Stony Brook University Mathematics Department Oleg Viro

Homework 6

1. Prove that the graph of any continuous function $[0,1] \to \mathbb{R}$ is closed, connected, path-connected, Hausdorff and compact.

2. Let X and Y be topological spaces, and Y be compact and Hausdorff. Prove that $f: X \to Y$ is continuous if and only if its graph $\Gamma_f = \{(x, y) \in X \times Y \mid y = f(x)\}$ is closed.

3. Let Z be a compact topological space, X and Y be Hausdorff topological spaces. Prove that if there exist continuous maps $f: Z \to X$ and $g: Z \to Y$ such that for any $a \in X$ and $b \in Y$ there exists a unique $c \in Z$ such that f(c) = a and g(c) = b, then Z is homeomorphic to $X \times Y$.