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§ 1. INTRODUCTION

1.1. The subject of the paper.

What pictures on the real projective plane [Rx)z , up to homeo-

morphism, can pe realized by a real algebraic curve ? The answer is

not dufficult, unless we put a restriction on the degree of the curve

(or a restriction of some other kind on the complexity of its equation).
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However, for a fixed degree the question is very difficult and far

from being solved in the complete generality, see e.g. G.Wilson [24]

and 0.viro [21] (as for the other restrictions, see A.G.Khovansky [1(] )

The most complicated situation appears if the number of branches is
great enough. Curves which have the maximal number of branches for a
given degree (so called h4-curves) are most remarkable from the to-
pological point of view. It is the Gudkov-Rohlin congruence that makes
one of the main features of the topology of Nl—curves of even degree.
The notion of N1—curve, the Gudkov-Rohlin congruence, as well as
many other results on nonsingular plane curves, permit appropriate ex-
tensions to the case of real algebraic manifolds of higher dimen-
sions and to the case of real algebraic varieties (i.e. manifolds with
singular points). Generalization of the notion of hq-curve and the
Gudkav-Rohlin congruence to the case of nonsingular real algebraic ma-
nifolds of arbitrary dimension were given by V.A.Rohlin [17] ’ [18] .
Some extensions of the Gudkov-Rohlin congruence to the singular casé&”’
were outlined in our note [9] . The present paper is devoteé to ex-
tension of the Gudkov-Rohlin congruence and some related theorems to
the singular case. Our results are fairly complete for plane curves,

but higher dimensions appear only incidentally.

1.2. The Gudkov-Rohlin congruence and related ones.

Let A be a nonsingular plane projective real algebraic curve

of degree M . It is said to be of type I or dividing if its real

point set IRA bounds in its complex point set (EA (in this case
"2 A divides ([A into two parts, which are interchanged by the
complex conjugation CDTLj . (P*— CP*: ('Z'o “Zy Zz\'—*(%o : ?,1 3 2')

Otherwise it is said to be of type I or non-dividing. Below in this

section the degree [f| of A is even, M = 2,?2, . Then [RA di-
2
vides IRL) into two parts having [R!\ as their common boundary.

P
Only one of the parts is orientable; we denote it by W{p+_ . The
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2
non-orientable part is denoted by IRP__

By the well-known Harnack inequality [24] the number of components

of RA is not more than (m—g(m—.Z) +1. 1f it equals (m’—g{(m“Z) +{

(mn-1)m-2)

then A is called an M -curve; if it equals 2 + /l _1‘,

then A is called an (M—t) -curve.

(1.4A) If A is an M ~curve, then

e NG

Y (RP*) = 2% mod § (1)

That is the Gudkov-Rohlin congruence. It was conjectured by D.A.
Gudkov. He proved it for (Il = 6 in [5] . The weakened congruence
X ([Rpi) = %’zmlod 4 under a weaker hypethesis (see 1.D below)
was proved by V.I.Arnold [11 . To the full extent it Was proved by
V.A.Rohlin [17] .

There are several related congruences (also for a nonsingula}i; A ).
We formulate three of them as (1.B) - (1.D). For the others, sée
Viro's survey [21] and the original papers by V.V.Nikulix; [_13] and
T.Fiedler (4] .

(1.B) ;f' A E.EE (M‘ﬂ—curve, then

i

YRP*) = &* £ 1 mod & - (2)

(1.C) E A ii an (M“Z)—-curve of type I , then

N~~~

LRPY) = 4% or KTt 2 mod B (3)

(1.D) ,Iva A is a curve of type I, then
2 2
YIRPE) = &% mod 4 (4)

Proofs of (1.A)-(1.D)arereproduced below in 6.1. First, (1.B) was

proved by D.A.Gudkov and A.D.Krahnov [6] and V.M.Kharlamov [81 in-
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dependently, (1.C) by V.M.Kharlamov, see [19, 3.4] , and A.Marin [12]

independently; (1.D) is due to V.I.Arnold (1] .

1.3. Two approaches.

Three proofs of the Gudkov-Rohlin congruence have been published.
They are due to V.A.Rohlin [16] ’ [17] and A.Marin &2] . The first
[16] contains a mistake. The third [12] appears to be an improvement
of the first. The example considered by Marin [12] seems to show that
there is no correct proof of (1.A) which is closer to Rohlin's arqu-
ments [16] than Marin's proof.

Marin's [12] and Rohlin's second [17] approaches based on quite
different techniques. Rohlin's proof works in any dimension while no
generalization of Marin's proof to higher dimensions is known.
Nevertheless the approaches seem to be closely related.Rohlin asked
his students to find a relation and said that an understanding of it
might lead to essential progress. o

Both approaces admit extension to the case of singular chryes.

We did not seek identification of the results in their complete gene-
rality obtained for singular curves by those two approaches,although
for all concrete situations considered the results coincide. Marin's
approach seems to be simpler for our purposes, so we adopt it as the
basic one. Rohlin's approach also has some important advantages.
First, it is applicable to real algebraic varieties of arbitrary di-
mension; second, faor some classes of singularities it gives results,
which are more easy to formulate and use. In the last part of the

paper we discuss these topics.

1.4. Two levels of results.

.Our extensions of the Gudkov-Rohlin congruence, as many other
statements on the topology of singular curves, involve some characte-

istics of the curve singularities. For efficient formulation of these
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results some additional investigation of the singularities is to be
done. Due to a great diversity of singularities it is impossible to
do this work once for all cases. Thus we distinguish two levels of
@nvotesults: first, general theorems (see § 3), which involve curves
of vast classes and rather complicated characteristics of singulari-
ties ( introduced in 2.3), and second, efficient theorems on curves
of more special classes with singularities of some special types,
formulations in this case involve only simplest characteristics of
singularities (see § 4). The results of the first level are useful
not only as initial steps to the results of the second level. In
applications it is sometimes sufficient to know that some congruence
is to be satisfied, for its efficient statement is obvious from known

examples. See A.B.Korchagin [11] and sections 4.1 - 4.4 below.

1.5. Acknowledgements.

G.M.Polotovsky's work [14] on splitting curves of degree 6 suggest
ed that there must be some congruences for singular curves, whigg are
close to the Gudkov-Rohlin congruence but can not be straiéhtforwardly
reduced to it. Our first results in this direction were met by D.A.

Gudkov, G.M.Polotovsky, E.I.Shustin and A.B.Korchagin with a stimu-

lating interest. We are indebted to them for their encouragement.

§ 2. PREREQUISITE FOR STATING OF RESULTS

2.1. Preliminary arithmetics: QZ;Z -quadratic spaces.

By Zz/z—quadratic space we mean a triple (V,° , %) consisting -
of a finite-dimensional vector space \/ over ZZ/Q , & symmetric
bilinear form Vxy —""Z/z '»(.T,,l}) — I"\} and a function

%: V — ZZ)Z , which is guadratic with respect to that bilinear

form, i.e.



i

Q(R+l})=q/($)+q,(y')+2$°% (5)

for ,T,,lj, ¢V , where - . Z/Z - Z/4 is the unique non-zero
homomorphism. The bilinear form ° is certainly determined by q/
via (5).

A Z/4 -quadratic space Q,':“ (V,° , q,) is said to be nonsingu-
lar if its bilinear form ° is nonsingular, i.e. its radical
R(Q) = {m& VlVl}eV 1L°|}=0 } is the zgro-—subspace. We say that
a Z/4 -quadratic space Q(\/," ,q,) is informative, if q/ va-
nishes on R(Q» . In this case ©° and CI/ induce well-defined
bilinear and quadratic forms on V/ R(Q) . The Z/4 -quadratic
space appeared 1is nonsingular and it is called a nonsingular Z/4 -
quadratic space associated with Q .

The isomorphism classes of nonsingular Z/4 -quadratic spaces

form a commutative semigroup under the orthogonal sum operation. To

obtain a group, one introduces the relation (V . q/) for any 7~
Z/4 ~quadratic space (V, °, QV) with V containing a \‘rector sub-

space H such that (im H = % dim V and QV‘H =0 (ana

consequently H° H =‘-0 ) . The resulting factor-group is called

the Witt group WQ(Z/Z ’Z/4) . It is isomorphic to Z/X (see
e.g. [2] ) . The isomorphism is set up by the van der Blij-Brown in-
variant K\/ ,° 7qy) — B( q/) defined by the formula

: dim V : )
b B(q) - b g
—) =2 2 expl —5
4 x eV

exp ( ) (6)

see e.g. L.Guillou and A-Marin [7] .
Nonsingular Z/4 -quadratic spaces which determine the same
element of WQ( Z/ Z/ are said to be cobordant. Informative
. 2' ? 4 INANA A~

Z/4 -quadratic spaces with cobordant associated nonsingular Z/4 -
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quadratic spaces are also said to be cobordant. If Q = (\/_‘ °, q/)
is an informative Z/4 -quadratic space, then the van der Blij-Brown
invariant of its associated nonsingular Z/4 -quadratic space is

denoted by R q/) . It can be calculated by the formula

i =bB(g)

dim V + dimR(Q) ,
i )

) =2 * >_expl A Al

exp( 7

~

Zz.2. Preliminary topology: the Rohlin-Guillou-Marin form.

Let X be an oriented smooth compact four-dimensional manifold,
let F  be its smooth compact two-dimensional submanifold (not nece-
ssarily orientable) with JF =FndA such that Mg Hy(F 5

Z/g) — {0} = H4( X : Z/Z) (as usual 4{jj = inclusion),
and let [ realize in H,(X, 6 dX: Z/z) the class which is the
Poincaré dual to the Stiefel-wWhitney class W,(X)¢ H* (X ; Z/er.

Then there is a natur'al function ql’. H'i(F; Z/z) —.“*'Z/4 which
is quadratic in the sense of 2.1 with respect to the intersection
form HAF -’Z/Q) X H4(F ; Z/Z,) — Z/2 , see e.g. [7]. We call
it the Rohlin-Guillou-Marin form of the pair (A ,F) . This g may
be defined as follows. To define ql(o(,) for « ¢ H,(F; Z/Z) ,
realize « by an embedded closed smooth curve { =F , span E
by a surface P < X , which is normal to F at @ - 3P and
transversal at inner points. Consider on [ a field of lines tangent
to F and normal to 8 and denote by X  the obstruction to ex-

tending this field to a field of lines normal to P . Then

g(«) =z +2(Ink PoF) mod 4 )

where by IT\/JI/ P ° F' we mean the MOdZ —-intersection number.

We like to consider here a slinghtly more general situation allow-
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ing F to have a corner, which is a smooth curve transversal to

JX . The definition of q/ is naturally generalized to this situ-
ation. One may obtain q/ by smoothing F and checking that the
result is independent on the choice of the smoothing. However there

is a clear direct generalization of the definition of ql given above.
For & represented by K , which does not meet the corner, q/(oC)

is defined exactly as above.

2.3. Singular point data.

Let {: CZ —> (E be a holomorphic function, which is real
(in the sence that ¥(i,—(}) = ¥($19/) for (I,\P € (1:2 ). Let
P be its real isolated singular point with {(P) = 0

In this section to any such situation we assign Z/'2 -vector
spaces l—-p and I—NP ; @ homomorphism ‘)P: Lr; - LP y a Z/[‘ -
quadratic space (VI’ , %, q’l’) , a bilinear pairing
LPXVP . /2 :(xv‘j/)'—" Tvﬂld/ , a subspace WP of \/P ra
subspace )( p of WP and homomorphism (A)P'. LP - VP /WP and
X’P: LT, - Vp . These objects are involved in formulation of
our main theorems. We shall call them singular M ‘1&}';?, of P .
We can reduce the number of them, but for this we'll be made to pay
with more heavy calculation in applications. In the corresponding sim-
plified versions of formulations (see (3.A) and (3.C)) only‘ LP .
(VP'O : q/p) , M of the singular point data are involved.

Denote by CP the curve defined by the equation i(x, \ﬁ =0 and

let v CP - CP be a normalization. Set

—
i

H(RP,RP\p 1 Z))),
LT =H RO, RP\'(p); Z pp)

Vo =V,
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2
Let % be a ball in (E centered at P and so small that the
pair (”@ 7Q:CP n "@) is homemorphic to the cone over ( a«;@ ’

C Cpﬂ ﬁ@) . Let & > be such that for any t('(o ,8] the
curve defined by the equation f(g;, %) = -{; is nonsingular

and transversal to io@ . Denote this curve by (Pt . Set
R=1{(z,4)¢Dn R* | #(x,y)7 - £}

RP,

Fig. 1.

. 2
Now let us factorize by the complex conjugation COYLJ . ([:2' — ([: )

The ball o0 gives a ball 2*=08/(‘,0nj . The surface R is not

. S\ RZ

changed: it is contained in f&x(conj) = and so the natu
ral projection R - R/CU“:j is a homeomorphism. We shall use
the notation R for both R and R/(’.Ol'tj . The surface

C(PS n 3 gives a caompact surface ';/ = (C CP& n @)/COr\zj with
a boundary [ ([RCPE n D)u(C CPS n d Pl /(',Ol’bj . The surfaces R
and y intersect in a curve ( = (R (Pe n Zﬂ/cor\,j , which
is the common part of their boundaries. The union Z‘-:R U j, is a

compact surface with a corner C

The praomised Z/4 -quadratic space (\]P ,° q”) is formed

of VP = HAZ N Z/Z) , the intersection form ° of Z and
¥*

the Rohlin-Guillou-Marin form q/f’ of (0@ 3 Z) . As to the sub-
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spaces W? and XP they are nothing but in . HA( ? ) Z/z )
and in M, HAay\R, Z/Z,) .
The promised pairing N ° LPX VP - Z/.?, is defined by

the intersection pairing
H X, 95 Zp) » Hil X5 Zp)

combined with a natural homomorphism

-1

L, =H(RP,RP\p;Z,,) —=—H(RPnD,RPn

(excidion)

4

TR iny
ND\p; Zy) T H(RPAD,RP 00D Zy)

— HAZ,&Z%Z/Z).

Since y and Z are connected, the factor-space vp /WP =
= . i y is i hic t ; d
HAZ + Z) in, Kyl Z e ssomoronic to Hy(1, 45 L)
by excision, to HA(R ’(/ ,Z/z) . To define O\)P » we com=
bine these isomorphisms with the composition of the following iso-
morphisms

N

ing _ J
L,=H{(RP.RP\p:Z, ) H(RPa D, RPa\p.Z ) —

(excinion)

! i,

T RPADNp;Zy) — RPN D Z) —

-
Wy ~
— H, LzecdDnR* 10> [(m)=-e}sZ,) LI Zy)

hamomorphism Ln*:ﬂo(ﬁC 7Z/2) - F\o (C , Z/Z) andh isomorphism
5—1: HO(C ) Z/Z) - H;‘(R ,C , Z/Z) . This definition is present-

ed visually at fig. 2: given two components of [R(Dn Z)\P they

determine an element of ([RCP{] L [Rq)ﬂ @\ ';Z ), Wp add to every
1 v /p p
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*
component it adjycent arc of {Ie¢3D "R 10 > f(x)=-€} to give

the element of Hf (R,C, Z/z )

RP g<0 RP
{0 750
RP

{<0 RP

The group H, (RP, RP \_D-‘(F); Z,,) is generated by fundamen-
tal classes [4] of components 4 of RP ad (RPND)vor a
component 4 of RP N)"(RP n D) both end poin:;s lie on
one boundary circle of CP A" (RP n D) . The image of the

circle under 9 is a boundary circle of G:CP n 0 and under

the deformation (¢ CPt nNoD , 0st < ¢ it remains to be the corres-

o
ponding boundary circle Ce of the moving surface CCPt n>o
* * .
The image of C¢ in D is an arc Ct with end points lying

¥
in { ke oD N R* | 0= f(x)>-E} . Hence, Cg represents the element

of H4 (Z,C , Z/:L) , which has the same boundary as O ())* [g]) e

€ H1 (R’ C, Z/:L) . By exactness of the sequence

0—H,(X:Z,)=H(R,C;Z,) 0 H(},0;Zy) — H(C; Zy)

these elements determine an element of H4 (Z , Z/z) . We set it

ta be XP ([%]).

2.4. Singular point diagram and its Z/q —quadratic spaces.

Let A be a reduced (i.e. without multiple components) plane
projective real algebraic curve of degree M =24 . Then its real
Z
point set ’RA divided [RP into two parts having [RA as

their common boundary. Let us fix one of the parts and denote it by
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P‘)i . The choice of the part is equivalent to choice, up to po-
sitive constant factor, of an equation a,='0 of the curve (here

 is a real homogeneous polynomial of degree ITL ). Since the
sign is fixed, singular point data is well defined for each real sin-
gular point of the curve f\

‘The scheme of joining of real singular points by real branches

is nothing but a one-dimensional graph. It will be denoted by rA
It can be thought of as lR}\ with all the non-singular components
deleted. Ve supply it by additional structures. The first one is the

homomorphism ¥ - H (I Zsn)— H (IRPi,Z }induced by the natural
i /2 1 /2

2
inclusions» rAL-—P[RA C-—»[Rp , the second one-singular point data
for each vertex of rA and the third one-homomorphisms )’P B
H1(I_A ,Z/Z) ” LP induced by the composition of the inclusion

I_A C-»[R A and localization. The graph rA supplied with these

structures will be called the singular point diagram of the curve

and will be denoted by A\ . ‘ -
At the rest part of the section we assign to ZX two 224'-

gqudratic spaces @Az(VA , %, r(;A) and QAz(VA,° , %5 and a

subspace BA of VA . G”A is involved in the simplified versions

of the main formulations and does not involve LP’ XP,\)F ’,X’P and U)P;

It is well defined by the following

(1i) the restriction of ° to the summand EBV? is equal to
P
the orthogonal sum of bilinear forms from singular point data, the

restriction of ° to H4U— ;Z/Z) is induced from the inter-

2 .
section form of [Rp via 4 :

Toy = i(x)eily
and for % e H, H—A';Z/z) » Y € Vp
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2oy =Y, (z)ny | | (9)

(iii) the restriction of a/A to ? VP is equal to the
orthogonal sum G? ql', of quadratic forms from the singular point
data and the restriction of % to Hd(rA . Z/Z) is expressed

via 1,

DR, i B+

0 i W= 10

14

g (z) =

Ga (10)

The -~quadratic space Q is a shortened substitute for
/4 _ A

~

QA . It and BA are not involved in the simplified versions of
the main formulations and involve [_; ,\)P,'X,f and (0, . When
simplified reading, one may omit them.

~

To define QA let us take the subspace of QA with the under-

o

lying space V; < VA , .

Vy ={x+;1r,,6 H4(|_A;Z/Z\G§VP | w,hplx)=
= VP mod Wp for each P‘],

"and factor it by the following part of its radical

RA={I¥+;VP6V;§ |VP=0 forea,chp}.

Thus VA=VI‘1/RA

To define BA let us take

for each there exists ]
x+§;vPeH4(ﬁ; Z/z)@ P
B‘A= Tp € LNP such that \)P(;I'»,P)=T
® D VP
3 = hplm), v = Aplmy)e X )
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and set BAzgi/BL NR,.

2.5. Extension of notions: M -curve, (P4-£) -curve, types 1

and II .

Here we extend these notions (see 1.2) from nonsingular Plane
curves to general (not necessarily nonsingular and plane) curves.

A nonsingular real algebraic curve ;A is called an P1—curve
if the number of components of n{/\ is equal to the genus of /\ en-
larged by 1. For the given genus the number of components can not be
more than in that case. The curve /\ is called an (Pq"i)—curve if
the deficiency is equal to i . An irreducible singular curve is
called an .P1—curve {respectively (Nf-a—curve) if its nonsingular
model (the result of normalization) is an Pq—curve (respectively

(P1—£}—curve).'A reduced curve is called an P1—curve if nonsingu-
lar models of all irreducible components are [M-curves and is called
an (P4—L)—curve if the sum (over all irreducible components) of the

AP

deficiencies 1is equal to L . :
A reduced real algebraic curve is said to be of type I if nonsin-
gular models of all irreducible components are of type I. Otherwise

it is said to be of type IIL .

§ 3. STATEMENT OF GENERAL RESULTS

3.1. Projective curves.

Let ;A be a reduced real plane projective curve of degree
m=2,£, without non-real singular points and let IRP: be one of
two parts of W{P > bounded by [R\/\ . Let A be a singular point
diagram of A  related with RP .

~

(3.A) . Suppose the ZZ/Z -quadratic space CLA is informati-

~

~ t
ve. Let 4 be zero, if Iflt {R~Fi is orientable , and 4 = ()
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otherwise. If A is an M -curve, then

Y(RP2)=A*+B(§,)+ § mod 8 BT
1f A is an (M*“ -curve,then

L(RPZ)= k*£ 4 +B(§,) + b mod 5 (12)
2 A soan  (M-2)curve of type m, then
LRP:) = b*+d + BIG)+ b mod 8
where 0 ¢10,2 -2} (13)
1f A is of type I,then

WRP2)=h*+ B(G,) + B mod 4 ‘ e

We present another variant of this theorem. In all application it

leads to the same results but usually through easier calculations.

2
(3.B) . Suppase QV,_\ vanishes on B;_\. . Let F) be zero if ‘RP+
is contractible in P\PZ and % = ("4) otherwise. If A is

an M ~-curve then

LRPXY=k'+ Blg,) +d mod 8 (15)

If A is an (M"ﬂ-—cu_rve,then

YRP*) = &+ +B(g,) + b mod 3§ (16)

If A is an (M"Z) -curve of type I, then
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LRPY=R"+d +B(ga)+ 6 mod §,

(17)

where (if{ﬂ,Z,‘Z}

If A is of type I,then

%IRP?)=&* + Blg ) +b mod 4 (18)

3.2. Smoothings of a plane curve singularity.

As above in 2.3, let %Z ([:2' —r (I; be a real holomorphic func-
tion and P its real isolated singular point with {(P)——'O . De-
note by CP the curve defined by the equation x(m1y)=0 . Let

o@ be a ball in (I:z centered at P and so small that the pair

(‘Z)’(]; Py &) = is homeomorphic to the cone over (&’o@,(]:q}nﬁo@)

Let ‘Pe C*—C , 1 € [R be a continuous family of real
holomorphic functions with q>o= ¥ . Denote by W{; the curve de-
fined by the equation q)t(x,&) =) . Suppose that (E‘-Ift, has no

singular points in &)  and is transversal to 902) for 'te (0981

Set

D, =lz,y)¢ OnR* | b, (2,y)=0)

In this section we state results on topology of o@+ similar to
(3.A- and (3.B). The main idea of the transfering is to glue pairs
(0@’(]:1}{: n Q) and (O .CPnD) by an equivariant diffeomor-
phism of their boundaries arisen from the deformation (EW\L’ noQ ,

te [0,8] . The gluing gives a 4-dimensional sphere with an invo-

lution and a subset which is a smooth submanifold at each point except

one and is invariant under the involution. This situation is similar

to that of the projective plane and a singular real curve in it. Mo-
4

reover, we observe two simplifications: first, S is simpler than

q':pz' » second, here we have only one singular point.
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Before stating the results we ought to describe modification of
auxiliary notions (such as Z/4 -quadratic space of the singular
point diagram) involved in (3.A) and (3.B).

Let l— be a bouquet of circle's which are in 1 - 1 correspondence
with components of [Rl{fe n L homeomorphic to I. It can be throught
of as the union of these components of (RW n o@ glued to
[R(Pn OZ)by the natural bijection of the boundaries. The number of
the circles is denoted by % , it is equal to the number of real
branches of (p passing through p

Let A H (I— ; Z/Z) - I_ be the composition

H(T5Z,) =5 HAT, M\ p s Z&)”“ H,(RP0 0, RPaD\p ;

'1/”/*

The graph r supplied with the singular point data of P and

Aaad

the homomorphism X will be denoted by A . Now we assign to it

Z'/4 -quadratic spaces GA =\VA ,° "’dVA) and QAZIKVAeO ’ qu)

and a subspace BA of VA , cf. 2.4. The space QA is involv-

ed in the simplified version of formulation and does not require L
?

X ,\) . X and W for its definition. It is well defined b
Ps¥p P P Y

the following

BV, =W (T5Z,) @V,

(ii) the restriction of ° to the summand Vp is the bilinear

form from the singular point data.
oy ror 2,4 c¢HATZ,),
mou‘J,=)‘,P(:x,)n\j, for :neHAF;Z/z),tj,eVp (19)

(iii) the restriction of @A to \/? is the quadratic form qu
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from the singular point data, the restriction of q/A to H4(|_ )
Z ) is equal to zero.
2
The 2/4 -quadratic space QA is a shortened substitute for
Q, . Together with D, it is not involved in the simplified
statement. When simplified reading one may omit them.

~

To define QA let us take the subspace of Q,A with the

\
underlying space VA < VA

Vy =tx+ve Bl Z 00 Ve L wpd(2) = v mod W, }
and factor it by the following part of its radical

Ra={xz+veVylwzy=0}
Thus VA=/\7A/\/,; . To define B A let us take

By =lx+ve H4lr;Z/2)@VP\ Tye s %ply)=2lz)

H

U= Yply) € Kpd
and set B/_\: B‘A/B‘An RA ? % P

Now transfer the notions of M—7 (M— i) —curve and type to
the case of smoothings. A smoothing ws of a singular point
of CP is called an M -smoothing, if the number of components
of ([ng n O (([:llfg noR) is equal to the genus (number of
handles) of (LWG enlarged by 1. This number can not be more than
in that case. The smoothing is called an (M‘ﬂ -smoothing if the
deficiency is equal to i . The smoothing is said to be of type I
if ng n QO ig divided by [RIIJ;‘ n into two path components.

Otherwise it is said to be of type II .

(3.C). Suppose the Z/4 ~quadratic space QA is informative.
If Hf is an M -smoothing, then
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(0, =B1{7g,) mod 3 (20)
If Wa is an (M-ﬂ-—smoothing, then

YO0 =BG 1 mod &

(21)

If Wg is an (M—-Z)-—smoothing of type I, then

(ACRE B(@AH d mod ¢ where (¢ [-1,1,-3} (22)
If WE is of type I, then

1 (D) =8 (Ty) mod 4

(23)

We present another variant of this theorem. For all applications
it leads to the same result but usually through easier calcul-
ations. Remind that T involved below is the number of real B¥anches

of (P passing through p.

(3.D) Suppose q/A vanishes of BA . If w€ is an M -smooth-

ing, then
110, =Blga) + v~ 1 mod 8 | (20)
12 VY, isan  (M-{)-smoothing, then
W@ =Blg )+ e -4+ mod 8 (25)

%D )=Blg)+r+d mod §,where  de{-{1,-3] (26)




