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Introduction

! The topology of real algebraic varieties as a separate field appeared a little
frore than a hundred years ago. Nowadays its appearance is commonly
dated from 1876 (see, for example, [72], [11], [69]), when the famous
paper of Harnack [57) on the number of components of a plane projective
teal algebraic curve was published. Indeed, before that paper appeared
questions on the topology of algebraic curves were not separated from other
geometrical questions, more subtle ones as a rule. Because of this, topological
questions were considered in unreasonably simple situations only. The
sttention of the world mathematical community was attracted to the
topology of real algebraic varieties by Hilbert in 1900, when he included its
main problems in his famous list of problems ([17], 16-th problem). Since
it is not my aim in this paper (as the title obviously indicates) to present
the whole history of the topology of real algebraic varieties (the reader can
et some knowledge of it, for example, from the survey articles by Oleinik
{721, Gudkov [11]. and Arnol'd and Oleinik [69]), I cannot fait to
-mention here the most important papers that have determined the character
“of this field. In the initial period the basic role had been played by the
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papers of such masters as Hilbert [58], [59], Rohn (611, [62], and Klein
[60]. Ragsdale’s paper [29] also dates from that time. In that work
conjectures based on the analysis of Harnack’s and Hilbert’s results were
made. In many aspects these conjectures anticipated the subsequent ;
development of the topology of curves. The main 'one of these conjectures

contribution was then made by members of the Italian algebraic-geometry
school, in particular, by Brusotti [$3] and Comessatti [55], [56] (see
Brusotti’s survey [54]). A new stage was opened with Petrovskii’s papers
[63], [25]. In them he obtained deep results on the topology of plane
curves and created the technical base of many subsequent papers. In 1949
Petrovskii and Oleinik [70} obtained the first general results on the :
topology of real algebraic varieties of arbitraty dimension, namely the '
famous Petrovskii-Oleinik inequalities, which are estimates of such an

important topological invariant as the Fuler characteristic. Analogous results -

for curves lying on an arbitrary surface in three-dimensional space were
obtained by Oleinik [71]. In 1969 Gudkov [65] completed the isotopy
classification of non-singular plane projective real algebraic curves of degree 6
and made a number of conjectures, which produced a highly stimulating :
effect on the development of the subject. In 1971 Arnol’d [1] proved 2@
weakened version of one of Gudkov’s conjectures and a number of new P

restrictions on the topology of plane curves and discovered deep connections

: 1 am deeply graveful to V.A. Rokhlin, G. Wilson, V.M. Kharlamov,
four-dimensional manifolds. This conjecture of Gudkov was completely

between the topology of real plane algebraic curves and the topology of -

proved by Rokhlin [31]; in fact, Rokhlin proved its generalization to the
case of varieties of arbitrary dimension. Other conjectures of Gudkov
(generalized to the same extent) were proved by Kharlamov {67] and

developed especially intensively due to the involvemént of new topological '
methods, initiated by Arno’d [1] and Rokhlin [31]. There are several
survey articles on this development. lIts first stage (up to 1974) was
described by Gudkov [11]. The state of the topology of plane curves in !
1978 was described by Wilson [47) and Rokhlin [33]. The topology of
surfaces was the subject of Kharlamov’s address [14] at the International :
Congress of Mathematicians in Helsinki. A wide survey of the whole
subject, with a list of unsolved problems, was published in 1979 by Arnol'd
and Oleinik {69]. In my address [45) at the International Congress of ¢
Mathematicians in Warsaw 1 aimed to describe the development of the i
subject from 1978 to 1983. This paper is a version of that address,
considerably enlarged and supplemented by information on the latest
achievements. As in [45], I do hot attempt to give here a complete survey
and confine myself to the following themes:
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» (i) complex topological characteristics of non-singular plane projective real
- £ algebraic curves (see §§1-5);

] .(ii) complex topological characteristics of non-singular real algebraic
. turfaces, §6;

13 (iii) new restrictions on the topology of non-singular plane real algebraic
is still the most important unsolved problem (see §3 below). An essential .

| curves, §4;
; ,~. (iv) classification of curves and surfaces up to rigid isotopy, §7;
L (v) construction of real algebraic varieties with prescribed topological

properties, §8. .

* Here I do not touch at all on the following themes, in which considerable
! work w.as done in 1978-1984. Without a consideration of these themes this
_ survey is, to my regret, very far from being complete.

5 (i) Indices of singularities of polynomial vector fields, see Khovansky
 [18], Varchenko [64], and Gusein-Zade {68].

£ (i) New restrictions on the topology of non-singular real algebraic

. mrfaces, found by Nikulin [23] (in §4, however, we consider restrictions on

- the topology of plane curves, which are consequences of those restrictions).

. | (iii) Curves on surfaces and, in particular, on quadrics, see Gudkov [12]
and Zvonilov [49], [50].

] (iv) Singular curves, see Zvonilov [48].
(v) Points of inflexion and bitangents of curves of degree 4 with arbitrary
singularities, see Gudkov and Nebukina [52]).

Y,V. Ni!(ulin, and V.I. Arnol'd for valuable discussions and suggestions.
1 de.dlcate this survey to the memory of my teacher Viadimir Abramovich
. Rokhlin. The topology of real algebraic varieties, in which he worked

: actively during the last thirteen years of his life, is indebted to him not only
Gudkov and Krakhnov [66\]. Here [ interrupt the list of the most remarkable
papers. During the last 13 years the topology of real algebraic varieties has!

for a number of first-class results, but also for the essential enlargement of
the :v»tock of technical methods and for the formation of a new, wider point
of view on its principal objects and problems. His elegant and deep work

has had, and will havé for a long time, a decisive influence on the development
qf this field.

§1. Real algebraic curves as complex objects

We first consider non-singular plane projective real algebraic curves. For
§hort let us call them simply curves. The set of real points of a curve A will
be denoted by RA. It is a smooth closed one-dimensional subvariety of the
real projective plane RP2. Each component of it is homeomorphic to a
tircle. If the degree of the curve is even, then the components are all
positioned in RP2 two-sidedly. If the degree is odd, then there is exactly
one one-sided component. The two-sided components are called ovals. The
sotopy type of RA =, RP? (or, equally, the topological type of the pair

:(RP’, RA)) is determined by the scheme of mutual position of the

- components of RA. which is called the real scheme of the curve A.
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1 (@) it realizes m[CP!] € H(CP?Y),

(ii) its genus is equal to (m— 1)(m—2)/2;

(iii) it is invariant under conj;

(iv) the field of its tangent planes on M N RP? can be deformed, in the

tass of glanes invariant under conj, to the field of lines of CP? tangent to

N RPL

| (Maybe this definition is not final; for example, future investigations may

lead us to add new conditions.) The intersection of a flexible curve with

If’ is a smooth one-dimensional submanifold, which is called the reat part of
curve. The set of complex points of an algebraic curve of degree m is

bviously a flexible curve of degree m. Everything stated above concerning

gebraic curves and their schemes extends without alteration to the case of

xible curves. Restrictions on schemes of curves of degree m that are

ved for schemes of flexible curves of degree m are said to have topological

igin. A well-known classification of schemes of curves of degree <6 (see

below) is provided by the restrictions of topological origin stated in §3

low, so that for m < 6 all restrictions have topological origin.

It is a tradition going back to Hilbert to fégard the question of which féal
schemes are realized by curves of a given degree as the main question of the
topology of real algebraic curves. ‘However, Kiein [20] had already posed a
wider question. He had been interested in the connection between the réal
scheme of a cutve 4 and thé embedding of RA in the get CA of compleat .
points of A. BRARE L

CA is an oriented smooth connected closed two-dimensional submanifold of
the complex projective plane CP2. 1t is invariant undet the involution fal]

conj: CP?-» CP?: (24: 2, : 2)— (Zo : £, : 25). The curve RA is the set of
fixed points of the restriction of conj to CA. It may or may not divide CXA
In the first case A4 is said to be dividing or of type 1, in the second case tt ;
said to be non-dividing or of type 1. In the first case RA divides CA m
two connected parts. Their natural orientations define on RA (as their
common boundary) two opposite orientations, which are called the compi
orientations of the curve. The real scheme of a curve enriched by an .
indication of the type and, in the case of type I, by a description of the
complex orientations, is called the complex scheme of the curve,

The real scheme of a curve of degree m is said to be of type 1 (type Il)
any curve of degree m with this real scheme is of type I (type II). Otherwi
(that is, if there are curves of both types with this real scheme) it is said to
be of indefinite type. ! g

The division of curves into types was mtroduced by Klein [20]. The
complex orientations were introduced into the topology of real algebraic
curves by Rokhlin [32]. As 1 recently learned, they appeared in a paper b
Petrovskii {26] on lacunas of partial differential equations. Complex
schemes were introduced six years ago by Rokhlin [33]. In the latest ,
development of the field they occupy the central position. , Recently there
has been a wider understanding of the problems of the topology of real
algebraic varieties, in which the basic object is a real variety together with
embedding in its complexification, rather than the real variety in itself (see
Rokhlin [35]).

To resolve the question of which real and complex schemes are realizabicz
by curves of a given degree, it is necessary to work in two directions: L
firstly, it is necessary to find restrictions imposed on the schemes by the §
algebraic nature of the curves; secondly, it is necessary to find methods ‘of
constructing curves of a given degree with a prescribed scheme. : "5

A substantial part of the known restrictions follows from a comparative
small number of purely topological properties of algebraic curves. Thus, in
parallel with algebraic curves it is useful to consider objects that topologically
imitate them. Let M be an oriented smooth connected closed two-
dimensional submanifold of CP2. We say that M is a flexible curve of degree
if

§2. Numerical characteristics and encoding of schemes of curves

To formulate restrictions on the schemes, let us introduce some notions
ind numerical characteristics connected with schemes of curves. Two ovals
are said to constitute an infective pair if one of them is enclosed by the
"pther. A set of ovals, each pair of which is injective, is called a nest. An
mjéctive pair of ovals of a dividing curve is said to be positive if the
orientations of the ovals determined by the complex orientation are induced
some orientation of the annulus bounded by the ovals. The ovals of a
viding curve of odd degree are separated into positive and negative ones.
mely, consider the Mobius strip that is the complement of the interior of
oval in RP2. If the integer homology classes realized in it by the oval

nd the doubled one-sided component with orientations determined by the
omplex orientation differ in sign, then the oval is said to be positive,
herwise it is said to be negative. In the case of a dividing curve of even
egree only non-exterior ovals are separated into positive and negative.
Namely, a non-exterior oval is positive if it constitutes a positive pair with
exterior oval enclosing it, and negative otherwise. An oval is said to be
ven if it lies inside an even number of other ovals. The Euler characteristic
a component of the complement of a curve is called the characteristic of
outer bounding oval of the compnent. A component of the complement
a curve is said to be even if each of its inner bounding ovals encloses an
d number of ovals.

The most important numerical characteristics of a real scheme are the
llowing numbers: [ is the number of ovals; p is the number of even ovals;
is the number of odd ovals; ¥, I° and I” are the numbers of ovals with

‘;'l
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positive, zero, and negative characteristics; p*, p%°p~ and n*, n% n~ are the
analogous numbers of even and odd ovals;  x and v are the numbers of even
and odd non-empty exterior bounding ovals of even components of the i i
complement of the curve; A, i8 the greatest number of ovals in a union of

union of at most r nests and not containing an oval that encloses all other: %

ovals of the set. The following numbers are characteristics of the complex 8 ; Extremal properties of the strengthened Arnol'd inequalities.

scheme of a dividing curve: II* and IT” aré the numbers of positive and - #
negative injective pairs, l\+ and A’ are the nuinbers of posxtlve and negatweg
ovals. SRS T - ; :

For the description of real schemes of curves we shall use the following
system of notation. A connectéd one-sided cutve is encoded by the symbol
(J), a curve consisting of one oval by the symbol (1), the empty curve by

obtained from it by adjoining one oval eénclosing all the test is encoded by i
the symbol (1(A4). A curve presented as the union of two non-intersecting:

sets of ovals encoded by the symbols {4} and (B) and such that no oval of © A .
/ Lvonilov inequality ({33], 1.3).

one set is enclosed by an oval of the other, is encoded by the symbol ;
(A 1l B). We shall use two abbreviations: ~firstly, if (4) is the code of a set
of ovals, then a fragment of another code having the form 41 ... 1A, |
where A is repeated n times, is denoted for short by n x 4; secondly,
fragments of a code having the form n x | are denoted for short by n.
This coding system is transformed into a coding system for complex
schemes in the following way. According to the type of the curve, its code
is supplied with a subscript 1 or 1I. In the case of type I, codes of the .
positive ovals are supphed with a superscript +, and codes of the negative -
ovals with a superscript —

§3. Old restrictions on schemes of curves,

In this section the restrictions obtained before 1978 are considered.. Wé :
first consider the restrictions of topological ongm on real schemes of curves
of degree m (see [33] and [47]) ety P ;

(3.1) The Harnack inequality. t < (m* —3m + 3 4 (—1)'*)/2

Curves with | = (m* — 3m + 3 4 (—1)")/2 are called M-curves, and i
curves with | = (m* — 3m 4 3 + (—1)")/2 — a are called (M — a)-curves.
In the following restrictions (3.2)-(3.9) the degree mis even, m = 2k

Extremal properties of the Harnack inequality.

(3.2) In the case of an M-curve (that is, if | = (m’
p—n=k®mod 8.

(3.3) In the case of an (M — 1)-curve (that is, sz = (m?=3m+2)2)
p—n=k*% 1 mod 8.

3m+4)/2)

integer that divides m and is a power of an odd prime.

 t'power of an odd prime p, then there are o, ...
. components By, ...
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 The strengthened Petrovskii inequalities.

b3.8) p— n- << (3% — 3k + 2)/2,
(3.5) n — p~ << (3% — 3KV/2.

' : ) ; The Strengthened Arnol’d Inequalities.
at most r nests; #, is the greatest number of ovals in a set contained ih a - -If:; ‘

B8 PPk — 3k 4 3 4 (—1)H)2,
BT ne 4 n® << (B — 3k 4+ 2)/2.

(3.8) If k is even and p~+ p® = (k?— 3k + 4)/2, then p~ = p* = Q.

. 3.9) If k is odd and n~+n® = (k*~ 3k+2)/2, then n” = n* = 0 and
. there is only one exterior oval.

/ Besides the Harnack inequality there was only one known restriction of

topologncal origin applicable to the case of odd m.
the symbol (0). If the symbol {(A4) encodes some set 'of ovals, then the set * |

B0 If m =4, then " +1° < (m— 3)*/4+ (m*— h,)/4h?, where h is any

For even m this follows from (3.6)-(3.9), for odd m it is the Viro-

L Extremal property of (3.10).

i'(3 IDIf 1= 4 I = (m — 3)Y4 + (m* — h%)/4RY, where h divides m and is

» 0, € Z, and
, B, of RP’\RA with x(By) = ... = x(B,) = 0 such that

lhe boundary of the chain Za,[B,] €Cy(RP?% Z,)is [RA].

‘Now let us consider the reetnctlons of topological origin on complex
hemes of curves of degree m considered in {33].

;(3.12) If the curve is of type 1, then 1 = [m/2] mod 2.

he Rokhlin formulae.
(3.13) If m is even and the curve is of type 1, then

20t — 1) == 1 — m¥4.
{(3.14) If m is odd and the curve is of type 1, then
; A*— T 4 21" —TI7) = I — (n? — 1)/4.

tremal properties of the Hornack inequality.

(3.15) Any M-curve is of type 1.

(3.16) The Kharlamov ([33], 3.4)-Marin [21] congruence.

ny (M= 2)-curve of even degree m withp~n=m?/4+ 4 mod 8 is of type 1.

Extremal properties of the strengthened Arnol'd inequalities.

GAN If m=0mod 4 and p~+p°® = (m?>—- 6m+ 16)/8, then the curve is
type 1.
BiA8)YIfm=
pe 1.

2 mod 4 and n”+n® = (m®— 6m+ 8)/8, then the curve is of
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Restrictions that do not have topological origih are difficult to outline, as’ For any m > 8, m = 0 mod 4 [ constructed [40] in 1980 a curve of degree
a rule. Most of them are corollaries of Bezout’s theorem, that is, topological § m with thé real scheme ((m* — 6m)/84 1 ((3m* — 6m -+ 8)/8)). Thus the
consequences of the fact that two irreducible curves of degrees m and ¢ *: © § econd Ragsdale inequality is false for m > 8, m = 0 mod 4. The question
either coincide or intersect in at most mq points. - Let us formulate some of’ | ¢f whether the Petrovskii conjecture is true remains open. It admits a wider

them. For more general statements, see [11] and [33] For m < 11 they | | formulation: is it true that if X is the set of fixed points of an

follow from those formulated below. . . : ++ 1 ¢ ¢ intiholomorphic involution of a non-singular simply-connected compact

(3.19) k< mi2 N T complex surface 2, then dim H(X; Z,) < ' (D).
. == . P
i
In particular, if Ay = [m/2], then [ = [m/2]. g §4. New restrictions on schemes of curves
(3-20) h.gm. ' - !0 7 'We first consider the restrictions of topological origin,
In particular, if hy = m, then I = o o " The Rokhlin inequalities |34].
(321)Ifr <8, then h,+ [(8— r)/2] < 3m/2 I '(4.1) If the curve is of type | and m = 0 mod 4, then
B . g ‘ _ . _ 6
In particular, if h; = [3m/2], then [ = [3m/2]. - b btp—n<(m m + 16)/2.
(3.22) If < 13, then W'+ [(13-7)/2] < 2m .l (42) If the curve is of type 1 and m = 2 mod 4, then
. s r . ‘ _
In particular, if k), = 2m, then I = 2m. P S ' dn +n—p < (mt—6m + 14)/2.

Besides the restrictions of this type, there were only two restrictions in 11
{33] (formulated below as (3.23) and (3.24)) that had not been proved for |
schemes of flexible curves. .

(3.23) Zvonilov's inequality. If m is odd, then
F4 P (mt— dm 4 3)/4.

# Comparison of (4.1) and (4.2) with (3.15) and (3.16) gives restrictions on
teal schemes containing new information for m > 10, see [34]. The proofs
(4.1) and (4.2) are similar to the proofs of (3.6) and (3.7) but, in

contrast to the previous proofs in the field, they involve non-algebraic
I)_'ranched coverings, namely, two-sheeted coverings of CP2 branched over
 surfaces consisting of half of CA and half of RP2. Recently Fiedler [8] has
1 found new restrictions analogous to (4.1) and (4.2), which are proved in a

1 dmilar manner. The innovation in these proofs is the use of auxiliary
imaginary lines and conics. (It makes the proofs unsuitable for flexible
curves.)

i1n 1982, mdependently and by different methods, Fiedler [7] and

Nikulin [23] obtained restrictions that are close to each other. Fiedler's
proofs are related to Marin’s proofs [21] of the extremal properties of the
Harnack inequality. They are based on the application of the Guillou-Marin
generalization [13] of the Rokhlin congruence {301, §3. Fiedler applied it
fosurfaces in CP2, while Marin worked in §* Nikulin’s proofs are based on
an investigation of the arithmetic role played by the homology classes of the
teal cycles in the intersection form of the two-sheeted covering of CP?2
branched over CA. Nikulin obtained his results as consequences of theorems
ort real algebraic surfaces, which are the only restrictions on the topology of
feal algebraic surfaces found during the last six years. For lack of space we
do not consider them, see {23]. In both papers there are results on curves
of all even degrees, but for some values of the degree the stronger results are
in one paper, for other values in the other paper. Below I formulate the

1 drongest restrictions without discussing each paper separately.

In many cases it is weaker than (3.10), but in some cases it is stronger.
The smallest value of m for which (3.23) is stronger than (3.10) is 693.

(3.24) If hy = [m/2], then the curve is of type 1.

Rokhlin observed ({33], 3.6) that some other known restrictions could
obtained by modifying the proof of (3.24), but he missed the following
restriction, which can also be obtained in that way and does not follow
from the theorems listed above.

(3.25) If hy = m, then the curve is of type 1. .

To conclude this section 1 should mention the oldest conjecture of the
topology of plane real algebraic curves. It was made by Ragsdale [29] in
1906 and says that

< (3m* — 6m + 8)/8 and n < (3m’ - 6m)/8

for any curve of even degree m. In 1938 Petrovskii [25] made the
following weaker conjecture: C C

< (3m* — 6m + 8)/8 and n < (3m* — 6m + 8)/8.
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New extremal properties of the Harnack inequality. -~ '~ * i~ = = i
(4.3) Fiedler [7]. If m = 4 mod 8, the curve is an M-curve, and the '+ i
characteristic of each even oval is even, then p
(4.4) Nikulin [23]. If m = 0 mod 8, the curve is an M-curve, and the - |
characteristic of each even oval is divisible by 2', then either p —n == 3
=0 mod 2*3 or p—n = 4%, where ¢ > 2 and X = |1 mod 2. '
(4.5) Nikulin [23). If m = 2 mod 4, the curve is an M-curve, and the
characteristic of each odd oval is divisible by 2', then p — n == 1 mod 2'*’

Theorems (4.3)-(4.5) contain new information for in > 12 (see Fiedler *
{7]1: Nikulin {23] asserted that (4.5) contains new information for m = 10,
but his example, like any similar example of degree 10, does not satisfy the
old restriction (3.9)). 1t is curious that if the Ragsdale-Petrovskii conjecturé’

is true, then the conditions of (4.3)-(4.5) are not realized (see Fiedler [7]).. : by the equation tohg(x)+ 4 A (%) =
:ﬁ ¢quations of the lines Ly.qyand Lg:y). ANl the lines L, pass through one

. point P.) Let A be a non-singular curve of degree m. Suppose that no real
¢ line passing through P touches 4 at an imaginary point or is an inflexional

tangent to A. Then the intersection CA ) (U CL,) consists of RA and a
; tERP!
2 i finite number of open smooth arcs. The closure of (C4

i8 denoted by SpA.
:CA and intersects RA in the points of tangency of RA and RL,.

New congruences for the real schemes of curves of type 1.

(4.6) If m = 0 mod 2, the curve is of type 1, and the characteristic of
each odd oval is even, then p—n = m?*4 mod 8.

(4.7) If m = 0 mod 4, the curve is of type 1, and the charactenstlc of
each even oval is even, then p—n =0 mod 8. :

Theorem (4.6) was proved by Slepyan [36] in 1980. He showed that it k
a formal consequence of Rokhlin’s formula (3. 13), thus strictly speaking it a

not new. Theorem (4.7) and a special case of (4.6) were proved by leufm
[23}. Both theorems can also be proved by Fiedler's method [7]. Theorem
(4.7) contains new information for m > 8: the complex scheme (1 (6* i 7-)),
of degree 8 satisfies all the old restrictions but does not satisfy (4. ..

We now consider restrictions of non-topological origin. In the penoJ
under review a new class of such restrictions was discovered. They are
less easy to state compactly than the consequences of Bezout's theorem
Satisfactory general statements of them have not been found. We
therefore restrict ourselves to discussion of their origins, to some special
statements, and to a general reference to [6] and {41].

Most of these new restrictions are proved by constructing auxiliary curve&
of type I (of degrees 1 or 2, as a rule) or families of such curves and My
applying Bezout’s theorem together with the following theorems (4.8), (4. 9)
and the old restrictions formulated in §3.

(4.8) The Rokhlin formula for a pair of curves. Let A,, A, be dividing -
curves of degrees m,, my transversal to each other and intersecting in r real,
points. Let C be a curve of degree m = m\+m, obtained from Ay U A, by,
a small perturbation such that some complex orientations of Ayand A, 4
determine an orientation of RC. For RC with this orientation let

_{ m2/4—1+4 2 (IT* —
=1 mr—1)h—142(01°—

) if mis even, !
)+ A*—A- if mis odd.
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Then o Is even and 0 < 0 < mymy—r. The curve C is of type | if and only

L f 0= 0 (that Is, if and only if the Rokhlin formula is valid for the
“n =<4 mod 16. BRI

odentatlon of RC determined by the complex orientations of A, and A,):
In'that case this orientation is complex

* Special cases of (4.8) were found by Fiedler ([33], 3.7), Marin {21], and

;?olotovskii, and the final version by Zvonilov and the author. It is a special
| case of the generalization of Rokhlin’s formula to singular curves, found by
. Lvonilov [48].
 prescribed complex scheme, Theorem (4.8) proved to be a powerful
testriction on the mutual position of two cuarves of type I;
' constructions it was made the origin of restrictions on schemes of curves.

Discovered as a basis for the construction of curves with a
by auxiliary

Clet ¥ = {L¢}enp: be a pencil of real lines. (The line Ly,: 1,y is determined
0, where Ag(x) = 0 and \,(x) = O are the

(U CLy))\R4
tERP

It is a smooth closed one-dimensional submanifold of

4.9) (Fiedler [6]). Let{L,),¢y be the set of the lines of the pencil £
ffvtersectmg a component C of SpA and let Ly,, L,, be the extreme lines of
his set (thus Ly, Ly, touch RA at C N RA). Let the lines L,, t € U, be
wmpatzblv oriented. If A is of type | and the orientation of Ly is
compatible with a complex orientation of A at the point of contact, then
the orientation of Ly, is also compatible with this complex orientation of A
t the point of contact (see Fig. 1),

Fig. 1.
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By (4.9), the complex orientations of the chain of ovals connected by the
components of SpA alternate (see Fig. 2). If any line L, € ¥ intersects RA
in at least m— 2 points, then it is easy to discover such chains (see Fig. 2,
where m = 8). In that case (4.9) is a simple consequence of (4.8) (see 41},
1.4).

Let us consider some special restrictions obtained by using (4.8) and (4.9

(4.10) There does not exist a curve of degree 1 with real scheme
U 1{14)).

4.1 Let (et 1 BYUL (p) L 1 (D) be the real scheme of a curve of
degree 8 with non-zero 8, v, and 8.

() If 1 = 22 (that is, a+B+y+ 8 = 19), then B, . and § are odd.

(i) If I = 20 and p—n = 4 mod 8, then two of the numbers B, v, and &
are odd and one is even.

Theorem (4.10) was announced in my note [40] and published with
different proofs in [41) and {6]. Theorem (4.11(i) fora = Q, 8 =1 was
found by Fiedler [6]. In the form stated above. Theorem (4.11) was
proved in [41). The first restrictions of this sort were found by Fiedler.
The idea of using (4.8) instead of Fiedler’s alternating of orientations is due
to Rokhlin.

Another application of (4.8) and (4.9) was the discovery of the connection
between the position of a curve in RP? relative to lines and conics on the
one hand. and the complex scheme of the curve on the other hand. For
example. the type of a curve of degree 5 with I = 4 is determined by its
position with respect to lines (see Fig. 3 or Fiedler [6]). Analogous
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connections of the type of a curve with its other geometrical invariant, the
number of its real 8-characteristics. were discovered by Gross and Harris [10].

Tvpe I Type Il

Fig. 3.

In 1984 | found a new possibility of obtaining restrictions of non-
topological origin. 1t is based on the construction of membranes in CP?
with boundaries in SpA. Here I announce one special restriction obtained
by this method.

@A If Ayt By 1 (y)) is the real scheme of an M-curve of degree 8.
then the triple (o, B, v) cannor be (1, 3. 15), (1,5, t1), (1, 9. 9), (3. 3. 13),
(3, S, 11 (3.7, 9). or (5, 5. 9). There does not exist a curve of degree 8
with the real scheme (4111 3Y111.(3)111(9)).

Thus by (4.11) and (4.12) the real scheme of an M-curve of degree 8 that
has the form (1 ()il 1 By 1{y)) canonly be (4 ()X 1 Ayt (17)).
Ay 1(MHutdn)y, or A GYU1¢7)131(7)). Recently Shustin showed
that these three schemes are in fact realized.

§5. Kilein's assertion

More than 100 years ago Klein ([20]. 155) wrote in a slightly unclear
manner that a curve of type | does not permit any development.

In 1978 Rokhlin ([33}. 3.9, referring to this phrase of Klein and the
actual material, made a conjecture that any curve of a given degree with a
given real scheme is of type 1 if and only if the scheme is not part of a
higger real scheme of a curve of the same degree.

Polotovskii [27] observed that truth of the “if”* part of this conjecture
and Theorem (4.11(i)) would imply new restrictions on real schemes of
curves of degree 8, and Shustin {37] constructed curves of degree 8 with
real schemes (1001 (1)1 @)t ¢4)yand GU1(2)N 1 4) U1 (5)) that do not
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satisfy these restrictions. Thus there exists a real scheme of type 11 of degree8,

(for example, either (10114 (1)1 1 @)1t 1 @G))or i1 yniynd 4y
that is not part of a bigger real scheme of a curve of degree 8. It is not

known whether any maximal real scheme of a given degree is of type I. It -

is interesting whether Rokhlin’s conjecture is true for flexible curves.
It seems to me that in spite of the attractiveness and fundamental nature

of the question of the relation between the maximality of a real scheme and

its belonging to type I, Klein’s words are to be understood more literally.
Namely, there is the following simple theorem, which is close to Klein’s
pioneering work in spirit and in proof.

(5.1) Let A, be a continuous family of real algebraic curves (not necessarily the loop su,(c o 5)~ug! realizes 0 € Hy(2'\(X U¥); Z,).

plane). If Aq has just one singular point, which is a non-degenerate double

point, the other A, are non-singular, and if A, with t < 0 are of type 1, then.
the number of components of RA, with t > 0 is not more than the number

of components of RA, with t < 0.

This theorem seems to be a special case of a theorem on varieties of
arbitrary dimension (see the next section). Recently Marin (private
communication) rediscovered (5.1) and proved by using it that any pencil of
plane curves of even degree m = 4 contains a curve whose number of

components is at most (im?>—3m— 2)/2 (the latter for m = 0 mod 4 with an :

incorrect proof was published by Cheponkus [2], and a correct proof for
m = 4 was found by Chislenko {4]). For m = 4 this implies that any 13
real points of the plane lie on some connected real curve of degree 4; this,
in turn, implies (3.22). We can probably look forward to new progress in
the topological investigation of real pencils of curves, which is interesting

both in itself and as a non-topological origin of restrictions on schemes of
curves.

§6. Complex topological characteristics of surfaces

The transference of the theory of complex topological characteristics of
curves to the case of varieties of higher dimensions is just beginning, and it
is too early for a survey. I consider only some definitions and facts
concerning the two-dimensional case.

There are three types of non-singular real algebraic surfaces: 1 abs
(I absolute), I rel (I relative) and 1. A surface A4 is of type 1 abs if its real
part RA realizes 0 € Hy(CA; Z,), it is of type I rel if RA and the plane
sections of CA realize the same element of HYCA; Z,), and it is of type Il
in the other cases.

For surfaces of types I abs and 1 rel the author (42] defined structures
analogous to complex orientations of dividing curves. It is convenient to
formulate the definition in the following analytical situation, which
generalizes the cases of surfaces of types | abs and I rel. Let 2° be a non-
singular complex surface with H,(2; Zy,) =0, let ¢ 2 -+ be an
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mtiholomorphic involution, and let ¥ < 2 be a non-singular curve (possibly
empty), invariant under ¢. We put X = fix(c)and Y = X 1%. Let X and

¥ realize the same element of H (2" Z,) (if ¥ = @& this means that X

ralizes zero). Then X\ Y has two distinguished opposite orientations and a
distinguished spin-structure, which are defined by the following properties

and are said to be complex.

Let ay and a; be points of X\'Y. The complex orientation of X\'Y and
the natural orientation of .2° determine orientations of the fibres Dy, Dy of a
tubular neighbourhood of X in 2" lying over 4, and a,. Let b, € aD,, let u;
be a path connecting b; with c(b;) in 3D, and compatible with the orientation
of D;. and let s: J — 2°\(X U %) be a path connecting b, with b,. Then

Here is another way to define these complex orientations. It is easy to
show that there is a unique two-fold covering of 2°\¥. branched over X\Y,
and that the composition of this covering and the natural projection
INY - (2\Y)/e is a 4-fold cyclic covering, branched over the image of
X\Y. The group of automorphisms of this 4-fold branched covering has
two generators, which turn the fibres of the tubular neighbourhood of X\Y

in the covering space through an angle #/2 in two opposite directions. Thus
. 1 the generators determine two opposite orientations of the normal bundle of

X\Y. Together with the natural orientation of the ambient variety, these
orientations determine the complex orientations of X\Y.

Let ¥’ be another curve invariant under ¢: 2" — £ and realizing the same
element of H,(2;Z,)and let Y = %' N X. Then Y U Y’ divides X into
two parts, and a complex orientation of X\Y and a complex orientation
of X\'Y' coincide on one of these parts and are opposite on the other.

' Thus for a real non-singular surface in RP3 we actually have two opposite

complex orientations of RA in the case of type I abs and two opposite
orientations of the inverse image of RA under the covering 2 -+ RP? in the
case of type 1 rel.

The quadratic form H(X\Y; Z,) = Z, corresponding (see [19]) to the
distinguished spin-structure of X\ Y maps the class realized by a smooth
circle S C X\Y to 1+ (the linking number in 2 of X {J % and the circle
obtained from § by a small shift along a vector field obtained from the
tangent vector field of S by multiplying by \/~1) (modulo 2). Otherwise
this spin-structure can be described by its values on framed circles. Its value
on a circle S C X\'Y supplied with a field V of vectors tangent to X is equal
to the linking number (modulo 2) in 2 of X U % and the circle obtained
from § by a small shift along the vector field \/—1V.

The complex orientations and spin-structures of surfaces permit applications
similar to those of complex orientations of curves. | state here just one
theorem proved by using them. an analogue of Klein’s assertion. that was
proved by Kharlamov and the author.
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(6.1) Let A, be a continuous family of real algebraic surfaces of RP3 If
Aqg has just one singular point, and this is a non-degenerate double point. the
other A, are non-singular and if A, with t < 0 are of tvpe | abs,
then the number dim H (R A,; Z,) with t > 0 is not more than
dim H(RA,, Z,)witht <O0.

Under suitable conditions the real part RA of an algebraic surface A has :
some other additional structures determined by the position of R4 in CA,
which have no analogues in the case of curves. If RA realizes in CA the "
homology class dual to w,(CA), then RA has a distinguished spin-structure "
Essentially it was introduced by Rokhlin [30] and Guillou and Marin {13]:"
for an orientable RA the corresponding quadratic form H(RA: Z,) » Z, -
was introduced by Rokhlin [30], and in the general case the corresponding '
quadratic form Hy(RA: Z,) = Z, was introduced by Guillou and Marin [13].

If the first Chern class ¢{(C.4) € HYCA: 2) is divisible by n. then there -
is a distinguished element of H'(RA: Z,). The value of this cohomology
class on an oriented circle S, which bounds a compact oriented smooth
surface F C CA tangent to RA along S. is equal (modulo 1) to the
obstruction to extending the tangent vector field and the normal vector field
of S in RA to a pair of vector fields on F linear independent over C. This
class is closely related to the Maslov class of a Lagrangian manifold. It was
introduced by Netsvetaev., He observed also that for n = 2 this class and ‘
the two spin-structures mentioned above are related: when a surface
possesses any two of these three additional structures. it possesses the third.
and the sum of the quadratic forms H(RA: Z,) = Z, corresponding to
these two spin-structures and the linear form H(RA: Z,) > Z, corresponding
to the Netsvetaev class is equal to zero.

§7.

A rigid isotopy of a curve of degree m is an isotopy in the class of (non-
singular) curves of degree m (that is. a path in the space of non-singular
curves of degree m). This notion is naturally introduced for other zmalogous
classes of real algebraic varieties, for example for surfaces in RP3.

Isotopies

Complex schemes of curves of degree <4 Types of surfaces of degree <3}
(here P, is the projective plane withr
handles, S, is the sphere with r handle
¥ is the disjoint sum)

U)f R A is not orientable, then it is not a spin-structure in the usual sense. but a special
4.fold cyclic covering of the space of unit tangent vectors of RA.

m | Complex schemes of curves of degree m

. |Topological types of surfaca
1 | In of degree m 5
2 | (D, (O)1. 1 |r, i
3 1 (L1 (D Sy S, @ !
4 1@ @ M @, (B (On- 3 | Py, Pa, Py L Sy, Py, 1,
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The classification of cutves of degree <4 and of surfaces of degree <3 up

1o rigid isotopy was known in the 19th century. Up to rigid isotopy a curve
fof degree <<4 is determined by its real scheme, and a surface of degree <3
“by the topological type of its real part.

The classification of curves of degrees S and 6 up to rigid isotopy was
completed in 1978-1980 in the works of Rokhiin {33], Nikulin {22], and
Kharlamov | 15]. Rokhlin {33] showed that for curves of degree =5 the
class of a curve is not determined up to rigid isotopy by its real scheme: he
asked, up to what degree is the class of a curve up to rigid isotopy determined
by the complex scheme. and he gave a classification of complex schemes of
curves of degrees 5 and 6, showing, in particular, that by (3.13) and (3.19)
the complex scheme of a curve of degree <6 is determined by its type and
teal scheme (see also Marin [21]). The fact that the real scheme and the
tvpe actually determine a curve up to rigid isotopy was proved for curves of
degree 5 by Kharlamov {15] and for curves of degree 6 by Nikulin [22].
{Nikulin had arrived at this problem independently of Rokhlin's work {33].)

There are 9 rigid isotopy classes of curves of degree 5. Their complex
schemes are (Ju3'03-), (Jubd),, Jut*u3d-), Vud, Ju3,
ud=-n,. a2y, Guty, Uy,

There are 64 rigid isotopy classes of curves of degree 6. Their real
schemes are

iy Out1)), (a1, dut)y

i) (4o, @u1dy, Guid), Gn16)), 1By, 19,

(i{apt P with a + LB, 0<<CaCT. IKPLS;

(iv) (@) with 0 L a < 9;

vy (1.

Six of these schemes. namely the schemes (91 (1)), (5U1(5)), A p1(9)),
Bt (2y). 2u1(6)). and (1 {1 (1)), are of type I. Eight schemes, namely
@), GuidEn, AEN, Gu1dy, GuiBy, du1G), 2 1 1(2)). and
{1{4)), are of indefinite type. The remaining schemes are of type II.

For curves of degree 7 the problem of rigid isotopy classification is not
solved. There are examples showing that neither the real scheme and type
nor the complex scheme determine a curve of degree 7 up to rigid isotopy.
Rokhlin [33] constructed two curves of degree 7 of type I with real scheme
Ju3pn1(3)) differing from one another in complex orientation (their
complex schemes are (J U1+ 2-11-{1*112-)), and (Ju3-p1°* {3*M,).

Marin {21} and Fiedler [6] constructed pairs of curves of degree 7 that
have a common complex scheme, but are not rigidly isotopic. In particular,
Fiedler [6] constructed two curves of degree 7 and type 1l with the same
real scheme (J 1 311 (3)) that are not rigidly isotopic. The reason why the
curves in these examples of Fiedler and Marin are not rigidly isotopic is the
following (see [21] and [6]). If the real scheme of a curve of degree m
entails the existence of a line intersecting the curve in m real points, that is.
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if the inequality (3.19) becomes an equality, then the lisposition of the
ovals of the curve with respect to such a line is preserved by a rigid isotopy.

Flexible isotopy is isotopy in the class of flexible curves. Since the
complex scheme is preserved by a flexible isotopy, for degree <6 flexible
isotopy is equivalent to rigid isotopy. Rokhlin [33] made the conjecture
that curves of the same degree with the same complex scheme are flexibly
isotopic (in [33] flexible isotopy is called equivariant isotopy). This
conjecture together with the examples of Fiedler and Marin leads us to
suppose that for curves of degree 7 flexible and rigid isotopies are not
equivalent. The homotopy type of the space CP2\(RP2 U CA) may be an
additional invariant under flexible isotopy. It was first investigated by
Finashin [9]: for a large class of curves (in particular, for curves of degree
<5) he calculated the fundamental group of this space and constructed a
pair of curves of degree 7 with common complex scheme (J 11 2111 (2)),,
that have homotopy equivalent spaces CP2\(RP? U CA) but are not rigidly
isotopic. Maybe they are flexibly isotopic.

The problem of classification of surfaces of degree 4 up to rigid isotopy
turned out to be more subtle than the corresponding problems for curves of
degrees 5 and 6. At first a coarser problem was solved. Two non-singular
real projective varieties are said to be coarsely projectively equivalent if one
of them can be made rigidly isotopic to the other by projective transformation.
This relation coincides with rigid isotopy if the dimension of the ambient
projective space is even, because in this case the group of projective
transformations is connected. In the case of odd dimension the coarse
projective classification may be cdarser than the rigid isotopy classification.
However for surfaces of degrees <3 these classifications were proved to be
equivalent. At first surfaces of degree 4 were classified up to coarse
projective equivalence [22]. Two surfaces of degree 4 are coarsely
projectively equivalent if and only if they have the same type (see §6). and
their real parts are homeomorphic and homotopic in RP3. This result was
derived as a corollary of the following more general theorem of Nikulin
[22): two real K3 surfaces embedded in RPY by a complete linear system
are coarsely projectively equivalent if and only if their intersection forms in
Hy(CA) with the involution induced by complex conjugation and with the
homology class of a hyperplane section are isomorphic. (The rigid isotopy

classification of curves of degree 6 mentioned above was also derived in [22] ¢

essentially as a corollary of this theorem.)

Nikulin’s theorem (as well as the preceding results of Kharlamov on
topological and real isotopy classification of surfaces of degree 4) is based
on such fundamentat facts of complex algebraic geometry as Torelli’s
theorem and the epimorphism period mapping theorem for K3-surfaces.

There are 134 coarse projective classes of surfices of degree four. 62 of
them consist of surfaces that are not contractible in RP3. Their topological
types are:
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f') gloﬂ So. Sall 58,, S,119S5,;

ii) S1p, Syi1 S, Se14S,, S,15S,, S

: : + S118S,, S,198,;

(i) Sy 1 BS, with @ +§ <9, 1< a9 0<p 2’8;
}(;v) S 1 S, (both components are not contractible).

ny non-contractible surface of degree 4 home

51158,, 8,1 98, §,1128,, S, 11 6S,. of ty

contractible surface of degree 4 hom

Sl Se, S 11 38,. 8,11 58,,

phic to S,,11 S,,
or S, 11 S, is of type I abs. Any non-
ree s uzse(?morr;:hic to Sy, Ss1145,, 85,1188,
s is o
these topological types both possibilioties are };Ziuzﬁ:sr:;lilzlet(ﬂnd;l?er e:ﬁh of
ron-contractible surfaces of degree 4 are of type II. ‘ e
;ri;le 'st.o:)loéosgica!t:ypes of surfaces of degree 4 contractible in RP3 are:
- o With : .
(i) a8, with 1 a-;fii(f hises<o<pss
(iiy &;
(iv) $,118,.
Any contractible surface of degree 4 homeo
vitha+B=9and a=1 mod 2 is of type
of d?gree 4 homeomorphic to S, 11 BS, with
onsisting of two spheres enclosing one oth

ontractible surface of degree 4 homeomorphic to Sell Sy, S,1138S,, S, 1158
SS..S,j‘lZSo. or S, 11 48, is of type I abs or I and for e;::h c;f the;; i
wpological types both possibilities are actually realized. Any contra tibl
urface of degree 4 homeomorphic to Sy, Sgl128,, 8,1 4S,, S 1eés C‘S" eS
foll 3S?, 8y, or 11128, is of type I rel or I and for eachot')f ;hese v olSe

morphic to S; 11 §; or to S, 1 BS,
I abs. Any contractible surface
a+f=9and a=0mod 2 or
er is of type I rel, Any

t is rigidly isotopic to its mirror
only for them the coarse projective
sotopy classification. All surfaces of
Kharlamov [16] showed that this is not the

1 age. For amphicheiral surfaces and
lassification coincides with the rigid i
gree <3 are amphicheiral.

tha>3and > 3. Thus th

ere are 170 rigid
degree 4. This result was firs ’

t ob

' He found simple
gree 4 being amphicheiral, They

connected with my recent paper [46] on configurations of points and

3
les in RP3,
A set of disjoint lines in RP3

is called a non-singular ¢ I "
Tes. A set of points of RP3 y apaation of

of which any k with k < 4 do not lic in a
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(k— 2)-dimensional projective subspace of RP? is called a non-singular
configuration of points. An isotopy of a non-singular configuration (of lines
or points) in the class of non-singular configurations is said to be rigid.

A non-singular configuration is said to be amphicheiral if it is rigidly isotopic
to its mirror image. In [46] the non-singular configurations of p lines with
p <5 are classified up to rigid isotopy. For p = 3 there are 2 classes. for
p = 4 there are 3 classes and for p = § there are 7 classes. For p <5 any
two non-singular configurations of p lines that are not rigidly isotopic differ
in the linking coefficients of the lines that occur in them. However, there
are two non-singular configurations of 10 lines that cannot be distinguished
by linking coefficients but are not rigidly isotopic.’ In [46] 1 also proved
that any non-singular configuration of p lines with p = 3 mod 4 is not
amphicheiral, that for any p # 3 mod 4 there exists an amphicheiral non-
singular configuration of p lines, and that any non-singular configuration of
q points with ¢ = 6 mod 8 or with ¢ = 3 mod 4 and ¢ =2 7 is not
amphicheiral.

The connection between these results and the rigid isotopy classification
of surfaces of degree 4 is demonstrated by the following example. By
Harnack’s inequality there is no plane intersecting four spherical components
of a non-contractible surface of degree 4. Since any non-singular configuration
of 6 points is not amphicheiral, any non-contractible surface of degree 4
with 6 spherical components is not amphicheiral.

In conclusion | state an old result on rigid isotopy. which for a long time
was not known to experts in the topology of real algebraic manifolds. In
1968 Nuij [24] proved that any two hypersurfaces of degree m in RP”
containing {m/2] spheres totally ordered by inclusion are rigidly isotopic.
Recently Dubrovin {5] obtained this result for the case of plane curves by a
different method.

88. Constructions

In classical papers on the topology of real algebraic curves constructions
were carried out in the following manner. Firstly, a pair of non-singular
curves transversal to each other was constructed. and then the union of the
curves was slightly perturbed, to remove the singularities. For the
construction of two curves of degree 6, Gudkov had to leave this framework
and perturb not a reducible curve but the image of a non-singular curve
under a quadratic transformation. However, as before, all the curves
perturbed had only non-degenerate double singularities. There were two
obstacles to the appearance of complicated singularities in the constructions:
firstly, not very complicated singularities do not give anything new as
compared with non-degenerate double points (the advantage of complicated

'Recently Mazurovskii succeeded in constructing such an example with configurations of L1

6 lines.
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singularities appears only when we pass to non-degenerate 5-fold points and
points of contact of three branches); secondly, a special technique was
necessary for perturbing curves with complicated singularities.

In 1980 1 proposed a construction for perturbing a curve with a
semiquasihomogeneous singularity. It substitutes a curve fragment prepared
beforehand for a small neighbourhood of the singularity. For some
singularities. in particular for points of quadratic contact of three non-
singular branches, 1 obtained a complete topological classification of their
smoothings (that is, of the curve fragments that appear in place of the
singularity after the perturbation), see [43]. For non-degenerate 5-fold
points and points of quadratic contact of 4 non-singular branches an ample
supply of smoothings was made (see [44]). Chislenko {3] continued this
work and has constructed many smoothings for points of quadratic
contact of 5 non-singular branches. Shustin [38] completed the topological
classification of smoothings of non-degenerate 5-fold points and obtained
new results on the smoothings of points of quadratic contact of 4 non-
singular branches.

(8.1) Any point of quadratic contact of 3 non-singular real branches can .
be smoothed so that in its place there appears one of the 31 fragments
shown in Fig. 4. Any smoothing of such a point leads to the appearance of
one of these fragments.
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(8.2) Any non-degenerate 5-fold point with S real branches can be

smoothed so that in its place there appears one of the fragments shown in

Fig. 5. Any smoothing of such a point leads to the appearance of one of
these fragments.
with 0< a+8<6;

a\& )\i@ if at+B = 6, then a— B

2 Q\ ifa+ﬂ=5,thena—ﬁ;=

ﬁ!‘
with 0 € a+<5;

""C__ ifa+B =75 then a—f =5 mod 8;
ifatf =4, thena-B=5%1 mod8.

\ with 0 < a+p < 5
/) e
>S_"“C with 0 < a+f < 4
)@ > (¢
C%C <
Fig. §.

The new method of construction, which is a combination of the
construction above and some traditional construction techniques with
extensive use of Cremona transformations, proved to be useful in resolving
problems inaccessible by the old method. Let me list the main results
obtained by it. First of all, | succeeded in completing the classification of
real schemes of curves of degree 7.

with 0<a+f<6;
ifatB=6, thena-g=2
& ifa+tp=5 thena-p=2

(8.3) There exist curves of degree 7 with the following real schemes:
() JuaentP)) with a + p <14, 0 < a < 13, 1 <p<13
(i) (Jue) with 0 << a << 15;
(i) (J U1 {1 (1))
Any curve of degree 7 has one of these 121 real schemes.
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Up to 1980 it remained unknown whether there exist curves of degree 7
vith the schemes (J 11 (14)), (I n 4001 (4. and (Jpa y1 (B)) with

iB<€a+p< 14, 3 <o 6 <p. The non-realizability of the scheme

Uit (14)) is the content of Theorem (4.10) above. The schemes
Utat1(8)) with 6 K a+B< 14, 1 < a, 2 < B are realized as follows (see

£]43]). We first construct 4 curves of degree 7 having two singular points, at

tach of which three non-singular branches touch. They are shown in Fig. 6.
Then we perturb the curves by the construction above (see (8.1)). The
scheme (J 114 11 1 (10)) not only was not, but as Zvonilov and Fiedler
osbserved, cannot be realized by the previous method.

Fig. 6.

[ also constructed counterexamples to one of the inequalities constituting
the Ragsdale conjecture (see §3) and M-curves of degree 8 realizing 42 new
real schemes (the old method gave 10 schemes) (see [44]). Recently
Shustin [51] realized 6 new real schemes by M-curves of degree 8", In the
following table ali real schemes of M-curves of degree 8 realized up to the
end of 1984 are listed (see p.78).

These results led me to make the following conjecture [40]:

(8.4) (Conjecture). Let (w11 1{B111{y))) be the real scheme of an
M-curve of degree 8 with v # 0. Then o and vy are odd.

Moreover, by the new method about 500 real schemes were realized by
M-curves of degree 10 (see Chislenko [3]) (the old method gave 38 schemes).
and 327 real schemes by (M — 2)-curves of degree 8 (see Polotovskii [28]).
Shustin’s curves mentioned in §5 were also constructed by the new method.
. We may look forward to the construction of surfaces by the new method.
Now only the constructions from my note [39] can be added to the
constructions of surfaces reviewed by Kharlamov [14]. In {39] surfaces of
high degrees refuting a conjecture on the maximal number of components of
asurface of given degree are constructed. All but one of the isotopy types
of non-singular surfaces of degree 4 were realized by a method more
clementary than the previous ones (see {14]).

‘Recently Shustin has realized a new real scheme (namely (4 1t 2(5%) by an M-curve of
degree 8.
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