, 0). These lines lie on the cone z"f(x/z, y/z) = 0 and
fill it together with its intersection with the plane z = 0.
The corresponding curve on RP? is called the projective
completion of the affine curve f(x, y) = 0. The study of
real algebraic curves in the affine plane R? splits natu-
rally into study of their projective completions and in-
vestigation of the position of the completions with re-
spect to the line at infinity RP*\R®.

A curve (at least an algebraic curve) is something
more than just the set of points which belong to it. It is
only slightly less than its equation: equations differing
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by a constant factor define the same curve. Modern al-
gebraic geometry provides a lot of ways to define alge-
braic curve. We adopt the following definition, which
at first glance seems to be overly algebraic.

By a real projective algebraic plane curve of degree m we
mean a homogeneous real polynomial of degree m in
three variables, considered up to a constant factor.
(Similarly, by a real affine algebraic plane curve of degree m
we mean a real polynomial of degree m in two variables,
considered up to a constant factor.) If F is such a poly-
nomial, then the equation F(x,, x;, x,) = 0 defines the sef
of real points of the curve in the real projective plane RP?,
Let RA denote the set of real points of the curve A.
Following tradition, we also call this set a curve, avoid-
ing this terminology only in cases where confusion
could result.

A point (x,:x;:x,) € RP? is called a (real) singular
point of the curve defined by a polynomial F if the first
partial derivatives of F vanish at (x,, x,, X;) (vanishing of
the derivatives implies vanishing of the homogeneous
polynomial: by the Euler formula deg(F)-F(x,, x;, X)) =
2 x8F /3x;) (xp, x1, %,)). A curve is said to be (real) non-
singular if it has no real singular points. The set RA of
real points of a nonsingular real projective plane curve
A is a smooth closed one-dimensional submanifold of
the projective plane. Then RA is a union of disjoint cir-
cles smoothly embedded in RP% A circle can be posi-
tioned in RP? either one-sidedly, like a projective line,
or two-sidedly, like a conic. A two-sided circle is called
an oval. An oval divides RP? into two parts. The part
homeomorphic to a disk is called the interior of the oval.
Two ovals can be situated in two topologically distinct
ways: each may lie outside the other one—i.e., each is
in the outside component of the complement of the
other—or else one of them is in the inside component
of the complement of the other—in that case, we say
that the first is the inner oval of the pair and the second
is the outer oval. In the latter case we also say that the
outer oval of the pair envelops the inner oval. The topo-
logical type of the pair (RP?, RA) is defined by the
scheme of disposition of the ovals of RA. This scheme
is called the real scheme of curve A.

In 1900 D. Hilbert [7] included the following question
in the 16th problem of his famous list: what real schemes
can be realized by curves of a given degree? The complete
answer is known now only for curves of degree not
greater than 7.

T-Curves

Now let us come back to the Patchwork Theorem. It states
that for any convex triangulation 7 of T with integer ver-
tices and a distribution of signs at vertices of 7 there ex-
ists a nonsingular real algebraic plane projective curve A
of degree m such that the pair (RP?, RA) is homeomor-
phic to the pair (€, £) constructed as in the first section,
i.e., the result of projective combinatorial patchworking.
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In fact, a polynomial defining the curve can be pre-
sented quite explicitly.

Construction of Polynomials. Given initial data m, T,
7, and o;; as in the first section, and a convex function
v certifying that the triangulation 7 is convex, consider
the one-parameter family of polynomials

b,y =
(i, j) runs over
vertices of T

; ,;xi]/jt V(i,j).

Denote by B, the corresponding homogeneous polyno-
mials:

Bi(xo, x1, X5) = x'by(xc1/ %, %,/ x).

Polynomials b, and B, are called the results of affine and
projective polynomial patchworking.

DETAILED PATCHWORK THEOREM: Let m, T, 7, T3
and v be initial data as above. Denote by b, and B, the non-
homogeneous and homogeneous polynomials obtained by the
polynomial patchworking of these initial data, and by L and
£ the piecewise-linear curves in the square Ty and its quo-
tient space T, respectively, obtained from the same initial data
by the combinatorial patchworking.
Then there exists t, > 0 such that for any t € (0, t,]

(1) b, defines an affine curve a, such that the pair (R?, Ra,)
is homeomorphic to the pair (T, L); :

(2) B, defines a projective curve A, such that the pair (RP?,
RA,) is homeomorphic to the pair (¥, Q).

A curve obtained by this construction is called a T-
curve.

All real schemes of curves of degree <6 and almost
all real schemes of curves of degree 7 have been real-
ized by the patchwork construction described above. On
the other hand, there exist real schemes realizable by al-
gebraic curves of some (high) degree, but not realizable
by T-curves of the same degree. Probably such a scheme
can be found even for degree 7 or 8.

The construction of T-curves is a special case of more
general patchwork construction; see [17] and [13]. In this
generalization the patches are more complicated: they
may be algebraic curves of any genus with arbitrary
Newton polygon. Therefore, the patches demand more
care than above. This is why we restrict ourselves here
to T-curves. However, even when constructing T-curves,
it is useful to think in terms of blocks more complicated
than a single triangle (made of several triangles).

The rest of the article is devoted to applications of the
patchwork construction.

The Ragsdale Conjecture

The year 1876 is often considered as the beginning of the
topological study of real algebraic curves. Prior to that,
topological properties were not separated from other geo-
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Figure 4. Real schemes of Harnack’s and Hilbert's curves of
degree 6.

metric properties, which are more subtle and could keep
geometers busy with curves of a few lower degrees.

In 1876, A. Harnack published a paper [5] where he
found an exact upper bound for the number of compo-
nents for a curve of a given degree. Harnack proved that
the number of components of a real plane projective
curve of degree m is at most (m — 1)(m — 2)/2 + 1. On
the other hand, for any natural number m he constructed
a nonsingular real projective curve of degree m with
(m —1)m —2)/2 + 1 components, which shows that
his estimate cannot be improved without introducing
new ingredients.

It was D. Hilbert who made the first attempt to study
systematically the topology of nonsingular real plane al-
gebraic curves. The first difficult special problems he
met were related to curves of degree 6.

Hilbert suggested that from a topological viewpoint
the most interesting are the curves having the maximal
number (m — 1)(m — 2)/2 + 1 of components among
curves of a given degree m. Hilbert's guess was strongly
confirmed by the whole subsequent development of the
field. Now, following I. Petrovsky, these curves are
called M-curves.

Hilbert succeeded in constructing M-curves of degree
=6 with the mutual position of components different
from the ones realized by Harnack. However, he real-
ized only one new real scheme of degree 6. See Fig. 4,
where the real schemes of Harnack’s and Hilbert's
curves of degree 6 are shown. Hilbert conjectured that
these are the only real schemes realizable by M-curves
of degree 6, and for a long time claimed that he had a
(long) proof of this conjecture. Although false (it was
disproved by D. A. Gudkov in 1969, who constructed a
curve with the real scheme shown in Fig. 5), this con-
jecture captured the essence of what in the thirties and
seventies became the core of the theory.

In fact, Hilbert invented a method which allows one
to answer all questions on the topology of curves of de-
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Figure 5. Real scheme of Gudkov’s curve of degree 6.

gree 6. It involves a detailed analysis of singular curves
which could be obtained from a given nonsingular one.
The method required complicated fragments of singu-
larity theory, which had not been developed at the time
of Hilbert. It was only in the sixties that this project was
completely realized. A complete table of real schemes
of curves of degree 6 was obtained by Gudkov.

We have mentioned that Hilbert’s sixteenth problem is
on this topic. Curious that he placed this sixteenth on his
list! The number sixteen plays a very special role in the
topology of real algebraic varieties. It is difficult to believe
that Hilbert was aware of that. It became clear only in the
beginning of the seventies (see Rokhlin’s paper [15]).

In 1906 V. Ragsdale [14] made a remarkable attempt
to analyze Harnack’s and Hilbert's constructions in
search of new restrictions on topology of curves. To a
great extent, the success of her analysis was due to the
right choice of parameters of a real scheme.

Ragsdale suggested considering separately the case of
curves of even degree m = 2k. Each connected compo-
nent of the set of real points of a curve of even degree
is an oval (i.e., divides RP? into two parts). An oval of
a curve is called even (resp. odd) if it lies inside of an
even (resp. odd) number of other ovals of this curve.
The number of even ovals of a curve is denoted by p,
the number of odd ovals by n.

It was Ragsdale who suggested distinguishing even
and odd ovals. Ragsdale provided good reasons why
one should pay special attention to p and 7. A curve of
an even degree divides the plane RP? into two pieces
with a common boundary RA (these pieces are the sub-
sets of RP? where a polynomial defining the curve takes
positive and negative values, respectively). One of these
pieces is nonorientable; it is denoted by RP?. The other
one is denoted by RPZ. The numbers p and # are the
fundamental topological characteristics of RP? and RP?;
namely, p is the number of connected components of
RP%, and n + 1 is the number of connected components
of RP? (exactly one component of RP? is nonorientable,
so n is the number of orientable components of RP?).
Ragsdale singled out also the difference p — n, motivat-
ing this by the fact that it is the Euler characteristic of
RPZ. It is amazing that essentially these considerations
were stated in a paper in 1906.

RAGSDALE OBSERVATION. For any of Harnack's
M-curves of even degree m = 2k,

_ Bk(k — 1) _k=1Dk—-2)
p -——-—2 +1, n —-———2 ,

For any of Hilbert's M-curves of even degree m = 2k,

(k—l)(k—2)+1<_; EBk(k—1)+1’
2 2
Ge=Dk=2 _ _3kk-1

2 - 2 )
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This motivated the following conjecture.

RAGSDALE CONJECTURE. For any curve of even de-
gree m =2k,

p=< 3k(k2— D, 1, n= Bk(kz— 1)'

Writing cautiously, Ragsdale also formulated weaker
conjectures. About 30 years later, I. G. Petrovsky [11,12]
proved one of these weaker conjectures.

PETROVSKY INEQUALITIES. For any curve of even de-
greem =2k,

o _Bkk-1) L _Bkkk—1D
n= 5 +1, pshz .

It is clear from [11] and [12] that Petrovsky was not
familiar with Ragsdale’s paper. But his proof runs along
the lines indicated by Ragsdale. He also reduced the
problem to estimates of the Euler characteristic of the
pencil curves, but he went further: he proved these es-
timates using the Euler-Jacobi formula.

Petrovsky also formulated conjectures about the up-
per bounds for p and #. His conjecture about # was more
cautious (by 1) than Ragsdale’s.

Both the Ragsdale Conjecture above and Petrovsky’s
[12] are wrong. However, they stood for a rather long
time: the Ragsdale Conjecture for n was disproved by
O. Viro [16] in 1979. Viro’s disproof looked rather like an
improvement of the conjecture, since in the counter-ex-
amples n=3k(k —1)/2+ 1. In 1993 the Ragsdale-
Petrovsky bounds were disproven by a considerable
margin by I. Itenberg [8]: in Itenberg’s counterexamples
the difference between p (or ) and 3k(k — 1)/2 + 1 is a
quadratic function of k (see below).

The numbers p and 7 introduced by Ragsdale occur
in many of the prohibitions that were subsequently dis-
covered. While giving full credit to Ragsdale for her in-
sight, we must also say that if she had looked more care-
fully at the experimental data available to her, she
should have been able to find some of these prohibi-
tions. For example, it is not clear what stopped her from
making the conjectures which were made by Gudkov
[2] in the late 1960s. In particular, the experimental data
could suggest the formulation of the Gudkov-Rokhlin
congruence [15]: for any M-curve of even degree m = 2k

p—n=k* modS8.

Maybe mathematicians trying to conjecture restric-
tions on some integer should keep this case in mind as
evidence that restrictions can have not only the shape
of an inequality but also a congruence. Proof of these
Gudkov conjectures, initiated by Arnold [1] and com-
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pleted by Rokhlin [15], Kharlamov [9], and Gudkov and
Krakhnov [3], marked the beginning of the most recent
stage in the topology of real algebraic curves.

Which of Ragsdale’s questions are still open now? The
inequalities

p< Sk(kz— 1) +1, < 3k(k2~ 1) 41

have been neither proved nor disproved for M-curves.
Ragsdale gave interesting reformulations of the first of
these inequalities for M-curves. Below we present her
reformulations together with the corresponding refor-
mulations of the inequality n < 3k(k — 1)/2 + 1.

RAGSDALE CONJECTURE ON M-CURVES. For any
M-curve of degree 2k

p—nl<K
or, equivalently,
p= (k—l?z(k—Z) and n= (k—l)z(k—Z).

Patchworking Harnack Curves

In each area of mathematics there are objects which ap-
pear much more frequently than others. Some of them
(like Dynkin diagrams) appear in several domains quite
distant from each other. In the topology of real plane al-
gebraic curves, Harnack curves play this role. It was not
an accident that they were constructed in the first paper
devoted to this subject. Whenever one tries to construct
an M-curve, the first success provides a Harnack curve.
Patchwork construction is no exception to the rule.

In this section we describe, using the Patchwork
Theorem, the construction of some Harnack curves of
an even degree m = 2k.

In what follows, all the triangulations satisfy an ad-
ditional assumption: they are primitive, which means
that all triangles are of area 1/2 (or, equivalently, that
all integer points of the triangulated area are vertices of
the triangulation). A polynominal defining a T-curve
contains the maximal collection of nonzero monomials
if and only if the triangulation used in the construction
of the T-curve is primitive.

A primitive convex triangulation of T is said to be
equipped with a Harnack distribution of signs if:

vertex (i, j) has the sign “—" if i, j are both even,
and has the sign “+” in the opposite case.

A vertex (i, j) of a triangulation of T is called even if i
and j are both even, and odd otherwise.

PROPOSITION. Patchworking applied to an arbitrary
primitive convex triangulation of T with the Harnack distri-



Figure 6. The real scheme of the simplest Harnack curve of
degree 2k.

bution of signs produces an M-curve with the real scheme
shown in Fig. 6.

An example of the construction under consideration
is shown in Fig. 7.

Proof of Proposition: First, note that the number of inte-
rior (i.e., lying in the interior of the triangle T) integer
points is equal to (m — 1)(m — 2)/2, the number of even
interior points is equal to (k — 1)(k — 2)/2, and the num-
ber of odd interior points is equal to 3k(k — 1)/2.

Take an arbitrary even interior vertex of a triangula-
tion of the triangle T. This vertex has the sign “—". All

adjacent vertices (i.e., the vertices connected with the
vertex by edges of the triangulation) are odd, and thus
they all have the sign “+.” This means that the star of
an even interior vertex contains an oval of the curve L.
The number of such ovals is equal to (k — 1)k — 2)/2.

Take now an odd interior vertex of the triangulation.
It has the sign “+.” There are two vertices with “—”
and one vertex with “+” among the images of the ver-
tex under s =s, ° 5, and s, and s, (recall that s, and s
are reflections with respect to the coordinate axes).
Consider the image with the sign “+.” It is easy to ver-
ify that all its adjacent vertices have the sign “—.” Again
this means that the star of this vertex contains an oval
of the curve L. The number of such ovals is equal to
3k(k — 1)/2.

But

(k=10 ~2) , 3kk—1) _ (m—1Gm—2)
2 2 2

so the curve can only have one more oval. This oval ex-
ists because, for example, the curve L intersects the co-
ordinate axes.
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Figure 7. Patchwork of the simplest Harnack curve of degree 10.
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Figure 8. Schemes of counterexamples to the Ragsdale Conjecture of degree 10.

To finish the proof, we need only note that the union
of the segments

x—y=-m-m=x,y=mu

x=0y=0, —-m=xy=mU
fx=0y=0, —m=xy < m}

is not contractible in ¥ and contains only minuses. This
means that 3k(k — 1)/2 ovals corresponding to odd in-
terior points and encircling pluses are situated outside
of the nonempty oval. U

Counterexamples to the Ragsdale Conjecture

The following theorem gives counterexamples to the
Ragsdale Conjecture (or the conjecture of Petrovsky) [8].

THEOREM: For each integer k = 1

(a) there exists a nonsingular real algebraic plane projective
curve of degree 2k with

_3ktk—1) k—37%+4]
p—%-—z +1+[“——8 }

(b) there exists a nonsingular real algebraic plane projective
curve of degree 2k with

b= 3k(k2— D, [(k — 37+ 4]’

Figure 9. Hexagon S and the patchwork fragment produced
by it.
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Remarks: The term [((k — 3)* + 4)]/8 is positive when
k=5 (ie, we get counterexamples to the Ragsdale
Conjecture in degree 10). On the other hand, it is known
that there is no counterexample to the Ragsdale
Conjecture among curves of lower degree. These coun-
terexamples of degree 10 have the real schemes shown
in Fig. 8. One of these counterexamples can be improved
to obtain a curve of degree 10 with # = 32. The corre-
sponding patchworks (for p = 32 and # = 32) are shown
in Figs. 2 and 3.

Recently, B. Haas [4] improved the construction
presented below and obtained T-curves of degree 2k
with

- 3k(k2— D, +[k2—7éc+ 16]_

Neither the counterexamples provided by the above
theorem nor the curves constructed by Haas are M-
curves. Moreover, as we mentioned above, it is not
known if the conjecture of Petrovsky holds for M-
curves. The only known counterexamples to the
Ragsdale Conjecture among M-curves are the curves
constructed by Viro [16] (see also [18]). It is curious that
we did not succeed in presenting those M-counterex-
amples as T-curves.

Proof of Theorem: Let us show, first, how to construct a
curve of degree m = 2k with p = 3k(k — 1)/2 + 2.
Suppose that the hexagon S shown in Fig. 9 is placed
inside of the triangle T in such a way that the center of S
has both coordinates odd. Any convex primitive trian-
gulation of a convex part of a convex polygon is extend-
able to a convex primitive triangulation of the polygon.
Inside of the hexagon S, let us take the convex primitive
triangulation shown in Fig. 9 and extend it to T.

.

Oo xxs O

L'"_'—_“f—_'/
Sk(k—1)
__2_... _1

Figure 10. Real scheme of a curve of degree 2k with p =
3k(k — 1)/2 + 2.




Figure 11. Partition of T for part (a).

To apply the Patchwork Theorem we need to choose
signs at the vertices. Inside of S put signs according to
Fig. 9; outside, use the Harnack rule of distribution of
signs.

It is easy to calculate that the corresponding piece-
wise-linear curve £ has exactly one even oval more than
the Harnack curve constructed above [i.e., now p =
3k(k — 1)/2 + 2]. One can verify that the curve obtained
has the real scheme shown in Fig. 10.

Consider the partition of the triangle T shown in
Fig. 11. Let us take in each shaded hexagon the trian-
gulation and the signs of the hexagon S. The triangula-
tion of the union of the shaded hexagons can be ex-
tended to the primitive convex triangulation of T. Let
us fix such an extension. Outside of the union of the
shaded hexagons, choose the signs at the vertices of the
triangulation using the Harnack rule.

Calculation shows that for the corresponding piece-
wise-linear curve 2

po BE=1)

1+a,
2 a

where 4 is the number of shaded hexagons, and

a=[(k_:22+4].

This curve has the real scheme shown in Fig. 12.

To prove part (b) of the theorem, let us take, again,
the partition of the triangle T shown in Fig. 11 with the
triangulation and the signs of each shaded hexagon co-

o .. o ---OO . O
~—

M Q —  (k=1)(k-2) _
31:% 1) _ M L—)é—l 4a

Figure 12. Real scheme of a curve of degree 2k with p=
3k(k — 12 +1+ a.

Oo.. o

EN)k-2) 4,

Figure 14. Real scheme of a curve of degree 2k with n =
3k(k — 1)/2 + a.

inciding with the triangulation and the signs of S. Fix,
in addition, a triangulation of a neighborhood of the axis
OY and the signs at the vertices of the triangulation as
shown in Fig. 13 [the case k =1 (mod 4)]. The chosen
triangulation of the union of the shaded hexagons and
the neighborhood of the y-axis can be extended to a
primitive convex triangulation of T. Qutside of the
union of the shaded hexagons and the neighborhood of -
the y-axis, let us again choose the sighs at the vertices
of the triangulation using the Harnacki rule. -

The corresponding piecewise-lineap curve & has
the real scheme shown in Fig. 14. Ih this case n =
3ktk —1)/2 + a. A\ O
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