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Sometimes in appears to be useful to consider the Euler characte-
ristic as a (finitely-additive) measure and, in particular, to intec-
rate with respect to it. The following notes are gathered to justify

this point of view.

GEWEPALITIES

1. Integration with respect to a finitely-additive measure.

Let X be a set, CL a collection of subsets of X closed with
respect to be operations of (finite) union and (finite) intersection.
Let R be a commutative ring and /ui CK‘—‘* R a function with the

property

M AU B)= 4 (A)+ u (B)— u (A o B)
for A,B € 0[ . Let T(X,GK,/L) denote the rinc of finite R ~-1i-

near combinations of characteristic functions of elements of Cl . It
is not difficult to prove the following assertion.
1A. For any Bé (L there is a well defined functional
FIX, 0, p)—R: 1 — j 1x) d/u x)  wita j Hndulz
T haplhab) e =34, 4, °

2. Integratioh with resvect to Euler characteristic.

Below the construction of Section 1 is applied in the following
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more specialized situations: X is a topological space, each element
A ¢ U has a well defined Euler characteristic X(A) . Below ele-~:
ments of (I are called t ame s e t s . We take R =Z and

/tL = X/ and abbreviate Gr/(x’(/(,,Z) to ?{()O . Thus on (I(X) we
have a well defined integration-operation which assigns to a func-

tion {- = Z >"A ’ﬂA and a set B € ()Z, the number

Aek
[ Ha) dh(@) =X Ay L(An B)
The basic example of such a situation: X a projective algeb-

raic variety over [R or (]: ' (], an algebra of closed semi-algeb-

raic sets.

3. Fubini theorem and Riemann-Hurwitz theorem.

Another fundamental property of the Euler characteristic is its
multiplicativity: XIXxY)=XXIXLY) . 1t implies that iff—f
is a locally-trivial fibration with fibre [ then X(E)="Y(B)X(F)

To use and extend this property let us introduce the following

" notion. Let X ana Y be spaces with algebras (I ana & of tame
sets. Amap ¥: X — Y is said to be t a m e (with respect to
(I and 4 ) if (i) kP_'(%)e (Il for any %ey and (ii) for any

A‘: OE there exist SQCS1 <. . with 51-,6 oé' such that the maps
SN S A — S\ S

defined by W are locally-trivial fibrations.

It is well known that any regular map of a real algebraic vari-
ety to another one is tame with respect to the algebras of closed
semi-algebraic sets.

The following theorem obviously follows from the multiplicativi-
ty propertf of X stated above and extends it.

3.A. (Fubini-type theorem). If \: X —-—ins a tame map and

{ (S ( X) then
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X

| Mx)d%h)=fﬁ‘hﬂp¥uﬁdﬂx»dXW).

The following corollary of 3.A is a generalization of the Riemann-
Hurwitz formula (the well known relation connecting Euler characteris-
tics of the covering space, the base and the branch indeces of a branch-
ed covering).

3.B. Let Q: )(——-»Y be a tame map and %6 T a function such

that fw-q(w 6('.13) dX(x) does not depend on %& y . put d —
J._, %('L) dX;(I,) . Then
" {y)

1N = [ ) d vl

or, equivalently,

WX = XNd = [ b -1 dxia)

If X and )/ are surfaces, LP a branched covering, d, the
degree of Y ana $(L) the branch index at xeX , then the latter re-
lation is just the Riemann-Hurwitz formula.

For a fixed Y: X — )/ the functions %& T(X) satisfying the
hypothesis of 3.B constitute a subgroup of ?(X), which can be rather
vast, but in some cases there is naturally distinguished % . For
example if X and y are complex varieties, >/ is irreducible,
and LP is homomorphic, then for %(x) one can get the Euler characte-
ristic of u n kfﬂi(%) where u is a regular neighbourhood of X in

x and IZI, is a generic point of )’ sufficiently close to LP(T.) .

INTEGRAL GEOMETRY

4. Radon-type transformation.

In this section "tame set" means "closed semi-algebraic set".
Here we consider a Radon-type transformation with respect to Euler

n
characteristic for the [l ~-dimensional complex projective space @P
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Let Epnv denote the dual (to (LP“ ) space consisting of hyper-
planes of (I:Pn
The Radon-type transformation is the map ?(CP") —_— g.u(a;pr?dhich

assigns the function ‘FVZ H '——"-J‘H ¥(x) d/X/(T:) to a function ¥€ T(([:Pn)

It is easy to verify that

P = fde =) [ =) dtia) (1)

Let %(X) denote the factor-group ?(X)/Z , where Z is realiz-
ed in /:F( X) as the subgroup of constant functions. It follows from (1)
that the map 9,((“)"') —»(}((pr)induced by the Radon-type transformation

y_ "Wyis a duality.

F(CP*)— F(CP™) v

The definition of the transformation ¥ ' "¥ does not involve

n n

the complex conjigation [,P —"(]:P , but this transformation has the
following useful r e al property, that is fairly unexpected
since the Radon-type transformations with respect to the usual measu-

res have no analogous property.

4.A. For any ¥6 T((Lpn/)

J o M @d% ) = [ () d ) i1 ts oaa
J[anv Pla)d X(x) = fmpm\w{(x) d%(x) if M is even .
PROOF. Let X = { (m,yr)elkp“" x Cp* Il‘}& %} . By the definition
of ¥v ’
Jaoe 1@ = [ [ A dby) d2(w).
By 3.A,

[l B dne = | 1) data,y) -

=[]

(cimigeny TP AV ALY
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= [ AW Mln e RP™ Iye 2} dbly).

n

Since { xe IRPn'v| €x) is homeomorphic to RP , if %é RP ,
n-2

and to RP , if l*f Cpn\kpn , the evaluation of X {1 ¢

€ [RP”\\}& II.} completes the proof. []

n-1

5. Dual projective varieties.

Let Ae @pn be a variety. Its dual variety AV < ([Pn is the
closure of the set of hyperplanes tangent to A at its non-singular
points. It is really a duality in the sense that Avv = A . Here we
consider a connection between this duality and the duality (}(q:pn)—"
— (},((Epn'v)appeared above in Section 4.

In this section "tame set" means "Zariski closed set". This
choice of the algebra of tame sets implies that any {. € ?(@Pn) has
a well defined generic value, i.e. the number ¥ such that ¥(’L)— v
vanishes on the complement of some variety of dimension < N | Dpenote
“m)_ v by {(m) . The correspondence ¥ '——*¥ induces the in-
clusion (}(Gpn)_’?(mp%hlch is left inverse to the natural projection
TCP™) — ¢L0P™).

It is not difficult to prove the following theorem.

5.A. FPor any variety A € (LP“ with A + (b there exists ¥ €
€ ‘}'((LD") such that A = ‘b‘LLPP % =+ (D and Av oD M'LPP (?) . Such

¥ is unique up to constant factor.

The functions ¥ of 5.A are constant on the set of nonsingular
points of A . Thus there is unique of these functions that equals 1
on nonsingular Biints of A . Ve denote it by %A . Theorem 5.A
implies that ¥Z = T ¥AV

5.B. Conjecture, ¥A(‘T‘) is equal to MacPherson's local Euler ob-

struction E Uy (A) defined in [ 6] .

6. Dual curves.

Let A be a complex plane projective curve. For a point 3¢ ([P’“
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let m’A(I’) denote the intersection number at X of A and a gene-

ric line passing through I.

6.A. For any 9,& szv

mw (y) = deg A — (mA)v(%) (= degA- J}mA(m)d,%(:c) .

This formula can be proved by applying the Riemann-Hurwitz formu-
la to a projection of a regular neighbourhood of An % from a gene-
ric point P€ cp? lying sufficiently close to \}, . It has the
following well known local variant.

6.B. Let X ¢€ (I:Pz lie on only one branch of A and l}«ﬁ (Lszlie
on only one branch of AV . Then

malx) +muly) =As gr=A"; x
The relation 6.A shows that {A = mA for a plane projective curve
A . Integrating the relation 6.A over a generic line lying on G:pzv
(i.e. over a generic pencil of lines of {P* ) gives one of the

Plucker formulae:

| ec degA=2deg A — [ m,(x) d%(x).

6.D. (Generalized Klein formula). For any complex plane projective

curve A (which is not necessarily real)

deg A~ [ milnddXz)=deg A~ [, . my(2)dXin),

PROOF. By 6.3, (m,)V(x)= d,eg,A — M, (L) . Therefore by 4.a,
[ ufdeg A —np@Iddm = [ my)d W) .

mos dog A= [ mpl2)d b0 = | ny@dli) - [, m(mdi

RP

By 6.C zm,A(IJdX(J:) =2 de% A_ d,eg( AY. These two equalities
ch 3
imply the desired result.
Theorem 6.D for the case of real A , which as well as AV has

only simple nodes and cusps as singularities ,was found by F.Klein [5]
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For the case of arbitrary real A it was proved (and stated without

integrals with respect to Euler characteristic) by F.Schuh [8] .

7. Dual surfaces.

For a complex surface A o= (prand Xe€ @Da let m,A(.'I,) denote the
intersection number at X of A and a generic line passing through
X , and /H,v;’(x,) the Milnor number at g of the section of A by
a generic plane passing through X .

The function ¥A defined in Section 5 can be described in the
case of a complex surface A c (EP?’ as follows.

7.A. If u is a small ball centred at X ¢ A and p is a generic

plane sufficiently close to X , then

Ly =] w2 d ki) (2)

and
¥Av(x\=({A)V(x)—e (=—e¢ + Lr,{A(lj')d'/X/(lj’» , (3)

where € is the Euler characteristic of a generic plane section of A

The ¥A can be described in more standard terms too!

7.B. Let A = (L‘Pa be a complex surface, C4,..., C'z be all the ir-
reducible curves contained in the set of singular points of A . Let
m«{, denote a generic value of mA (-'XZ) for X & C{, and /4-1', a gene-
ric value of /ﬂ'(:)(fr,) for T € (4 . Tet mci(x)denote the intersection
number at X of Ci, and a generic plane passing through X . Then

for any X ¢ A

f lx)=1 - uP(x) + i (my + gy = Mg, ()

—_

-
Integrating the relation (3) over a generic line and a generic
v
plane in (LP gives the following Pliicker-type formulae.
7.C. If € 1is Euler characteristic of a generic plane section of

3
a complex surface A == (]:p and € is Buler characteristic of a ge-



3!
il

134

v
L neric plane section of A , then

[, 1z dhia) = deg A"~ deg A + 2¢, (4)

e—2d69A=8"—2¢9(} A (5)

Relations (3) and Theorem 4.A imply the following theorem.
7.D. (Klein-type formula). For any complex surface A [ {Da(which

is not necessarily real)

() d %) = | 1. (2)dL(a)

AV RP?Y

SAnRP’ ¥A

8. Plane algebraic wave fronts.

Let C't denote the space of plane circles of radius T . Since

a circle of radius ¢ is defined by the equation
T2+ lj,z - 24U - 2,1)’(} +w =0

with W= u*+ v*— 2* , the C, is the paraboloid defined in the
3-space with coordinates ’LL,U', w by the equation 1,1,2' +Ut-w- "Cz=0.

Let A be a plane affine real algebraic curve. The curve on C»L
that consists of the circles tangent to A is denoted by CP,L(A) and
called the wave front. The same term denotes also the image of q).t(A)
under the natural projection C.t—" R?: (‘LL,V,W) — (%,V) . For the
sake of simplicity suppose that the set (LA of complex points of the

projective closure of A does not contain the points (0 . 1: '_‘_'1:) (the

circular points). Arguments similar to the proof of 6.A give the follow=

ing relation.

8.A. For any l},é CZ
Mg\ = 2 deg A = jwmA(mm) .

By integrating this relation for l}é (p,t(A) with respect to X and

using 6.D one can obtain to following relation announced in my note

[10].
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8.B.

o (Y ALY=2 ] my @dXm) +2 m (i)

J R, (A RAY CAN(CPLARPL)

{
where (LPL and [RP" are the complex and real lines of infinite

points.
In particular, if CA?(0:1: = i) ,then J m%(m(%) d,x/(y,)
P (A)
does not depend on U . Thus we have a kind of conservation law. The
condition QA 3 (0:12 t‘L) is essential, as the case of A==circle
shows.
MISCELLANEOUS

9. Rohlin's formula on the complex orientation of a real curve

rewritten.

Let A C:[sz be a real non-singular plane projective algebraic
curve of an even degree 2{&, . Suppose A halves its complexification
@A <= mpﬂ: Then the halves, as oriented surfaces (with the orienta-
tion determined by the complex structure) induce two opposite orien-
tations of A , since A is their common boundary. These orientations
of A are called the complex orientations of A . V.A,Rohlin defined
them and found a fundamental restriction on them \7] . Here I rewri-
te the restriction in terms of integration with respect to Euler cha-
racteristic. It has been done essentially by Sharp [9] .

Each component of A devides ‘sz' into two parts. One of them is
homeomorphic to disk, it is called the inner side, the other is homeo-
morphic to Mobius band, it is called the outer side. The complex ori-
entation of A determines the orientation of the inner side of a com-
ponent of A . We fix the orientation of the union of inner sides of
components of A via the outer components (i.e. components which do
not lie in inner sides of other components). Each point of these union
recieves then the index with respect to A . It equals the difference
between the number of components of A which encircle this point and

determine the same orientation at it(as the outer component encircling
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it does)and the number of the other components which encircle the
point. A point that lies in inner side of no component of A receives
index zero. The index of J¢ HQDZ (with respect to A ) is denoted
by iA(x)

9.A. (Rohlin's formula)

[ Tl = &% .
RP*

10. Groemer's generalization of mixed volumes.

In this section "tame set™ means "union of a finite collection of
compact convex subsets of R ". The fundamental role in the subject
under consideration is played by the following observation of H.Groe-
mer [4] .

n
10.a. If A and B are compact convex subsets of R. , then

/“A+B - 'ﬂA * ﬂs ’
*
where A+R = [ 3+ l} | x ¢ A,l}e B} is the usual Minkowski sum

and ¥ denotes the convolution transformation with respect to Euler

characteristic

TR« F(R") — FRM:(4,9) — 1 x4
with ({; t})(x)= Jw{i(m—t})@(l})d%h})-

In [4] Groemer does not use the symbol of integral and the word
convalution. Explicitely this interpretation was pointed out by V.P.
Fedotov [2, Chapter 4 ] . Theorem 10.A suggests to substitute the con-
volution * for the Minkowgki sum in the definition of mixed vo-
lumes. It takes the opportunity of extending this definition to the
case of non-convex sets. In fact for any A1 9oy Arb, which are fini-

te unions of compact convex sets, the function

ooy M) = [ Uy x4, (2) da

Rt\r X *
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is a homogeneous polynomial (here the integral is usual, with respect
to the Lebesgue measure). The coefficients of this polynomial are the

mixed volumes of A1 .. Ai (up to constant factors). See Groemer [4 ]
7

Y
One can find there also some curious relations which involve integ-

ration with respect to Euler charactestic and usual Lebesdue measure.

1. d—to-1 maps.

Purely topological applications of integration with respect to
are limited since there are continuous and even smooth maps, which are
non-tame with respect to any reasonable algebras of tame sets. However
in the PL_ -category each space has the natural algebra of tame sets
namely, algebra of compact PL. -subsets, and any pL_—map is tame
with respect to these algebras. Consequently some problems, which seem
to be highly non-trivial in Top-and Diff-categonries. are trivialmn PL
For example, such a problem is the old problem on d ~to-1 maps. In
its simplest form it asks whether there exists a d,—to—1 map 29”—»§D”
See Chernavskil {3] .

11.A. Let X and ‘y are spaces with some algebras of tame sets.
If there exists a tame d—to—1 map X - >/ then ’X,(X\ = d.X«(Y)

11.A follows from 3.B for in this situation one can put %($\==1[j

11.B. (corollary) . There does not exist a d,—to-1 map 29&__+_;an

with dﬁ71 , which is tame with respect to any algebras of tame sets.

12. Concluding remarks.

The examples described above seems to show that integration with
respect to Euler characteristic can be useful from the heuristic
point of view as well as for making statements more compact and ex-
pressive as well as a technique of proofs. It is closely related with
the sheaf techniques. For example the Fubini-type theorem 3.A is re-
lated to the construction of direct image of a sheaf, etc. Compare, for
example, [1] . However the integration with respect to Euler characte-

ristic is much more elementary and sometimes easier to apply.
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