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1. In 1973 V. L. Arnol'd [1] conjectured that the number of components of the
complement of a real algebraic hypersurface of degree m in RPY does not exceed 1 +
C'lﬁq#z. This conjecture is known to be true for ¢ = 1 and 2. For nonsingular surfaces
of degree m in RP3 this means that the number of components of the surface does not ex-
ceed (m® — m)/6 for m even and (m> = m + 6)/6 for m odd. For m < 4 these estimates
are known to be correct, and they are sharp for m = 1, 2 and 4.

Arnol'd’s conjecture is connected with the incorrect (according to Arnol'd [1]) theo-
rem of Courant-Herman on the zeros of linear combinations of eigenfunctions of a Laplace
operator: the validity of Arnol'd's conjecture would follow from the validity of the Courant-
Herman theorem for the sphere S9 with its standard metric; see [1]. The main result of
this paper is Theorem 1, which shows that Arnol'd’s conjecture is false for ¢ = 3 and any

even m 2> 6, so that the Courant-Herman theorem is false for the Laplace operator on the
sphere S with its standard metric.

THEOREM 1. For any even m there exists in RP? g nonsingular real algebraic surface
of degree m with (m> — 2m?* + 4)4 components; it is homeomorphic to

(3m*—2m* —8m)/16 So lL(m* -6m* +8m)/16 5, LS g “16)/16-

lere S is the sphere with p handles, and 1 is the disjoint sum.

The surfaces whose existence is asserted by Theorem 1 are not M-surfaces. For m =

- mod 4 the following theorem gives M-surfaces of degree m, and for m > 10 they have a
arge number of components.

THEOREM 2. For any m = 2 mod 4, in RP? there exists a nonsingular real algebraic
Surface of degree mn with (Tm® = 24m* + 32m)[24 components; it is homeomorphic to

(11m* -30m2 +28m~24)/48 So L (m? —6m? +12m—8)/16 S,

-HS(M’ ~30m? +44m +24)/48.

These theorems are proved by using new forms of the method of small variation.
Usually, a real a lgebraic variety with prescribed properties is constructed by means of

mall variation of the union of several algebraic varieties; as a rule one is restricted to the case
ere thege varieties are transversal.

All the isotopy types of nonsingular real algebraic plane
HUIves in the literature have been obtained in this way. This method has also been applied
the construction of surfaces (see [13]), but here its possibilities are more modest. For
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example, surfaces of degree 4 in RP? that are gotten in this way have no more than three
components, whereas in RP3 there are surfaces of degree 4 with 10 components.

In this paper we present an extension of the method of small variation, consisting
mainly in replacing the initial union of varieties by an arbitrary real divisor. Variation of
divisors which are doubled nonsingular varieties is an especially simple method of construct-
ing surfaces of even degree. The proofs of Theorems 1 and 2 are also based on this method.
Its possibilities are also illustrated by the following theorem. '

THEOREM 3. By small variations of doubled nonsingular quadrics in RP? it is possible
to realize all isotopy types of nonsingular real algebraic surfaces of degree 4 in RP3, except
for the isotopy type of a surface homeomorphic to S, I 9S8,-

The proofs of the realizability of these types that exist in the literature are less ele-
mentary. The isotopy type of S, I 95, was realized by Utkin {11] by means of the meth-
od of Rohn. The isotopy classification of surfaces of degree 4 in RP? was completed by
Harlamov [4], [5].

2. Variations of a divisor. Let B be a real algebraic variety, D a locally principal
effective real divisor on it, and y: R —_ (D) a smooth mapping of the line R into the
space D) of real rational functions on B that is associated with D (for the definition see,
for example, [10]). A family of locally principal effective real divisors D, = D + (1 + (1))
with r € R is called a variation of the divisor D if ¥(0) = 0. If ¥(¢) = tp, where ¢ € .(/(D),
then the variation is called linear. If for some € > 0 the topological type of the pair (B, D,)
does not depend on ¢ for ¢t € (0, €], then the family of divisors D, with 7 € [0, €] is called
a small variation of the divisor D.

3. Variations of a doubled variety. Let A and L be closed real algebraic subvarieties
of codimension 1 of a complete real algebraic variety B such that (i) the divisor 24 is equiv-
alent to L, (ii) the variety A4 is nonsingular, (iii) the set of singular points of the variety L
does not intersect A, and (iv) L is transversal to A4 (for the terminology see [10]). We put
D=24and C=A4NL Let g€ LD)be a function such that D + (¢) = L.

The variety 4 is separated by the variety C into two parts 4 and A_ cut out on 4
by the closures of the sets {x € B] p(x) > 0} and {x € B| p(x) < 0}. It is not hard to
prove that there is an € > 0 such that the variation D, =D+ (1 +1tp)witht € [0, €] is
small. Then for t € (0, ¢] the divisor D, is simple and represents a nonsingular real algebraic
subvariety of B which is isotopic to the boundary of a regular neighborhood of the set 4
in B, and its complexification CD, is a branched double cover of the complexification €4
of 4, branched over CC (the projection of the branched cover CD, — CA4 can be chosen
to be real analytic, but it may happen that there is no holomorphic branched double cover
€D, — CA).

4. Sketch of the proof of Theorem 1. To construct the required surface it suffices
to apply the construction of the preceding section, taking A to be any real algebraic surface
of degree m/2 in RP? that intersects RP? along an M-curve with two bases of rank 1, and
to take C' to be an M-curve, constructed by the method of Brusotti [2], which is a regular
complete intersection of A4 with some surface of degree m.
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5. Sketch of the proof of Theorem 2. Let 4 be a nonsingular real algebraic surface of
degree 2k + 1 in RP3 that intersects RP? transversally along a curve £. We assume that the
nonorientable component A, of A is homeomorphic to a projective plane with p handles.
Suppose £ is an M-curve, that it has two bases of rank 1, that it lies in 4, and that all its
ovals bound nonintersecting domains in A, that are homeomorphic to the disc. By a small
variation of the divisor (4k + 2)E or by a construction analogous to Brusotti’s [2], one can
then obtain a nonsingular curve C in 4 whose components bound domains in 4 that are
homeomorphic to the disc and are arranged in A in the following way: there are 2k —k
nesfs of depth 4k + 2 lying outside one another and outside the other nests, 2k nests of
depth 2k + 1 lying outside one another and outside the other nests, 4k> + 2k? — k empty
ovals lying outside the nests, and 12k + 14k* + 3k empty ovals surrounded by a single
oval within which there are no nests and which is not itself surrounded by the other ovals.

Applying the construction of §3 to the pair (4, C), one can obtain a surface of degree
m = 4k + 2 which is homeomorphic to

2(A\Ao)_|_|_ (123 + 16k +2k)So 1L 4k35)ll_szp+3k’+sk’ +2-

Taking A to be the M-surface 4,, , ; constructed in [13], we get the surface whose

existence is asserted by Theorem 2.

6. Construction of quartics in RP® by variations of doubled quadrics. To realize the
isotopy type of a surface of degree 4 in RP? with the construction of §3, we must take 4
to be a nonsingular quadric in RP? and C to be its regular complete intersection with some
surface of degree 4 that bounds the subvariety 4_ in A and such that the boundary of a
regular neighborhood of it in RP? belongs to the desired isotopy type

It is impossible to realize the type §, 1| 95, in this way: to do that we would have to
take C to be a curve with 11 components, but its genus must be 9 and therefore the number
of its components is < 10.

Before describing the construction of nonsingular quartics of the remaining 111 isotopy
types, we make the following

DEFINITION. A real algebraic curve C' on a real algebraic surface 4 will be called a
. reduction of a curve C C A if there exists a homeomorphism #: 4 — A isotopic to the
identity such that H(C') C C and each component of the set CVi(C") bounds a domain in 4
which is homeomorphic to the disc and whose interior does not intersect C. In all the
examples | know, evident modifications of the construction of the curve lead to the con-
struction of its reductions of all isotopy types.

1. Incontractible quartics homeomorphic to Sp LgS,with2<p<10and0<g<1l
If 4 is a one-sheeted hyperboloid and C is the M-curve of order 8 on it constructed by Hil-
bert [6], then (for an appropriate choice of the set A_) one obtains an incontractible (in
RP3) Msurface homeomorphic to S,, Il §,. Hilbert’s paper [7] is devoted to the construc-
 tion of a homeomorphic quartic using the method of Rohn. The remaining isotopy types of
family [ are gotten by replacing Hilbert’s M-curve by its reductions.

. Incontractible quartics homeomorphic to S, || qS, with0<qg<9. Ifdisa
{le~sheeted hyperboloid and C consists of 10 ovals one of which bounds 2 domain in A
‘,”’hich is homeomorphic to the disc and which contains the remaining ovals arranged within




one another, then one obtains an M-surface homeomorphic to S, A 9S,. The existence of
quartics of this type was proved by Harlamov [4] by a significantly less elementary method.

Since I have not found
the construction of such a curve
in the literature, I present it
here. We first construct a curve
I1 < RP? of degree 6 with two
ordinary double points p, and
P,, illustrated in Figure 1. This
can be done by a small varia-
tion of the decomposable curve

FIGURE I. constructed by Polotovskii
which appears as the seventh
from the end in his table in [8].
Let A C RP? be a one-sheeted hyperboloid transversal to RP? and passing through p, and
p,, and let g be the point of intersection of its two rectilinear generators that pass through
Py and p,. Then the proper preimage of the curve IT under the projection 4 — RP? from
the point g is a curve of order 8 with 9 components and unique double point ¢. One can
take C to be the result of a small variation of this preimage having 10 components.

HL. Incontractible quartics homeomorphic to S 3 1 6S, and S » 1 qS, with2 < p <6
and 0 < ¢ < 5. By constructing curves on a hyperboloid in the same way along plane curves
of degree 6 resulting from small variations of a curve of Gudkov (see [3]) which decomposes
into a line and an M-curve of degree 5, we can obtain surfaces homeomorphic to Sy 4 65,
and S¢ Il 55,. The second is an M-surface; Utkin’s paper [12] is devoted to constructing
such surfaces by the method of Rohn. The reductions of these curves give the remaining
types of family III.

IV. Incontractible quartics homeomorphic to S 1 1 qS, with 0 < g < 8. By con-
structing a curve on a hyperboloid in the same way as the result of a small variation of the
decomposable plane curve denoted by [1] (1) (2, 3, 4, 5, 6, 7, 8, 9) in Polotovskii’s paper
[8], we obtain an incontractible quartic homeomorphic to S, 1l 85,. The reductions of
this curve give the remaining types of family IV,

V. Contractible quartics homeomorphic to Sp i qS, wWithp>0,92>0andp +q <
9. Proceeding in a similar way with the curves in Polotovskii’s table [8] that are denoted
by I'', one can construct contractible quartics homeomorphic to Sle qS, withp > 0,9 =
Oand p + ¢ <9. The remaining types of family V are gotten from reductions of the cor-
responding curves.

VL. Incontractible quartics homeomorphic to § (AL s pand S, 1 g8y wirh2<p<7
and 0 < q < 2, and contractible quartics homeomorphic to S, Il S , and Sy, 1L g8, with
p+q<9andwithp <2orq<2. These and some other types are obtained if C is con-
structed as the preimage of a nonsingular plane curve of degree 4 under a projection 4 —
RP? from a point not lying in 4. The isotopy classification of curves on quadrics that are
constructed in this way can easily be extracted from Polotovskii's [9] classification of plane

curves that decompose into nonsingular transversal curves of degrees 2 and 4.
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