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§ 1. Introduction

The main result of this paper is the following theorem, which was

announced in [291],

THEOREM. There exists an infinite series S1, S2’ ... of smooth

submanifolds of S4 such that:

(1) for any 4i,j the pairs (S4, Si), (S4, Sj) are homeomorphic

via a map restricting to a diffeomorphism between appropriate

neighborhoods of the surfaces.

(2) for any i # j the pairs (S4, Si), (S4, Sj) are not diffeo-

morphic;
(3) each Sn is homeomorphic to the connected sum #RPZ of 10
copies of the real projective plane;
4
(4) L (SI‘\Sn) = ZZ-
(5) the normal Euler number (with local coefficients)of Sn in

st is 1.
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There is no analogous result in other dimensions. Let N be a
closed smooth submanifold of a closed manifold h4 of dimension F+ 4.
Let 1L be its smooth tubular neighbourhood. Then there are only fini-
tely many diffeomorphism types rel. boundary of smooth manifolds X
with JX = g1, and hameaorphic rel.d to M\ [nb 1 - £ dimM <3 tne
number of diffeomorphism types is 1 and if d@WLN1?’5 the number of
smoothings of h4\lfbt 1L rel. boundary (which is an upper bound for
the number of diffeomorphism types) is finite, see [12] .

In fact we describe an infinite family F}’F;’_., of smooth subma-
nifolds of 84 satisfying conditions (2) ~ (5) of the Theorem, and we
prove that there are only finitely many homeomorphism types of (S4JTJ

in the sense described above.

The Frn's are obtained from a fixed smooth submanifold F-C384by
a family of new knotting constructions. F- is the obvious simplest
submanifold satisfying conditions (3), (4) and (5): the pair (54 J:)
is the connected sum of the standard pair (54 ,sz) (with normal
Euler number -2) and nine copies of it with the orientation of
reversed.

Our knotting constructions can be applied to "smaller" submani-
folds, e.g. the Klein bottle with normal Euler number 0 and the
torus which are standardly embedded in 54 . The real difficulty in
this situation is to prove the non-existence of diffeocmorphisms.

The construction of Fn is motivated by the recent work of S.Do-
naldson [5] B [6] C.Okonek / A. van de Ven [2] , resp. R.Friedman
/ J.Morgan [10] . They considered the Dolgachev surfaces [3] , [4] ’
which are complex elliptic surfaces organized in families 2>%% with
P,q elN . (p,q\== { . The QOP’W ~surfaces are 1-connected and per-
mit an elliptic fibration over the 2-sphere @D‘ with two multiple

fibres of multiplicity and . Any -surface can be ob-
P-4
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tained from some rational elliptic surface diffeomorphic to CDZ#Q@Z
{blow up 9 points of sz ) by logarithmic transformations [1 ] of mul-
tiplicity P and q, along two non-singular fibres. The rational ellip-
tic surfaces themselves are included in this system as o@“ . By
Freedman's classification of 1-connected closed 4-manifolds [8] ,all
Dolgachev surfaces are homeomorphic to sz* g @z . But S.Donaldson
[5] , [6] proved that no ‘@za ~surface is diffeomorphic to
CP2+9@,2 and this was extené,led in [_10] , [11} , showing that no
-surface or a o@z't—sur-

- 1'(
face with odd 7T+ QV

p@zu' surface is diffeomorphic to a @

Now we give an outline of the proof of our Theorem.
PROPOSITION 1. For any P, Ql there exists a o@P qy—surface M
k]

which admits an antiholomorphic involution ¢ with M/(‘, diffeomor-~

phic to 54

In the case of 08“ such involution can easily be constructed
via tl'f Iisua—l— complex conjugation COf’LJ . Q;Pz — sz . (%o: Z43 %2),_,
e (%o ,%4 ,%2) . The orbit space (I;Pz/(;[mj is diffeomorphic to
54 ( [20] B [14] B [18] }. The fixed point set szis standardly
embedded in it with normal Euler number -2. For any y@u -surface M
obtained by blowing up 9 real points (i.e. points in [sz) of sz
the involution conj induces an antiholomorphic involution on

with M/C diffeomorphic to 84 (‘_‘ Z‘#;- SA) . The fixed point set is
F =RP*4 gRP*= 4 RP* = 54
10

ber —2 + 92= 16 , the standardly embedded :‘?0: sz with this

with normal Euler num-

normal Euler number. Proposition 1 is easily deduced from this and
the following Lemma closely related to surgery of two-fold branched

coverings considered by 0.Viro [26] and J.M.Montesinos [21] .

LEMMA (on real logarithmic tramsformation). Let E -‘*B be an

elliptic fibration commuting with antiholomorphic involutions
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C: E — E and @& - B_>B . Let F be a non-singular fibre with
Fﬂ ¥Lj; ((‘,) =+ (D . Then there exists a logarithmic transform

‘ . s N :
E of E along F of anv given multiplicity which admits an

antiholomorphic involution extending ClE\F with orbit spéce

diffeomorphic to E /C .

For any involution C of a o@P’qy—surface M with M/C diffeo-
morphic to 54 the topology of the fixed point set and its normal Eu-
ler number are determined by the topology of M , and thus %3‘, ((,\ is
again = [RPZ emoedded in 54 with normal Euler number 16. Under
approprigte conditions we can also control the fundamental group of

the complement of the fixed point set in S

PROFOSITION 2. For any odd q, there exists a Z)z -surface M and

an involution C( as in Proposition 1 with abelian 7f4 ((M/c)\

\ e (o)) (implying gr; (MO fix ()= 2Z) -
2
For ({,=?vn+4 let us take such M and ( and denz)te by Fw the
image of 4(’,1{,((’) under some diffeomorphism M/C - S . Since M
can be obtained back from Fn as a 2-fold covering of 54 branched
along Fn, , the results of [10] B [22] imply that for 1,=/=j pairs
(54 , FL)’ (54,F5) are not diffeomorphic. This result together with

the following proposition implies our Thecrem.

PROPOSITION 3. Consider the class ©f all smooth submanifolds S of
4 =
Sll with a fixed normal Euler number, 7, (S \S )— Zzand S ho-

meomorphic to a fixed closed connected non-orientable surface.

Then the nunber of ambient homeomorphism types (in the sense of

(1) in the Theorem) is finite.
We hope to prove that all (84 Fh,] are homeomorphic, and mo-
1
reover that under the conditions of Proposition 3 all the pairs (SI‘I,S)

are homeomorphic extending a result of T .Lawson [15] who showed that

2
for 6 homeomorphic to [RP there is a unigue homeomorphism type
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of pairs (84,5) with JT4 (84\5) = Z.’L . However now in the
proof of Proposition 3. which uses the surgery method of [13] (appli-
cable in dimension 4 by Freedman's results [9] ) there occur several
obstructions sitting in non-trivial finite groups. We don't see an ob-
vious reason for these obstructions to be trivial.

Notice that Proposition 3 and the Whitney conjecture proved by Ww.

Massey [19] straightforwardly imply the following

COROLLARY. The number of homeomorphism types of pairs (Sq,S)with

750\ S)= Z,

2-submanifold of Sl‘ of a fixed topological tyve is finite.

and S a smooth closed connected non-orientable

The following result extends a Theorem of Massey (301 It is a by-
product of the proof of Prop. 3.
4
PROPOSITION: If "1 (s® - g) = 12, then S4 - § is homotopy equiva-

2
lent to RP“ v (1- X (S)) o 52 where X (S) is the Euler characteristic.

Now we describe our knotting constructions and indicate the proof
of Proposition 2. Let X be a smooth 4-manifold and F a smooth clos-
ed 2~submanifold of X . Let mc X be a membrane homeomorphic to

S‘x I with g7t = Mn F and let 771  have index 0 or, equi-
valently, there exists a diffeomorphism of a regular neighbourhood
ofmin X ,Q;N—>54XZ)3 y mapping NﬂF onto SH(I-{LI)’
and such that the segments I_]L I are embedded unknotted and unlin-
ked into v@3 as in Fig. 1 ( M means the disjoint sum operation) .
For arbitrarv relatively prime P,Q/ denote by KP’QV(F’m’ \P) the
new smooth submanifold of X obtained from F by replacing the em-

bedded segments I 1 I e ,@3 drown in Fig.1 by the two embedd-

ed segments drown in Fig. 2.

P hall twists y et
twists

Fig. 1 Fig. 2
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PROPOSITION 4. If [\ jyy is connected and g, (X\(Fufll)is abe-
lian, then m(X\KMv(F, W40 is avelian for any odd (.
PROPOSITION 5. Let | be a non-singular fibre of a real (i.e.
equivariant with respect to the standard complex conjugations
¢c:M—M ana conj:ﬁP‘-—» CD') elliptic fibration M—(Ph M a
D,y -surface. Let T intersect the fixed point sel‘t Foof ¢ in
two disjoint circles. Then the 2-fold covering of S =M/c, branch-

ed over KP’QV(F" T/C, ‘P) for some l.P is equivariantly diffeomor-

phic to a 'Z)P q'--surface.
k)

In the situation of Proposition 5 the conditions of Proposition 4

is satisfied, as the following Proposition 6 implies.

PROPOSITION 6. Let | be a non-singular fibre of a real ellip-
. f .
tic fibration M_‘" ‘I:D with M a o@u -surface. Suppose T

intersects the real point set F of M (i.e. the fixed point set
of ¢ ). then gr, ((M\(TuF)/c) is abelian.

This Proposition is related to results (and is proved by the
nmethods) of S.M.Finashin's work [7] . The Propositions 4, 5 and 6 ob-
viously imply Proposition Z.

Ve finish the Introduction with an open question. The knotting const-
ruction KPJL corresponds to a pair of logarithmic transformations
of multiplicity P and QY in the 2-fold branched covering space,

-

see Section 2.5 below. 1As was mentioned above, can be constructed

K
P./q
in simpler situations for they do not require an elliptic fibration,
but only a torus equivariantly embedded into the covering space with
zero self intersection number. Such a torus can easily be found in

SZ X Sz and @Pz H @2

Sz x Sz's and G:Pz#@z's as well as for corresponding exotic knott-

, thus there are candidates for exotic

ings of S‘X S‘ and the Klein bottle in 54 . Are they really exotic ?
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REMARK: It was shown by Friedman and Morgan [10] that their result
about D2,q holds also after arbitrarily blow ups. Thus in our main
Theorem one can replace # IRPZ by #IRP2 for a fixed r > 10 (the

10 x -
normal Euler number under (5) changes into 2r - 4).

We wish to express our gratitude to V.M. Kharlamov for a stimula-

ting conversation.
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§ 2. Real Dolgachev surfaces

2.1. Complex elliptic fibrations.

Here we remind some basic facts on complex elliptic fibrations in
the form used below, for details see e.g. [1] . A complex elliptic
fibration is a regular map - E - B , if E is a non-singular
complex surface, B a non-singular complex curve and a generic fibre
of 7T is a non-singular elliptic curve. A surface E which admits
such a fibration is called an elliptic surface.

To construct the simplest elliptic fibration with simply connect-
ed total space one takes two non-singular complex plane projective
cubic curves transversal to each other. They intersect in 9 points,
say P4 yeees P9 , and determine a pencil of cubic curves passing
through these points. If the initial curves are defined by equations

¥0 (Tlo,l‘q ,1‘,2\=0 and {((.’LQ,I(’.’EQ =( , then the curves of the pen-
cil are defined by equations gu(mhth’?) =) , where 44 =(u°’u1\e
‘:(,2\0 and ¥ﬂ=uo£o+u‘£4 Blow up @Pz’ at Py, ..
coey Pg . The result M of these O -processes admits a natural pro-
jection JU: M - Q:P‘ which assigns to Pé M the unique point

Y= (,u’o . u‘\e (ED‘I such that the proper preimage of the curve ¥ul$°’
,,% Y=10 contains P . A generic fibre of JT is naturally
isomorphic with a non-singular plane cubic curve and therefore it is
a non-singular elliptic curve. Obviously, M is diffeomorphic to
CP* 4 90P*

Let JU: E i'B be an elliptic fibration, F a non-singular
fibre of it, A a neighbourhood of the point JC(F) in B
equipped with a biholomorphism 9. A_’ 21, and U = W-{(A\ . Su-
ppose that A is so small that 'u, contains no singular fibre of T .
Then % can easily be uniformized in the following sense. There

exists a covering q4: q‘/ X 0@2 — u such that:
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(i) the preimage 1.{,".717_‘(1/) of the fibre :7(:"(1,) over any :L&A a 2oV va
is the fibre ( xY(1) (a,&)(%,b)=(% + " + %w(’om),e " 5)

(ii) there is a holomorohic function W: 2D? —C with Im (.O(ty*o

such that - w(%, t)=u(z' 4) it 2= % mod (Z+wl)Z)

Furthermore, such a uniformization is uniquely determined by fix-

for (&,%)QZQZ,(E,’J)G ¢ xo@xand Y a natural number with\)/L‘=‘4m0d,m]

[ . :
The map 1/{, - 0@2 defined by 1&'(%,’3) Y 5m' is an elliptic fibration

-1, 2 ; : . ' [ _ ; .
ing U 0% 2% (which can be any 1lift of P D% — A ) and with the only singular fibre F —{u’(%,b\é u Iﬁ - 0} , Whl.Ch is a
the homology class of the loop | —>F : 7+ §[7.0)(which can be ‘any non-singular elliptic curve, but, as fibre, has multiplicity I . The
N )
primitive element of HAF) ). " formula /“/:T
: m
A logarithmic transformation of multiplicity Ml of an elliptic . wz,s)— w(z + I &)9/ 5,57)
. ; . S s . . . :: . o l
fibration JC E B along a non-singular fibre F still requires f defines a biholomorphic fibre-preserving map ]N u«\F u\’__ We put
i initi i i . |
for its definition also a natural number /U« relatively prime to E ce— (E\F)uru . It is a complex non-singular surface. The
s ¢ .
and a primitive class 8 HAF) . We call this /L a supplementary map gr!: E\ B defined by

multiplicity, 5 a direction of the logarithic transformation. Now

we describe the logarithic transformation with these data. Consider a

(2)— { a(z), 4} ze ENF' (=E\F)
i w(F),d xeF'

uniformization U d:x;@”—* u of some neighbourhood u, of F in
is an elliptic fibration. This is the result of the logarithmic trans-

E of the kind described above. Suppose that the class 5 is rea-

formation under consideration.

lized by the loop I—’F T %(’U ,0) . We form the smooth quo- :

¥ 2 ' From the point of view of differential topology, E can be des-

tient 1| % of ( x ) by the action of Ze Z defined by

cribed in a simpler manner. In fact it is easy to check that the maps

(0, 8)%,9) =(zg+0 + Bu(>™), »)
for (0,76)6 Z ® Z and (%,’.))ECX 0@2 . Further, we form the

| *
smooth quotient H, of u, by the cyclic group of order WM generat-

RxRxQ* — U:(zy,2)—uly+zw(x),2),

\ Y 2mlivy LR RY
ed by the transformation ; R x [R x Q% —= (1 (Ili,l},'i)'—*w( . + 1wle 2™),e ‘%)

2,915\/'T induce diffeomorphisms X: [R/ Z "R/ZXZ)’“—»R,%‘-'IR/ZXIR/Z*Z)Z—’W

, € mo. ’J) and therefore we can substitute 'u, for ul in the construction of

Vad
m

(,5)— (% +
Thus E‘ is diffeomorphic to the result of gluing E\ In{ 'H, andu«

[
Thus, '[,U is a smooth complex manifold with a natural uniformization by a diffeomorphism au’ au’ - The latter is the composition

2 V-1

W €x O — U sucn tnat # (2, 50 =1 (2,,5,) irs5=€ ® -,

{

. - .
i Ei' (%l) 2 xl ! Yl

and %,T %2'*‘0,4‘8(.0(’3?)4’/‘% for some a,g,&eZ [ LL' M — {R/ZXR/ZXa;@ o% o

can be obtained alsoc as the smooth quotient of C X @2, by the action To describe it more clearly, let us introduce the diffeomorphism

of Z & 7 definea by
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Bor §'x 5P D% —Ui(z,y, 20— ul ﬁ(fogww(%)fagm),%)

2
that is the composition of the natural diffeomorphism 51 XS‘ XorO —

QR/ZXR/ZXV@Zand X, . The gluing diffeomorphism T*ﬁu_,.ﬁu

acts by the formula

(z,4,8)— Lyl )

where

nm o+ VA =1

2.2, Real elliptic fibrations.

A real elliptic fibration is a complex one 71;’.E —"B endowed
with antiholomorphic involutions C'-E _’E and GIZB""B such that
7ol =G I | The fixed point set of ( and G are denoted by RE
and IRB and are called the real point sets of E andB

The construction of the elliptic fibering via a pencil of plane
cubic curves described in the preceding section gives a real ellip-
tic fibration if the initial cubics {0(%,%,%):0 and {4($O,${,$Z\=
= are real. Then (5 is the usual COnji CP‘—P(‘,[M . (ua:m)H
"—’”(’I_,-Lo"l—l—q) and C:M_" M is induced by (‘,Onjl sz—’ (Lp?.
initial real cubics can be chosen in such a way that all their inter-
section points P{,...,Pg would be real kt.e. Pi,e [sz) . It is the
case, in particular, if each of the initial cubics is obtained by a
small perturbation of the union of three real lines and no 3 of these
6 lines pass through one point.

Let 7 E - B be a real elliptic fibration with antiholomorphic
involutions ¢ anda @ , let F be a non-singular fibre of it with
F(\RE i @ ; let A be a neighbourhood of W(F) in B with
6(A\=A equipped with a biholomorphism LP'—A_”' 0@2 equivariant with
respect to 8 ' and C(mj . Suppose that A is so small that U =
= YC-i(A) contains no singular fibre of JF . Then 1 can be uni-

formized equivariantly. We need a somevhat unexpexted notion of equivariance. We
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say that a uniformization W (I: @z*’u of the sort considered in

2.1 is equivariant, if C%(%,t)_ ( F3 t) . To obtain such we
-1, 2 .

take an equivariant 1ift of ¢ v@ — A to 'H, as U 1x D2 (it

exists since Fﬂ [RE +* Q) ) and a skew-invariant (with respect to

( ) homology class in H1(F) as the class of the loop T +—>

— (1, 0).
: DF—C ;
Functions W* related to U (see 2.1) must satisfy the

condition Z + w(t) Z =7+ aﬁ?—) Z
w-l(l&) and q*‘(t) [isomorphic to (/7 +wlt) Z and ([/7+

Z ] are transposed by the antlholomorphlc involution. Thus

w(t)f wlmod ! . rr wit)=wl) mod { then Im wlt)=0
for teR ., but Tm wl) =+ | , see 2.1. Hence w(t)E—-E\mod/1

we put  w(t):=wl(t) [g(t_)_;w_(ﬂ

any integer, since it does not change Z +lt)Z -} Now w(ﬂ:——w@)
or (,O(ﬂ:1—0)(‘“ . These two cases differ from each other in the

, since the fibres over

.J . (We can add to U.)(J(/)

type of invariant fibres: if w(t)=— wlt) , then Fn [RE consists

of two circles, if w{t\—ﬂ w(t then it consists of one circle.

2.3. Real logarithmic transformation.

Here we give a more precise version of the Lemma cn real logarithmic

transformation stated in § 1.

2.3.A. Let YL’:E "B be a real elliptic fibration with anti-
holomorphic involutions C anda 6 . Let F be a non-singular fibre
with F n [RE + @ and 5€ HAF) be a primitive class with

(‘,‘F (8 =-§ - Then for any relatively prime natural MM and /w
the result .77-' E - B of the logarithmic transformation of
B —B along Foooe multiplicity [TV , supplementary multipli-
city Mo and direction 5 admits an antiholomorphic involution ¢!
with J'C'=@qgn', C'lE,\F.= C\E\F and El /¢! diffeomorphic to
E /C . If Fn {RE consists of two components, then the presen-

tation of EI as (E\Int u)UT'u

(see the end of 2.1) can be
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chosen to be equivariant with respect to ¢! and ( and there is a
dif feomorphism /X/*'- 54 X S( X o@z — 1 such that CX/ *(’I,,lg,'ﬁ)=xf*($,gﬁ)and
Y MENTRIEY MEALE TalAy LI

PROOF. In the construction of F_ one can use an equivariant uni-
formization of a neighbourhood of F . Let 1 Cxﬂz—yu be such a uni-
formization (see 2.2). Then the tubular neighbourhood u,] of the new
fibre Fl , as constructed in 2.1, admits an antiholomorphic
involution (g such that (y (ﬂ'(%,b))=1l«‘(“i,_’3) , where %'! g x

x,@?’-q‘wis the natural uniformization (see 2.1). In fact, the invol-

ution Cx,@z —"C 0(02 (% ’J '_"(‘% ’3) defl”?es i,UCh an involution

of u , since if 'Uz(%é)) W Z;, 4) then =€ m -9 and

2= 2 +0+ bol" )"/:Tfor 0b ke Z (see 2.1) and then % =
2.71:\/'(—54) /U«

—¢ ™ 3 ana -%,--E-0-boly)- " =

m

_&/ _
(—zx—mew@m’“ L if wit)=- 0t

_&/ -
~a-b+ b+ /—‘-—~ A wit)=1- wlb)
Therefore %‘( % M= % %4, ) . The gluing map T u\F _"'u\F

is equivariant with respect to CiL' and (

t — o R — -~ /L\/_T o Nmy
Teyu (2,5 =TulE N =ul 2+ o logs 3™ =
= va
= uf{- /u log »1,3™)=cu(x+ /;yz: fog 5,3™) =
=T UI(E,») .
We define C‘iEl_“*EI by

cx), 1= ze E\F'(=E\F)

¢'(x) = .
CelX), i zell

since T is equivariant, (' is well defined. Clearly, ZL'C'= ga'
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1
and C'lE‘\F‘ = C\E\F . Now let us show that E /O‘ is diffeomorphic

to E C.
Firstly, consider the case of a two-camponent F(\ RE . In this

case (A)(ﬂ: _w(t). Then as a straightforward calculation shows

chlmy,2)= ¥(x,-y, %),
1 — { - =

g Va8 =% (%, g{,%)
for T, l}(‘ [R/Z and xe@", and C'X/*(x,g,,%)=/x/*($,l}.,1) for
e 5w eD?,

Thus the identification of u, and 'u, by X, x is equivariant,
and in the presentation of E as E\Ih«t u U,ru' the C' can be
*

described by
( cl(x) , if XT¢ E\Intu
¢ ={ clx), 12 =zefl

. The diffeomorphism %*

Therefore E‘/C' = E\Intu /C U u/(‘,

induces the diffeomorphism (S‘XS “')/ "‘"’LUC Thus u'/C is
CARARCARS

diffeomorphic to S "(Six'oz {y, 0~ (9 %)/ . The involution (9, Z)"—"(H/ )

of the solid torus S‘ X@ can be thought as the syrmmetry with

respect to a line intersecting the solid torus standardly embedded in
IRa in two segments, see fig. 3. The
factor-space is diffeomorphic to @5 .
The projection S("@z—*az?is a two-fold
covering branched over two unknotted and

unlinked segments (the images of (Sqn[R»X

_—
factorization X(ﬁzﬂ R)) , see fig. 3. Consequently u,/(‘,
is diffeomorphic to S‘ * ,@3 . The gluing
Fig. 3 map T,, /(‘, is the product of {d,gq and
some diffeomorphism of 82 . Therefore it is diffeotopic to the iden-

tity, and ['/¢' is diffcomorphic to (E\Int U /e ”mWC =B/
The case w(ﬂ= 1— (A)H«)

is more subtle. In this case
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¢y, x)=%lz,~y-x,%),
, 2zV-{V
Cyp Vilay, %)= x'(m,—gf—mx,ze )

for x,g,ﬁ IR/Z , %€ 2% Indeed,

Chlzy,)=culy+rxw(z),z)=ulbj-Twlx),z)=

=uly-s+rzwl(®), z2) = Ue,-y-a,%),
VT 2aV(Y
¥ (g, %)=, u‘(%ww(ew W‘"’z"‘),e—mJ g) =

s 2 mVTY
= w(- L o 5@ A 2y

m
27:\/—7\)(-5})§m) RIVEAY Y

=u'(-i—x+xw(e A )=

tn
-y-mx T (il — _ - 27TV EY-mT)
( %m + e (eATYEY m) . memﬁvmx),e Y .

X 7 e Viz,-y-mx,ze
Thus the identification of ’u, and u by X,l°x—4 is not equivariant
in this case, and in the presentation of E| as E\In‘t u, U u, the

involution (' is described by

¢(n) i e ENInt U
(o) =

Lok ocyot et (@) £ el
- -4

Let us denote 'Xn(x') 1°Cwoxl°£5ﬁgby T - For a,=AX/(I,I},'i) we
have (o)=Y (x,-y-mx,Ze ) and for 0= Ky(z,y,%)
vlo)= X*(x,\}x"‘,?él") . So T ©preserves the fibres X*(thS'X@l)
In each of the fibres, T is conjugated with the involution

§'x 2% — STk Q% (y,2)— (3, 7)
considered above. Thus ’LL/’U is fibred over S with fibre vOZ
and therefore U,/m' is diffeomorphic to 94 X ‘,@5 (for it is obviously

orientable). The gluing map T*Cau,‘ > au, also preserves the fibres

173

x (Ptx 1y Si) and the factor-map ']” /ry can be extended to ’LL/T,’

7?1 (U5, 50BN =0 s £'/cr = [ENIE UV U 21
is diffeomorphic to E/C

2.4. Branch locus after real logarithmic transformation.

Here we investigate the effect of the logarithmic transformétion
on the position of the branching locus (the image of the real point
set) in the factor-space. We restrict ourselves to the case ofv the
fibre F (along which the transformation is done) having the real
part Fn [RE consisting of two circles (i.e. F as a real curve is
an M -curve) . The case of a one-component Fn fRE is more interesting
on its own, but it is more subtle, and on the other hand the case of
two-component F n RE is sufficient for our main purpose.

Let us remind that to any pair oc,/ﬁ of relatively prime integers
a pair of smooth arcs in L? is assigned. It is called 3/5/06 ~tangle.
These arcs interest us only up to diffeomorphism of o@b fixed on

2
S = 5005 . The end-points of the arcs are in fixed standard position.

Denote the set of the end-points by 8 . If
é = CL +
o< 4
PP
Uyt ..,

a
then the ,E/o(, -tangle is described by ghe following picture

anhﬂe?

the case of even N the case of odd n,
Fig. 4.
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As it was remarked by Conway [2] , it is well defined, i.e. it does
not depend on the representation of /5/0(' as a continued fraction. The
two-fold covering of 085 branched over the 0 -tangle (shown in
fig. 5) emerged in the preceeding section. Its covering space is the
solid torus 64 x’z)z. As it is easy to
show (see fig. 4), any ﬁ/“’ -tangle can
be cbtained from the {J -tangle by a diffeomor-
phism Ds—’,D‘.This diffeomorphism restricted

tos preserves the set of the tour enda-

points of the arcs.It induces the autodif-

._xlo

=0,n=1, =0

feomorphism ot the two-~folds covering space
Fig. 5. of Sl branched over these 4 points. -The latter
autodiffeomorphism, up to composing with a cdiffeomorphism extendible over
S‘ X ;{)2' ; is determined by the homology class of the image of meri-

dians Pt X ﬁo@z

, which is
& (the class of meridians) + /6 (the class of longitudes)

see e.g. [24] .

2.4.A. Under the assumptions of Lemma 2.3.A let Fn IRE consists
of two components. There is a reqular neighbourhood u/of F/C in E/C
with ( 'u,/’ ﬁ{,m (c)a 'u,/) diffeomorphic to (§fxQ? , St ¢ 0 -tangle)}.
There exists a diffeomorphism E‘/Cl_"E/C such that it maps {LX(C')
onto the surface that can be obtained from {\;X C) by substituting

S‘ X(“/ﬂr/m)—tangle) for {(,x((‘)n u,/

PROOF. For u/ we can get the image of a

neighbourhood u of F - 'u,/:= u,/(‘,
(E\Int u)uru

and (

S‘X ( 0 -tangle) .

(-invariant tubular
, c£.2.3.A. By 2.3.A the
presentation of E} as can be found to be equiva-
. ;he diffeomorphism %* from

Telo (5% 203

_?U/{'/,%I,(C)ﬂ u//) - The diffeomorphism E /(‘,‘—»E/c can be obtained as

t
riant with respect to (

,SY %0 0 —tangle)

2.3.A induces a diffeomorphism
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an extension of id’(E/c\Iniu/c) by some diffeomorphism /u,/(‘, —*u,/(',

extending (T /€)  (compare the proof of 2.3.A). The latter can be
taken in form (KxfC)o (t(i xhYo (X ofe) for some P — 0%
since {, maps the meridianal loop |— Jl|:t > L4lz, z’”’__“’)
onto the loop [— 1111 (x,yre? ™At o2 ) - naps
(—/L/m)—tangle.

the 0 -tangle onto the

2.5. Branch locus after a pair of real logarithmic transformations.

A pair of disjoint smooth arcs in 003 with end-points constituting
a fixed set 6 < 52. is called a tangle. The (/5/06)-tang1es above are
the simplest tangles, they are called rational tangles. The tangle
shown in fig. 2 is not rational provided P”"= 4 and OY* 1 . However
there is a natural sum operation of tangles described by fig. 6. such
that the tangle of fig. 2 can be obtained as the sum of two rational

tangles, see fig. 7. The summands are ( P)— and 1/q/ ~tangles

o0

Fig. 6. Fig. 7.

The following proposition is a straight-forward consequence of
2.4.A.
2.5.A. Let J°: E B be a real elliptic fibration with an-

tiholomorphic involutions (¢ and 6 . Let Fth be its non-singu-

F, n dizle)

Suppose that JK(F) and ﬂ: F ) are joined in {&1‘,(5) by an arc

lar fibres with consisting of two components.

8 that does not contain the image of a singular fibre. Let 6; €

“H,(F;)

(6&: -—&I which maps

be primitive classes with (ClF)
i
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by the isomorphisms m*:H4(F1',) — HAYC—{(K)) onto the same
element of H4(.71:—{(?,)) . Let (m“/m),(m,”/u,,) be two pairs of rela-
tively prime numbers, and let %':E'—*B be the result of the pair of
the logarithmic transformations of §[:F — P along [_‘1 and Fz of
multiplicity MM, and M, , supplementary multiplicity M4 and /uz
and directions 0, ana 0g . zet C:E'="E' pe the antinolomorphic
involution which coincides with ( on E\(F4UF2) . Then there is a
regular neighbourhood u/ of JC"(?/)/C in £ /¢ with (u/,hx(dnu,)
diffeomorphic to (5‘x,2)57 6! x ( () -tangle)) and there exists
a diffeomorphism E'/¢' —= £ /¢ such that it maps {ix(¢') onto the

surface that can be obtained from ;(«X(C) by substituting

Si X (sum of (—M/mﬂ -tangle and (—/lz/mz) -tangle)

for {Lx (0) N u/ = S‘ X( { -tangle)

This proposition obviously implies Proposition 5 stated in Intro-

duction, since the substitution in the case of /u'l _ - /uz. _"4
Ll L2 =

K my P ity q'

coincides with the knotting construction p q/ of Introduction.
)

§ 3. Commutativity of 754 throughout the knotting

3.1. Knottings along an annulus.

Our main purpose in § 3 is to prove Proposition 4. A big part of
the arguments 1s naturally extended to the wider situation suggested
by 2.5.A. We investigate this situation up to the point where it
would require more complicated calculations than just the proof of
Proposition 4 (i.e. up to Section 3.3). Some possibilities of extend-
ing it are discussed in Section 3.6.

First we describe the corresponding generalization of the knotting

construction Kqu, . Let X be a smooth 4-manifold and F a
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smooth closed connected 2-submanifold of X . Let WZC X be a mem-
brane homeomorphic to S‘ X I with 3??2 = m ﬂF , let N be a
reqular neighbourhood of m in X . Suppose that 77t  has index 0
Let Y:N —r S‘ X 0’(')3 be a diffeomorphism mapping N nF onto §x
x( (0 -tangle). For a tangle T denote by Kv(F,m,\ﬂa new smooth

i
submanifold of X obtained from F by substituting S *T  for

FnN = Lf-l( S‘ x ( () -tangle)). If 7 is the sum of ip ~-tangle
and % -tangle, then KV(F'm‘LP)zKPaq,(F’m’q)) , cf. 2.5
above.

3.2. The problem and its reduction.

Let and be as in 3.1 and let g ,€ BN\F
© X, F, m e N v 0
We begin with the problem: under what conditions on T commutativity

of JLy (X\(FHM), 30) implies commutativity of T, (X\K’U(F*:
0, 9N

. .
Let LP(JCO)= ({)0 ,do\)e S‘X 52' and &, be the kernel of the homo-

morphism &y (62'\&7(1,0)"*.7[4(X\(Fﬂ M),xo)induced by the composition
-1
5 % (S\6) = ONVF e X\(Fn 1)

Denote by G the factor-group of -71:4 (o@Z\T ) dao) by the normal sub-
group generated by the image of &/ under
Myt T (5NE, dg) —= o, (D2\7,d,).

3.2.A. If G_ and 7[4(X\(FU m» are abelian then ﬁi(X\leE
m,l'?» - is abelian.

PROQF. We apply the Van Kampen theorem to the triad (X\K@(F,
W, 5 KNK 70,000 Tnt NY, NNK, (F, 00, 9) - The

space X\(K’U(F,m,lﬂu Ih/t N)=X\LFUIt\zt N) is a deformation
retract of X\(Fum) . On the other hand N\K,U(F’m’\f) is

homeomorphic to S(X (0(03\7) . Thus W{(X\KV(F,?%,W),ZBO)iS isomorphic
to a factor~group of the free product ‘7[4 ( X\[Fum’mo»* T (2)3\/; , d,o\
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To obtain it we must adjoin the relations which say that the images of
R . 2 —_—
elements of JI; (S*\E , do) under Pl Ty (5 \E’a d'o) Ty (D*\v 1 dfa)

are equal to the images of the same elements under the homomorphism

Ty (S \6 do)_+ ﬂ{(X\(FU m) .T/ above. Certainly we can

factorize 5754 (.@ \'U d)by &, beforehand and substitute G’ for
751 (o@ \’V, d/o) . Since H4(Sz\8) _"’H4‘005\T) is onto, the homo-
morphism (Sz\g,do) —(7 is onto too and the factor-group of Ty (X\

\\FUWZ),%)* G' is generated by the image of I, (X\LFUWZ), 1‘/0\.

Therefore the factor-group is abelian.

3.3. Estimation of &,

In the situation considered in 3.2 suppose that Ty (X\(FUm),xo\
is abelian. Here we estimate {(, using only information on Fum re-
gardless of position of Fum in X . First, &, obviously con-

tains the kernel of the natural homomorphism \7;1 61\& d )-—y H ((TU
NI(F u72),

Thus if the factor-group of 7 ("@3\7, dro)

o) where T is a tubular neighbourhood of F in x
by the normal sub-
group generated by the image of Ke'z { 1s abelian, then G— is abe-

lian too. Now we study what Ke"c { can be.

The group W{(SZ\E’ y d.«o)

more convenient for us to consider 4 gene-
r

Y pology of the pair (F ). In fact (1),
f(, 11) { () are the classes of the bounda-

is a free group of rank 3, but it is

rators shown in fig. 8. They satisfy the
relation TU = I}U' . Additional relations
satisfied by the images of x,l},u,U under

4 to some extend are determined by the to-

Fig. 8.
ries of fibres of the tubular fibration

T— F . Two such boundaries are homolo-

gous modulo 2 in(—rUN)\(MUF), if the corresponding points of F

are in one component of F\ am . Moreover, if this is the case,
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then the classes are equal or differ in sign. The sign depends on

the first Stiefel-Whitney class. For example, if F is orientable and
F\ ﬁm is connected, then $($)=1r(l:}) and 1:(1”='1/(U') . If, conver-
sely, ﬁm realizes the homology class dual to w4(F) and F\B”Z1s
still connected, then 1/(:1'/):_1:(\}) and 1(“)"" "i(’U’)

just in the proof of the Theorem could restrict themselves to the latter case] .

[ those interested

1f F\ 3% is non-orientable and connected then {{X) = 1,(\}) = ilu)=
={, (U’) and 24,(1)20 if F\(?m is orientable and connected,
. All the

then in the eguality 1,(:]‘,)= "—'1',(11,) the sign depends on Y
facts concerning dependence of the signs on topology of F and F\am
which are stated above are not proved here. This is not necessary as

it is enougn to consider those cases needed to prove Proposition

3 .
4. By 3.2.A it is sufficient to prove that the groups .71-'4(00 \'V,d,o)wn:h

the corresponding 7’ 's become abelian by adjoining relations x =

=9’v¢=uﬁ=vr with 06,,8,7“ = i/‘ . 4

3.4. The group of the sum ofaiz -tangle and a — -tangle.

In fig.9 we show (as arrows) the loops representing the Wirtinger

. 3
generators of the fumdamental group of the complement in p@ of the sum
of a-L ~tangle anda—5—- -

R
tangle. Clearly, the ge-

-1 -l -1 _-tnerators are subject

191 TERE:
-ly 27
12x Zgzg Z" tions .

w=xtg w2,

r=zyeyr ety

to the following rela-

__,Zg“z

vlrr= xyayry ey
cyi 2l

It is clear that in the

case of the sum ofai -

R
tangle and a_L -tangle
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with any odd q/ the picture is analogous and the corresponding re-

lations are:
w=z'zglxt2z
v = (%9,)9[’74 «t (l{‘z“)q%
xlzx = (7&1})%d z“(y'z“)%—‘

3.5. Completion of the proof of Proposition 4. We must show that

the group

- -1
(o, vl =ay e tyn, o= (19)&’7 z"(g"%“)%—,

+1 -{
otk % A (%H)% %“(g.“%")g“z‘ » BU=Yv)

by adjoining relations x=|}&=uﬁ= U"r with 06”5 ,T= i1is caused to

become abelian.

In the case B =—/this is obvious. In fact, the first relation
. ~{ -1 -
turns into 7127z =1 and %,u,v can be removed.
Thus consider the case /5 =1 . Then the first relation gives

g
L'Ex Z,=1 . The latter works almost like the commutativity relation:

it implies $%=%$“"x“z =%% etc. The third relation gives
2 it
Thex = (2x) 7% gt (avxh) R

From this using the first relation we obtain

2x* =22 ,
X — -
with some U and therefore %= X . Since the generators l}«,uﬂr
can also be removed the group is cyclic and thus abelian

3.6. Related results.

. T
In Section 3.5 we do not use the relation £ =1 | we could
prove analogously the commutativity using the relation X= UT instead

—qr
of 2=MU" . Thus we can strengthen Proposition 4. The hypothesis of the
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connectedness of F\ ﬁm can be replaced by the following weaker
hypothesis: F\ ﬁ?ﬂ has at most two connected components
and the components of 4/, are not homologous (in F ).

Some other similar proposition can be proved. For example, it can
easily be proved that if F\ @m is connected, F is orientable,
ana T4 (XMFUWT)  is avelian, then 74 (X\ KP,(}(F,m, )
is abelian for any relatively prime P,q/ . We don't know whether

this statement remains true without the hypothesis of orientability

ofF .

§ 4. Commutatively of @) before the knotting

4.1, ?,—curves and generalization of Proposition 6.

The main purpose of § 4 is to prove Proposition 6. In fact we
prove a certain generalization, which is a general theorem on the topology
of real algebraic curves of some special sort. This theorem extends
some results of Finashin's work [7] .

We begin with describing the problem on topology of curves which
we deal with. Let A c (f,pz be the set of complex points of a real
algebraic plane projective curve. Let M be the complex surface ob-
tained from (,DZ by blowing up points P4,‘.., P!" € RD'L . Let (.
M"M be the involution induced by the standard conjugation involution
w"'j : sz - a:Pz Denote by AM the proper pre-image of A under
the projection M - ([,P2 . Further, denote by M the fixed point set

~ch
of . M - M as well as the image of it in M/C (= S ) Put

M M
Ry =Mgu A/ = M/c .
M
The problem is: what conditions imply commutativity of 754(M/C\ RA )

For our purpose (to prove Proposition 6) it is sufficient to pro-

ve that it is the case if A is a non-singular cubic curve and at
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least one of ﬂsz; lies on A . We work with a wider class of curves
- with {—curves considered by Finashin in [7] - A non-singular real
algebraic curve A < {:pz is called an 8 ~curve if it can be ob-
b
tained by a perturbation of a curve Ao = I.._qU...Ul_m , where L;
(with ='1,”.,ﬂ1 ) is (the set of complex points of) a real projecti-
ve line and L{ 1~~»L—m are in general position (i.e. no 3 of them
have a common point). By a perturbation of a singular curve Ao we
mean a path 5:[0,1]—*[Rcmin the space [Rcm of all the real al-
gebraic plane projective curves of degree Wl such that 5(0)= Aoand
curves 5(t) with t € (0,{] are non-singular.

Any non-singular real plane projective cubic is an { -curve. Ac-
tually, according to the well known classification of real plane pro-
jective cubics, non-singular cubics up to rigid isotopy are of two
types. Cubics of one of the types have connected real part, cubics of

the other type have real part consisting of two components. Both

types are obviously presented by { -curves and therefore consist of

them.

4.1.A. In the notations introduced in the beginning of this se-

ction if A is an £~curve and at least one of the points P4’“'1Pk
™M

belongs to A then the group 7E4(M/C\RA ) is cyclic.

The rest of § 4 is aimed at the proof of 4.1.A.

4.Z2. Genetic graph of an 8 ~curve,

Let Aa=;L—4U---U L-m , where L(,.”, L—m are real lines
2V
in general position. Let IRP be the projective plane dual to

sz and Lj “‘,’Lfm € szv

to L{’“.’L_m. A perturbation of Ao smooths out each singular point

the points corresponding

P”‘:Liv n L1 of Aa in one of the two ways presented by fig. 10.
o . 2

Consider the lines on RP which pass through P;j and lie in the

angles joined by the smoothing (the angles A and (, in the left

part of fig. 10 and 6 and ;D in the right part). These lines cor-
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- RP* et~
respond to the points of constitu
RP . oins

ing the segment of the line on joining

v .
LYb and L‘j . Denote this segment by E:“,

v

Let r‘ be the graph with vertices Lx|'“1L-m

and edges EL} ,L,j=1,...,m, i'#:j . We
call it the genetic gggg& of the pertur-
bation.

For each E:;- we take a map S' —
—”'RPZV\{Lx,“,,L:thich straight-forwardly
parametrizes the figure-eight positioned in a

regular neighbourhcod of E:ij as
shown in fig. 11. Let C(rﬁ denote the
space obtained from the punctured plane

RPPALLY,, . LY )

two-dimensional cells by these maps. Since

m
by gluing Lz)

Fig. 11. the gluing maps are well described up to ho-
motopy and self-homeomorphism of S‘ , the homotopy type of C([_)is
well defined. Put Rf‘RPZU Alun) < sz/conj

4.2.a. Let [ be the genetic graph of a perturbation which yields
an {-curve A . mmen CP*onj\R,
to ().

The proof of this assertion will be postponed to Section 4.5.

is homotopy equivalent

4.3. The bundle of semilines.

The set of complex points of a real projective line is homeomor -
phic to 52 , the set of the real points is a
great circle. The component of the set of real points consists of two
connected components ( = open hemispheres). Below the closure of such
a component is called a semiline.

- . 2
Denote the set of pairs (L,,P), where L_ is a semiline in @P
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. It is a compact manifold. Its interior }\d?
CPQ\ sz, since each point of (EP”\[RP’“

is contained in the complexification of the real line which is deter-

and PGL byj

is naturally identified with

mined by the point. A point (L, P) of 8? can be reconstructed
from the point p¢ (sz and the real line | N0 [RPZ passing through
p and supplied with the orientation induced by the natural orien-
conj : CP* —= CP*

. Let ? denote the orbit space. The inte-

tation of [_ . The co’inplex conjugation induces
a free involution of j’
rior of ? is naturally identified with (GPZ\RPQ)/COHJ , the boun-
dary with the space of linear elements of sz(= the flag space).

Let E < G:p?.
Since each semiline intersects B in a single point, we have a

€: 4 —B:L,p)—LaB

tified with semilines. [This gives a way of identifying B

be the conic defined by the equation I02'+ IL% +x:'=0

~

bundle with fibres naturally iden-

A with the
space of oriented lines on sz] Let B=E/COI1J. The bundle E: ﬁ_’
—>E induces the bundle & ? - EJ . A fibre of E is naturally in-
terpret as the complexification of a real line factorized by (0N J
2

Thus we have the bijection 8 B IR zvof onto the plane [Rp

dual to Rp

conjugate points of B to the line containing the points.

. This projection maps a point of B which is a pair of

Let A Q:pz be a real algebraic curve. Denote by A7 the
closure 3“ /} of the set A\[RPz 7\57 . If A

then A is a proper smooth 2-submanifold of 7’ with the bounda-

is non-singular

ry ﬁA? that consists of points which are the orlented linear ele-
. Let A7 be the image of A7 in

-
is the closure in ? of the set A/COR \[Rp

If A is non-singular, then iA

ments tangent to A g [sz . Cer-

INIS-

consists of nonoriented linear ele-

tainly, A

ments tangent to A [RPZ . It is clear that the pair (71/\'}’) is ho-

reomorphic to the pair (QPZ/CUM\N A/COh, \N)

regular neighbourhood of RP /COM

P’“/conj\( [RPZU A/COH'J) we can substitute 7\A4 for -~

, where N is a
. Thus in our inves-

tigation of
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|2+ o + 2il

€P* /eonj\ (RP*y A/conj
The function CP — [ Hi(l,‘.x{ixﬁ'—*

|z +zl + Lzl
Ve denote this function /}—*[0,” by d

determines a function on y .
. For any fibre LC yof

1t is a smooth function, d\5=0 ! d‘57=1

€ the restriction d,\ is a Morse function with the only criti-

cal point L n B

4.4. Reduction of 4.Z.A to the case of a conic.

.A we assume without loss of generality that
A=Lyu.ul,

and intersects it in Zm points close

In the proof of 4.2
A is obtained from by a small perturbation.

Then A is transversal to B

o BnA,
it in m points, say Q

Bal?

- isotopy of E) which moves B n AO

A/} is transversal to B and intersects

Qm, which are close to BnL’?‘".
AR ]

. Therefore

PR

respectlvely. The perturbation can be accompanied by an
to A n A# . The inverse of 8
A
(see 4.3) and this isotopy give an embedding [RPQ’ \{L‘: . L:,\'lj —
pAY%

e ?\ Ay well defined up to isotopy. Rp \

\{L } is a part of (,u_) . We have constructed a map of

it into ? \ A

equivalence C(r }— 7\A'} . But in advance we must understand
pAY v

the meaning of {RD \{Lv‘ s ...,Lm} .

-1 v

i RP—B

induce a homotopy equivalence

We remind that

. This map must be extended to construct a homotopy

The homeomorphism and the inclusion B " 7

RPALLY, . U — A\AL

2
In fact, é ?—"B is a fibration with fibre :(0 and A is the
- v v
union of the fibres which are over the points ?J (L % “— . The

map [RPW\“_4 .,Lr\:»]) — y\Ay constructed above can be obtained

from this map by a deformation going along with the perturbation.

Thus to prove 4.2.A we must show that the homotopy effect of the per-

turbation is the gluing of Z-cells by the figure-eight loops along all
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E ;'j , see 4.2,

As it is well known, from the topological point of view the small
perturbation is localized in a neighbourhood of the set of the points
P{]= L; f] Lj . This means that in the complement of the neighbour-
hood the perturbation is an isotopy. The Morse Lemma implies that in

a neighbourhood of each P’J the perturbation looks standardly,

just as in the case of the perturbation
pair of lines +——> hyperbola

Thus it is sufficient to prove that the latter perturbation has the

effect described above.

4.5. The case of a conic.

Let A be a real non-singular conic obtained by a small pertur-
bation of the union A0=L4U Lzof real lines L“Lz . Then A is
transversal to the B and intersects it in 2 points, say 0.4 and Q’Z'
which are close to B(\ LI% and Bn \—z . There are unique real lines

L‘U le with L‘f?ﬂ B= @"b , these l_li' are close to Li, and A can
be obtained from Ll‘U L|2, by a small perturbation. Therefore without
loss of generality we assume that Qb= Bﬂ L?v (i.e. L‘;’_‘ L_;’) .

Since B\ A;f= B\ A/y"‘_‘ B\{Qh Qz} is a deformation retract of
y \Aoy’ , the homotopy effect of the modification '}\A? — 7\A7
coincides with that of the inclusion B\A7 - 7\ A# . The latter will
be investicated instead of the former.

The natural homeomorphism @B ——»]RPW (see 4.3) maps E(Ay)
onto the closure of the set of lines which do not intersect A on

sz . This set is bounded by the curve dual to A . It is a neigh-
bourhood of E4Z

The set E-4€ (A?) is homeomorphic to £)%x Q) and A'} is situated
in it as a section of the natural projection a@zx p@z—‘* 22 (: (E\
E—‘ é. (A/})__" E(A'}» . It intersects the section B transversally in

points Qh Qz with intersection number +1. Those properties obviously
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determine the position of A‘f in S-(g (A‘#}up to diffeomorphism rel.
poundary. One can easily see that g-'g (A#) \ A? is homotopy equ-
ivalent to § {A‘?)\{Q” Q,} with a 2-dise glued along the figure-
eight loop described above in 4.2. For example, this can be done in the
following way. Consider a surfaceOZ of the isotopy type of A# shown
in fig. 12 by a family of curves in S‘x Dl , which are the in;erse—
ctions of it with levels of the function d,lé-xg (A 44) (see 4.3).
The surface UZ is chosen in such a way that this function restrict-
ed to it has minimal number of critical points:2 minj_ma(e,toaa.ndo-;)and
1 sadle point. Let Dt denote J:‘[O,t] n %ﬂ‘E(A") and tcl,, be the
value of i at the sadle point. The homotopy type of D N does not
change until t reaches d,. . When t crosses J«o the homotopy
type changes as if a 2-cell were glued, cf. [23] . The corresponding cell
in Dt\(/z, is shown in fig. 12 in the level of cl which is slightly
higher than the sadle point level. The natural deformation retraction

obviously maps the boundary circle of this cell onto the loop describ-

ed above.

d(d,-¢) N ETE(AY) &' (d,+e)nE"s(A?)

Fig. 12.

4.6. Generators of the group.

In this section we prove that in the case of a g-—curve the group
7f1 (CP%MJ\ R‘) is generated by classes of arbitrarily small loops.

7z, (C{T) =

To prove this we construct two generators of
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= Ty ((LPz/wnJ\ RA) and show that they can be realized in any neigh-
bourhood of a point of AR

Let A be an £—curve, let it be obtained by a small pertur-
bation of =
A= Lyu...uly

general position. Let I_ be the genetic graph of this perturbation,

QG [szv be a point close to Lv4 , and ?/C RPZV\{LVHW’ l—\:n}be

a line passing through Q . Denote by ( the element of 74 (C(r),a)re-

, where L4 Lm are lines in
yerey

presented by a small loop encircling f_i , and by { the element rep-
.

resented by a parametrization of{ rsee fiqg,13,

4.6.A. The elements ( and ( ge-

a X nerate Ty (C(r» .This is evident. The
Q & i loops realizing ( and (, described
Fig. 13. above realize the generators of the fun-
damental group even of the part of C“_\ constituted by RPZV\

v v
\tL“...,Lm} and m—1 2-cells corresponding to the edges ElZ*""Eﬂn'

4.6.B. For any regular neighbourhood ’LL in (,P,"/C(m] of a

real point of A the homomorphism
iy 354(&'%\RA\ - Wf(ﬁ:Pz/conj\RA\
is surjective.

PROOF. Clearly, without loss of generality we can assume that the
. ) \%
real point is close to the point E dual to the line ac [szv

. . . 2 i
Consider its neighbourhood in Cp /CO!’L] containing ?/V . The choice

above of Q and e makes it possible for this neighbourhood to be ar-
bitrarily small. Let V be the pre-image of this neighbourhood under

2 .
the natural map ? - {P /CONj . It is easy to lift into V the

loops realizing & and { (which are shown in fig. 13) with res-

pect to the fibration f§e E. 7 —_— [RPR‘ For 4 we obtain a small loop

that goes once around \—4 + for ( a loop parametrazing the bounda-

: v i
ry of a fibre over E of a tubular fibration of RPI in QPZ/Conﬁ-
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By a homotopy equivalence 7\ A'}—'—? CU_) these loops are mapped

into loops realizing . and ( . Since ’LL is a regular neighbour-
hood, 5u\ RA

4.7. The effect of a blow up.

is a deformation retract of u’\RA

In this section we prove 4.1.A. We consider only the case &=’1
It is obvious that the other cases differ inessentially. Thus let A
be an ‘E—curve, its real point. Let M be the complex surface
obtained from (I:Pz' by blowing up a point P

Then M can be presented as the connected sum of d:pz and _q:Pz.
The proper pre-image AM of A under the projection M —_ @P"‘" in
this presentation is the connected sum of A = ﬁpzénd the,linempi‘:(—{pz)
Therefore M /C \ R': can be obtained in the following way. Denote
in (,Pz/c,onj by Y and some regular
neighbourhood of some point QVE [RD{ in (ﬁpz/conj by V . Then MIC\

some regular neighbourhood of

\RA is diffeomorphic to the result of gluing of spaces CPZ/COM\

\(Yu R,\) and QfP’“/conj\(VUﬁ:P%on] U RPQ) by some diffeomorphism
FUNR » —= AV feon u RP*)

theorem. The space q:pZ/oonj\{qu‘/Pi/wnj U[RPQ') has the punctured pro-
jective plane B\ ([RPA)V as a deformation retract, cf. 4.3 above. The-

. Now we apply the van-Kampen

refore its fundamental group is cyclic. By 4.6.B the inclusion ﬁu\

\RA L"’CPZ/CON']\(“U RA) induces an epimorphism. Thus g, (M/C\R:)
is isomorphic to a quotient group of T, (CP%On} \(\/UCP%OMURPZ)) and,

consequently, it is cyclic.

§ 5. On the homeomorphism classification of knottings

of a non-orientable surface in the

4-sphere

5.1. Reduction to a homotopy problem.

[
Consider the class of all smooth submanifolds S of S with a fix-
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ed normal Euler number, ., (s"\ §) = /. and § homeomorphic to a

2
fixed closed connected non-orientable surface. Choose for each 5 a
smooth isomorphism of a tubular neighbourhood of S with a fixed
2-disc bundle and identify all boundaries of these tubular neighbour-
hoods by them. Our purpose in this § 5 is to prove that the number of
homeomoxphism types rel.boundary of the complements of the tubular
neighbourhoods is finite (i.e. to prove Proposition 3 of the mtmdﬁction).
REMARK. As it is mentioned in Introduction, for s = ‘RP" T.Lawson
[15] had proved that the homeomorphism type is unique.
We denote the boundary of the fixed 2-dimensional disk bundle over
S by M and the complements of the knottings by C,C‘, ... s which
all have same boundary M
Given two such knottings with complements C and Cl we study the
question whether the identity on M=5C =3Cl extends to a homeomor-
phism from C to C' . For this we apply the methods of [13] . We
recall the relevant result ( [13] (Corollary 8.8 ), which can be app-
lied in dtm‘l by Freedman's results [9] . Suppose that C and C‘
have same normal 2-type B and bordant relative normal 2-smoothings
in B . This means there is a 3-connected fibration B —_— E)O and
3-equivalences £ C it B lifting the normal bundle V' C - BO
{and similarly for C| ) such that ¥\M = ¥\{M and (C, D and (Cl1¥‘)
are B—bordant rel, boundary. Then there is such a homeomorphism from
1 . L A N .
C to C (using the vanishing of LS(Z2)= L’-’ { Zz) in the

5
notation of [13] as proved by Wall [27] ).

5.2. Normal 2-type of C

The normal 2-type of C can easily be described. Let C ” P be
a 3-equivalence into the 2.stage of the Postnikov tower (i.e. P is
the total space of the fibration over K(Zz,’ﬂ with fibre K(JEZ(C), 2«)

and ,z’ ~invariant &,(C)e HB(Z 23 T (C))

the restriction of the Spin-structure of 84 to C . Then the map

. We equip C with
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C——PPXB SP{,n, given by the 3-equivalence and the Spin-structure

B =P X B S pm’ _P_z—.’ BO . The correspond-

ing B ~bordisn group is the é-dimensional singular Spin bordism

Spin
group Q7 (D) - .
As P ‘ is determined by, [754(C)= Z 2,,.7[2,((:), &/((‘,) ] we have

to compute this invariant. Denote the non-trivial /\ -module structure
on Z with /\=Z[Zz]by Z_ .
T (C) = Z_ @ free /\ -module and &/(C) is

is a normal 2-smoothing in

5.2.h. LEMMA.
the non-trivial element in H”Z2 T, (Ch= Zz .
The map H4(M\——>H4 lC)(with
integer coefficients if no coefficient system is specified) is surjec-
tive as  H,(C, M) = H (54,9)=10 . Thus the double is again a
manifold with ;= Z,. It is easy to see that m (Cu ()=
=2 7,(0)® 7 (0na £ (CuC)=in, k(C)
Z, (CuQ)= Z_0 7 _ @ sfree and B (CuC) is non-trivial (compare

PROOF. Consider the double CHC

But it is well known that

[26] y [11] } . As cancellation holds for A -modules this completes
the proof of the Lemma.

©his Lemma has two consequences. It shows that all ¢ have same

' .

homotopy type. For by [1'/'] there is a map between C and C in-
ducing an isomorphism on &y and 2 and thus a homotopy equivalence
as the covering spaces have HZ(C§=H§(CI)= 0 by Poincaré duality.
Foreover, we see that C’-’RPZVG‘I(S»? Sl as this complex has same ["754,
s, &/ ] as (, This proves the Proposition mentioned in the introduction.

“he other consequence is that the normal Z-type is the same for
all complements under consideration. The next step is to choose normal
Z=-smoothing C —-rPXBSPi,n for all complements which ©on M restric

to the same map. By the choice of the Spin-structure on C its res-

triction to M is always equal.

5.3. Obstructions to a 3-equivalence.

Thus we have to look for 3-equivalences {: C —’P which are all
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equal on M - In the following we will apply obstruction theory. ror

this we fix now one complement C and a 3-equivalence %C ” P and

compare all other situations with this. If F:C'—-—>P is another
1

3-equivalence we want to decide whether £ lM is homotopic to

“M rel, base points. The first obstruction is the difference of

the induced maps on Ay contained in HOM(yE4(M), ZZ\ which is a fi-
flu
nlte ‘vg‘roup If this vanishes, the compositions M __.>D —»K(sz)and
P (Zz,'” are homotopic. The only obstruction for lifting
; ; H*(M; o, (P))

such a homotopy is contained in ' Vb2 . We note that
the map  H*(M; 7, (PN — Hom, (H,(M), 7, (P) nas zinite xerner
and the image of the obstruction is the diiference of the induced
maps. Thus if we assume that the maps Hz(M)_’Hz(C)_’, Hz(P)n-ﬂ:z(p)
are equal for all complements there are only finitely many homotopy
classes of maps M—»—P which are restrictions of such 3-equivalen-
ces.

The next step is to show that for every C| there exist a 3-equi-

valence gl inducing the same map H (K’ﬂ — H @) as the fixed map

{: C — P - For a later arcument we need the additional assumption
that ({;) 1";?*' C) ~"H ( ) is an isometry of the intersection
form.

For this we assunme for a moment that the equlvarlant intersection
forms on C)/H H (C )/radlcal and on L )/HZ(M) are

isomorphic under an isometry ﬁ and we ask for the existence of a ho-

momorphism o¢ making the following diagram commutative

0 = Hy (M) — Ha(€) — H,(T/H, (f
I « IR

He M) — H () — H, () H, (P

zu“;

~

H.(P)

-~
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\
If the map « exists then {,(_ o &k is an isomorphism WZ(C )—ry[z(P)
which maps &/(C‘) into &,(?) and thus by [_17] can be realized by a

(! i isi ies. The obstruction
3-equivalence { C _*P with the disired properties. T

for the existence of & is an element of Extj\ (Hz(C)/Hz(M\,

H, (M)

We will see that this group is finite. For this we note th_at Hz(M\=
“Z and H, (=7 _o A® (same % ). This folloss fram 5.2.A and
a simple calculation of 3etti numbers and the Fact that H M) HZ(M)

T+
is rationally an isomorphism. Thus CVH [ ) - 5 . ks

Ext}\(Z_, Z+) is Z,”the croup E’LtA(Hz )/Hz(M),
HZ(M )} is finite.
Wow we want to verify our assumption about the existence of B or
at least show that again the obstructions for the existence of B are

contained in a finite set. For this we consider the double ramified

4 . .
© covering N of S along S and the following diagram

H (0) — H. (T, M)
l ;ul
 H(N) — H,(N,F)

0 — H, (M)

'
im N, C) = Z,

It implies that there is an isometry
Ha (D) Ha(M) = Kew (Hy(N) — H, (N, D)= Z |

Thus up to finite ambiguity the form on C)/H (M\ is de-
termined by the equivariant intersection form on H,~ N) . On the
other hand the equivariant intersection form on HZLN) is up to fini-
te ambiguity determined by the rank of HR.(N) which is equal to
2= X(s).

Ve summarize what we have proved so far. If we fix a complement

C and a 3-equivalence gC p then the obstruction for find-
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i, rl -
ing 3-equivalences {C P such that ({*) ° ¥* preserves
the intersection form and restricts to the same map on M are contain-
{
ed in a finite set. If these obstructions are equal for (94,5) and

(64,5"

perties.

we can find maps on their complements with the disired pro-

5.4. Bordism obstruction. By the results of [13] mentioned above

(in 5.1) the knottings (54’S|),(54,5") would be homeomorphic rel. tubu-
lar neighbourhood if the singular Spin manifold Lt et [

o (Clu,-C' o
is zero bordant in Q4 (P) - For a classification up to finite
ambiguity it is enough to control the bordism class in QS,(WL(P)QQ =
= Qe H,(P:Q)
and the image of the fundamental class. In our situation sign (C‘) =
sign (Cu) = 0
[C'U“ ("] maps to zero under {lu ¥" in H/l {P} . as the trans-

fer is injective in rational homology it is enough to show this in the

- The isomorphism is given by the signature

. Thus we are finished if the fundamental class

universal cover.

1f we abbreviate ('y-C% by X ana g'u f“ by § we are
finished with the proof of our proposition if g*[i] = in H““p’)
we note that P =K(7,(P),2)  and thus we are finished if for a1l
e HHP), (o GulXD = 0 or equivarencyy <G5, [ X1)=0

For this we consider the diagram

CHEPL MY —— HAP) — HAM) — o
g |o |
HY (T MY @ B2 (T M) — HA(R) — HA(M)

ot preserves the intersection
* 2 _ ~ o~

form, < 9/ (<) ) [ X1>—O for all &« coming from HL(P,M)

Next we want to construct a splitting »: Hz(M)—"Hz(’p’)and show for

all ocsz(M) and ﬁGHz(T),M)

Because by assurption ( ¥|*)—‘ ° {:‘l_
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(g ), [X1Y =0 = CgFaie) o g7, LKD) .

Let P‘. Hz(M‘ - HQ(M) be the map induced by projection. This

map is an isomorphism in rational cohomology. Furthermore we note

ehat H¥(P)/ Toes THZ(M)/TO‘LS is injective with cokernel Zj«
and we denote its image byA . Instead of constructing 3 on' Hz(M)
ve can consider  b:= %o (j*)_{I A — H*(P) .

It is easy to see that for o ¢ A and B € HZ(P‘M),
(5)u B, gL X1 =0

is contained in the +1 -eigenspace of the involution and /5 in the

. The reason is that »y construction {)(oC)

(—1) -eigenspace. As the involution preserves 9*[ ’)\(] this implies
the vanishing. N

To check whether <5(°<' )2 ) 9/*[ X]> = 0 or equivalently
<(j*)~4(00)2', 9*[X]) =( is not so easy and in fact we don't know
if it is always true . But again we can show that it is true modulo cbstructions

. 2 2
in a finite set. Hote, that this difficulty doesn't occur if S=RP® as then H™(M)={ 0}.

we denote HZ(B) by H and consider a map p— K(H,Z)ng

inducing an isomorphism on H . If we denote the composition X—-»
% .

_"’B—‘* K again by 9 we have to show for all « ¢ H (K) .

(g" «*, X1y =0

2 :
through the Z-skeleton of K which is a wedge of S 's this follows

. If we assume that q,: X - K factors

automatically. We finish our proof by showing that the obstructions
for such a factorization are contained in a finite set.

1 1

X=Cu-C

to a Z-complex, RPZVV% Sz . Thus Q’l(‘,‘ and (H(‘,“ factor through

i .
and both CI and C are homotopy equivalent

Km= V'L 52 . He are finished if the restriction of these factori-

. 201/, )
zations ta M are homotopic. As the image of 4¢€ H (KqH\ in
HZ(M; H) is equal for both maps the only obstruction for a homotopy

between them is contained in
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H (M5 o, (v, SB)/5 A0, 0 H (M5 H)

{ {257, Theorem 10,

p.451).

Here 9 is the cohomology operation corresponding to the first &,-in—
variant § of v G* contained in i44(K; 553(V5 S2)) .

we H*(M; H) is the image of 4 ¢ H*(K3H) .

7y (v, 6*)=T(H") , the group of symmetric bilinear
and also H4(K;Z)=!—(H*) li6] . The 4 -invariant

% is given by j =id: H4(K«Z)=F(H*) __>'—(H*) . It is not

difficult to show that for U¢H' (MiH) , A0, u)0) is equal
to Z(Uuur) , where Z:H®H=H0m(H*,H) — F(H*)
is the symmetrization map (compare the proof of [257] , Theorem 11,

p.-452).

forms on H*

If we denote the image of U in HOWL(Hz(h4),¥n by 4 ana
H'MsH)  with Hom (H (M), HY = Hom (H,(MY* H) , we see
that for g ¢ Hom (H, (M H) | s ABw)0) = & (u'ov™)

By cdefinition w is the composition Hz (M)_’Hg(c)_ﬁ” HQ(K);‘H
and is by construction an isomorphism. Thus 5A(9,%\H4(M§ H) <
© HHM; v, (v, ) = T (K™
obseruction srouw {3 (M, 7z, (v, /5 A8, w)H(M; H

g.e.d.

identify

consists of all even forms and the

is finite.
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