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This article is devoted to the question of how the components of a nonsingular plane
projective real algebraic curve of degree m are positioned with respect to one another. This
question was included by D. Hilbert in his well-known sixteenth problem [1]. A complete
answer was then known only for m < 5. In the late sixties D. A. Gudkov [2] resolved the
case m = 6. The recent state of the subject was described in the surveys {3]—{[5].

In this article we formulate a definitive answer for m = 7 and some new results on
curves of higher degree. Among these results are the construction of M-curves refuting the
well-known Ragsdale conjecture [6], the realization of 42 new isotopy types of M-curves of
degree 8 (10 types were realized earlier), and a theorem on M-curves of degree 8 with three
nests that excludes 36 isotopy types not previously excluded.

The new curves are constructed by a method which, as far as I know, has not been used
before; it consists in perturbing curves with complicated singularities. The perturbation
method (in a somewhat more general situation) is described in the last section. New exclu-
sions are proved using recent results of V. A. Rohlin and of T. Fiedler on the complex
orientations of real algebraic curves introduced by Rohlin [51.

2. The method of describing a curve of isotopy type. In this article, by a curve of
degree m we mean a plane projective real algebraic curve of degree m. As is known, the com-
ponents of a nonsingular curve of degree m are homeomorphic to a circle. If m is even, they
are all positioned in RP? two-sidedly; if mn is odd, then there is exactly one one-sided com-
ponent. Two-sided components are called ovals.

The isotopy type of a nonsingular curve of degree m is defined by the scheme of
mutual placement of its ovals. For its description the literature contains two systems of no-
tation, introduced by L. Brusotti {7] and by G. M. Polotovskii [8]. In this article we use a
system of notation differing from Polotovskil’s only in being more compact.

The set consisting of one oval is encoded by the symbol (1), the empty set by the sym-
bol (0). If the symbol (4) encodes some set of ovals, then the set obtained from it by ad-
joining one oval enclosing all the rest is encoded by the symbol (144). A set of ovals pre-
sented as the unjon of two nonintersecting sets which are encoded by the symbols (4) and
{B) and such that no oval of one set is enclosed by an oval of the other, is encoded by the
symbol (4 1L B). We shall use two abbreviations: first, if ¢4) is the code of a set of ovals,
then a fragment of another code having the form 4 IL - - - I 4, where 4 is repeated n times,

is abbreviated by the notation n x A; second, fragments of a code having the form # x 1 are
abbreviated by the notation n.
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k 3. Curves of degree 7.
THEOREM 1. There exist nonsingular curves of degree 7 of the following isotopy types:
() @ L 1@y witha +p<14,0<a<13,1<p<13;
(i) @ with0<as15;

(iii) (DM,
Any nonsingular curve of degree 7 belongs to one of these 121 types.

Up to the time this work was being done it remained unknown whether tiere zxi<stﬁ
curves of the types (1{14%, {10 1L 14 and {a Il 18» with 13 <a + 8 <.14, 3 \‘a: h\ .

The unrealizability of the type (1{14) is established as follows. Using R.ohhn s t.teoriryd
on complex orientations [5] it can be proved that if there wer.e a curve of thnsdt.y;t)el;e}mvzctis
intersect some curve of degree 2 in no less than 16 points, which would contradic
theore’ln'lql'e isotopy types (@ 1L 1) with 6 <a + B < 14 are realized as fo.llows. First, (?ne .
constructs 4 curves of degree 7 having two singular points, at 'each of which three nonsmgl.lurbs
branches are tangent (J,, singularities in V. L. Arnol'd’s notation [10]), and then one per

¢ scheme described below in §7.

e t:acr:lcrl\llzsobfyt;ze (4 1t 1¢10) not only was not, but, as noted by V'. 1. Zvonilov (I?ersznala
communication) and by T. Fiedler [9], cannot be, constructed by previous methodsl, Li‘he:/
small perturbation of a curve decomposing into nonsingular curves transve.rsal to each o.f ﬂ;e

4. Counterexamples to Ragsdale’s conjecture. recall that an oval is called ev?:n i
number of ovals enclosing it is even, and odd otherwise. The number of even ovals is de-

number of odd ovals by n.

ot }E:gspd’atl:’es conjecture [6] says that for any nonsingular curve of even degree m,

(1) p<(@m*-6m+8)8, n <(3m* — 6m)/8.

From well-known theorems it follows that the left-hand inequality holds for m <8, and the

right for m < 6.

THEOREM 2. For any m > 8 which is a multiple of 4, there exists a nonsingular curve

of degree m of isotopy type {(m* — 6m)[8 1 143m? — 6m + 8)/8).

Thus the right-hand inequality (1) is violated for m = 8, m =0 (mod .4). L
S. A weakening of Ragsdale’s conjecture. The question whether the inequalities

(2) p<(Cm?®-6m+8)/8, n< (3m* —6m +8)/8
are valid remains open. It admits a wider formulation: Whether it is true that if A is the set

. . . ot
of fixed points of an antiholomorphic involution of a nonsingular simply connected compa

complex surface CA4, then
(3)  dimH,(A; Z,) <hV!(CA).

If C4 — CP? is a branched double covering with ramification over the. complexificatior}x. of a
nonsingular curve of degree m, then inequality (2) for this curve .is eql-nvalen: to mg}c};la ity
(3) for the two involutions CA — CA covering the complex conjugation cr ‘ — :

6. M-curves of degree 8. A special role in the topology of real algebraxc. curves is f
played by M-curves, i.c. curves of prescribed degree m having the greatest possible number o
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components (equal to (m? — 3m + 4)/2). On the one hand, the most interesting restrictio
OI.l }tlh;e topology of curves relate to M-curves; on the other hand, the isotopy types of curv:sS
:rlct:d»\./er components are usually easily realized if the corresponding M-curves can be con-

The topological properties of M-curves of degree 8 that are found in the literature re
duce to. the following three: (i) by the definition of an M-curve, p + n = 22; (i) by Gudk;w’
comparison, p — n = 0 (mod 8), and so p =n = 3 (mod 4); (iii) in view of obvious conse- S
quences of Bézout’s theorem, the isotopy type of an M-curve of degree 8 has the form
(o 1L 180 or (o 1L 1483 1L 14y or {er 1L 48) 4L 14y) LL 145 or (o 1L {8 U 1¢y, where &, B, yand &
are nonnegative integers. ,

The following formulation contains an enumeration of the realized isotopy types of M.
cun.'es of degree 8. For completeness it includes the type from Theorem 2 and the 10 t ;
realfzed before this paper. The latter are provided with references to the articles where t};pés
realizations are described. The rest are provided with notation (according to [10]) for theeu
types of singularities of the curves which, when slightly perturbed according to the sche
§7, give rise to curves of this type. mee!

bl 'II‘HEOREM 3. There exist M-curves of degree 8 of the 52 isotopy types introduced in

CONJECTURE. If (o L 148 1L 1(y) is the isotopy type of an M-curve of degree 8 and
7 # 0, then the numbers § and vy are odd.

TABLE 1
p=19,n=3 =
p=15, n=17
::;311:<?» " (141 1¢7) (G
LI g2y (GRS CI3PICHRTCEN N, (. 2X
eIty () (I3 1¢2)01¢5n (‘l‘s)’ Y
:;ﬁigﬁ:(;”» " (1341434 1¢4n 2X,,
mu“““(”)» 2X,, CI2E L ICD LIS N, 2X,,
o 1<1)» /\{,26+J,o (12U 1D IO NT3y 2X,,
! L1CH) ) CLUIC6 113 Jio 2X
(8_111(1)_{{1(3)1“(7)) 2X,, (SU1¢641¢9 ax,,
(BLICYLT(SY1(5n 2X,, CTIIC6L1¢TH J “2,\'
(BRI L¢3 1¢5N 2X,, (IRIC6L 1¢S5 2:\3' H
fgﬁifigﬂﬁgiii IJ\;‘,,ZX“ L1610 1¢3)m J,ozi}v,6
(13

(SU1¢10L1¢5) 2)’{:, Ll Lt Tror My
(TIL1C101 1¢3)H) Nig+J,, p=lln=11
9U1¢101 1< U, Ny, 2x,,  (0L1y N W0, Nyo tJ50

R GLICEYE1410) *)

n= TR EFATREED) 2X

:gﬂ:ii))l y Nig+J,, (90 1¢3r 148y 2X::
(51!_1(2)1Ll< » Jior2X5, (90 1¢ary 1<y 2X,,
<51L1<3>ﬁ1:3» Jio. 2X,, (QL1CSH I 1¢6N N 2X,,

» 2X,, BUICLHIT(IYL 19N 2X
(SHTCA L TCTLY 2X,, Y
(51L1¢581¢10» Jio, 2X,, p=3, n=19
:gn}%muw» 2X,, (241019» Nig*Jyo
41 Ty 1L 1¢8% 2X,, (LU 1¢1T» 2X,,
AU YIS TN 2X,, CTRL(Syg1¢14n 2X
:::JL:<3>JL1<5>11<7>> 2X,, CLILTC8YIL (LY ZX::
B1C14 1 1¢5 ¢ CLA1¢18R1¢1)
L4013 Ny . " Mrethe
(SUL1CH41 1T ¢
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Using complex orientations T. Fiedler (unpublished) has proved the nonexistence of M-
curves of degree 8 of types (K1) LL 1{e) 1L 148 with nonzero even « and 8. The following
theorem generalizes Fiedler’s theorem. It was formulated as a conjecture by A. B. Kor€agin

in connection with the author’s results contained in Theorem 3.

THEOREM 4. If {a It 1) L 169 1L 1483 is the isotopy type of an M-curve of degree 8
with B, v and & nonzero, then the numbers B, v and 8 are odd.

The requirements (i), (ii), and (iii), and the restriction imposed by Theqrerh 4, are satis-
fied by 104 isotopy types, so that the question of the realizability of 52 types remains open.
Of these the conjecture stated above excludes 25. .

7. The method of perturbing singularities. Recall that by the Newton polyhedron
A(p) of a polynomial p(x, . . ., X,) = Zi=(ky,enkp) p,g’l‘l .- -x,’:n we mean the convex
hult of the set {k € R"| p, # 0}. For ' CR" by pT we denote the polynomial
Zrer pkx’,cl . -xﬁ". A polynomial p (over C or R) is called nondegenerate if for any side
I (including A(p)) of the polyhedron A(p) the variety defined in (C\0)" by the equation
p"(x) = 0 is nonsingular. For a polynomial p of degree m, by [p],, we shall denote the
homogeneous polynomial by xg'p(x, /xo, - - -, X,/%0)

Let u be a nondegenerate real polynomial of degree m in n variables. We shall assume
that the unique face of the polyhedron A(u) that is directed to the origin of the coordinates
is an (n — 1)-dimensional simplex 2 with vertices on the coordinate axes, lying in the hyper-
plane (k €ER"| wk, + -+ wyk, = 1}. This assumption means that the hypersurface
U C RP" defined by the equation [u],,(x) = 0 has (according to Arnol'd’s terminology [10])
a half-quasi-homogeneous singularity with indices wy, ..., w, at the point e, =
(1: 0: ... :0) and that the coordinate axes passing through ¢, do not lie in U.

Let v be a real polynomial in n variables with AQu) = {k € R wk, + -t wyk, <1}
We shall assume that the hypersurface ¥ C R” defined by it is nonsingular and that v = 4,

We put v,(xg, -+ - » %) = t[v] ,, (X, €lx,, ..., T ¥nx yand g, = ful,, +v,—
] . and denote by ¥, and 4, the hypersurfaces defined in RP” by the equations v (x) =
0 and a,(x) = 0.

The hypersurface V, with ¢ # 0 is obtained from ¥ by means of the linear transforma-
tion (x;,...,x,) = (t“lx, ..., t“nx ), following inclusion in RP" and the adjunction
of the hyperplane x, = 0, taken with multiplicity m — deg v. The hypersurface 4, coincides
with U for ¢ = 0, and for sufficiently small £ > 0 is described as follows.

THEGREM 5. There exist € > 0 and a neighborhood N of the point ey such that for
any t € (0, €] the set of singular points SA, of the hypersurface A, coincides with the set of
singular points of the hypersurface U different from e,, and the variety A NSA, has a tubular
neighborhood T, in RP"\SA, such that the variety UNV U S4,) lies in T,\N and is the image
of some section of the fibering T;W — A NN U 54 () and such that the variety V, O N lies
in T, O N and is the image of some section of the fibering T, VN — 4, N N.
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