т. 13, вып. 3, 1979, 71—72.

УДК 513.62

ПОСТРОЕНИЕ М-ПОВЕРХНОСТЕЙ

О. Я. Виро

1. Обобщенное неравенство Харнака и проблема его точности. Известное неравенство Харнака [1], согласно которому число компонент неособой плоской проективной; вещественной алгебраической кривой степени m не превосходит $(m^2-3m+4)/2$, обобщается следующим образом: если A— вещественное алгебраическое многообразие и CA— его комплексификация, то dim H_* $(A; \mathbf{Z}_2) \leqslant \dim H_*$ $(CA; \mathbf{Z}_2)$ (см., например, [2]). Если CA— неособая гиперповерхность степени m комплексного проективного пространства CP^q , то последнее неравенство приобретает вид dim H_* $(A; \mathbf{Z}_2) \leqslant q + [(m-1)^q - (-1)^q] (1-m^{-1})$; в частности, для поверхности в трехмерном пространстве

$$\dim H_* (A; \mathbb{Z}_2) \leqslant m^3 - 4m^2 + 6m. \tag{1}$$

Неособые проективные вещественные алгебраические многообразия, для которых

 $\dim H_*(A; \mathbf{Z}_2) = \dim H_*(\mathbf{C}A; \mathbf{Z}_2)$, называются М-многообразиями.

Харнак [1] доказал точность своего неравенства, т. е. доказал, что для любого m существует плоская M-кривая степени m. В 16-й проблеме Гильберта особо выделен вопрос о топологии M-кривых. Исследования в этом направлении привели, с одной стороны, к построению большого количества M-кривых n, с другой стороны, к доказательству общих теорем Рохлина [3] о топологии M-многообразий любой размерности. Однако, насколько автору известно, имеющиеся в литературе сведения о существовании M-многообразий размерностей $\geqslant 2$ очень скудны: например, существование в $\mathbb{R}P^3$ M-поверхностей степени m доказано только для $m \leqslant 4$.

2. Основной результат. В настоящей заметке строятся в ${f R} P^3 \, M$ -поверхности лю-

бой степени.

T е o p е m а 1. Для любого натурального числа m в RP^3 существует неособая вещественная алгебраическая поверхность A_m степени m с $(m^3-6m^2+11m)/6$ компонентами, из которых все, кроме одной, гомеоморфны сфере, а одна гомеоморфна при четном m сфере c $(2m^3-6m^2+7m)/6$ ручками, а при нечетном m — проективной плоскости c $(2m^3-6m^2+7m-3)/6$ ручками.

Построение поверхностей A_m (см. п. 4) обобщает построение M-кривых Хар-

нака [1].

3. Точность усиленного неравенства Петровского — Олейник. Предыдущая теорема доказывает не только точность обобщенного неравенства Харнака, но и точность доказанного Харламовым [4] усиления левого из неравенств

$$-(2m^3 - 6m^2 + 7m - 6)/3 \leqslant \chi(A) \leqslant (2m^3 - 6m^2 + 7m)/3$$
 (2)

Петровского — Олейник [5]. Это усиление состоит в том, что если A — неособая проективная вещественная алгебраическая поверхность степени $m \neq 2$ в $\mathbf{R}P^3$, имеющая k_+ компонент, гомеоморфных сфере, и k_0 компонент, гомеоморфных тору, то

$$-(2m^3-6m^2+7m-6)/3 \leqslant \chi(A)-2(k_++k_0).$$

4. Построение поверхностей A_m . Для построения понадобится серия плоских M-кривых C_1, C_2, \ldots , удовлетворяющая следующим двум условиям: (i) C_m — кривая степени m, пересекающаяся с некоторым прямолинейным отрезком I_m в m точках, расположенных на одной компоненте C_m^0 кривой C_m ; (ii) при нечетном m все овалы кривой C_m расположены вне друг друга, при четном m овал C_m^0 охватывает (m^2-6m+8)/8 овалов, лежащих вне друг друга, а остальные ($3m^2-6$)/8 овалов лежат вне C_m^0 и вне друг друга. Такая серия M-кривых была построена Харнаком [1].

Построим для каждого m выпуклый четырехугольник, одной из сторон которого является I_m , и который пересекается с C_m по m дугам, ссединяющим сторону I_m с противополсжной стороной. При помощи проективных преобразований совместим все эти четырехугольники с сдним четырехугольником Q так, чтобы кривые C_m с нечетными m пересекали его основания, а кривые C_m с четными m — его боковые стороны.

Пусть γ_m $(x_0, x_1, x_2) = 0$ — уравнение кривой C_m , и пусть многочлены γ_m выбраны так, чтобы на каждой стороне четырехугольника Q все многочлены γ_m , не прини-

мающие на ней значение 0, принимали значения одного знака.

Положим α_1 $(x_0, x_1, x_2, x_3) = x_3 + t_1 \gamma_1$ (x_0, x_1, x_2) для некоторого $t_1 > 0$ и $A_1 = \{x \in \mathbb{R}P^3 \mid \alpha_1$ $(x) = 0\}$. Пусть многочлен α_{m-1} и поверхность $A_{m-1} = \{x \in \mathbb{R}P^3 \mid \alpha_{m-1}$ $(x) = 0\}$ уже построены. Рассмотрим семейство поверхностей $A_t^{(m)} = \{x \in \mathbb{R}P^3 \mid x_3\alpha_{m-1} + t\gamma_m = 0\}$. Для некоторого $t_m > 0$ поверхности $A_t^{(m)}$ $t \in (0, t_m]$ неособы и изотопны друг другу. Положим $\alpha_m = x_3\alpha_{m-1} + t_m\gamma_m$ и $A_m = \{x \in \mathbb{R}P^3 \mid \alpha_m$ $(x) = 0\}$.

Точность левого реравенства Петровского — Олейник. Следующая теорема

показывает, что левое из неравенств (2) точно.

 ${
m T}$ е о р е м а 2. Для любого натурального т в ${
m R}P^3$ существует неособая вещественная алгебраическая поверхность ${
m A}_m'$ степени т, гомеоморфная при четном т сфере с $(2m^3-6m^2+7m)/6$ ручками и при нечетном т— проективной плоскости с $(2m^3-6m^2+7m-3)/6$ ручками.

Поверхности A_m' можно построить тем же способом, что и поверхности A_m , взяв вместо C_m вещественные рациональные кривые, удовлетворяющие условию (i) пункта 4, все особые точки которых являются изолированными вещественными простыми двойными точками. Существование таких кривых доказывается при помощи

модификации конструкции Харнака [1].

6. Другие результаты. При помощи той же техники автором сделано также следующее: (i) построены другие серии M-поверхностей в RP^3 и серии M-поверхностей в линейных расслоениях над RP^2 ; (ii) доказано, что для того чтобы в RP^3 существовала неособая вещественная алгебраическая поверхность A степени m с dim H_* (A; Z_2) = b, необходимо и достаточно, чтобы $b \equiv m \pmod{2}$ и 3 ($1-(-1)^m)/2 \leqslant b \leqslant m^3 - 4m^2 + 6m$; (iii) в RP^4 построены M-гиперповерхности любой степени. Моя гипотеза состоит в том, что аналогичным образом можно построить M-гиперповерхности любой степени в RP^q с любым q^*).

Ленинградский государственный университет Поступило в редакцию 21 июля 1978 г.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1. Нагласк А., Math. Ann. 10 (1876), 189—199. 2. Гудков Д. А., УМН XXIX, вып. 4 (1974), 3—79. 3. Рохлин В. А., Функц. анализ 6, вып. 4 (1972), 58—64. 4. Харламов В. М., Функц. анализ 10, вып. 4 (1976), 55—68. 5. Олейник О. А., Петровский И. Г., Изв. АН СССР, серия матем. 13 (1949), 389—402.

^{*)} Примечание при корректуре. В настоящее время эта гипотеза доказана. Более того, автору удалось доказать то же для произвольных полных пересечений проективного пространства.