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If 'QQ is of type I,then

10)= Blo)rr-1 mod 4 (27)

§ 4. APPLICATIONS

4.1. Sufficient conditions for applicability.

As in Theorem (3.B), let A be a reduced real plane projective
curve of even degree without non-real singular points and let A be
a singular point diagram of A . Let us consider the following con-
dition

(4.A) For each irreducible component of the non-singular model Qﬁ

A the images of all real path components except at most one do
WM'W’\M'NVWWW_\NW\,M’WVAMM
not contain a singular point of A .
P e e T e A S PN S
Sometimes (4.A) makes Theorem (3.B) to work: )
(4.B) Under (4.a), if each singular point of A has no non-

real branch then q/A vanishes on BA .

L et T Ve Ve TR

(4.B) is generalized below. The generalization is not applied in

this paper. We present it for the sake of completeness only.

(4.C) Under (4.a), if at each singular point of A each non-real
branch /5 has an even intersection number with the union of all
R iad FVNIY O NN A s e e A NN N NN O T
branches different from .)B and oomj jg R then (%A vanishes
QEE)A

Now as in Theorem (3.D), let 'q& be a smoothing of q) . Let

us consider the condition
(4.A') The (Q:ug n3dd) united with all components of
RHQ[]JD homeomorphic to I is connected. It is a substitute for (4.A):
TN A A e AT

(4.C') Under (4.A'), i; each non-real branch jﬂ of Q:qj‘\ 23

has even intersection number with the union of all branches different
NSNS TN NNt NN NI PN i AN AAY NN TN ONTSSA
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from fp and. conj p , then g, vanishes on BA .
The following criteria (4.E) and (4.F) require the condition
(4.D) instead of (4.A') [(4.E) is slightly less general than (4.F)] .

et D* = nD/GOij , ?ezc\}/e /conj ’Zgzysuﬂ+(cf.3.2).

(4.D) Each boundary component of ng has even linking number

with the union of the others boundary components of ;E.g .
VIAAAAA MNANE SAn At maas | VAL M A A VA A A, | PP

(4.E) Under (4.D), if each component of Z)*contains only one

w—closed component 95 ’R\Y'E , then q(A vanishes on BA .
(4.F) Under (4.D), if the subgroup in, f{{ ( 3 7€ ; ZZ//z ) of

Hi (20 Z)ss containea in in, H, (35 Z ) +in, H,(D; Z,5),
then ¢ , vanishes on B N

AAAAAa,

Proofs are given in 6.6.

4.2. Korchagin's curves.

Let ,A be a real plane projective curve of degree 7 with only
one singular point and let there be 4 branches at the singular point,
A
all branches be real, and one of them be transversal to ithe others,

-

which are ordinarily tangent to each other (such a singular point is
denoted hy ZZ,; in Arnold's notations). In some (perhaps non-linear)

coordinates X, 9 in some neighbourhood of the point the curve is

defined by an equation
(4 -0 ) Y-8z )(Yy-cr™) =0 (L#8,8#C Cc#a).

Real schemes of such curves were treated by Korchagin [11] . He con-

jectured some congruences. They constitute a part of the following
propositions which does not involve type of the curve (purely real

point of view).

(4.G) Let A- has a real scheme outlined in the fig. 3 ( (o(>

L g

W WAAAL A

designates a set of (¢ ovals each lying outside others)
A AAAAAAAN AL MAAAAANA AN I AAAAA A A
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a) 8)
o ®
(B <p)
Fig. 3.
552 o /‘" 6 then w-p=4dmod B, i «+p=3  they
-p=4timodf ,ir «+p=4 ana A isof type m
then &—ﬁ#O mod,g , if A is of type I then
«-p= {0 mod4.
(4.H) Let A has a real scheme represented on the fig. 4
A\,
<B>
Fig. 4.
If oc+/6—6 then ﬂ=—2 mod § + if « +/6=5then

< = /@—~2+1m0d$ , if 06+ﬁ—4 andA is of type I then
K —p = 2mod5,1f/\ is of type I then oCﬁ——Q,m/Od,4
The condition £ + /3 = - means that A is an (M—{,)—
curve.
To prove (4.G) and (4.H) it is enough to add the straight line
tangent at the singular point to three (pairwise tangent) branches of

A and to apply the theorem (3.B) to the reducible curve A f,
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of degree 8. The theorem is applicable due to (4.A). We have a possi-

bility not to do a straightforward calculation of the invariant B(QVA),

Really, the theorem implies that for each scheme from fig. 3 and 4

there are a congruence of the form o "/5 = U mod 5 in

M -case, a congruence of the form o« —ﬁ =N '1 mOd, 8 in
(M“‘ 1)—case etc; the true values of U can be taken from exam-

ples constructed by Korchagin [11]

4.3. The case of non-degenerate double points.

Let A be a real plane projective curve of degree (V= 2/&' and

let real non-degenerate double points with real tangents be the only

singularities of A . Let [RPE’ be a half of ‘RDR' bounded by

lRA . As in 2.4, denote by rA the union of components r: s eee
r ¢ of RA containing singular points. Denote by C‘: S
C,f,fm (1< 4 < = )' components of [sz\(rAU @) which 1ie on

4 2
the other side of r than RP+ and by L some simple
r Py JIE
loop in A non-contractible in Pp (if such a loop exists).
We present a straightforward independent description of (VA ’ ° ,

q/A) and BA constructed in 2.4.

+h

v
(4.1I) Let aj be an element of H4(r N Z/Z) realized 12;1 the
boundary of C; and let (, be an element of H4 (rA ;Z/Z)
realized by L . Then VA is a subspace of H4 ( [—A : Z/Z) ge-

nerated by {),, 3; (<< 2 , | < 1 < ‘Z(lz)) The bilinear form o

and the quadratic function q/A are determined by the following:
L e ] P I~~~ NS NITNAANASNNNNSN A s TN NN
(i) q/A 1s equal modulo 4 to a number of singular

points through whlch the boundary of C passes only once; qIA(D

k
1s equal modulo 4 to ( /H plus the number of singular points
NPt NSNS NSNS IS NN NN

through which |  passes as in fig. 5 (not as in fig. 6);

4
NN
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RF. 7 R

<

Fig. 5.

P
Fig. 6.
0t o 9r (1, # (ko)

(ii) J n 1j ’ is equal modulo 2 to the number

v £

of singular points common to the boundaries of Cj and C,L

(i1i) ¥ o is equal modulo 2 to the number of singular

j NN AN NSNS ~~ AN AN PN N~ s

CG P 2
paints through which the boundary of*%asses only once and L_ passes
WWWWWMWMWW CN S~~~
ag in £ig. 5.

The space B is generated by elements realized by smoothly
AT N~ A T~ NS AN AN NN N AL e,
immersed circles.
ONS NNt NI NI NSNS
We have described all ingradients of Theorem (3.B). As a result,

we obtain that in the situation considered in this section the theorem

works iff the following condition is satisfied.

(4.J) Each real branch of A ( i.e. smoothly immersed circle)
AN~~~ I e  a A ~ o~ M Y T e
contractible in W{pz passes through n EEO IWOd,4 ‘ singular
P NS NI NSNS N o —~ TN~y L e N
points and each real branch of A non-contractible in [sz pass-
L e W“__’ i g ’\’&*‘V‘M Va4 R O NN NSNS N
es through M = 0"13 IWOd 4 singular points.
e et N~ AN

To prove the equivalence of (4.I) and the definitions from 2.3,

2.4 it is sufficient to observe the following: for each non-degenerate
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Iry double point P with real tangents the surfaces RP’ Q?P are
g;?ff homeomorphic to a disk, E::P to a MGbius band and further, vP =
(T Let us apply the criterion (4.J) to curves of degree 6 represent-

j. i ed by figures 7-11 (the first four curves are supposed to be reducible)

AR

% ‘ Fig. 7.

i

(B) U \D . .

Fig. 8.

P2

Fig. 10.
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(o)

A

Fig. 11.

According to (4.J) Theorem (3.B) is aplicable to all these situ-

ations. As in 4.2, the Theorem immediately implies that the appropriate

congruences for o — B are to be satisfied. The concrete form of

congruences may be obtained by computation of E)(q,Al) or by known

examples (cf. 4.2)

Assumption Assertion
+p=6 x-p =6 mod$ o
rig.7 | <P “
X +pB =5 < - B =50 ¥ mod 3 .

} o +p =4 a,hdAi.so('[gpz][ x = p FEL mod 8

| A is of type I x -p =2 modi

£ig.s | X tA=S % -p =5 modl

o +p=4 < -p =4 016 mod §

| x +p=3 and A is o(twef[ o -p Z1 modl
Ais op type I o« -p =1 mod

fig.9 X + p=3 X -p =5 mod 8 (ie x=2,p=1)

DC+}5=2‘ x -p =20 a2 mod 8
Ais op type | x-p =1 mod 4
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Assumption Assertion
fig.10 | X*A =7 oc-p=d midd (e o3, pe0)
064']552 o(-p 21014 mod 3 {t‘e‘uzl,ﬂ“o
o+p =1 and A is of type I x -p =-1 mod$ (ie o=1,p=0)

A is of tgpe I ox—-p -1 modid

x+p =8 -p=4 mod§

=3 o5 mod}
x tp=6 anJ,ALSOI'(:gpe'][

A is of typel

Table 1.

Purely real part of first four blocks (results not refering to
the type of the curve) was originally obtained by G.M.Polotovskij [14
(via a different approach). In [14] he considered curves of degree 6
decomposed into curves being non-singular and transversal each other.

Rt

One can find there a big stock of situations in which QB.B) works.

The first row of the last block was conjectures by I.V.Itenberg
when classifying curves of degree 6 with one

non-degenerated double
point.

Numerous examples prove necessity of (4.J),see e.g. [14] . In par-

ticular, there exist reducible curves of degree 6 shown in fig. 12

///\\ {oey

A\
/S N

NS

any o, pwith &+ <5

Fig. 12.
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4.4. smoothings of some plane curve singularities.

Here we consider cases when in some (perhaps nonlinear) coordi-

nates $,U, in some neighbourhood of the singular point the curve is

defined by a real equation.

Ly - ax®) y—bx*)y—cat)=0

( a16’ ¢ are distinct numbers not necessarily real)

( é;w in Arnold's notations; three nonsingular branches ordinarily

tangent to each other) or by a real equation

(y-ae*)y—bz*)y—cat)ly —dz*) =0
( a,ﬁ,c',d, are distinct numbers not necessarily real)

( X24 ; four nonsingular branches ordinarily tangent to each
other). We have chose namely these singularities because o? theirdwr
applications in constructing curves with presecribed topologic¢al pro-
perties, see [21] . For PJ% (five nonsingular branches transver-
sal to each other), which is the other singularity involved there, our
caoangruences could be applied too. We have omitted these applications
since, as it was shown by E.J. Shustin [20] , smoothings of hhs
are essentially affine nonsingular plane curves of degree 5 with 5
different asymptotes . Such curves are considered above in section 4.3.
For t?w as for N16 y the classification is completed (see [Zﬂ)
[20] ), for X, it is closed to completion (see [23] , [20] ).

In these classification achievements, congruences of the sort consi-

dered in our paper play important role.

Let us apply criteria (4.C') and (4.E) to smoothings outlined

in the figures 13 ~ 17



(B
Fig. 13.
A

i (x>
P>
i Fig. 14
| oc §, o gy e
. Py *
i . Fig. 15.
b

o X,

% {py

D
Fig. 16.
?f \:::3 (o) {pD
o 1ty )(14
Fig. 17.

According te (4.C') theorem (3.D) is applicable to situations of figu-
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res 13, 15-17 and according to (4.E) it is applicable to one of fig.

14. As usually, the concrete form of congruences may be obtained by a

computation of B QVA\ or by known examples (see the latters in
[22] ana [23] )
Assumption Assertion
o+ p =4 =0 modf
fziéw o+ p=3 o =0 ot 3
Tige15 | oc +p =2 and the smoothing o =0 ot l
is of typel
the smoothing is of type I x-p=0 modf
o t+p =3 x =3
figs14 | o + p =2 X =2
X + A =1 and the smoothing | o€ =
is of type "
the smoothing is of type T x - p=-1 mod 4
xX+prY =9 p=1 mod4
ot +p+Y =8 p=0oc2 Mmodd
£ig.16 | o¢ + p+ ¥ =7 and the smoothing | B #E 2 mod 4
is of type I
the smoothing is of type I x-p+¥ =-1 mod 4
x +prY =9 p=0 mod A
£ig.17 X +pry =% p=-4 ottt modi
X tp Y =7 and the smoothing| 5 # { mod 4
is of typel
the smoothing is o{ type I o - p+¥ = mod 8
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In [20] one can find some more isotopy types of smoothing
of XRA and appropriate congruences which can be derived from our

theorems. They can be supplemented by congruences refering to the

type of smoothing.

§ 5. PREREQUISITE FOR PROOFS

5.17. Rohlin-Guillou-Marin congruence . (see [7 :\ ).

Let X be an oriented smooth closed four-dimensional manifold
and let F be its smooth closed two-dimensional submanifold realiz-
ing in H z(X B Z/Q,) the class which is the Poincaré dual to

the stiefel-Whitney class W, ( X) . Then

2BLg) = 0(X) — FeoF mod 16 .  (28)

where q/ is the Rohlin-Guillou-Marin form of the pair (X,F)1 G(X\
is the signature of X and F ° F is the natural Euler number of

F in X (self-intersection number).

5.2. Informative subspaces.

Let (V , 0, QV) be a nonsingular Z/4 —quadratic space. Its

subspaces are defined to be quadratic spaces (u/ . °| 3 q,\)

14

. == of — ©
where u is a vector subspace of V, q/‘ q/‘u, and ‘ \%Xu,
We say that a subspace is informative if 7/, contains its own ortho-
M/WW\M
L
gonal (with respect to ° ) complement " and q/ vanishes

L
on /u' . This is conformed to the definition in 2.1: every informa-

tive subspace is an informative space (but not vice versal)

5.A. A nonsingular Z/4 —quadratic space is cobordant to any
N ANANANALIAT AN AN TTNNAAA A N AR
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its informative subspace.
~NONN MNW\’VW

In various equivalent forms this fact is well known. For the
proof it is enough to check that the graph H < u, i) v os the in-

clusion W <V provides (according to the definition of the Witt

DO =) i e

group, see 2.1) vanishing of (U,
Witt group.

[The definition of an informative subspace may be transformed
with evident alterations from nonsingular to informative ambient spaces.

An informative space accurs to be cobordant to any its informative

subspace .|

5.3. Additivity for B

Let F be a closed subspace and let (V," ’ q,) be a Z/‘4 -quad-

ratic space with |/= H4 F Z/ ) and o = the intersection
2
form. Given a decomposition of F into two compact subsurfaces FA

and Fz (perhaps non-connected) with common boundary 3 =5’ F4 = aE& ’
there naturally arises subspaces 'u,,l = {,n*HAF{', Z/Z,) ,

2,= W/ H (Fz ,Z ) u..u ‘I‘uz of V . It is evident
that = m hi(d, Z,,)

So, according to 5.2, if q, vanishes on {'n* H4(a;

Z )  then ( | ) is an informative subspace of (| o qv),
(114, |, q,l) and QVD are informative spaces and B( )‘——
(‘Hm q,[u +Infact, §  vanishes on Wy Hy(0 Z))
iff q/| is an informative subspace iff (1), ol qll
and ( \ O,l are informative spaces.

The Z/4 -quadratic space ( {F Z/{% QV) induces
(by 1',n,* ) Z/4 -quadratic spaces (H (F—j Z/ qu
where ° = the intersection form and q,j e q/o iy . These
spaces are informative if (and only if) ('uq , of R q,l) and
('u,z, ° I, C[ll) are informative spaces and then they have the same

associated nonsingular spaces. Thus if q/ vanishes on 'i/ﬂ»* H,,(ﬁ )
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Zs) ther

B (g) = Blg,) + Blg,) (29)

5.4. Low~dimensional Z/4—quadratic spaces. (see, e.qg. [2] ) .

Any Z/4 -quadratic space can be decomposed in an orthogonal sum
of one and two-dimensional quadratic spaces. Besides if Z/4 —quadra—
tic space kv,, °, q/) is odd (i.e. there exists Ve \/ with
Yo = ) then it can be decomposed in an orthogonal sum of
one-dimensional spaces only. There are only two different (up to iso-

morphism) one dimensional spaces:

(Z/zf,q,ﬂ with (L°(L=1,q,+((1/\=1 gor 0+ 0
(Z/2’7°,q,_) with (1,0(],:1,({/_(0/):'4 for (l,=f=0.

Both spaces are odd. It is clear that B(Qﬁ.) =1 and Bkoy‘ﬁ)= —1.
;
Two-dimensional spaces are even iff they are indecomposable, we have
no need of their precise form and remark only that in this case values
of B are 0 and 4 . Since a two-dimensional odd space t\l,°

)
q/) is a sum of two one-dimensional spaces, it has B(q,)=0 or

+2 .

§ 6. PROOF OF THE MAIN THEQREMS

6.1. Prototype. Marin's proof for nonsingular curves.

The factor-space (]:PZ/ COI’V] carries a natural smooth struc-
ture (as always when the fixed point set of a smooth involution has
(real) codimension 2). It is well known that this manifold is diffeo-

morphic to Sl‘ . The complex point set (LA of the (real) curve
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A is invariant under the complex conjugation. Its image (]:A/con,j
is a compact two-dimensional submanifold of (BPQ'/COrLj = S[' with

boundary RA . It is clear that «;A/COM is orientable iff the

curve is of type I.

Apply the congruence (28) to F = (EA/COij V] [RPf . Straightfor-

ward calculations show that
2
FoF = 28" =2 X(RP?)
(see, e.qg. [16]) and so (28) turns into

LRPY - £* =B(g) mod §

It remains to calculate B(g).
Now apply 5.3 to F1 = [sz' ,Fz‘—' (EA/(‘,On,j and 0')=RA . Some
straightforward calculations more show that Qv vanishes on Ln*HTLE,
Z/Z) and thus on 1}h,*H4((3', Z/Z) (see [12]). So ‘we get
Blg)="B(g,) 5= 9~

If A is an M -curve then the genus of Fz is zero. Conse-
quently, q,z = 0 and B( q,z)=0 . So we get (1.A). If A is an
(M_“—curve. then FZ is homeomorphic to the projective plane with
several holes. So in this case the associated nonsingular space has
dimension one and we get B( q,z)z * (see 5.4) and (1.B). 1f A
is an (M~Z)—-curve of type T then F}L is homeomorphic to the
Klein bottle with several holes. In this case the associated nonsingu-
lar space has dimension 2 and it is odd, so that we get B(QVQ)=O or 2

(see 5.4 and (1.C)). If A is of type I ,then q/z is even and
B(QM)—-——:O mod, 4 - This gives (1.p).

6.2. An auxiliary surface and its decomposition.

For every singular point P of the curve A let us fix a suffi-
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ciently small  ball @P < CPZ with center in P . Introduce an

auxiliary curve As defined by an equation (= —-g('.t,o + 11‘,4 —\—'.X‘, )

where (I is the polynomial chosen as in 2.4 up to a positive con-

stant factor and & is a positive number such that for any té(o,ﬁl

2k 2k )

the curve defined by the equation (Lr——f,(.’[‘,o + X+ X, has

no singular point and is transversal to ao(()l) for each P , cf.

2.3.

Let us factorize (]:Pz‘ by c,on,j and take in 54= (Lpz/COYlfj sur-
face F= @Aa/(‘;(mj U[RDZ where RP% c ‘RPZ is defined by the

inequality 0z —¢& (:X; + 124 + x,,) . This auxiliary surface has

* .
a corner lRAg . The intersection of & with U®P=¢‘ap/00njis
nothing but the surface Z constructed in 2.4. Let us set Z-‘—’UZP
and ’? = U ’%P

We decompose F into three pieces ﬂ ﬂ and ﬂ“ where ﬂ‘

coincides with RP% [ is a union of /f with a small color ( of
RANUIetk Dy in CAg /onj\v Lnl 2y and N*=CL (F\

M'yM) . Each picce is a compact surface. Boundaries ‘0 and &
of ' and [1" form together the boundary & of |l . an interior
of [I' is nomeomorphic to  (CA\NRA)/con].

The surface || plays first fiddle and we need to know some its
details. Each oval of RA, begotten by an oval of RA gives rise
to a component of || homeomorphic to an annulus. Let us remove these
components and denote the remainder by H a - A boundary of [}

' I
consists of real (contained in B ) and imaginary (contained in a )

circles. There exist natural isomorphisms

~

“P3H4(HAUZ;Z/2) — 2o

H(My5Z, ) — Vs
H,(d'n [T, ;Z/z) — R,
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H4(a“ﬂﬂA;Z/2’) — Bl‘s

(31)
HAHA;Z/z)/m*HM‘nﬂA;Z/z) —\,
Hll, 5 Z,) /ing 20,5 Z,) —= o/ Ba
( vA ’VA , VA , RA ,BlA ,BA are as in 2.4) -such that the

diagram

ing

(', Z,) —= HlM Z) =% 5 WM s Z)

4)!174

HA@'HHA;Z/Z)

i in

Ra

BA pas?

is commutative.

6.3. Computation of the Z/4 -quadratic form.

In this section we compute a form q, H H U Z Z/,Z) /4

induced by inclusion H A U Z C"—“F from the Rohlin-Guillou-Ma-

rin form q,of (54 F) . More precisely we prove that E_Eg isomor-
phism Y (see (30)) identifies q,* with ql-\
@ -
Recall that H “—A 1Z/2') H ( Z Z/Q,) and re
mark that LP"‘ coincides with a sum of composite homomorphism

~4

(T Z,) 5 HW5 Z,) =5 Wil Z)

(here |_A is as in 2.4 and W is a regular nelghbourhood of

U Z containing I_-A ) and m’*‘ 4 Z Z/) t AUZ Z)
2 72
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Now it is clear that to prove the coincidence of the quadratic forms
it is sufficient to check that q,*o 9! satisfies condition (iii)
from 2.4, which determines 6/,, . Moreover only formula (10)
requires to be verified since the others are immediate consequences
of the definition of the Rohlin-Guillou-Marin form.

In fact (10) is nothing but a special case of the general rule: if

EGH/[“RP‘% ;Z/z) then

(—4)5 e ik (8) =+
glin8) =

b (32)
0 , i in, (&)=0
. 2
(here 'HLF is the inclusion’ IRPE — F and @Y\'P is
the inclusion [RPt - ‘sz) .
In the case where mi (E)'_‘O the equality turns into
Q'(tni(g)) = and was proved by Marin [12] (cf. 6.1). It remains

to show that q,(m:(‘é)) = (- ﬂ&' ig inh(g)+0. It may pe*done
as in the previous case using a special membrane. We like to do it
in another way.
Let us suppose that mi H, URPz "Z/Z) +( and denote by
(y andYthe forms induced by iy Hy (CAg [oonj ; Z/z) —
AR Z e i HRPE 5 Z),) — H(F5 Z,) ron
As it follows from Marin's result there exists ¥ ¢ |-{ {} such

that

,. P
C for any § with 4l (g) =+

: F( =
q’“’n’* E» 0 for any E with {szi(‘E,)=0

Hence, firstly, by 5.3 invariants B(q/’f)'B(OVR\ are well defined and

Blg) =Blgy) + Blgy) (33)
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and, secondly,

Blg,) = mod b (34)

Furthermore, as in 6.1 applying of (28) we get

V(RPE) =k +Blg) mod b (33)
Now 1e3t‘us introduce F (LA /CO“{ U lRP>E where Rpa - C% ([P\Pz\
\lRPz\ . Repeating previous notations and arguments obviously modi-

fied we obtain
(VR =
Bg) = Blg'y)

XR@92V+BWme$
Both forms qudq/ are defined on H (CA. /conj Z ) . For
ge H,(CA, lon Z/z) the difference QM(& q,,}(g) coincid—
es with the linking number of £  with RP®  multiplied by
202, — Z ) Tis linking number is 0 iff Eo§ = 0 . so
q,} = — q,l? and thus

B((]”) +B(qv'7) =0 mod & (38)

(36)

(37)

Let us sum (33), (34), (35), (36), (37) and (38). Then taking into

account that 'X,([Rpt )4— %([sz;/ﬁ) =1 we get = 1 —‘2&,2' mOd/ 5

since T €l 1,—” this implies T = (- ”

6.4. Proof of the theorem (3.2).

Let F ﬂ ﬂ“ Z lRPE , HA‘) q’ and QV* be as in 6.2 and

6.3. According to 6.3 the Za -quadratic space (H (HAUZ Z/.?)

*
° q, ) is isomorphic to (VA ’ ° 3 q,A) and consequently by the

hypothesis of the theorem it is informative. So we can apply 5.3 to
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the decomposition F = F1 U Fz with F4 = ﬂU Z and F2 =

= ﬂ“U(IRPt\Ih,t Z) . We get

B(g)= Blg,) + Blg,)
where qli'/ = qvo{{/n/*'- HAF‘; ;Z/‘e) — H4(F3 Z/,?,)} The Q“ is zero
on 1'/ﬂ/* H4(H\HA 5 Z/z) < H4(F4A; Z/Z,) since ﬂ\ HA consists

of components of which are homeomorphic to an annulus and each

contains an oval in its boundary. It follows
Blgy) =Blg*) =BG,

The restriction of q/Z to bn*.H4(RP:\In’L 2 are defined

by (32). Thus

blg,) = b+ Big"
where g is as in (3.A) and q/"=qyo{{’n*:H‘(H“;Z/g)—*H‘(F;Z/Z)}

To finish the proof we repeat Marin's arguments reproduced at tHe ‘end

of 6.1. Here we use that the interior of ﬂ“ is homeomorphic to
(QA\[RA)/COM and that the number F° F is determined by the

formulae

F-F =24 -2 % (RP})
WRP?) = % (RP?)

6.5. Proof of the theorem (3.B).

It is similaxr to that of (3.A). They differ in the choice of de-
_ ! |}
composition F= F4 U Fz only. Here we take F4= T ana Fz”‘:‘ﬂ Uﬂ
. |
By (32) the QV is zero on ‘bn* H,((a ,Z/z) and by the hypothesis

of the theorem it is zero on i,n,* H4( ﬁ“ 5 Z/,Q,) . So applying 5.3

we get

Blg) = Blg,) + Blg,)
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where G = 0°lify: H4(FL3Z/2 ) — H,F; Z/2 ) . Isomor-
phisms given in 6.3 show that the (, factorized from W, (F,; Z/z)
o H (RS Z/z)/m*HABR ) Z/z) is isomorphic to (, . At
1ast Bl %\"‘% + B(q,") where D is as in (3.B) and § is as an 6.4.
So we get

Blg)=Blg,) +8 + Blg"

and the end of the proof is fairly the same as in 6.4.

6.6. Proof of (4.B), (4.C) and (4.F).

First we are going to check that under assumptions of (4.B) or
(4.C) the qIA‘ vanishes on bA . Since there is an isomorphism (31)
between E)‘A and H1((3“ nﬂA;ZZ) transfering alvA to q, o “\,*,
where q/ is the Rohlin-Guillou-~Marin form of (SI‘ R F) , it is
sufficient to check the vanishing of q, on  ft, H{(ﬁ“nﬂA : Z/Z)

Under assumptions of (4.B) each component of ﬂ" contains no
more than one component of J ' n n A . Consequently the homology o
class realized in HAF-, Z/z) by that component of (" N ﬂ AA is
equal to the sum of the others boundary components of ﬂ" and so
this class lies in {«flr* H4(al > Z/Z) , where QK vanishes.

Now let assumptions of (4.C) be fulfilled. Then for each component
yny boundary compo-

R

[

of ﬂ any homology class rTallzed in H4(F,Z/
nents of that component of n reduces to the sum of an element of
, 1.

tn*H4 (0 ’ Z/z)an_d elements realized by circle components of ? N
n(uﬁz):) (ones begotten by imaginary branches of the curve A

at its singular points). Consider one such component 'Xv of 7 N

n ﬂa@; , the class [T1e H4 (F; Z/Z) realized by | and

the boundaxry ( of F | o@; . Then

g @) =20 (v ,0\1) mod, 4 ,

*
where ”(' is linking number in BZDP = 53 and hence
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g e =20 Lrr, pr (BNT) mod 4

where Pz; JDP — 23; is the natural projection and ‘T* is any
component of P7‘1tr) . The latter linking number is equal to the
intersection number of the non-real branch /ﬁ of A at P ~which
begots XI* with the union of all branches different from /ﬁ and
Conj‘ﬁ . Thus q(xq =0  and we have finished the proof.

To prove that under assumptions of (4.F) the %A vanishes on IBA
it is sufficient to note that: boundary components of ye give gene-
rators of BA ; for elements of in* HJ&'ZE; Z/z)the values of
the Rohlin-Guillou-Marin form coincide with the linking numbers involv-
ed in (4.D); the Rohlin-Guillou-Marin form vanishes on in*‘44(23+ ;ZZ;Q)

cf. 6.1.

§ 7. ANOTHER APPROACH

7.1. Praototype: Rohlin's proof.

Let C be an antiholomorphic involution of a closed gquasicomplex

manifold 9 of complex dimension An . Suppose that
dim HelYs Z ) = dim HY 5 Z ) (39)

where y/ is the fixed point set of (.
By the Atiyah-Singer-Hirzebruch formula, it is hold (and this

result does nat use (39)) the relation

YY) =06Y)= 26 (40)
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where 5),( }\/ =1 0 “/n is the signature of the bilinear form

% obtained by restriction of the intersection form of U to

H v Kex {1+ ) Oyt H%\y) - Hzn\H)} . By the Smith theo-
ry arguments the assumption (39) implies that forms ’Bx are unimo-
dular. The form 8(4‘“,” is even and, since the signature of any

even unimodular form is divisible by 8, from (40) it follows

Y =6(Y) mod 16 (41)

Turning to a real nonsingular plane projective curve A of even
degree, one should associate with it the 2-sheeted branched covering

space \.l of (]:Pp” with branch locus (EA and the involution ¢

: 2
which covers Wn/j and has y lying over [Rp_ . Such U , C
exist and are unique. The condition (39) holds iff A is an M-cu—
rve. The congruence (41) applied to these ‘J, C reduces to the

Gudkov-Rohlin congruence ( X/( >/)._- 2 - 2 ’X/”sz.;_) , @'(Il:]) — 2 - 2 &/2/) s

-

7.2. The Atiyah-Singer-Hirzebruch formula for manifolds with

boundary.

Let C be an antiholomorphic involution of a compact quasicom-

lex manifold U of complex dimension 2I’L with a boundary 9'9

Let y denote, as before, the fixed point set of ¢ . The normal
bundle of ﬁy in H is just the oriented one-dimensional bundle.
Thus the complex structure in the tangent bundle Tg induces the

complex structure in the direct sum of T( ag) with the trivialized
one-dimensional bundle. Let us denote the complex structure introduced
by 9 .

(7.A) The number 8 - satisfying the formula
A~ AN TNV A

NSNS

% (V)= 6(Y) =26 s + 5

(42)
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is an invariant gf_ the w (&H,C\ag ,9)

We have to check that the difference 6=’XIKY)—6(9) +26H\“’+‘
depends only on (BU ,Q\ay ) 9) . Given another pair with the
boundary triple isomorphic to ((91:) , Clay y 9) , let us glue it to
(y, (‘,) along the boundary. By additivity of @& and 'X/ , (40) ,
applied to the closed manifold obtained by the gluing shows that the

numbers 8 given by the halves coincide.

7.3. @,/ZZ -quadratic spaces.

By @/ZZ—quadratic space it is called a triple (V,° ) q,) con-

sisting of a finite group \/ , a symmetric bilinear form V"v B

— @,/Z : (I,g,)l—-—* moy/ and a function q/‘. V —>@/2thich

is quadratic with respect to that bilinear form, i.e.
glx+y)=g(x)+ gly) + 2x-y

for _x7% ¢V , where J- @/Z —_— @/ZZ is the canonical
isomorphism. The canonical embedding 1/2: Z /47 — Q /2 Z alious
to consider Z /;, ~auadratic spaces as Q/ZZ—quadra:tic spaces.

a QR Z-auadratic space 5 =(V o q/) is said to be non-
singular if its bilinear form ©  is nonsingular, i.e. its radical

R(5)={3€€V'V&QV I,"%:O} is the zero-subspace.

any /2 Z -quadratic space can be obtained in the following way.
Let | be a finitely generated free abelian group endowed with a
non-degenerate even symmetric bilinear form L *L — Z: (m,% =
— <90,%) . This form has a unique extension to Le Q . By

the correlation isomorphism ¢ :| @ (D,—"L*:HOM/(L @) defined by
k]

p(x)=C x>

the group Lv = Hom(l_, Z) can be considered as an intermediate

Lel"=Le@

group:
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Then we obtain a Q/Z / —dquadratic space (V ° q/) taking

7

V=L"/L ,
=<x,£ur> mod Z  for meiev,%eg/ev
= {x,%) mod BRI for ®eXecV

T 0

Q,(

g oc)

It is easily checked that o and q/ are well defined.
If v has no element of order 2 then evident relations

qv{v)mod 7 =V-v, ¥ g,(v)=(

if T is order of U  (43)

allow to determine q/ by ©

The van der Blij formula [3] states that

., TG

v -4 2%4
e =(caxd V) * X &7 : (44)
reV .

where O is the signature of the form < , >

7.4. The case where 2-torsion in homology of boundary vanishes.

Let € be an antiholomorphic involution of a compact quasicom-

plex manifeold ,y of complex dimension 2,]1, . Let Y denote the

fixed ‘point set of ( . Endow the group L= sz (g)/TO'l’b t m*sz((}’U)

with the form ( , > ; induced by the intersection form of y
Cansider the Q/Z Z—quadraticv space (V y° q() associated with
(L,< , >) . Then V is nothing but TO'lb Hzn_{(ay)n BH%(U, &)y)
and o is the linking form. Thus we obtain (see 7.3)

(7.B) If HZh.—{ (69) has no element of order 2 the space

NI NNy NS OGN e~

k\/vo : q/) is determined by 59 , w,

NV AN A
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V= Tors H,__, (8Y) G H,,1Y,0Y)

o is linking form ,

q/ is defined via o by (43)

Ssuppose now that ({m H*('y : Z&) = dim H, (Y5 Z/Z,) . Then
by the Smith theory (l_ R < ,>) is an orthogonal sum of subspaces

(L+7< ,>) and (L-,< .,>) , where

L,=Kex t4-c,:L—L1Y,

L_=Ker U+ce:lL—L}

This immediately implies

t.o) 12 Hy ((0Y)  has no elenent of oxder 2 ana
dun LY 1 Z,) = dim 1, (9 Z )
then the Q/zz—quadratic space (VH)"’ .7, q,‘ associated with

(L(__nhw( 7>) }.«%WP\X (&H,Clﬁy) ’ namely’.

Ve = Tos Hyy (8410 9H,, (Y, 8900 Kew U+ C0"7ey)

Q

9

the linking @g{g

NN, NN

& Su

defined via © by (43)
SN N [ad

By (7.C) ,the Atiyah-Singer-Hirzebruch and the wvan der Blij formu-

lae imply

(7.D) If Hzn_1(ay) has no element of order 2 and
~~r o~ NN N NI NN

A~

dim He( Y3 Z ) = dim Hy (Y3 Z ) )
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then
NS

Y =6M)+§ -26 mod 16

where  dmod & is defined by

b
VT 2ziq(v)
v g e bq,

= (caed V_ )‘% >

weV_

€

with V_7 q/ from (7.C).

7.5. Application.

Let A be a real plane projective curve of degree m = 2&/
without non-real singular points and let for every singular point in
some (perhaps nonlinear) coordinated X, y, in some neighbourhood

of the point the curve is defined by an equation

2+ If= 0
( E in Arnold's notations) or by an equation ot
8 ¥
( Y- a,x’“)(g— gIz X Y - cx¥)= (o, § ,C are distinct real
numbers)
( ) . Let Pz be the half of 2 which is not contrac-
10 +

2
tible to a point in [Rp (and, of course, is bounded by (RA ).

(7.E) If A }53 an M—curve then

2 .
VIRPY) =1-R*-4e +3] mod 8
where €  is the number of points of type ES and J is the

number, cgj peints 2; type 740 )

To prove (7.E) it is sufficient to apply (7.D) to the case where
H is obtained by removal of neighbourhoods of singular points from

the two-sheeted cover of (PR with branch locus ( A . The ¢
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should be choosen to cover COnj and to have Y‘= Fix ¢ lying

over  RP% . men Hyy(7Y)  nas no torsion ang
dim He\Y3Z),) = dimH, (Y32 ,)
WY)=2X(RPH)-e +j |
6(PN=2-2k"—8e -5j,

§=-(e+]j).

The last equality is a special case of the general rule: any quasiho-

mogeneous singular point makes a contribution 4 to 8' . This

rule is a straightforward consequence of the definition of 8'
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