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Abstract. In a recent paper [1] V. I. Arnold introduced three new invari-
ants of a generic immersion of the circle to the plane. These invariants are
similar to Vassiliev invariants of classical knots. In a sense they are of degree
one. In this paper an investigation based on similar ideas is done for real
algebraic plane projective curves. In this more algebraic setting Arnold’s in-
variants have natural counter-parts, two of which admit definitions in terms
of the complexification of a curve. On the other hand, the Rokhlin complex
orientation formula for a real algebraic curve bounding in its complexification
suggests new combinatorial formulas for these two Arnold’s invariants. Using
the formulas I prove Arnold’s conjecture. Arnold’s invariants are generalized

to generic collections of immersions of the circle to the projective plane and
other surfaces. Some invariants of high degrees admitting similar formulas are
discussed.

Introduction

This paper presents an interaction between theories of real algebraic curves and
smooth immersions of the circle to plane. I have to acknowledge that the interaction
exceeds my primary expectations.

The initial point was Arnold’s study [1] of analogues of Vassiliev invariants for
immersions of the circle. I started from a straightforward idea to apply the same
approach to the theory of real plane projective algebraic curves. I hoped to get
invariants which would be useful for description of topology of a real plane algebraic
curve with singularities.

Almost immediately it became clear that two of three Arnold’s invariants have
the same behavior as the following two characteristics of real plane algebraic curve
separating its complexification: the number of imaginary self-intersection points of
a half of the complexification and the number of imaginary intersection points of
the halves. These numbers are involved in versions of Rokhlin complex orientation
formulas.

In the situations studied by Arnold there is neither complexification, nor hope
to construct its substitute: arbitrary differentiable immersion of the circle to the
plane does not admit a complexification.

Nonetheless the analogy started to work. The Rokhlin complex orientation for-
mula suggested to look for its counter-part in the theory of immersions. The formula
discovered in this way allowed to prove Arnold’s conjecture on the range of values
of his invariants. It suggests generalizations of Arnold’s invariants to the case of
immersions of the circle and several copies of the circle to various other surfaces.
A straightforward generalization of the formula provides infinite series of invariants
of finite degree for immersions of the circle to the plane.
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1. Arnold’s work on immersed circles

1.1. Space of immersions. By a generic immersion of the circle S1 into the plane
R2 one means an immersion without triple points and points of self-tangency. It
has only ordinary double points of transversal self-intersection.

A triple point of an immersion is said to be ordinary, if the branches at the point
are transversal to each other. A self-tangency point of an immersion is said to be
ordinary, if the branches have distinct curvatures at the point. A self-tangency
point of an immersion is called a point of direct tangency, if the velocity vectors are
pointing the same direction; otherwise it is called a point of inverse tangency.

The space of all immersions is an infinite-dimensional manifold. It consists of
infinitely many connected components. The components are in a natural one-to-one
correspondence with integers which is provided by the Whitney index. The latter
is an integer-valued characteristic of an immersion, which is called also winding

number, and may be defined as the rotation number of the velocity vector, as well
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as the degree of the Gauss map. It determines the immersion up to a regular
homotopy, i.e. path in the space of immersions.

In the space of immersions all nongeneric immersions form a hypersurface called
the discriminant hypersurface or for short the discriminant.

This hypersurface is stratified. There are three main strata (open in the discrim-
inant):

(1) The set of all immersions without triple points, with only one double point
which is not transversal, and such that this point is an ordinary direct
self-tangency point.

(2) The set of all immersions without triple points, with only one double point
which is not transversal, and such that this point is an ordinary inverse
self-tangency point.

(3) The set of immersions which have only one triple point, this point is or-
dinary, and besides this point there are only double points of transversal
self-intersection.

A generic path in the space of immersions (i.e. a generic regular homotopy)
intersects the discriminant hypersurface in a finite number of points, and these
points belong to the main strata. Changes experienced by an immersion when it
goes through the strata were called perestroikas by Arnold. They are shown in
Figures 1, 2 and 3.

By a coorientation of a hypersurface one means a choice of one of the two parts
separated by the hypersurface in a neighborhood of any of its points. Arnold
[1] has constructed natural coorientations of the main strata of the discriminant
hypersurface. In Figures 1, 2 and 3 the pointed out direction is positive for these
coorientations.

In the case of the self-tangency strata the positive direction is one in which the
number of double points increases. The coorientaition of the triple point stratum
is defined as follows. A transversal passing through this stratum is positive if the
new-born vanishing triangle is positive. A vanishing triangle is a triangle formed
by the three branches of a curve close to a curve with a triple point. The sign
of a vanishing triangle is defined as follows. The orientation of the curve defines
a cyclic ordering of the sides of the vanishing triangle, and hence an orientation
of the triangle. Denote by q the number of sides of the vanishing triangle whose
orientation as one of a piece of the curve coincides with the orientation defined
by the orientation of the triangle. The sign of a vanishing triangle is (−1)q. See
Figure 3.

Figure 1. Direct self-tangency perestroika.
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Figure 2. Inverse self-tangency perestroika.

Figure 3. Triple point perestroika. Dotted curves indicate the
scheme of connection of the branches, which is needed to determine
the positive direction of the perestroika. On the right hand side
q = 0, on the left hand side q = 3, thus the positive direction is to
the right.

1.2. Three Arnold’s invariants. For a generic immersion Arnold [1] introduced
numerical characteristics J+, J− and St which1 are defined by the following prop-
erties:

J+, J− and St are invariant under regular homotopy in the class of generic
immersions.

J+ does not change while the immersion experiences an inverse self-tangency
perestroika or a triple point perestroika, but increases by two under a positive
direct self-tangency perestroika.

J− does not change while the immersion experiences a direct self-tangency pere-
stroika or a triple point perestroika, but decreases by 2 under a positive (increasing
the number of double points) inverse self-tangency perestroika.

St does not change while the immersion experiences a self-tangency perestroika,
but increases by 1 under a positive triple point perestroika.

For immersions Ki with i = 0, 1, 2, . . . shown in Figure 4

J+(K0) = 0, J+(Ki+1) = −2i (i = 0, 1, . . . );
J−(K0) = −1, J−(Ki+1) = −3i (i = 0, 1, . . . );
St(K0) = 0, St(Ki+1) = i (i = 0, 1, . . . ).

At first glance the normalization provided by 1.2 looks artificial. It is motivated
by desire to have invariants with nice properties: it is the only normalization giving
invariants additive with respect to connected sum.

1.3. Arnold’s conjecture. In [1] Arnold formulated several conjectures on the
range of values of his invariants. In this paper I prove one of them. It was formulated
as follows.

1The latter is denoted by St because Arnold called it strangeness. Really, St seems to be more
subtle than J±.
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Figure 4. The standard curves of Whitney indices 0, ±1, ±2, . . .

Figure 5. Curve An+1

[Conjecture] The minimal values of J± on all generic curves with n double points
is attained only on the curve An+1 of Figure 5:

J+ ≥ −n2 − n, J− ≥ −n2 − 2n

2. Real algebraic variations on theme of J±

2.1. Curves under consideration. The closest real algebraic counter-parts of
immersions S1 → R2 are real plane projective rational curves with infinite set of
real points. However, if one has in mind only J±, it is not difficult to consider
essentially wider situation. (For a counter-part of St see my preprint [9], where
it is defined only for real plane projective rational curves with infinite set of real
points.)

Namely, consider irreducible plane projective curves of degree m and genus g. To
distinguish direct and inverse selftangencies one needs an orientation. Especially if
curves may have several connected component, which may happen when g > 1. A
natural orientation of the set of real points of an algebraic curve appears if the set
of real points is zero homologous in the complexification. Curves with this property
are called curves of type I. See e.g. [5].

If a curve of type I is irreducible, the real part of its normalization divides the set
of complex points of the normalization into two halves. The images of the halves
of the normalization in the set of points of the original curve may intersect each
other. However, I will call these images the halves of the curve.

Each of the halves of the normalization is oriented (as a piece of a complex
curve) and induces an orientation on the real part as on its boundary. These two
orientations are opposite to each other. They are called complex orientations of
the real curve.

We will consider irreducible plane projective curves of degree m genus g and type
I with a distinguished complex orientation. The latter means that we will consider
curves with a selected half of its complexification.

Curves of this kind comprise a finite dimensional stratified real algebraic variety.
A curve all whose singular points are ordinary double will be called a generic curve.
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Figure 6. Smoothing of ordinary double points determined by an
orientation. A solitary double point is shown on the right hand side
in an old-fashioned way (complex conjugate imaginary branches
are indicated by dashed lines). At this point the local orientation
of the real plane is shown by a circle arrow.

As is well known, generic curves comprise Zariski open set in the space of all curves
described above.

2.2. Singularities of a generic curve. A generic curve has only ordinary double
singularities. They are equivalent from the viewpoint of complex algebraic geome-
try. The real algebraic geometry distinguishes several types of them.

First, a singular point may be real or imaginary.
Second, a real double point may belong to two real branches or to two imaginary

branches conjugate to each other. I will call a real ordinary double point a crossing,

if it is of the former type, and a solitary double point, if it is of the latter type.
Third, an imaginary double point may be a self-intersection point of one of the

halves, or an intersection point of different halves. Denote the number of points of
the former type by , the number of points of the latter type by σ. (Certainly, both
and σ are even.)

In a solitary ordinary double point the choice of a half of the complexification
determines a local orientation of RP2. It can be defined as the local orientation
such that the imaginary branch of the curve belonging to the chosen half intersects
at this point RP2 equipped with this local orientation with intersection number +1.

(Another, equivalent definition: one can perturb the curve keeping type I and
converting the solitary point into an oval. The oval receives the complex orientation.
The latter induces an orientation of the disk bounded by the oval. This orientation
coincides with the local orientation of RP2 above. To prove the coincidence it is
enough to consider a model example. Say, a conic x2 + y2 = 0 and its perturbation
x2 + y2 = ε with ε > 0.)

2.3. The Rokhlin formula. Curves of type I satisfy Rokhlin’s complex orien-
tation formula. For the sake of simplicity, I formulate it below only for a generic
curve. I preface it with several definitions.

For a generic curve A of type I by a smoothing R̃A of its real part RA we will
understand a smooth oriented 1-dimensional submanifold of RP2 obtained from RA

by modification at each real double point determined by the complex orientation
as shown in Figure 6.

For an oriented closed 1-dimensional submanifold C of RP2 and a point x ∈
RP2C, there is the index indC(x) of the point with respect to the curve. It is a
nonnegative integer defined as follows. Draw a line L on RP2 through x transversal
to C. Equip it with a normal vector field vanishing only at x. For such a vector
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field one may take the velocity field of a rotation of the line around x. At each
intersection point of L and C there are two directions transversal to L: the direction
of the vector belonging to the normal vector field and the direction defined by the
local orientation of C at the point. Denote the number of intersection points where
the directions are faced to the same side of L by i+ and the number of intersection
points where the directions are faced to the opposite sides of L by i−. Then set 2

indC(x) = |i+− i−|/2. It is easy to check that it is well defined: it does not depend
neither on the choice of L, nor on the choice of the normal vector field.

The second prerequisite notion is a sort of unusual integration: integration with
respect to Euler characteristics, in which the Euler characteristics plays the role of
measure. It is well known that Euler characteristics shares an important property
of measures: it is additive in the sense that for any sets A, B such that Euler
characteristics χA, χB, χ(A ∩B) and χ(A ∪B) are defined,

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B).

However, Euler characteristic is neither σ-additive, nor positive. Thus the usual
theory of integral can not be developed for it. It can be done though if one restricts
to a very narrow class of functions. Namely, to functions which are finite linear
combinations of characteristic functions of sets belonging to some algebra of subsets
of a topological space such that each element of the algebra has a well defined Euler
characteristic. For a function f =

∑r

i=1 λiSi
set

∫
f(x) dχ(x) =

r∑

i=1

λiχ(Si).

For details and other applications of this notion see [8].
Let A be a generic real plane projective algebraic curve of degree m and type I.

Then
m2

4
= σ +

∫

RP2R̃A

(ind
R̃A

(x))2 dχ(x)

where σ is (as above) the number of imaginary double points of A where different
halves of the complexification meet each other.

This theorem has a rather long history. Its first special case was discovered by
V. A. Rokhlin [4] in 1974. Then it was stated only for nonsingular plane projective

curves of even degree m with maximal number of ovals (equal to (m−1)(m−2)
2 + 1).

The case of nonsingular curves of odd degrees with the maximal number of ovals
was done by N. M. Mishachev [3]. For nonsingular curves of type I it was stated
by V. A. Rokhlin [5]. In terms of integral against Euler characteristic the Rokhlin
formula of [5] was rewritten in [8] (implicitly it was done earlier by R. W. Sharpe
[6]). Double points and σ appeared in [7] and the most general formula in [10]. All
versions of the formula are proved in the following way. Take a half of the com-
plexification of the curve. Complete it with a chain contained in RP2 to a 2-cycle.
Calculate the intersection number of this cycle with its image under the complex
conjugation involution. This calculation may be done geometrically (putting the

2Division by 2 appears here to make this notion generalizing the well-known notion for an
affine plane curve. In the definition for the affine situation one uses a ray instead of an entire line.
In the projective situation there is no natural way to divide a line into rays, but we still have an
opportunity to divide the result by 2. Another distinction from the affine situation is that there
the index may be negative. It is related to the fact that the affine plane is orientable, while the
projective plane is not.
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Figure 7. Cusp perestroika: σ and do not change.

Figure 8. In this picture everything but one point in the center
and two points in the right hand side is not real. This is a solitary
self-tangency perestroika: two solitary double points come from
the world of imaginary. At the moment of their arrival they show
up as a single solitary self-tangency point. σ decreases by 2, while
is constant.

cycles in general position to each other and studying the intersection) and homo-
logically (finding the homology classes of the cycles, which are in fact m/2[CP1]
and −m/2[CP1]). Comparison of the results gives rise to the formula.

Theorem 2.3 provides a tool for understanding what happens with σ and when
a curve experiences various perestroikas.

2.4. Perestroikas. The complement of the set of generic curves in the variety of
all real plane projective algebraic curves of degree m genus g and type I is a sort
of discriminant hypersurface. It contains six main strata. Each of them consists of
curves having only one singular point which is not an ordinary double point. The
type of that singular point defines the stratum. Here is the list of them:

(1) real cusp;
(2) real point of direct ordinary tangency;
(3) real point of inverse ordinary tangency;
(4) real point of ordinary tangency of two imaginary branches;
(5) real ordinary triple point of intersection of three real branches;
(6) real ordinary triple point of intersection of a real branch and two conjugate

imaginary branches.

These singularities and the corresponding perestroikas are shown in Figures 7, 1,
2, 8, 3 and 9, respectively. Behavior of the local orientations at solitary double
points under the cusp perestroika and solitary self-tangency perestroika shown in
Figures 7 and 8 follows from Rokhlin’s formula 2.3.

In self-tangency perestroikas and the perestroika of Figure 9 imaginary double
points are involved. Theorem 2.3 and the fact that σ+ is the number of all imagi-
nary double points and that the total number of double points (real and imaginary)
is constant (= (m− 1)(m− 2)/2− g) imply that σ and change under the five per-
estroikas as follows:

(1) cusp perestroika (Figure 7): σ and do not change;
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(2) direct self-tangency perestroika (Figure 1): σ is constant, while decreases
by 2;

(3) inverse self-tangency perestroika (Figure 2): σ decreases by 2, while is
constant;

(4) solitary self-tangency perestroika (Figure 8): σ decreases by 2, while is
constant;

(5) Triple point perestroika (Figure 3): σ and do not change;
(6) Triple point with imaginary branches perestroika (Figure 9): σ increases

by 2, while decreases by 2.

This suggests that σ is a counter-part of J−, while − is a counter-part of J+.

3. Back to immersed circle

3.1. Rokhlin type formula. Since for generic real algebraic curves by 2.3

σ =
m2

4
−

∫

RP2R̃A

(ind
R̃A

(x))2 dχ(x),

and m2/4 does not change under perestroikas, the integral

−

∫

RP2R̃A

(ind
R̃A

(x))2 dχ(x)

has the same behavior under direct and inverse self-tangency perestroikas and triple
point perestroika as σ and J−.

This suggests to compare J−(C) with

−

∫

R2C̃

(indC̃(x))
2 dχ(x)

in the original Arnold’s situation: for a generic immersed circle C. Here C̃ means
smoothing of C defined exactly as in Section 2.3. The integral is defined in the
same way, too.

For any generic immersed circle C

J−(C) = 1−

∫

R2C̃

(indC̃(x))
2 dχ(x).

Proof. It is easy to see that in this nonalgebraic situation

−

∫

R2C̃

(indC̃(x))
2 dχ(x)

changes under perestroikas of C as J−. See Figure 10, where smoothings of the
fragments involved into Arnold’s perestroikas are shown.

Figure 9. Triple point with imaginary branches perestroika: σ
increases by 2, while decreases by 2.
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Two perestroikas above do not change smoothing

Figure 10. Smoothings of perestroikas

Figure 11. Calculation of
∫
R2K̃⋗

(indK̃m
(x))2 dχ(x). On the left

hand side one can see that
∫
R2K̃0

(indK̃0
(x))2 dχ(x) = 1+1 = 2. On

the right hand side after smoothing there are m− 1 interior ovals.
Therefore

∫
R2K̃⋗

(indK̃m
(x))2 dχ(x) = 1(1− (m− 1))+ 4(m− 1) =

3m− 2.

Furthermore,
∫

RP2K̃⋗

(indK̃m
(x))2 dχ(x) =

{
2, if m = 0

(1− (m− 1)) + 4(m− 1) = 3m− 2, if m > 0.

See Figure 11.
On the other hand, by 1.2

J−(K0) = −1, J−(Km) = −3m+ 3 (m = 1, 2, . . . ).
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positive injective pair negative injective pair

Figure 12. Positive and negative injective pairs of circles

Comparing, we obtain the desired result. �

[Corollary] For any generic immersed circle C with n double points

J+(C) = 1 + n−

∫

R2C̃

(indC̃(x))
2 dχ(x).

Proof. Indeed, J+ = J− + n �

3.2. A version of 3.1 without C̃. Let C be a generic immersed circle. On each
connected component E of the complement R2C the function assigning to a point
x ∈ E its index with respect to C is constant. Denote its value by indC(E).

A double point V of C is adjacent to four angles of R2C. Denote by indC(V )
the arithmetic mean of the values taking by indC on these four angles.

[Obvious Lemma] For a generic immersed circle C
∫

R2C̃

(indC̃(x))
2 dχ(x)

=
∑

E a component of R2
C

(indC(E))2 −
∑

V a double point of C

(indC(V ))2 (1)

�

[Corollary] For a generic immersed circle C

J−(C) = 1−
∑

E a component of R2
C

(indC(E))2 +
∑

V a double point of C

(indC(V ))2,

J+(C) = 1−
∑

E a component of R2
C

(indC(E))2 +
∑

V a double point of C

(1 + (indC(V ))2)

�

3.3. A version of 3.1 in terms of mutual position of components of C̃.

Two disjoint circles embedded into R2 compose an injective pair, if one of them is
contained in a disk bounded by the other. An injective pair of oriented circles is
said to be positive if the orientations of the circles are induced by an orientation of
the annulus bounded by the circles. Otherwise it is said to be negative. See Figure
12.

Given a generic immersed circle C, denote by l the number of components of its
smoothing C̃, by Π the number of injective pairs of components of C̃, by Π+ the
number of positive injective pairs of components of C̃ and by Π− the number of
negative injective pairs of components of C̃.
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[Easy Lemma]
∫

R2C̃

(indC̃(x))
2 dχ(x) = l − 2Π+ + 2Π−

�

In fact this presentation of
∫
R2C̃

(indC̃(x))
2 dχ(x) is due to Rokhlin [5]. He used

it instead of the integral in the original formulation of his formula.
[Corollary] For a generic immersed circle C

J− = 1− l + 2Π+ − 2Π−.

�

3.4. Proof of Arnold’s Conjecture 1.3. By 3.3

J− = 1− l + 2Π+ − 2Π−.

Since Π = Π+ +Π−, one has 2Π+ − 2Π− ≥ −2Π and therefore

J− ≥ 1− l− 2Π.

The number of injective pairs Π is not greater than the number of all pairs of

components of C̃, which is equal to l2−l
2 . Therefore

J− ≥ 1− l − l2 + l = 1− l2.

On the other hand, l ≤ n+ 1 obviously. Consequently,

J− ≥ 1− (n+ 1)2 = −n2 − 2n.

If the equality J− = −n2−2n holds, then any two components of C̃ comprise an
injective pair, this pair is negative, and the number of double points of C is equal
to l − 1. These conditions imply that C = An+1.

Since J+ = J− +n, the statement on J+ follows from the statement on J−. �

4. Generalizations of J±

Theorem 3.1 can be used not only as a tool for calculations. It gives a new
proof of existence of J− (i.e. existence of a generic immersed curve characteristic
satisfying 1.2 and 1.2).

In this Section the problem of generalizing of J± to new situations is considered.
The main object is a generic collection C of k circles immersed into a surface F .
Here by genericity I mean basically the same as in the case of a single immersed
circle: intersections and self-intersections are transversal and at each point of F
there are at most two branches of C. By a generalization of J+ (respectively, J−)
I mean a numerical characteristic of a generic collection which is invariant under
regular homotopy in the class of generic collections of immersed circles and satisfies
1.2 (respectively, 1.2).

The most interesting question about this is the one on existence of such a charac-
teristic for collections of curves of a given regular homotopy class. It can be solved
by studying the stratification of the space of such collections, as it was done by
Arnold [1] for single immersions of circle to plane. In this Section another approach
suggested by Theorem 3.1 is used.
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The question of uniqueness has an obvious solution: to a characteristic of a
generic collection of immersed circles one can add any function of a regular ho-
motopy class to get another characteristic satisfying the same conditions, and any
characteristic satisfying these conditions can be obtained in this way.

It is sufficient to consider the problems only for J−, since for a characteristic J−

satisfying the definition above for a generalization of J− the characteristic

J−(C) + the number of double points of C

satisfies our definition for a generalization of J+.
I make special efforts to construct generalizations of J− with the most interesting

additional properties. There are indications, e.g. Theorem 4.4, that sometimes this
goal is achieved.

4.1. In the affine plane. For a collection C of k circles immersed to R2 set

J−(C) = k −

∫

R2C̃

(indC̃(x))
2 dχ(x).

It has the properties of J− and is additive under both connected sum and disjoint
sum.

4.2. In the projective plane. The same approach can be applied to more gen-
eral situations. For example, we can extend this definition to the class of generic
collections of circles immersed to the projective plane. Given a generic collections
C of k circles immersed to RP2, denote by J−(C) the number

1−

∫

RP2C̃

(indC̃(x))
2 dχ(x).

It is easy to see that J−(C) is invariant under regular homotopy in the class of
generic immersions and 1.2 holds true for it. It is a generalization of Arnold’s J−

in the sense that if C is a composition of an immersion C′ of S1 to R2 and an
embedding R2 → RP2, then J−(C) = J−(C′).

4.3. A straightforward generalization: zero-homologous curves in a sur-

face with trivial 2-homology. Generalizations of J− given in Sections 4.1 and
4.2 are based on the notion of index of a point with respect to a curve. In both
cases it has a simple homological sense.

In the case of R2 a curve C is zero homologous and it bounds a chain. Since
H2(R

2) = 0, the homology class of the chain in the relative homology H2(R
2,C)

is unique. The index of a point x ∈ R2C is the image of this class in the local
homology group H2(R

2,R2x) = Z. It is really a well-defined integer, since the
isomorphism H2(R

2,R2x) → Z is determined by the orientation of R2.
In the case of RP2 all this arguments are still valid besides the following two

points: first, C may be non-homologous to zero; second, the projective plane is not
orientable therefore the index is defined up to multiplication by −1. Fortunately,
both obstructions are easy to overcome. To overcome the first one it is enough
to take rational homology instead of integer one, or even homology with Z[1

2
]

coefficients. As for the second one, we need only the square of the index.
This approach is easy to apply to generic immersions of a collection of circles

into a connected surface F with H2(F ) = 0 realizing the zero rational homology
class.
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The rest of the  

curve is
hidden here.

The rest of the  
curve is

here. It coincides 
with the encircled

part of    .

Figure 13. Behavior of indC(x) and wC(x) when x jumps over a
branch of C. To visualize it, we move around the sphere (through
the point of infinity of the plane of picture) the piece of C which
is jumped over. The curve K obtained has the winding number
which differs by 2 from the winding number of C.

Indeed, for a generic collection C of k circles immersed to a connected surface F
and realizing the zero element ofH1(F ;Q), we construct a smoothing C̃, then find a

homology class ξ in H2(F, C̃;Q) whose image under the boundary homomorphism

∂ : H2(F, C̃;Q) → H1(C̃;Q) is the fundamental class of C̃. Since H2(F ;Q) =

0, such class ξ is unique. For each x ∈ FC̃ we take the image of ξ under the
relativization homomorphism H2(F, C̃;Q) → H2(F,Fx;Q). Denote the absolute
value of this image under an isomorphismH2(F, Fx;Q) → Q by indC̃(x) and denote
by J−(C) the number

k −

∫

FC̃

(indC̃(x))
2 dχ(x).

It is easy to see that J−(C) is invariant under regular homotopy in the class of
generic collections of immersions and 1.2 holds true for it. It is a generalization of
Arnold’s J− in the sense that if C is a composition of an immersion C′ of S1 to R2

and an embedding R2 → F, then J−(C) = J−(C′).

4.4. In sphere. In the case of sphere, although any curve C is zero homologous,
the homology class in H2(S

2, C) of a chain bounded by C is not unique, because
one can add to such a class the fundamental class of S2 multiplied by any integer.

Thus, contrary to the case of affine and projective planes, in the sphere, at first
glance, there is no index of a point with respect to a 1-cycle. However, for a 1-cycle,
which is a collection of immersed circles, there is a nice replacement for the index.

Recall that for a collection C of circles immersed to R2 there is a well-defined
number w(C) which is called winding number 3 and, in the case of a single immersed
circle, defines the immersion up to regular isotopy.

Given a point x ∈ S2 and a collection of immersed circles C ⊂ S2 with x 6∈ C,
set wC(x) to be the winding number of C in S2x. Local behavior of wC(x) and
indC(x) are similar: when x jumps over a branch of C from the left hand side to
the right hand side, indC(x) is decreased by 1 while wC(x) is increased by 2. See
Figure 13.

3It is called also the Whitney index, it is the rotation number of the velocity vector as well as
the degree of the Gauss map.
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Therefore

−

∫

S2C̃

(
wC̃(x)

2

)2

dχ(x)

changes under self-tangency and triple point perestroikas exactly like J−. This
suggests the following definition.

For a generic collection C of k circles immersed to S2 set

J−(C) = k −
1

4

∫

S2C̃

(wC̃(x))
2 dχ(x). (2)

Note that it is not a generalization of J− of plane curves in the sense above. It is a
counter-part rather than a generalization. It is related to J− of plane curves, but
the relation is a bit more complicated, namely:

Let C be a collection of circles immersed to plane, i : R2 → S2 be an embedding
and C′ be i(C). Then

J−(C′) = J−(C) +
(w(C))2

2
.

V. I. Arnold [2] observed that J−(C) + (w(C))2

2 is an invariant of C′. He called

J−(C) + (w(C))2

2 a conformal invariant of C (it is invariant under conformal trans-
formations). Theorem 4.4 means that

J−(C) = k −
1

4

∫

S2C̃

(wC̃(x))
2 dχ(x)

coincides with the conformal invariant.
To prove 4.4, we need a more explicit relation between indC and wC .
[Lemma 1] Let C be a collection of circles immersed to plane, i : R2 → S2 be an

embedding and C′ be i(C). Then for any x ∈ R2C

indC(x) =
1

2
(w(C) − wC′(i(x))).

Proof. Observe that the formula is correct for x belonging to the outer component
of R2C (where both sides are equal to zero) and that both sides changes by the
same quantity when x jumps over a branch of C. �

[Lemma 2] Let K be a smooth closed oriented 1-manifold in S2. Then
∫

S2K

wK(x) dχ(x) = 0.

Proof. In the case of one circle it is obvious, since the complement S2K consists
of 2 open disks, on one of them wK is equal to 1, while on the other it is −1.
The general case follows, because wA∪B(x) = wA(x) + wB(x) and the integral is
additive. �

Proof of 4.4. By the definition given in Section 4.1

J−(C) = k −

∫

R2C̃

(indC̃(x))
2 dχ(x).
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By Lemma 1 the right hand side is equal to

k −

∫

R2C̃

1

4
(w

C̃′
(i(x)))2 dχ(x) +

∫

R2C̃

1

2
w(C)w

C̃′
(i(x)) dχ(x) −

1

4
(w(C))2 .

Since for any function ϕ : S2 → R which is constant on S2i(R2)
∫

R2C̃

ϕ(x) dχ(x) =

∫

S2C̃′

ϕ(i(x)) dχ(x) − ϕ(S2i(R2)),

we can rewrite the expression of J−(C) obtained above as follows:

J−(C) = k −

∫

S2C̃′

1

4
(w

C̃′
(i(x)))2 dχ(x) +

1

4
(w(C))2

+
1

2
w(C)

∫

S2C̃′

w
C̃′
(i(x)) dχ(x) −

1

2
(w(C))2

−
1

4
(w(C))2

= k −

∫

S2C̃′

1

4
(w

C̃′
(i(x)))2 dχ(x) +

+
1

2
w(C)

∫

S2C̃′

w
C̃′
(i(x)) dχ(x) −

1

2
(w(C))2

By Lemma 2, it is equal to

k −

∫

S2C̃′

1

4
(w

C̃′
(i(x)))2 dχ(x)−

1

2
(w(C))2.

By the definition of J−(C′) it is

J−(C′)−
1

2
(w(C))2

�

Lemma 2 suggests a way to characterize 1
2wK(x) as a reasonable choice for index

without appeal to differential topology: consider all functions indK obtained as
above from chains with boundary K and select one of them satisfying the identity∫

S2K

indK(x) dχ(x) = 0.

This rule assumes that K is a collection of disjoint embedded circles. In general
case, one has to either smooth singularities, or change the integral extending the
function indK over K and taking the integral over the whole S2.

The same natural chain in S2 with a given boundary has been constructed by
V. I. Arnold [2] in a different way.

Consider now any chain in S2 with boundary K and the function indK related
with this chain. From the natural chain related with 1

2wK(x) this one differs by

c[S2] for some c ∈ Z, therefore indK(x) = 1
2wK(x)+ c. The number c can be found

as follows: integrating the latter relation∫

S2K

indK(x) dχ(x) =
1

2

∫

S2K

wK(x) dχ(x) + cχ(S2K)

and taking into account Lemma 2, one obtains c = 1
2

∫
S2K

indK(x) dχ(x). Therefore

1

2
wK(x) = indK(x) −

1

2

∫

S2K

indK(u) dχ(u).
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The latter formula allows to rewrite our definition (2) of J−(C) for a spherical

curve in terms of arbitrary chain with boundary C̃:

J−(C) = k −

∫

S2C̃

(ind
C̃
(x)−

1

2

∫

S2C̃

ind
C̃
(u) dχ(u))2 dχ(u)

= k −

∫

S2C̃

(ind
C̃
(x))2 dχ(x) +

1

2

(∫

S2C̃

ind
C̃
(x) dχ(x)

)2

. (3)

This formula has a real algebraic counter-part. Namely, for a generic real alge-
braic curve A of type I on sphere S2 which is the intersection of S2 and a surface
of degree d

d2

2
=

∫

S2R̃A

(ind
R̃A

(x))2 dχ(x) −
1

2

(∫

S2R̃A

ind
R̃A

(x) dχ(x)

)2

+ σ.

4.5. Zero-homologous curve in an orientable closed surface with non-zero

Euler characteristic. Consider now a generic collection of k immersed circles in
an orientable closed connected surface F with χ(F ) 6= 0 realizing the zero of H1(F ).

As above, construct a smoothing C̃ of C, then consider homology classes ξ ∈
H2(F, C̃;Q) whose image under the boundary homomorphism ∂ : H2(F, C̃;Q) →

H1(C̃;Q) is the fundamental class of C̃. Any two ξ’s of this sort can be obtained one
from another one by adding the image of q[F ] with q ∈ Q under the relativization

homomorphism : H2(F ;Q) → H2(F, C̃;Q). For each x ∈ FC̃ take the image of ξ

under the relativization homomorphism H2(F, C̃;Q) → H2(F,Fx;Q). Denote the
absolute value of this image under an isomorphism H2(F, Fx;Q) → Q by indξ(x).
Consider ∫

FC̃

indξ(x) dχ(x).

It is a rational number and if we replace ξ with ξ+(q[F ]) then it changes by qχ(F ).
Since by assumption χ(F ) 6= 0, there exists a unique ξ0 such that

∫

FC̃

indξ0(x) dχ(x) = 0.

Pick up this ξ0 and denote by J−(C) the number

k −

∫

FC̃

(indξ0(x))
2 dχ(x).

This generalizes the construction of the previous section. It is easy to prove that
this is invariant under regular isotopy in the class of generic collections of immersed
circles and satisfies 1.2.

4.6. Curves in torus and collections of contractible curves. Since the Eu-
ler characteristic of torus is zero, it is impossible to apply the construction of the
previous section to a generic collection of circles immersed into torus. This “un-
fortunate” property of torus can be partially compensated by commutativity of its
fundamental group. Partially means that it allows to deal with generic collections
of immersed circles in which each circle is zero-homologous, but not with generic
collections with the sum of the classes realized by all the immersed circles equal to
zero.

Consider a generic collection C of circles C1, C2, . . . , Ck immersed into torus T
such that each Ci realizes 0 ∈ H1(T ). Since the fundamental group is commutative,
each Ci is homotopic to zero. Therefore Ci can be presented as the composition
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of a generic immersion C∗
i of the circle into plane R2 and the universal covering

π : R2 → T.
Take the function x 7→ ind⋃k

i=1
C∗

i

(x) defined on R2
⋃k

i=1
C∗

i. Since for any

x ∈ T
⋃k

i=1 Ci only in a finite number of points of π−1(x) this function does not
vanish, there exists its direct image

TC → Z : x 7→
∑

y∈π−1(x)

i⋉⋃
k

i=1
C∗

i

(y).

Denote the latter function by indC . It is easy to see that indC does not depend on
the choice of the liftings C∗

i .

For a smoothing C̃ of C there is a unique locally constant function on T C̃
coinciding with indC outside the neighborhoods of double points of C where the
smoothing takes place. Denote this function by indC̃,C . It does depend not only

on C̃, but on C.
Set

J−(C) = k −

∫

TC̃

(indC̃,C(x))
2 dχ(x).

It is invariant under regular isotopy in the class of generic collections of immersed
circles and satisfies 1.2.

The same construction can be applied to a generic collection of circles immersed
in any surface (not only torus) such that each of the circles is contractible in the
surface. If the surface is orientable, but not T then one can apply the construction
of the previous section. The results differ.

5. Some high degree invariants of plane generic curves

5.1. Momenta of index. From formula (3) and Theorem 4.4 it follows that for
a generic plane curve C

w(C) =

∫

R2C̃

ind
C̃
(x) dχ(x).

This formula is easy to prove ab ovo, too. It suggests to consider all “momenta”∫
R2C̃

(ind
C̃
(x))r dχ(x) of ind

C̃
.

Given a generic plane curve C, denote by Mr(C) the integral
∫

R2C̃

(ind
C̃
(x))r dχ(x).

By (3) M1(C) = w(C). It is invariant under regular homotopy. Thus it can be
considered as an invariant of degree 0.

As follows from the definition of Section 4.1, M2(C) = k−J−(C) where k is the
number of components of the immersing curve. Thus it is an invariant of degree 1.
This suggests that Mr may be an invariant of degree r − 1. Below it is proved to
be the case.

Following to the general scheme of definition of finite degree invariants, for any
characteristic of generic immersions of the circle to the plane which is locally con-
stant on the space of generic immersions, one defines its first derivative. It is a
characteristic of immersions having only one double point which is not ordinary
and this point is either ordinary triple or ordinary self-tangency point. On such a
curve the first derivative of the original characteristic is defined to be the difference
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between the values of the original characteristic on the adjacent generic immersions.
In other words, it is the jump of the original characteristic happening at the corre-
sponding perestroika. Of course, to define it, one has to specify a direction of the
perestroika (a coorientation of the stratum of the discriminant hypersurface). In
the case of self-tangency there is a natural direction: from curves with less double
points to curves with more double points. In the case of triple points a coorienta-
tion was defined by Arnold [1], see Section 1.1 above. However we will need another
local coorientation.

For any r a direct self-tangency perestroika of C does not change Mr(C).

This is obvious: C̃ does not change under a direct self-tangency perestroika. See
Figure 13. �

Theorem 5.1 says that the first derivative of any Mr vanishes on curves with a
direct self-tangency point.

Studying Mr one has to distinguish two kinds of the triple point perestroikas. At
the moment of perestroika at the triple point take vectors tangent to the branches
and directed according to their orientations. If one of the vectors can be presented
as a linear combination of the other two vectors with positive coefficients, the
perestroika is said to be weak, otherwise it is said to be strong. See Figure 14.

Figure 14. Weak (on the left hand side) and strong (on the right
hand side) triple point perestroikas.

For any r a weak triple point perestroika of C does not change Mr(C).
This holds true for the same reason as 5.1: a weak triple point perestroika does

not change C̃. See Figure 13. �

Theorem 5.1 says that the first derivative of any Mr vanishes on curves with a
weak triple point.

Mr(C) changes under an inverse self tangency perestroika if r > 1 , and under
a strong triple point perestroika if r > 2. To describe the change, let me introduce
the following notion.

For a multiple point p of a circle C immersed to the plane let index of p be the
minimal number i such that there exists a small perturbation C′ of C and a point
p′ in R2C” arbitrary close to p and having index i with respect to C′.

For example, the index of an inverse self-tangency point is equal to the index of
the narrow adjacent domains if the latter is smaller than the index of the adjacent
wide domains. Otherwise it is smaller by 2 than the index of the adjacent narrow
domains. See Figure 15.

For any r an inverse self-tangency perestroika of C changes Mr(C) by (i+2)r −
2(i+ 1)r + ir where i is the index of the self-tangency point.

Proof. The corresponding perestroika of C̃ replaces a vanishing arc by two arcs
and the disk bounding by the vanishing newborn oval. See Figure 16. It means that
there is a homeomorphism mapping the complement of the arc onto the complement
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Figure 15. Inverse self-tangency point with index i of the two types.

Figure 16

of the two arcs and the disk and mapping C̃ before the perestroika to C̃ after it. The
homeomorphism preserves index. Thus the difference between the integrals is the
integral over the newborn disk and two arcs minus the integral over the vanishing
arc. It is easy to see that it is (i+ 2)r − 2(i+ 1)r + ir. �

In the case of a strong triple point its index is i if the adjacent domains have
indices i + 1 and i + 2, because then there is a perturbation with a vanishing
triangle borning in the place of the point with having index i. There are only
two topologically distinct perturbations. In the other perturbation the vanishing
triangle has index i+ 3. See Figure 17

Figure 17. Strong triple point of index i and the smoothings of
its perturbations. The vanishing arcs and disks are shown thicker.

By the positive direction of a strong triple point perestroika we will call the
direction in which points of area inside the newborn triangle has index i+3 where
i is the index of the triple point.

For any r a strong triple point perestroika of C changes Mr(C) by (i + 3)r −
3(i+ 2)r + 3(i+ 1)r − ir where i is the index of the triple point.

The proof is similar to the proof of 5.1 above. �

On the set of plane curves with a single nonordinary multiple point, the index of
this point is an invariant of degree 1: a generic perestroika changes it by a constant
depending only on the local structure of the perestroika. Therefore polynomial
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functions of the index of this point are invariants of finite degree. Thus the theorems
of this section imply that Mr(C) are invariants of C of finite degree.

5.2. A polynomial of immersion. For a generic plane curve C consider formal
power series

PC(h) =

∞∑

r=0

Mr(C)hr

r!
(4)

It provides a possibility to reformulate in the following concise form the results of
the preceding section.

Direct self-tangency and weak triple point perestroikas of C do not change PC .
An inverse self-tangency perestroika at a point of index i adds eih(eh−1)2 to PC(h).
A strong triple point perestroika at a point of index i adds eih(eh−1)3 to PC(h). �

There is more compact formula for PC(h):
For a generic plane curve C

PC(h) =

∫

R2C̃

e
ind

C̃

(x)h
dχ(x) (5)

Proof. Indeed,
∫

R2C̃

e
ind

C̃

(x)h
dχ(x) =

∫

R2C̃

∞∑

r=0

(ind
C̃
(x))rhr

r!
dχ(x) =

=

∞∑

r=0

hr

r!

∫

R2C̃

(ind
C̃
(x))r dχ(x) =

∞∑

r=0

hr

r!
Mr(C) =

= PC(h) (6)

�

Proposition 5.2 suggests to introduce a variable q = eh. The power series PC(h)
turns into a Laurent polynomial PC(q) in q defined by

∫

R2C̃

q
ind

C̃

(x)
dχ(x) (7)

Coefficients of PC(q) have a simple geometric sense: if PC(q) =
∑∞

r=−∞
prq

r,

then pr is equal to the Euler characteristic of the subset of R2C̃ where ind
C̃
(x) = r.

The changes of PC under perestroikas also look simpler: an inverse self-tangency
perestroika at point of index i adds qi(q− 1)2 and a strong triple point perestroika
at point of index i adds qi(q − 1)3.

5.3. Analogy with knot polynomial invariants. Thus the polynomial PC(q) is
very similar to the quantum knot polynomial invariants like the Jones polynomial.
Substituting instead of q the exponent eh provides the power series in h whose
coefficients are invariants of finite degree. Behavior of PC(q) under perestroikas
of C is similar to the skein relations. It allows to calculate PC(q) inductively,
using any regular homotopy connecting C with an immersion whose polynomial is
known. Formula (7) can be viewed as an analogue of face state sum formulas for
knot quantum polynomials.
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