CONSTRUCTION OF M-SURFACES

0. Ya. Viro

212

UDC 513.62

1. Generalized Harnack Inequality and the Problem of Its Exactness. The well-known Harnack inequality [1], which says that the number of components of a nonsingular real algebraic curve of degree m in the projective plane does not exceed $(m^2-3m+4)/2$, is generalized as follows: If A is a real algebraic variety and CA is its complexification, then $\dim H_{\bullet}(A; Z_2) \leqslant \dim H_{\bullet}(CA; Z_2)$ (see, e.g., [2]). If CA is a nonsingular hypersurface of degree m in the complex projective space CP9, then the last inequality takes the form $\dim H_{\bullet}(A; Z_2) \leqslant q + \lfloor (m-1)^q - (-1)^q \rfloor (1-m^{-1})$; in particular, for a surface in three-dimensional space,

$$\dim H_{\bullet} (A; \mathbb{Z}_2) \leqslant m^3 - 4m^2 + 6m. \tag{1}$$

Nonsingular real projective algebraic varieties for which $\dim H_{\bullet}(A; \mathbb{Z}_2) = \dim H_{\bullet}(CA; \mathbb{Z}_2)$ are called M-varieties.

Harnack [1] proved that this inequality is exact, i.e., that for every m there exists an M-curve in the projective plane of degree m. The sixteenth Hilbert problem specifically mentions the problem of the topology of M-curves. Investigations in this direction have led to the construction of a large number of M-curves and, on the other hand, to a proof of general theorems of Rokhlin [3] concerning the topology of M-varieties of arbitrary dimension. However, as far as the author knows very little information is available in the literature concerning the existence of M-varieties of dimensions n \geqslant 2; for example, the existence of M-surfaces of degree m in RP³ is proved only for $m \leqslant 4$.

2. Main Result. In this note, we construct M-surfaces of arbitrary degree in RP^3 .

THEOREM 1. For every natural number m, there exists in RP^3 a real nonsingular algebraic surface A_m of degree m with $(m^3-6m^2+11m)/6$ components, of which all except for one are homeomorphic to a sphere, the exceptional component for even m being homeomorphic to a sphere with $(2m^3-6m^2+7m)/6$ handles, while for odd m, it is homeomorphic to the projective plane with $(2m^3-6m^2+7m-3)/6$ handles.

The construction of the surfaces A_{m} (see Sec. 4) generalizes the construction of M-curves of Harnack [1].

3. Exactness of the Strengthened Petrovskii-Oleinik Inequality. The preceding theorem proves not only the exactness of the generalized Harnack inequality, it also proves the exactness of the strengthened form proved by Kharlamov [4] of the left-hand inequality in the Petrovskii-Oleinik inequalities [5]

$$-(2m^3 - 6m^2 + 7m - 6)/3 \le \chi(A) \le (2m^3 - 6m^2 + 7m)/3. \tag{2}$$

This strengthening consists in the following: If A is a nonsingular real projective algebraic surface of degree $m \neq 2$ in $\mathbb{R}P^3$, having k_+ components homeomorphic to a sphere and k_0 components homeomorphic to a torus, then

$$-(2m^3-6m^3+7m-6)/3 \leqslant \chi(A)-2(k_++k_0).$$

4. Construction of the Surfaces A_m . For the construction, we will need a series of plane curves C_1 , C_2 , . . ., satisfying the following two conditions: (i) C_m is a curve of degree m intersecting some straight-line segment I_m in m points contained in a single component C_m° of C_m ; (ii) for odd m, all the ovals of the curve C_m lie outside one another, for even m the oval C_m° includes $(m^2-6m+8)/8$ ovals lying outside one another, and the remaining $(3\,m^2-6)/8$ ovals lie outside C_m° and outside one another. Such a series of M-curves was constructed by Harnack [1].

For each m, we construct a convex quadrilateral having I_m as one of its sides and which intersects C_m along m arcs joining the side I_m to the opposite side. With the aid of pro-

Leningrad State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 13, No. 3, pp. 71-72, July-September, 1979. Original article submitted July 21, 1978.

jective transformations, we take all these quadrilaterals onto a single quadrilateral Q in such a way that the curves C_m with odd m intersect the base of Q while those C_m with even m intersect the lateral sides of Q.

Let $\gamma_m(\mathbf{x_0}, \mathbf{x_1}, \mathbf{x_2})$ = 0 be the equation of the curve C_m and assume the polynomials γ_m are chosen so that on each side of Q, all the polynomials γ_m not taking the value 0 on the side take values of the same sign there.

We put $\alpha_1(x_0, x_1, x_2, x_3) = x_2 + t_1\gamma_1(x_0, x_1, x_2)$ for some $t_1 > 0$ and $A_1 = \{x \in \mathbb{R}P^3 \mid \alpha_1(x) = 0\}$. Assume that the polynomial α_{m-1} and surface $A_{m-1} = \{x \in \mathbb{R}P^3 \mid \alpha_{m-1}(x) = 0\}$ have already been constructed. We consider the family of surfaces $A_1^{(m)} = \{x \in \mathbb{R}P^3 \mid x_2\alpha_{m-1} + t\gamma_m = 0\}$. For some $t_m > 0$, the surfaces $A_1^{(m)}$ with $t \in \{0, t_m\}$ are nonsingular and mutually isotopic. We put $\alpha_m = x_2\alpha_{m-1} + t_m\gamma_m$ and $A_m = \{x \in \mathbb{R}P^3 \mid \alpha_m(x) = 0\}$.

5. Exactness of the Left-Hand Inequality of Petrovskii-Oleinik. The following theorem shows that the left-hand inequality in (2) is exact.

THEOREM 2. For every natural number m, there exists in RP3 a real nonsingular algebraic surface A_m of degree m homeomorphic for even m to a sphere with $(2m^3-6m^2+7m)/6$ handles and for odd m to a projective plane with $(2m^3-6m^2+7m-3)/6$ handles.

The surfaces A_m^i can be constructed in the same way as the A_m by taking in place of the C_m real rational curves satisfying condition (i) of Sec. 4 and such that all their singular points are isolated real simple double points. The existence of such curves is proved by means of a modification of Harnack's construction [1].

<u>6. Other Results.</u> The author has also used the same technique to: (i) construct other series of M-surfaces in \mathbb{R}^{p_3} and series of M-surfaces in line bundles over \mathbb{R}^{p_2} ; (ii) proved that in order for there to exist in \mathbb{R}^{p_3} a nonsingular real algebraic surface A of degree m with dim $H_{\bullet}(A;\mathbb{Z}_2)=b$, it is necessary and sufficient that $b \equiv m \pmod{2}$ and $3(1-(-1)^m)/2 \leqslant b \leqslant m^3-4m^3+6m$; (iii) constructed M-hypersurfaces in \mathbb{R}^{p_1} of any degree. I conjecture that M-hypersurfaces of arbitrary degree can be constructed analogously in \mathbb{R}^{p_2} for any q.*

LITERATURE CITED

- 1. A. Harnack, Math. Ann., 10, 189-199 (1876).
 - D. A. Gudkov, Usp. Mat. Nauk, 29, No. 4, 3-79 (1974).
- 3. V. A. Rokhlin, Funkts. Anal. Prilozhen., 6, No. 4, 58-64 (1972).
- 4. V. M. Kharlamov, Funkts. Anal. Prilozhen., 10, No. 4, 55-68 (1976).
- 5. O. A. Oleinik and I. G. Petrovskii, Izv. Akad. Nauk SSSR, Ser. Mat., 13, 389-402 (1949).

^{*}Remark Added in Proof. This conjecture has now been proved. Moreover, the author has succeeded in proving the same assertion for arbitrary complete intersections of projective space.