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AN INEQUALITY FOR THE NUMBER OF NONEMPTY OVALS
OF A CURVE OF ODD DEGREE

O. YA. VIRO AND V. 1. ZVONILOV

ABSTRACT. The authors prove restrictions on the topology of real nonsingular plane
projective algebraic curves of odd degree, formulated in [1], inequality (11), and [2],
Theorems 3.10 and 3.11. In the proof an essential role is played by results about ho-
mology of branched coverings, which are of independent interest: the authors indicate
a homological construction that connects the homology class of a cyclic branched cov-
ering, constructed from a membrane, which is stretched on the base, and the homoiogy
class of the boundary of this membrane in a submanifold of the branching.

INTRODUCTION

Let A be a real nonsingular plane projective algebraic curve of degree m, and
let RA Cc RP? be the set of its real points. We recall that its components are
homeomorphic to a circle and that if m is odd, then there is exactly one one-sided
component. The two-sided components are called ovals. The total number of ovals
of a curve is denoted by /.

Each oval bounds from the outside a component of the set RP2\ RA4. Ovals that
bound from the outside a component with positive (negative, zero) Euler character-
istic are called elliptic (hyperbolic, parabolic); the number of elliptic ovals is denoted
by [/*, the number of hyperbolic ovals by /=, and the number of parabolic ovals
by /9. Hyperbolic and parabolic ovals envelop domains in RP? that contain other
ovals, and so they are called nonempty.

Theorem 1 (A bound on the number of hyperbolic ovals). For any odd m
(1) I~ <(m-3)*/4.

If the curve has ovals, but not one that envelops all the other ovals, we have an
inequality stronger by 1:

(2) I= < (m-5)(m~1)/4.

Restatement of Theorem 1. The number of components of the complement of a curve
of odd degree m that have negative Euler characteristic does not exceed (m — 3)?/4.

Theorem 2 (A bound on the number of nonempty ovals). For any odd m
(m - 3)? +mz—h2

4 4h?
where h is the highest prime power that divides m .

(3) I~ +1°<
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The inequality (1) is also satisfied for even m # 4. We also have the stronger
inequality
Im+0<(m-2)(m-4)/4,
which is a consequence of the inequalities of Arnol'd [3]; for the details see [1].
Inequality (3) also admits a strengthening for certain odd m: according to an
inequality of Zvonilov (see inequality (9) in [1], and [4]), for any odd m

(4) =+ <(m-1)(m-13)/4.

In many cases inequality (4) is weaker than (3), but it may also be stronger. The
smallest value of m for which (4) is stronger is 693.

The inequalities (1), (2), and (3) are sharp for m = 3 and m = 5. For m > 7
they are far from sharp. Elementary consequences of Bézout’s theorem (see [2],
inequalities 3.19 and 3.20) and simple constructions show that the maximum value
of I=+1% for m=7 and m =9 is 2 and 4 respectively, whereas the right-hand
side of (3) is equal to 4 and 9 respectively.

Following Klein, we say that a curve 4 belongs to type I if R4 splits the set
CA of complex points of 4, and it belongs to type II if R4 does not split CA.
In the first case the natural orientations of the two halves into which RA splits
CA determine on RA, as on the common boundary of these halves, two opposite
orientations. Following Rokhlin [1], we call them complex.

We denote the ovals of the curve 4 by A4, ..., 4;, its one-sided component by
Ay , the components of RP?\RA bounded from the outside by the ovals A, ..., A
by By, ..., By, and the component of RP2\ R4 adjoining 4y by By. Let p be
the prime number whose power is 4. We denote by b; the class determined in
H,(RP?, RA; Z,) by the set B, endowed with a certain orientation. Clearly the
classes b; form a basis of the space H,(RP?, RA; Z,).

Theorem 3 (Extremal property of inequality (3)). Suppose equality holds in (3). Then
the curve A belongs to type 1 and there are numbers xg, ..., x; € Z, such that the im-
age of the class x = x;b; under the boundary homomorphism 8: H,(RP?, RA; Zp)
— H{(RA; Z,) is the fundamental class [RA) of the curve RA, endowed with the
complex orientation, and y(B;;) =0 forall j with x; #0.

For curves of degree 5 any two of Theorems 1, 2, and 3 together with Harnack’s
inequality / < 6 (see [1], for example) form a complete system of restrictions on
the topology of the curve. The proof of Theorems 1-3 given below relies only on
fundamental topological properties of algebraic curves. It can also be applied to
flexible curves (that is, to topological objects that imitate nonsingular plane projective
algebraic curves; see [2], §1), and since Harnack’s inequality also holds for flexible
curves, it follows that the isotopic classification is the same for algebraic and flexible
curves of degree 5 (compare [2]).

The general scheme of our proof of Theorem 1 is the same as that of Arnol’d [3] in
his proof of the similar inequalities mentioned above for curves of even order. The
main difference is that instead of a double covering we work with an m-sheeted or
h-sheeted covering of the complex projective plane CP2, branched over CA. As in
Arnol'd’s proof, from the components of the set RP2\RA we construct the homology
classes of the branched covering that take up a definite position with respect to the
intersection form, and we observe that the structure of the intersection form (which
depends only on the degree of the curve) imposes a restriction on the number of such
classes.

Theorems 1-3 are proved in §1. The proofs rely essentially on the results of
§2, which is devoted to the problem of the linear independence of the homology
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classes of a cyclic branched covering, which can be constructed from membranes
spanning the branching surface at the base. We have discussed these questions in a
separate section, having in mind their independent value. In particular, the results
of §2 form a basis for a further strengthening of Theorems 1-3, based on various
geometrical constructions that give additional membranes. (We observe, however,
that constructions of this type known at present rely in one way or another on Bézout’s
theorem, and therefore cannot be applied to flexible curves.)

§1. PROOF OF THEOREMS 1, 2, AND 3

For / =0 and m = 1 Theorem 1 is obvious, and inequality (3) holds and is not
an equality. Therefore in the proof of Theorems 1 and 2 given below, without loss of
generality we put / >0 and m > 1, and in the proof of Theorem 3 we put m > 1.

Let ¢ denote a divisor of m . We use the objects that are defined in §§1.1 and 1.2
and depend on ¢ only when g = m (in §1.4) and ¢ = A (in the rest of the text),
so in order not to complicate the notation of these objects we omit the index g in
them.

1.1. Branched coverings of the plane CP? with branching over CA. Suppose that
the curve A is given by the equation f(xo, X1, x2) = 0. Then the equation
Sf(x0, X1, x3) = x}* defines a nonsingular surface Z of degree m in three-dimension-
al projective space. The formula (xp: x;: X2: X3) — (Xp: X1: X2) defines an m-
sheeted cyclic covering CZ — CP?, branched over CA. Its automorphism group
consists of transformations (xo: X: X2: X3) — (Xxo: Xx1: X2: exp(2nk/m)x;) and
contains a subgroup of order m/q consisting of transformations (xg: x1: x2: X3) —
(xo: x1: x2: exp(2nkq/m)x3). We denote the space of orbits of this subgroup by
Y . The obvious projection v: Y — CP? is a cyclic g-sheeted covering, branched
over CA.

The projection v determines a diffeomorphism of the set v~1(CA) onto CA,
and in what follows we identify v—!(CA4) with CA. The automorphism group of
the covering v: Y — CP? (isomorphic to Z,) acts on the fibers of the normal bundle
of the surface CA c Y like the group of rotations of the plane through angles that
are multiples of 27/q. We denote by 7 either of the two automorphisms that act
on the fibers as a rotation through 27/q.

In H,(Y;C) we consider the subspace M = ker(tr, — £~ 'id), where id is the
identity homomorphism and & = exp(n(g — 1)v/—1/¢) . From Rokhlin’s calculations
([5], §§5.4 and 5.6) it follows that dimM = 1+ (m — 1)(m — 2), and the signature
sign Q of the restriction Q to M of the Hermitian intersection form of the manifold
Y isequal to 1 —m2(q% — 1)/2¢>.

1.2. The classes fo, ..., fi. Let conj denote one of the antiholomorphic invo-
lutions of the manifold Y that cover the involution of the complex conjugate of
CP?. Let Cy, ..., C; be the connected components of the set fix(conj) \ R4 that
are taken by the projection v into By, ..., B, respectively. We recall that before
stating Theorem 3, having defined the classes b;, we endowed the surfaces B; with
certain orientations. We endow the surfaces C; with the induced orientations.

Let y;; denote the class oriented in H>(Y; C) by the surface Cl(C; U T/ (),
oriented in accordance with the orientation of the component C;. For i =0, ...,/
we put ;= Ej:ll &/, . Simple calculation shows that f§; € M .

1.3. The intersection numbers of the classes Sy, ..., ;. Let us first calculate
yij © ¥rs. Let u be a tangent vector field on C1C; with finitely many zeros, whose
restriction to the frontier FrC; of the set C; does not have zeros and is tangent to
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FrC;. The field v/—1u is obviously normal to C; and tangent to C4 on Fr(;.
Hence the differential of the fransformation 7/ takes the field v/—1u into the normal
vector field v on Clt/C; which coincides with v—1u on FrC;. As a result of the
standard calculation of the intersection number by means of a small shift of the set
CI(C; U 1/C;) along the field vV—1uUwv we deduce that

(i) 7ijoyrs=0 when r#1i,
(ii) y;j 0 yis = —x(C;) when j#5,
(iil) v} = -2x(C)
(compare [3]). We observe that x(C;) in (ii) and (iii) can obviously be replaced by
x(B:).
From these equalities it is easy to deduce that B, 0 8, =0 when i # r, and that

(5) B} =—x(Bi)q.

1.4. Proof of Theorem 1. In this subsection we put g = m, so the subspace M that
contains the classes f; lies in H>(CZ ; C). We construct the subset of the collection
Bo, ..., B, that generates the space on which the intersection form is nonnegative.
Since the classes f; are pairwise orthogonal, in such a set we can include classes
Bi with B2 > 0, and these classes are linearly independent. By (5), this condition
selects /= -classes from the classes B, ..., B;, and if the curve has ovals, but does
not have one that envelopes all the remaining ovals, then it also selects the class Sy .
The dimension of the subspace generated by these classes is equal to the number of
them. It does not exceed (dim M + sgnQ)/2, since B, € M. Comparing this with
the information about M from §1.1, we obtain Theorem 1.

1.5. The rank of the system f,,..., ;. Let d; denote the homology class in
H|(CA; Z,) realizable by the boundary of the component B;. Clearly, d; is the
image of b; under the composition

Hy)(RP?,RA; Z,) — H\(RA; Z,) — H\(CA; Zj)

of the boundary homomorphism and the inclusion homomorphism.
Let ¢ = h everywhere in what follows.
The next two lemmas are proved in §2.

1.5.A. Lemma. The rank of the system By, ..., B € Hy(Y ; C) is not less than the
rank of the system d, ..., d; € H(CA; Z,).

Let x4 denote the ring homomorphism Z[¢] — Z, that takes & into 1. (The exis-
tence of such a homomorphism follows from the fact that the sum of the coefficients
of the minimal integer polynomial of & is equal to p. We observe that it is essential
here that ¢ is a prime power. In fact, if ¢ is not a prime power, then the sum of
the coefficients of the minimal polynomial of any primitive gth root { of unity is
equal to 1, and so there are no nontrivial ring homomorphisms of Z[{] into Z, .)

1.5.B. Lemma. If 4gB¢ + -+ A8 = 0 is a nontrivial linear relation whose coeffi-
cients belong to Z[&] and are coprime in Z[E], then pu(Ao)do+---+ u(A)d; =0.

In the relation u(Ag)do + --- + u(4;)d; = 0 of Lemma 1.5.B not all the u(4;) are
zero. In fact, it is easy to verify that ker u is the ideal generated by 1 —¢& . Therefore
if all the A4; were to belong to ker u, they would not be coprime.

1.5.C. Corollary. The rank of the system By, ..., By is not less than [, and if it is
equal to | (that is, if the classes By, ..., B, are linearly independent), then the curve
A belongs to type 1.
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Proof. Obviously the classes by, ..., b, form a basis of H(RP?; RA; Z,). The
boundary homomorphism takes it into a basis of H;(RA4; Z,). As we know, the in-
clusion homomorphism H(RA; Z,) — H\(CA; Z,) is injective if the curve belongs
to type II, and has a one-dimensional kernel if the curve belongs to type I. Therefore
the rank of the system of classes dj, ..., d; (which are the images of the classes
by, ..., b under a composition of these homomorphisms) is equal to / in the case
of a curve of type I and to /+ 1 in the case of a curve of type II. Lemmas 1.5.A and
1.5.B enable us to carry over this information to the statement to be proved.

1.6. Proof of Theorem 2. Consider a maximal subset of the collection Sy, ...,
that generates a space whose intersection form is nonnegative. Since the classes f;
are pairwise orthogonal, it consists of f; with 2 > 0. By (5), [~ +1° of the classes
Bi, ..., B; occurin it, and also the class Sy (the latter is ensured by the assumption
that / > 0, from which it follows that x(Bp) < 0). Let d denote the dimension
of the subspace generated by these classes. It does not exceed (dim M +sgnQ)/2,
since fB; € M, as we mentioned in §1.2, and according to [5], §4.2, the form Q is
nondegenerate. On the other hand, by 1.5.B the number of classes is not greater than
d + 1. Combining these two inequalities and the information about M from §1.1,
we obtain

P+~ +1<(dimM +sgnQ)/2+1=(m—3)?%/4+ (m* - h*)/4h* + 1,
which is equivalent to the inequality to be proved.

1.7. Proof of Theorem 3. Suppose that equality is attained in (3). The arguments
of the previous subsection show that in this case rk(Bo, ..., ;) =rk(do, ..., d)) =
[ and the curve A belongs to type I. Let us endow RA with a complex orien-
tation. Since H|(RP?;Z,) = H,(RP?;Z,) = 0, the boundary hecmomorphism
H>(RP?,RA; Z,) — H\(RA; Z,) is an isomorphism. Therefore there is a class
x =S x;b; € H(RP?, RA; Z,) with dx = [RA].

Clearly, the classes fo, ..., B; belong to the image of the homomorphism A,:
H,(Y ; Z[¢]) — H,(Y ; C) induced by the inclusion A: Z[¢] — C. Since H((Y) =
0, by virtue of duality and the universal coefficient formulas we have H3(Y) = 0
and Tors H,(Y) = 0, and consequently H;3(Y; C/Z[¢]) = 0. Therefore 4. is a

monomorphism. Consequently, from the linear dependence of the classes fo, ..., f
in H,(Y ; C) it follows that there is a nontrivial linear relation

(6) Aofo+-+A4p =0

with the 4; belonging to Z[¢] and coprime in Z[E]. By 1.5.B, u(do)do +---+ u(A))d;
= 0, and by virtue of the definition of complex orientation xg, ..., X; are propor-
tional to (o), ..., u(4;). Therefore if x; # 0, then A; # 0. Finally, multiply-
ing (6) by B; and bearing in mind that fo, ..., ; are pairwise orthogonal and

/5’]2 = —x(B;j)h (see §1.3), we deduce that y(B;) =0 forall j with x; #0.

§2. HOMOLOGY CLASSES OF A BRANCHED COVERING
AND HOMOLOGY CLASSES OF A BRANCHING SET

2.1. Statement of the question. Let v: Y — X be a cyclic A-sheeted covering of a
smooth closed n-dimensional manifold X , branched over a smooth closed (n — 2)-
dimensional subset 4 of it. Let 7: Y — Y be a generator of the automorphism
group of v.

A smooth compact submanifold B of X iscalled a membraneon A if 0B = ANB
and along OB it does not touch A in the sense that the normal bundle of 9B in
B intersects the tangent bundle of A4 only at zero vectors. If v is trivial over
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B, we say that B can be lifted to Y. In this case v~!(B) consists of 4 copies
C,Cy, ..., Cy_y of B with ©/(C) = C; , that are homeomorphically mapped by v
onto B.

Now suppose that B is oriented, can be lifted to Y, and has dimension k. Let
v;j denote the class defined in H, (Y ; C) by the cycle CUC;, oriented in accordance
with C. Let { be an Ath root of unity. We put g¢ = Zj:ll {Jy;. Let M¢ denote
the subspace ker(r. —{~'id) of H (Y ; C). It is easy to verify that B¢ € M. This
is the most natural construction that gives elements of the set M¢. We used it in the
previous section to construct the classes Sy, ..., 8.

Since the homology of the branching set 4 is more accessible, as a rule, than
the homology of the covering Y, one would like to obtain as much information as
possible about the class ¢ from the homology class realized in 4 by the manifold
0B, in particular, information about the linear independence of classes of the form
B¢ ; compare §1.

In this section we indicate two ways of attaining this aim. Unfortunately, they
can be applied only in the case when 4 is a prime power. We have been unable
to eliminate this condition, which somewhat weakens the results (compare [1]). In
both methods it turns out to be essential, though at first glance for different reasons.
Possibly the deepest of these reasons is the presence of the homomorphism u: Z[{] —
Z, (see §1.5). It enables us to go over to homology with coefficients in Z, .

2.2. The homomorphism v,. Let us orient the manifold 4. For this we observe
that the transformation 1’ acts on a fiber of its normal bundle in Y as a rotation
other than a rotation through an angle 7. We orient this bundle so that 7" acts as
a rotation through an angle in the interval (0, ) in the positive direction. We now
orient A so that the intersection number for each fiber of its normal bundle is +1.

Let p denote the inverse Hopf homomorphism (also called the cutting homo-
morphism) Hy, (Y ;Z,) - Hy_(A;Z,). We recall that p can be defined as a
composition of Poincaré duality isomorphisms and a homology inclusion homomor-
phism:

He (Y5 Z,) 25 Hv =R\ z,) 25 B %=1(4; 2,) -2 Hy (4, Z,),

and that it relates the homology class realized by a smooth submanifold transversal
to A to the homology class of the intersection of this submanifold with 4.
Let H] denote the kernel of the homomorphism 1—-1: H (Y ; Z,) — H (Y ; Zp) .
In this subsection, for any natural number r we define the homomorphism

vr: H = Hy_1(A; Z,)]im p.

We first describe v, in geometrical terms (cycles, their transversal intersections with
submanifolds, and so on), and then, more formally, in the language of homology and
cohomology.

Suppose that § € H], and let x be a cycle representing the class # and in general
position relative to 4. (We do not go into a discussion of the exact meaning of the
words “general position”, since this is only an informal description. We only state
that in the case when x is a fundamental cycle of a smooth submanifold of Y they
signify the transversality of this submanifold to 4.) Since g — 1,8 =0, there is a
chain ¢ such that 8¢ = x — t"x . Suppose that ¢ is also in general position relative
to A. Consider the intersection c o [4] of the chain ¢ with the fundamental cycle
[4] € C,_2(A4; Z,) of the manifold A. Since 4 = @ and 7(A4) = A, we have

d(cold]) = (dc)o[d] = (x —1T'X) oA =x0[A]—T'x0[A] = xo[A] —x 01 (4] = 0.
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Thus ¢ o [4] is a cycle. If ¢; is another chain with d¢; = x — t'x, then
co[A] — ¢ o [A] = (¢ — ¢;) o [4] is a cycle that represents the image of the class
of the cycle ¢ — ¢; under the homomorphism p . Finally, if the cycle x is homolo-
gous to zero (that is, there is a chain z with 8z = x), then for ¢ we can take the
chain z — 77z, and then obviously co[4] = zo[4] — zo 777[4] = 0. Consequently,
the image of the class represented by the cycle ¢ o [4] under the natural projection
Hy_((A; Zp) — Hy_(A; Zp)/im p is uniquely determined by the class f. We put
v,(f) equal to this image.

We note that there is an obvious cohomology version of this construction. We
need only replace the chains by cochains, the boundary homomorphism 8 by the
coboundary homomorphism ¢, and the operation o[A] of intersection with [4] by
the operation of restriction of a cochain to 4. This gives the homomorphism

ker(*" — 1: H¥(Y ; Z,) —» HX(Y ; Z,)) — H**'(4,; Z,)/ in* H**\(Y ; Z,).

Without appeal to cycles we can more easily define the class v,(f) by the condition
that f belongs to the image of the inclusion homomorphism i.: H (Y \ 4; Z,) —
Hy (Y ; Zp). (In the situation described in §2.1 this condition is satisfied; see the
proof of Lemma 2.2.A.) Consider the action of the homomorphism 1 — 7" in the
homology sequence of the pair (Y, Y \ A) with coefficients in Z, (in the diagram
the notation of the group of coefhicients is omitted):

Hi (Y, Y\ A) —2— H(Y\4) —— H(Y)

Ol l—r’,l l—r’_l

Hn(Y) —— Hi (Y, Y\ A) —2— H(Y\A4) —"— H(Y)

[A]°l

Hy_1(A)

Since 1 -1 =0 in H, (Y, Y\ 4; Z,), a homomorphism (1 —70)i7!: imi, —
Hi(Y\A; Z,) is defined. The image of HNim i, under this homomorphism lies in
the image of the boundary homomorphism 8: H, (Y, Y\A4; Z,) » H(Y\A; Zp).
Clearly, the intersection [A] o 8~ !(1 — 77)i7'(B) of the homology classes [4] and
O~ (1-10)i7Y(B) (see, for example, [6], Chapter VIII, §13) is defined modulo im p.
We put

(7) vr(B) = [A]0 87" (1 —0)i;(B) mod imp.

Clearly, v, is a homomorphism.

The domain of definition of this homomorphism extends to the whole of H; as
follows. The kernel of the homomorphism 1 - 1": C(Y; Z,) — C(Y; Z,), where
C(Y ; Z) is the chain complex of Y, obviously contains C(A4; Z,) . Therefore there
is a chain homomorphism z,: C(Y, 4;Z,) — C(Y; Z,) such that z,j = 1 — 1",
where j is the homomorphism induced by the inclusion (Y, @) — (Y, 4). We put

(8) v () =[41007'Dz;_Dy'f mod imp,
where D: H"%(Y, A;Z,) » H(Y \ A;Z,),and Dy: H" XY ;Z,) — H.(Y; Z,)

is the duality isomorphism. It is easy to verify that when f € H/ Nnimi, the right-
hand sides of (7) and (8) coincide.
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2.2.A. Lemma. Let B be an oriented k-dimensional membrane that can be lifted
to Y, and let B be the class defined in Hy(Y ; Z,) by the cycle v='(B), oriented
in agreement with B. Then B € H], and the class v\ coincides with the class d
realized in A by the manifold 8B .

Proof. Clearly, 7.8 = f8,s0 B € H] . Let T be a tubular neighborhood of 4 in Y,
invariant with respect to 7. Consider the components of the set pr—}(6C)\(CUC;U

--UCj_1), where pr: 8T — A is a projection. Let 77 denote that component whose
boundary is contained in C U Cj; clearly, the remaining components are obtained
from T, by the action of a power of 7. We put B = Z = 1 7;, where J; is the class

in H(Y\ A4; Z,) determined by the set (U’ T CIT))U(C\T)U(C;\T), oriented
according to the orientation of C;. Clearly, i.f = B, where i, as in §2.2, is the
inclusion Y\ 4 — Y. According to §2.2, v = [4]c 8~ !(1 — T*)/;'. It is easy to
verify that the class (1 — 7,)f is realized by the manifold pr—!(8C), and therefore
[A]08~'(1 — 7,)B coincide with d. ®

2.3. Another approach: application of Smith’s theory. Smith’s theory is a small
collection of homological facts about spaces with the action of the group Z, (see [7],
Chapter III, §3). It is easy to verify that this theory can be generalized from the case
of spaces with the action of Z, to the case of spaces with the action of the group
Z;, (such as Y); the coefficients of all the homology and cohomology groups under
consideration are taken from Z, as before; this is also assumed in this subsection.

In the notation of §2.1 let B be an oriented k-dimensional membrane that is
lifted to Y, let b be the class determined in H, (X, A) by the membrane B, and f
the class determined in H,(Y) by the cycle v~!(B), oriented in accordance with B.
Consider the homomorphism 4 from the Smith homology sequence ([7], Chapter
II1, §§3.3 and 3.4)

9) o — HITHY) 5 H(X, A) & H(4) 2 H (Y) = H(Y) — -
2.3.A. Lemma. The restriction & of the homomorphism oy to Hy (X, A) takes b
to B. The homomorphism a,_, is a monomorphism if HI"(Y) =0; &, isa
monomorphism if X is connected and H,_(Y) = 0; and «y, where [(n +1)/2] <
k < n -2, is a monomorphism if X and A are connected and H;(Y) = 0 for
k+1<i<n-1.
Proof. The equality é,b = B follows immediately from the definition of the homo-
morphism oy . If H!=*(Y) = 0, then the fact that a,_; is monomorphic follows
from the fact that (9) is an exact sequence.

When [(n+1)/2] < k < n—2 we use the commutative diagram of Smith homology
sequences that includes the sequence (9) and the short exact sequences of chain
complexes obtained from the following diagram:

0 —— C°(Y)®C(4) —— C(Y) — C'"/(Y) —— 0

lineal J'l l(l—r)”*2

0 —— CI-Y(Y)® C(4) —— C(Y) —— C°(Y) —— 0

l(l—r)"‘z@o l(l—r)h"z lm

0 —— C(Y)®C(4) —— C(Y) — C'"Y(Y) —— 0
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where g = Zf'z_ol i, CP(Y) =im(p: C(Y) — C(Y)), and in is inclusion (see [7],

Chapter III, §3.6). We first prove that &,—; is monomorphic. Clearly, this follows
from the fact that the component H,i:f(Y) — H,_5(X, A) of the homomorphism
8 of the sequence (9) is monomorphic. By [7], Chapter III, §§3.4, 3.5, and 3.7, this
component is the composition

— 1-1)F2 >
HIH(V) 20 HY (V) 2 Hy (X, 4) 5 Haoa(4),
in which @ is a monomorphism, since by hypothesis H,_;(X) = 0. Let us prove
that (1 — 7)*-2: H,::f(Y) — H?_,(Y) is an isomorphism. Consider the square
0 —— HI(Y) —— Hy(Y)

Jim I
0 —— HI*(Y) —— Hy(Y)

of the homology diagram. Since HZ(Y) = H,(X, A) (see [7], Chapter III, §3.4),
H,(X, A) = H,(X) (since the homology sequence of the pair (X, 4) is exact), and
H,(X) = H,(Y) = Z, (since the manifold X is connected), this square consists of
isomorphisms. Therefore in the square

HI(Y) —2— H!7(Y)

lin Jr(l—r)"’2
H!= (Y) —2— H7_(Y)

of the same diagram the homomorphisms & are monomorphisms, and since by
hypothesis H,_;(Y) = 0, they are also isomorphisms. Consequently, (1 —17)f~2 is
an isomorphism.

We now prove that oy is a monomorphism (when [(n+1)/2] < k < n-2). From
the fact that the horizontal segments

H,_((Y) — H'ZH(Y) 5 HI_,(Y) ® Hy_y(A) — Hy_o(Y),
Hy(Y) — H_(Y) L H\Z3(Y) @ Hy_o(A) — Hyo(Y)

of the diagram are exact we deduce that H? ,(Y) = HJ:; (Y) = 0, since by hypoth-
esis H,_(Y) = Hy_2(Y) =0, H,_3(A) = Z, as A is connected, and H,~[(Y) =
H?_ | (Y)=Z, by what we said above. Shifting to the right along the horizontals of

the same diagram and using the equalities H,_3(Y) =--- = Hy,(Y) = 0, we obtain
successively H?_;(Y) = H;:;(Y) =---=H] (Y)= Hk';l’(Y) = 0. Therefore «y is

a monomorphism, because the sequence (9) is exact.

2.4. Proof of Lemmas 1.5.A and 1.5.B. As we mentioned in §1.6, the classes f;, ...,
B, lie in the image of the monomorphism 1, . Let 8] = w.A7 B . Since Tors Hy(Y)
= 0, the Z[¢]-module H,(Y, Z[&]) is free. We can therefore choose a basis of the
space Hy(Y , C) that goes over under the action of u,4;' to a basis of the Z,-space
Hy(Y; Z,). Here u,A]' takes the coordinates of the vector f; into the correspond-
ing coordinates of the vector B!. Regarding the rank of the system of vectors as the
highest order of nonzero minors of the matrix consisting of the coordinates of these
vectors, we deduce that rk(Bo, ..., ;) > 1k(B), ..., B)).

We can now complete the proof by two methods, either by means of Lemma 2.2.A,
applying the homomorphism v, to the classes £/, or by means of Lemma 2.3.A,
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applying the composition 9 o &; ! to these classes, where 8: H,(CP?, CA; Zy) —
H,(CA4; Z,) is a boundary homomorphism.

1
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