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The main question of the topology of real algebraic curves is
how the components of & nonsingular plane projective real algebraic
curve of degree MM can be positioned with respect to one another
This question became well-known due to its inclusion by D.Hilbert in
his femous sixteenth problem [5] . A complete answer was then known
only for M <5 . In the late sixties D.A.Gudkov [3] completed the
investigation of the case M =6 . The answer for M =Y was announced
in my article [§].

To resolve this question for some M it is necessary to work
in the two directions: first, it is necessary to find topological
restrictions imposed on a curve by its algebraic nature; second, it
is necessary to find methods of consiruction of curves of & given
degree with a prescribed topology. The works in the first direction,
especially during the last decade, involve the powerful machinery of
the modern topology, while the method of congtruction of curves re-
mained unchanged since the XIX-th century. It consists in small per-
turbing e singular curve having only nondegenerate singularities (as
a rule, the singular curve was a union of itwo nonsingular curves
transversal to one another). In the case M=% this method turned out
to be ungufficient.

In this work a new method of congtruction of curves with a pres
cribed topology is introduced and by this method the constructions

of curves of degree 7 announced in [8] are made. The new method is
based on a construction that builds a new algebraic curve from seve-
ral ones. From the topological point of view the new curve ig arran-
ged as a result of gluing of the initial curves. The construction
can be interpreted as a perturbation of a curve with complicated
singularities. Special clasg of such perturbations was described in
my article [8] .

Begides the constructions of the curves of degree 7, in this
article I describe a new simple congtruction of curves of degree 6.

It is proved that a nonsinguler curve of degree 6 with any possible
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mutual position of its ovals can be obtained by a small perturbation
of the union of three ellipses tangent one enother in two points.

1. GLUING

1.1. CHARTS OF POLYNOMIAL. The notion of chart of a polynomial
plays an important role in the statements below concerning the glu-
ing. The most natural way the introduce it involves toral surfaces.
Another more elementary definition is related with the well-known
description of the behaviour of an algebraic curve near the coordi-
nate axes and at infinity. Consider at first the latter definition
and then the former.

Let [ be a map (IR\O) ——>[R (x,4) (b lxl, [,H,]W) . The res-
triction of f +to each quadrant is a diffeomorphism.

For a set WER" and a real polynomial 4 of two variables let
us denote the curve {(X, y,)eulo,(ac 1;)—0} by V ) - Recall
that the Newton polygon A(Q) of a polynomlal o’x, %) Z 2 0w :x; q
is the convex hull of the set {(.O&'Z la,=#0} . For & set rClR
and a polynomial Q(X, 13)— Z awm Y “%  the polynomial Zrnz’ a,wa; Y 2
is called [~trunc a tion of Q and is denoted by ar

A curve V(R\O)Q (dx _fMjT) with d ISER and relatively prime
6,T is called a qua31stra1ght l:Lne.Emapsrb
onto a straight line orthogonal to A(oo:mpg ). Any straight line with
a rational direction is an image under { of some quagistraight line

A polynomial & of two variables is called qu a s i-ho -
mogeneous, if b A@) =@ . If Qis a real quasi-homo-
geneous polynomial of two variables, then V(IR\O)Z (0«) decomposes in-
to a union of quasi-straight lines maped by [ into straight lines
orthogonal to A(Q).

A reasl polynomiel O, of two variables is said to be per ip-
herally non-degenerate, if for any side r of
A(G) the truncation O  has no factor of the form (4 +ﬁ1é )
with K>1 , d, fé€R and g c.d. (6, T)=1 . 'I‘hat is equivalent o
to absence of a multlple component in V(IR\O)Q (CL)

For a side [ of a convex polygon A
let us denote by [ the ray orthogonal to
" and directed outside A  with respect to
Fig.1. M see fig.1.

The following theorem is essentially well-known and can be tra-
ced back to Newton [7]
1.1.A. Let O be a peripherally non-degenerate real poly-
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nomial of two variables and let ﬂ, ’I-'«y be the sides of 1ts
Newton polygen A = A(Q) . Then for any, quadrant QCUR\O)
each straight line contained in K(V (a ")) y i=1,...% is en
asymptote of a(va (@) and B(Va(a)) goes to J.nflnlty only
along these asymptotes in the directions of i
The quasi-gtraight line contained in Va (a‘) is called a

logarithmic asymptote ofthecurvev(m\of(a')
1.1.B. EXAMPLE. Let G(X,Y) =8 - +L|92. The Newton polygon

A(0) is sbown in fig.1. The curve Vmﬂ(a/) is shown is fig 2. The

images of Va(a) and V (a ") under blg: @ >R’ where @ are the

quadrants, are shown in f£ig.3. t/

v
v N

For &, §=11 1et us deno- - / l Y}

te by Jgg the symmetry IRZ*IR
(@, > EX, §y). For AcR? 1et Fig.3.

us denote SGS(A) by Ass and A++UA+.UA UA--by A* Let us
denote {(x, tg)elR l6x>0, 64>0} vy Gy,

Now let us define the charts of peripherally non-degenerate po-

lynomials. First, consider the case of a quasi~homogeneous polynomi-
al. Let O be such polynomial and (LU4,u)’2) be & vector orthogonal to
A=A(Q) with integer relatively prime coordinates W, W, . A pair
(Ag, V) consisting of Ax and a finite set YV  will be called a
chart of @ if the number of points of Vo Ag,8 is equal to
the number of components of V055 Q) for any &,0 and if the
set V is invariant under S( 1)“71 ) W (the curve sz @) is
invariant under the same symmetry).

1 1.C. EX_AMPLE In fig.4 a curve

W V (((IJ l(,})(ll) +g)(2.’£ 1})‘} is shown, and
) 1n fig. 5 it J.s shown a chart of the
/\ \i/ polynomisal (sc (@ +tj)(Q(I) 1ny.
1 Now congider the case of a perip-
Pig.4. Fig.5. herally non-degenerate polynomial a

with Jnb A@) = & . Let A,Tyy..y Ty Dbe agin 1.1 A Then, as
it follows from 1.1.A, there exist a disk Dk with the centre
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in the origin and nelghbourhoods ﬂ)‘,,,,,ﬂ)n of the rays GV,, ) ,FJ
such that Vi 10(0) © AEYENY ..UD,) and for ¥ =1,...,1 the
curve V 4 (D D) (Q) 1is contractible (in itself) into V-4(g) na@)(a)

A pair (A V) consisting of Ay and a curve YC Ay w1ll be called
a chart of 0./_,1f (i) for 4=1,..., 1 thepalr(w,r;*n
NY)is a charﬁ': of a' and (ii) for €, 5—*1 there exists a ho-
meomorphism D —>A such that VNA, ¢ = °

ana i, 5(29n ?:DS) ch, for i={, ..,nss a7 b e “Otong ﬁ@)

1.1.D. EXAMPLE. A chart of 8-ty
(see 1.1.B) is shown fig.6.

Roughly speaking, & chart of ( is obtained Fig.6.
from the pair (( RN 0) V(m\o)2 (0)) vy removing a
peripheral partof (R\O)2 in which V(IR\O)Z (0/) is approximated
by its logarithmic asymptoies and by enclosing the rest into Ax.

Now consider another definition of the charts. To any convex
closed polygon A with vertices having integer coordinates it is
asgsociated a real algebraic surface KA (see [2, 5.8] ), which
is a completion of (R\ 0)2 . The complement [R A\(R\O)2 congimsts of
straight lines corresponding to the sides of A . From the topolo-
gical point of view [RA can be obtained from 4 copies of A by
gluing their sides in pairs. For a real polynomial 4 of two varisbles
let us denote the closure of V(R\O)’ (@ in RA vy Vp,@.

Let (Q be a peripherally non—degener&te real polynomial with
W A@) #* & . Then Veaay (9 \ (IR/\O) consists of non-singu-
lar points of  VRacay (@) and, % a@(®  is transversal to the
lines constituting IRA(O,)\(IR,\O) . (8ee, e g., [6]). cut RA)
along these lines. We obtain 4 polygons Their interiors are naturaz-
ly the quadrants 65 < (R\ O) . The polygons themselves are ho-
meomorphic to A(Q) . Identifying them with A(a)&b' we obtain
a chart of (4,

It can be shown that for any peripherally non-degenerate real
polynomial ¢ end eny convex polygon A  the pair (RA, VRA(CL))
can be restored by a chart of (b . ‘

1.2. GLUING OF CHARTS. Let 0/4,.. ,a« be peripherally non-degene-
rate real polynomials of two variables with nt A@N Int A(a)— g
for 1’#] . A pair (A, ))) is said to be obtained by gluing of
charts of Ghyy...,A¢ if A= U A(a) and there exist charts (A(a/)*,x))
of (y,.v.y8s such that V— L=)4V

1.2.A. EX_AMPLE In fig.6 anf flg 7.
@‘ @ charts of 8(1; (I}+qu andqyz x? 41
are shown. In fig.8 the result of gluing

Fig.7 Fig.8
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of these two charts is shown.

1.3. GLUING OF POLYNOMIALS. Let (4,..., (g be real polynomials
of two variables with aA(G PNA@Y aA(a' )nA(a’J) ana A, N %tA(a) =@
for ¥ ;—‘J . Suppose the set A_U A(a) is convex. Let Vi A—>R
be a non-negative convex functlon “such that: (1) 14 Acay) ig linear
for ¥=1,...,8;(2) if the restriction of ¥  to some set is linear
then the set is contained in some A(d;) ; (3)Y(AN ZQ)C Z .

T?(%rf obviously exists a unique polynomial a,w11:h A(a) =
and Q O; for i = 4’(15"’6 If a(x,y)= 222 a,wq; 9 , then
we set 6(@,%) Z 0/ x ’u tV(w"w") WEZ ona sey that the po-
lynomials Et are obtalned by gluing of 4y, .. oy Qg DY V.

1.3.A. EXAMPLE. Let 0y(%,y)= 83;3 oc’+41} Gy(%, ) = 411 ~at+

0, if W+ Wy > Qe 3
e vao= {9150 AU g g - menbagrsEaagy,

1.4. THE GLUING THEOREM. A real polynomial (@ of two variables
igcalled completely non-degenerate if it
is peripherally non-degenerate and the curve V(R 0)1 (CL) is non~-
singular.

1.4.A, If Qyy...,05 are completely non-degenerate polyno-
mials satisfying the conditions of 1.3 and if |, are obtained
by gluing of 04,...,61/5 by some non-negetive convex function satis-
fying the conditions (1), (2) and (3) of 1.3, then there exists
t‘,)O gsuch that for any tE(O,T/‘,] the polynomial 1 is comp-
letely non-degenerate and its chart can be obtained by gluing
of charts of Uy,..., 04 .

A proof of this theorem and its generalization to high dimensi-
ons will be given in a separate paper [11], Here we restrict oursel-
ves to examples, discussions and applications of 1 4 A.

g 1+4B.EXANPLE. (Cf. 1.3.A and 1.2.4.) The polynomisl 8 -0+
+4q +t with sufficiently small 1 >0 nas the chart shown in fig.
8,

1.5. BEHAVIOUR OF THE CURVE V(R\o)’(&t) as 1 >0 . 1et 4y,...,4,
A,V eand 6‘; be as in 1.4.A and let VIA(Oq)"O . According to.
1.4.A the polynomial Et with sufficiently small T/>O has a chart
obtained by gluing of charts of Qyy...,0s. Obviously 6 0y since
le(a) =() . Thus when T/ passes to T/ 0 the chart of a{ stays
only, the other charts disappear

How do domains containing the parts of V(R\D)n (6’{,) homeomorphic
to v(IR\O)’ @y,..., V(R\0)2 () behave as } vecomes () 2 They are
going to the coordinate axes and to the infinity. The closer
zero the more place is occupied by the domain where the curve\éR\o)g(Bt)
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is organized like V(m\())“ (0/1) and is epproximated by it.

It is remarkable that the family Bt: can be changed by simple
geometric transformations in such a way that the role of O ©passes
to anyone of (g,...,04 or even to a,r where [1 is a side of A(d,),
3 =4,...,5. Indeed let % >R bea linear function, A(X, Y=o+
+pY +¥ , end let V=V-A . Let Et be a result of gluing of
a4, ey Qg by Y/ . Let us denote & linear transformation R —>R

(ac ) P—>(T/ 2, b Y) vy q'h’(a ft - Then it is easy to verify that
(R\O)Q (6t) = q, (@, V(R\O)g(ﬁ) However Et does not tend to ¢y
ag —>( . For example if IXC P VlA(a/ ythen Y IA(a) =(0 and
—> 0y . If th‘ge coincidence set of V and is a side [ Off‘
AG, )then 6t —> 0y and the curve V(R\O)i(&) turns into V(IR\O)2 (O,K)
as t‘—>0

The whole picture of change of V(R\0)2 (Et) when t—>0 is the
following The fragments of V(R\O)2 organized as V(IR\O)"’ (O,K)
become more and more explicit. They are not staying, but are moving
one from other. The only fragment that is growing without translati-
on corresponds to the set where Y has its minimal value. The other
fragments are moving away from it. Some of them (the ones going to
the origin and to the axes) are contracting while the others are
growing. But in the logarithmic coordinates (i.e.being transformed
vy bi(x, )] = (fnixl, ﬁwlw)) all the fragments are growing. Chenging
Y we are applying linear transformations, which distinguish one
fragment and cast away the others.The transformations turn our atten—
tion to & new piece of the curve It is as if we transfer a magnify-~
ing lens from one fragment to another. Naturally under such magnifi-
cation the other fragments disappear at the moment =0,

1.6. GLUING AS REMOVING OF SINGULARITIES. In the projective
plane fRP the passage from curves defined by 51, with 1>0
to the curve defined by A looks quite differently. The domains
where \/mp2 (Bt) is orgenized like the curves V(R\0)2 (Qy) with

=2,...,8 are pressing to the points (1:0:0), (0:1:0), (0:0:1)
end to the axes joining them. At t=0 they are as they were
pressed into the points and axes

Under the inverse passage (from t=0 to t>0 ) the full or
partial removing of singularities concentrated at these points and
lines takes place. It can be viewed also as & small perturbation
of the polynomial E) =0, defining the curve V Ro? (6)
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2. REMOVING OF SINGULARITIES OF TYPE '}40

2.1. CHARTS OF REMOVINGS. A singularity of a plane curve is sa-
id to be of type '}w if a germ of the curve at the singular point
consists of three non-singular branches quadratically tangent to one
other (see [1] ). It is well-known (and follows from 1.1.4) that a
curve sz (ay) hes & singularity of the type 7§, with resl bran-
ches tangent to the axis of abscissas iff 0y satisfy to the fol-
lowing three conditions: (1) only one side of A((4) is turned to-
ward to the origin, (2) this side is the segment [ w1th the end—
points (6,0) end (0,3), (3) 0/{(513 Y) =d (Y- dq\'I))(q d@m)(g 063(15);
where o, dy yoyg,dy eR and d; aéd/J for b#J

By virtue of 1.4.A for removing of a such singulerity of Vmﬂ(aq)
it is sufficient to glue a completely non-degenerate polynomial Oy
with A(0y)=Hm. and (J/z—aq to the polynomial @4 . The chart
of ag defines the topology of a curve obtained, therefore it will
be called a chart of the removing. The following theorem gives a set
of removings of a singularity of the type }40 with 31 topologically
distinct charts. As it will be proved in 2§3 this set is complete.

2.1.A. For any dyy,dg ,ds >0 distinet from one other there

exist completely non-degenerate polynomials having the Newton

polygon [Bm. [ ~truncation (%—dqxg)(ij- drg mz)(y—oog )

and the charts shown in fig.9.

& &

e?f oSS

ST T & &
2.2.LEMMA. For any B, > B> P, > p3>o with R+ B =B+ By

Fig.9.
and for any J=4,2,3 there exists a completely non-degenerate
polynomial ) such that (i) A(F)) is the triangle Px. boun-
ded by segments of coordinate axes and the segment Z w1th
the end-point (4,0) and (0,2), (ii) 5 (x, y) Y- 2)(1} ﬁzﬂi)
(i:Li) the curve VRQ disposes w1th respect to the parabo-
les ”(% pooc +{) end V ((j ﬁsm) as 152shown in fig 10.j.
PROOF. Let us denote the polynomlals g—ﬁ‘,wu and g—ﬁaoc
by [y end Py . Set ﬁ(wy) T-¥, with 1=1,2,3,4 and el

%

&,
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+J[/££ E 2 It is clear that C (x, %)=(% ﬁ’am )(Ié B w”)+toc"

On the other hand C can be decompoged: Ct (x,4) —-(1{}r 54(1‘/)(9—
'-52(2 ). So 54"‘52 = ﬁo"'ﬁa and 5 52 ﬁo ﬁ3+t - Bince ﬁ0+]‘)’3
=Pitfy and B>B > B> B,>0 then Pi Py > B, B, and fort—ﬁ4ﬁ2 B, B,

we have C (T, Y) = (Y- p, oc’)(g ﬁgx ) .” Thus Cﬁ Pr-Boby satisfies
(i) and (11) independently on the choice of ¥j,.. ., ¥y « Let us show

that ¥4,...,¥, can be chosen so that the condition (iii) be satisfied.

N N N 1,
N4

10.1 10.2 10.3
Fig.10

If the lines Vmg(ﬂ-t) are situated with respect to Vg2 (Py)
as in fig.11.j, then there exists €>0 such that for 1 €(0,€)]
the curve VRQ (Ct) consists of 3 components and is disposed with
respect to VR, (pk) as in fig.10.j. Let us show that by a choice

M %//
NN N4 N
11.1 Pig.11. 11.3

of e we can achieve that the role of & can be played by any
number from the interval ({0, (ﬁo + ﬁ3)/2) and in particular,
PBi Ba - Bo By - s b A (Cy)  contains only one integer point, the
genus of the curve determined by Ct is not more than 1. Therefore
under the increasing of t the first modification of Vma (Ct) with
T/)O must either diminish the number of components or give a de-
compoging curve.

The latter is impossible. In fact consideration of C shows
that curves congtituting VRQ(Ct) are to be either two imagine
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conjugate curves or two real parabolas The first is impossible sin-
ce for V>0 &ny line Vma(a‘z -¥) with ¥Ye (¥, ¥) intersects
qu (C4)  in two real points, the second is impossible since a ver—
tical line passing through a point of V 2 (P) N VRQ (Ps) does
not intersect Ve (Ct) for >0

For 1 €(0, (ﬁ)a +ﬁ3)/2) there exist branches of V (Ct)
going to infinity. Choosing lines VR’A’ ( ‘,) sufflclently close to
one other and to 2 po:.nt of V g(Po) N V 2 (P;) we can achieve that
for eny b €(0, (ﬁo +ﬁ3)/2) there ex1st two branchs of V (C)
in some neighbourhood of this point and therefore Vgi (Ct) has 3
components 1.e. there is no modification.

2.3. PROOFP OF 2.1.A. The chart shown in the left lower corner of
fig.9 is the chart of (g,—cc4(oc2+4))(g—oc2 (x2+4))(1,} —d,(x”ﬂ)). The other,
charts of fig.9 are realized by polynomials obtained by small pertur-
bings of Pkb s Where PK and ?) are &g in 2.2. The perturbings
are to be made by adding g r] (x 5) . I{ does not change the mo-
nomials corresponding to the po:mts of [

By perturbing of P3 i we obtain polynomials with any desired

[~truncation since in 2.3 the set of , ﬁa subjects only
to the restriction ﬂ4 > _[52 >f53>0 That is not so in the case of

Ps E . In 2.2 the set {f,,B,, By} subjects to the restriction
ﬁ4 + ﬁg B, >0 since Bit Ba-B, =f3>0 - Therefore by perturbing of
P, i, ve obtaln polynomials with " —truncations (Y=dy Y-
—oczoc)(q d3ﬂ)) where oy +d3~dy>0 and dy>dgd>d3>0 . To
obtain the polynomialg with arbitrary dy >dg >dg>0 we choose 5
such that the numbers o(/ = d +0 satisfy the restriction cCQ +d,3
—olq>0 construct the desued polynomials with r truncation
(g cb xX )(1,; ocgoc)(lg 063 x ) and apply the transformation

(%, > (x,y+da’), @

3, CONSTRUCTING NON-SINGULAR CURVES OF DEGREES 6 AND 7

3.1. METHOD OF DESCRIBING THE ISOTOPY TYPE OF A NON-SINGULAR
CURVE. The isotopy type of a non-singular curve of degree M is
determined by the scheme of nutual disposition of its components (it
is also called its real scheme). For description of the real schemes
we shall apply the following gystem of notation-

4 curve consisting of one oval is encoded by the symbol (1) ,
the empty curve by the symbol (0) , a comnected one-sided curve by
the symbol < }) . If the symbol {AY encodes some set of ovals



196

then the set obtained from it by adjoining one oval enclosing all
the rest is encoded by the symbol <A . A curve presented as
the union of two nonintersecting curves, which are encoded by the
symbols <A> and {B)> and such that no oval of one curve is enc-
losed by an oval of the other, is encoded by the symbol CALBY> .
We shall use two abbreviations: first, if {AD is the code of a
set of ovals, then a fragment of another code having the form Aﬂ.
+o«lLA, where A is repeated 1 times, is ebbreviated by nxAs
second, fragements of a code having the form #x4{ are abbreviated
by the notation H

3.2. CURVES OF DEGREE 6. The following theorem on isotopy clas-
sification of non~singular plane projective real algebraic curves of
degree 6 was proved by D.A.Gudkov [3] in the late sixties.

3.2.A. There exist nonsingular curves of degree 6 with the
following real schemes:

(1) <9I, <5LED [ HLII» 3

(i1) 0>, <BILAKEY , <HLAKHD, (YLA<ED, (JLAC8Y , (I<9D;
(iii) <o L 1<B» with 4+B<8,0<d<Y , 1< f <8
(iv) <> with 0<d <g ; (v) <4<,

Any nonsingular curve of degree 6 has one of these 56 real sche-
mes.

A1l these schemes, except for schemes {5I {<5» and<4ll 1<5»,
are realized by the classic methods of Harnack and Hilbert, see Gudkov
[3] . Hilbert conjectured that <5l 41<5» is unreaslizable. Gud-
kov [3] , refuted this conjecture by avery complicated construction.
The following construction based on 1.4.A and 2.1 A seems to be simp-
ler than Gudkov's one Moreover it gives a realization of all 55 non-
empty schemes of Theorem 3 2 A.

3.2.B. CONSTRUCTION. Apply to the polynomials of 2.1.A the trans-
formetion aQ(x,y)+> g"’a (% ’ %) . The charts of the results are
shown in fig 12. By gluing of these polynomials and the polynomials

K

Fig.12
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of 2.1.A we obtain the polynomials defining nonsingular curves of
degree 6 with all 55 desired real schemes of 3.2.A.

The gluing may be considered as the gluing the polynomjéals abo;
ve to (Y —dy wg)(‘lj"dzg :I'/Q)(y} ~ds oc"’) . The curve VRPQ ((13—064515 )(g—dga})x
X({ﬂ—o%w"))is the union of 3 conies. It has 2 singuler points, each of
which is of the type ?40 . Thus nonsingular curves of degree 6 with
all realizeble non~empty real schemes can be obtained by small pertur-
bations of the curve Vo ((4 oy TN Y~y )Y~y &%) . The latter

ig shown in fig 13.
‘D In fig.14 it is shown
%0 %g=0 g curve obtained from
l re o i
=0 =0 %=0 X=0 it with the real sche

Fig.13. Fig.14 me <51 1<5>.

As & consequence of this construction and the isotopy classifi-

cation of the non-singular curves of degree 6, we obtain the complete-
ness of the set of removing charts for }40 shown in fig 9.
3.2.C. Any completely non-degenerate polynom:iéal havi’?g the

Newton polygon [HBoe. and [“truncation (Y —dy®)(Y-2,2L)NY-dsT)

with dy,dg,dg >0 has one of the charts shown in fig 9.

PROOF. The gluing of the chart of the polynomial in question to
any chart of fig.12 must give a scheme of 3.2.A. Ii can be easily
verified that the only schemes having this property are the schemes
of fig.9.

Another way of proving 3.2.C is provided by [9] -

3.3. CURVES OF DEGREE 7. The following theorem on isotopy clas-
sification of the non-singular plane projective real algebraic curves
of degree 7 was announced in my article [8] -

3.3.A. There exist nonsingular curves of degree 7 with the
following real schemes:

(1) <FULLACBY  with d+P<i, 0sd <3 1<Bp<13;

(ii) <} Ud> with O0<sd <15 3 (111) <FUAAD .

Any nosingular curve of degree 7 has one of these 121 real sche~

mes.

Up to the time the work [8] was being dome it remeined unknown
whether there exist curves with the schemes <3L4<HD,(F 1L 10 L 4<ud
and <FLAUI<BD with Bcd+psi, 3<d , 6<p.

In fact, an application of the Bezout theorem to the curve in
question and some suxiliary curves of degree 1 and 2 shows that a

real scheme of & nonsingular curve of degree 7 belongs to one of the
following types: < ¥ld>, (¥ ld LI<p» , <FL1A <4>>>, where & 20
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ﬁ>4 » By the Harnack inequality the number of components of a
nonsingular curve of degree 7 is not more than 16. By the Harnack
method the following real schemes are realized: < FLdD with
0<d < 45 3 <P L &LL< with 0 €4 <143 and <4 11<p>
with 0 €& <9, 0<B<HU . By the Hilbert method the following
real schemes are realized: < ¢ B L41<BD with & +B<12; <HL L I<ED
with d+ B <, <2, 8«13 and <FLALI<PD with d + B <4 |
<12, B3 . Gudkov's construction [4] gives the real schemes
(LA LAPBD with <9, p<5. .
Thus Theorem 3.3.A is reduced to the following two theorems
3.3.B. There does not exist a nonsingular curve of degree
7 with the real scheme < % I 1<44) .
3.3.C. There exist nonsingular curves of degree 7 with the
real schemes { J Id L 4<pd with 6 <L +B <4, 1gd, 2< 8.
Theorem 3.3.B is proved in my article [10], Theorem 3.3.C is pro-
ved in the rest of this article.
3.3.D. LEMMA, There exist 4 completely non-degenerate poly-
nomiels with the Newton polygon and the charts shown
in fig.15.

In other words there exist 4 curves of degree 7 disposed
ag ig shown in fig 16 Each of the curves has two singular
points of the type },0.

)/ - \

Fig.16.

PROOF. Let us use the Hilbert method adapted to construction
of singular curves. By small perturbings of the unions of V;ng(y-a;z)
and the straight lines shown in fig.17 let us construct 4 nonsingular
curves of degree 3 disposed with respect to Vmpg(ii—(x’,z) and the

/7 /77 Fig.17. A
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Perturb the unions of the curves obtained and VIRPQ( y-2) to
obtain the curves of degree 5 shown in fig 19. '

\

The unions of the curves of degree 5 obtained and VRPQ (1}-(1‘/)2 can
be obviously perturdeb so that the desired curves be obtained.

PROOF OF 3.3.C. Remove the singularities of the curves of fig 16.
Do this by gluing the polynomials of Lemma 3.3.D with the polynomials
having the charts shown in fig.9 and fig.12.

Fig.19
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