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TOPOLOGICAL PROBLEMS CONCERNING LINES
AND POINTS OF THREE-DIMENSIONAL SPACE
UDC 512.77+515.16

O. YA. VIRO

1. This note is concerned with how several lines or several points in general position
with respect to one another can be arranged in three-dimensional space.

A configuration of skew lines in the space R3 is defined to be an (unordered) collection
of nonoriented pairwise skew lines in R3. An isotopy of such a collection under which
the lines remain pairwise skew lines is called a rigid 1sotopy. It can be regarded as a path
in the space of configurations of a fixed number of skew lines (i.e., in the corresponding
subspace of the symmetrized product of Grassmann manifolds G4). A configuration
of skew lines is called a mirror configuration if it is rigidly isotopic to a mirror image
of itself. The problem naturally arises of classifying configurations of m skew lines to
within rigid isotopies and of distinguishing the classes of mirror configurations in the set
of classes of rigidly isotopic configurations of m skew lines. In particular, the question
arises of determining those numbers m for which there exist mirror configurations of m
skew lines.

It is convenient to pass from problems concerning lines in R3 to the equivalent prob-
lems concerning lines in the projective space RP3. A nonsingular configuration of lines
in RP® is defined to be a collection of nonoriented disjoint lines in RP3. From the
algebraic-geometry point of view, a nonsingular configuration of lines in RP3 is a non-
singular curve in RP® that splits into lines. The definitions of rigid isotopies and mirror
configurations carry over in the obvious way to the case of nonsingular configurations of
lines in RP3, and this leads to definitions agreeing with the general terminology in the
topology of real algebraic manifolds (cf.[1] and [2]). The inclusion R3® — RP3 deter-
mines an imbedding of the space of configurations of m skew lines in R3 into the space
of nomsingular configurations of m lines in RP3. Since the image of this imbedding is
the complement of a subspace of codimension 2, rigid isotopy of configurations of skew
lines in R3 is equivalent to rigid isotopy of the corresponding nonsingular configurations
in RP3.

The passage from R3 to RP3 enables us to perceive the topological reasons for the
failure of configurations to be rigidly isotopic: nonsingular configurations of m lines in
RP3 can fail to be rigidly isotopic because they are not topologically isotopic (see §2),
while all configurations of m skew lines in R® are topologically isotopic. Indeed, there
exists an isotopy of an arbitrary configuration of skew lines making all its lines parallel:
such an isotopy is supplied by an unbounded dilation of R? with fixed plane transversal
to all the lines of the original configuration.

A nonsingular configuration of lines in RP2 can be regarded as a collection of pairwise
transversal two-dimensional vector subspaces of R4, and a rigid isotopy of it can be
regarded as a motion of these subspaces under which they remain pairwise transversal
two-dimensional subspaces. A nonsingular configuration of lines in RP? can also be
represented as a link formed by great circles in the sphere S3.
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Along with nonsingular line configurations we can in the samne spirit consider singular
configurations, i.e., configurations of intersecting lines. They were intensively investi-
gated in the heyday of projective geometry, but, as far as I know, rigid isotopies of them
were not considered, nor were nonsingular configurations (the questions traditional in
projective geometry are devoid of meaning for the latter). In the space of all configu-
rations the nonsingular configurations constitute an open dense subset and are stable
in the sense that each of them is rigidly isotopic to all sufficiently close configurations;
hence the nonsingular configurations appear to merit being the primary objects of study. .

A nonsingular configuration of points in RP3 is defined to be a finite collection of
points in RP3, no k of which lie in a single projective subspace of dimension k — 2, for
k <4.

It is not hard to generalize the above definitions to the definition of a nonsingular
configuration of subspaces in RP". I shaii not consider this generalization her2. Of the
multidimensional configurations, the configurations of subspaces of dimension 2k — 1 and
k —1in RP*~! are the closest to those discussed below.

A rigid isotopy of a nonsingular configuration is defined to be an isotopy under which
the configuration remains nonsingular. A nonsingular configuration is called a marror
configuration if it is rigidly isotopic to a mirror image of itself. These definitions lead to
the same questions as discussed above in connection with line configurations.

2. Linking coefficients of lines. Two disjoint oriented lines L and L, in RP> have
linking coefficient 1k(L;, L2) equal to +1 or —1.(*) This coefficient can be defined, for
example, as follows. Construct a plane P through L;. The orientation of L; determines
that of the complement P\L;. Its intersection index with Lo is Ik{L;, L2). Any integral
chain C with 8C = 2L, and transversal to Ly can be used here instead of the plane P.

This definition presupposes a fixed orientation of the space RP3. If the orientation
is reversed, or if the orientation of one of the lines is reversed, then lk(L,, Lo) changes.
The number lk(Ly, L7) is preserved under isotopies of the union L; U Ly in RP3.

Suppose now that L = {L,, L2, L3} is a nonsingular configuration of three lines in
RP3, and let L}, L3, L} be the same lines, endowed with some orientations. The product
Ik(L3, L3)k(L3, L3)1k(L], L3) is denoted by k(L) and by 1k(Ly, La. L3). It clearly does
not depend on the orientations of the lines L}, is preserved under isotopies, and changes
under reversal of the orientation of the space RP3.

3. Failure of a configuration to be a mirror configuration. For a nonsingular
configuration X of lines in RP3 let I(X) be the sum of the numbers 1k(L), where L runs
through the set of all subconfigurations of X consisting of three lines. Clearly I(X) is
preserved under isotopies of X and is multiplied by —1 when the orientation of RP? is
reversed; hence [(X) = 0 if X is a mirror configuration.

THEOREM 1. Every nonsingular configuration of p lines in RP3® with p = 3 mod 4
s not a mirror configuration.

Indeed, I(X) = C3 mod 2; therefore, [(X) is odd when p = 3 mod 4.

THEOREM 2. A nonsingular configuration of g points in RP? is not a mirror con-
figuration if ¢ =6 mod8 or ff g =3 mod4 and ¢ > 7.

The proof differs from that of the preceding theorem only in that the numerical in-
variants s(Y) and ¢(Y') of a nonsingular configuration Y of ¢ points are used instead of
[(X). The invariant s(Y) is the sum of the numbers k(L) as L runs through the set of
all nonisingular configurations of three lines determined by pairs of points in Y. There
are 15 terms (equal to +1) in this sum; hence s(V') is odd if ¢ = 6 or 7 mod 8. To define

(!)The usual definition gives £1/2 (see, for instance, [3]). Here we consider the doubled linking
coefficient,.
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dY) we remark that any two points A, B € Y distinguish two opposite cyclic orders
on the remaining ¢ — 2 points in Y: the orders in which they are encountered by the
rotating plane containing A and B. A triple of lines the first of which joins A and B
while the other two join four adjacent points in these cyclic orders (the first with the
second, and the third with the fourth) is said to be cyclic. The number ¢(Y) is the sum
of the numbers lk(L), where L runs through the set of all triples with distinguished first
limes. If ¢ > 7, then there are (g — 2)C? terms in this sum, and thus ¢(Y) is odd if
g=3 mod4 and ¢ > 7. On the other hand, if Y is a mirror configuration, then clearly

s{Y) = c(¥) = 0.

4. The structure of a nonsingular line configuration. Let K be a nonsingular
coafiguration of lines in RP3. Lines A, B € K are said to be adjacent if by means of
arigid isotopy of K we can put them on one side of some quadric and the remaining
liwes in K on the other side. Adjacent lines are obviously isotopic in the complement
of the remaining lines. Lines A, B € K are said to be homologous if, endowed with
same orientations, they realize a single integral homology class of the complement of
the remaining lines in K. Lines A, B € K are homologous if and only if Ik(4,C, D) =
1B, C, D) (or, what is equivalent, lk(A, B,C) = lk(A, B, D)) for any C, D € K. A pair
of homologous lines A, B € K is called an e-pair, with € = %1, if Ik(4, B,C) = ¢ for
C e K\{A, B}. 1t is easily seen that adjacency and the property of being homologous
are equivalences, that two lines are homologous if they are adjacent, and that if two
homologous lines make up an ¢-pair, then any two lines homologous to them also make
up an e-pair. A nonsingleton class of adjacent lines of a configuration is called an e-class
if any two lines in it constitute an e-pair.

By a rigid isotopy it is possible to put the lines of each class of adjacent lines on a
simgle quadric (as linear generators) and to make these quadrics bound disjoint regions
ir RP3. Each of these regions contracts to any line lying in it. A subconfiguration of K
containing one line from each class of adjacent lines in K is called a derived configuration
of K. It is easy to see that among adjacent line classes with representatives forming
am e-class in a derived configuration there is at most one that is a singleton class or
am e-class. A configuration is said to be simple if it coincides with a derived configu-
ration of itself. A configuration is said to be completely decomposable if some multiple
derived configuration of it consists of a single line. The inverse image of a completely
deeomposable configuration under the covering $% — RP? is a cable link. A completely
decomposable configuration can be arranged by means of a rigid isotopy so that all its
lizes lie in regular neighborhoods of several linear generators of a quadric; lines lying
in each of these neighborhoods are, in turn, in regular neighborhoods of several linear
generators of a quadric lying in this neighborhood, and so on. We introduce the following
notation for describing such a configuration (to within rigid isotopies). A configuration
of p linear generators of a quadric that form e-pairs is denoted by {(ep). The symbol
(#4;,...,A,) (respectively, (—A;,...,A,)) denotes a configuration of this kind whose
limes are in regular neighborhoods of r linear generators of the quadric that form (+1)-
pairs (respectively, (~1)-pairs) if the subconfigurations lying in these neighborhoods are
demoted by Aj,..., A,

5. Mirror configurations. For any k the configuration (+{+k), (—k)) is clearly a
mazror configuration. If k is even, then the addition to this configuration of a single line
dividing each of its classes of adjacent lines into halves gives a mirror configuration of
2k+ 1 lines. {We remark that in the case k = 2 this configuration is simple and that
by proceeding in an analogous way with the configurations (+(+2),(~2),...,(-2)) and
(+41), (—2),...,(~2)) we get simple configurations of p lines with any p > 5.) Thus, if
p £ 3 mod4, then there exists a mirror configuration of p lines (cf. §3).

-
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6. Configurations of at most five lines. Every nonsingular configuration of P
lines with p < 4 is completely decomposable and rigidly isotopic to one of the following

configurations:
(1); (+2); (+3), (=8); (+4), (=4), (+{+2),{-2)).

Every nonsingular configuration of five lines is rigidly isotopic to either a simple mirror
configuration described in §5 or one of the following completely decomposable configu-
rations failing to be mirror configurations:

(+5), (=5); (+{+3), (=2)), (+(+2),(=3)}; (+(1),{=2), (=2, (= (1), (+2), (+2)).

No two of the configurations in this section are rigidly isotopic, because they differ in the
number of lines or in the invariant ! (see §3).

7. Insufficiency of the linking coefficients. Since nonsingular configurations of
at most five lines are determined to within a rigid isotopy by the invariant I, the ques-
tion arises as to whether it is possible to characterize a nonsingular line configuration
to within rigid isotopies by the linking coefficients, i.e., whether nonsingular configu-
rations K and K' are rigidly isotopic if there exists a bijection ¢: K — K’ such that
Ik(p(A), ©(B), o(C)) = lk(4, B,C) for any A, B,C € K. The answer is no. The config-
urations in the simplest counterexample known to me consist of ten lines and are obtained
by adding two different pairs of lines to the configuration (+{+(+2), (=2)), (—{+2), (=2))).
In both cases each of the lines added separates all the adjacent lines of the original con-
figuration from each other, and the lines added are homologous to each other in the
configurations obtained; hence, only the added lines are homologous to each other in
the resulting configurations. However, in one case the lines added are adjacent, while in
the other they are not only nonadjacent but even nonhomologous to each other in the

complement of the remaining lines.

8. 1 directed my attention to the questions considered above under the influence of
V. M. Kharlamov’s account of their connection with the problem of classifying nonsin-
gular surfaces of degree four to within rigid isotopies (see [2}). I take this opportunity to
express to him my profound gratitude.
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