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Chapter X

Manifolds

47. Lo
ally Eu
lidean Spa
es

⌈47′1⌋ De�nition of Lo
ally Eu
lidean Spa
e

Let n be a non-negative integer. A topologi
al spa
e X is 
alled a lo
ally

Eu
lidean spa
e of dimension n if ea
h point of X has a neighborhood home-

omorphi
 either to R
n
or R

n
+. Re
all that R

n
+ = {x ∈ R

n : x1 ≥ 0}, it is
de�ned for n ≥ 1.

47.A. The notion of 0-dimensional lo
ally Eu
lidean spa
e 
oin
ides with

the notion of dis
rete topologi
al spa
e.

47.B. Prove that the following spa
es are lo
ally Eu
lidean:

(1) Rn,

(2) any open subset of Rn,

(3) the n-sphere Sn = {x ∈ Rn+1 | |x| = 1},
(4) real proje
tive spa
e RPn = Sn/x ∼ −x,
(5) 
omplex proje
tive spa
e CPn = Cn+1 r 0/x ∼ y if ∃ζ ∈ C : y = ζx,

(6) R
n
+,

(7) any open subset of R
n
+,

(8) the n-ball Dn = {x ∈ R
n | |x| ≤ 1},

(9) torus S1 × S1
,

316
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(10) a handle (a torus with a hole),

(11) a sphere with holes,

(12) a sphere with handles,

(13) the Klein bottle S1 × I/(z, 0) ∼ (z̄, 1),

(14) the n-
ube In,

47.1. Prove that an open subspa
e of a lo
ally Eu
lidean spa
e of dimension n is

a lo
ally Eu
lidean spa
e of dimension n.

47.2. Prove that a bouquet of two 
ir
les is not lo
ally Eu
lidean.

47.C. If X is a lo
ally Eu
lidean spa
e of dimension p and Y is a lo
ally

Eu
lidean spa
e of dimension q then X × Y is a lo
ally Eu
lidean spa
e of

dimension p+ q.

⌈47′2⌋ Dimension

47.D. Can a topologi
al spa
e be simultaneously a lo
ally Eu
lidean spa
e

of dimension both 0 and n > 0?

47.E. Can a topologi
al spa
e be simultaneously a lo
ally Eu
lidean spa
e

of dimension both 1 and n > 1?

47.3. Prove that any nonempty open 
onne
ted subset of a lo
ally Eu
lidean

spa
e of dimension 1 
an be made dis
onne
ted by removing two points.

47.4. Prove that any nonempty lo
ally Eu
lidean spa
e of dimension n > 1 
on-

tains a nonempty open set, whi
h 
annot be made dis
onne
ted by removing any

two points.

47.F. Can a topologi
al spa
e be simultaneously a lo
ally Eu
lidean spa
e

of dimension both 2 and n > 2?

47.F.1. Let U be an open subset of R2
and a p ∈ U . Prove that π1(U r {p})

admits an epimorphism onto Z.

47.F.2. Dedu
e from 47.F.1 that a topologi
al spa
e 
annot be simultaneously

a lo
ally Eu
lidean spa
e of dimension both 2 and n > 2.

We see that dimension of lo
ally Eu
lidean topologi
al spa
e is a topologi
al

invariant at least for the 
ases when it is not greater than 2. In fa
t, this

holds true without that restri
tion. However, one needs some te
hnique to

prove this. One possibility is provided by dimension theory, see, e.g., W.

Hurewi
z and H. Wallman, Dimension Theory Prin
eton, NJ, 1941. Other

possibility is to generalize the arguments used in 47.F.2 to higher dimensions.

However, this demands a knowledge of high-dimensional homotopy groups.

47.5. Dedu
e that a topologi
al spa
e 
annot be simultaneously a lo
ally Eu-


lidean spa
e of dimension both n and p > n from the fa
t that πn−1(S
n−1) = Z.

Cf. 47.F.2
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⌈47′3⌋ Interior and Boundary

A point a of a lo
ally Eu
lidean spa
e X is said to be an interior point of X
if a has a neighborhood (in X) homeomorphi
 to Rn. A point a ∈ X, whi
h

is not interior, is 
alled a boundary point of X.

47.6. Whi
h points of R
n
+ have a neighborhood homeomorphi
 to R

n
+?

47.G. Formulate a de�nition of boundary point independent of a de�nition

for interior point.

Let X be a lo
ally Eu
lidean spa
e of dimension n. The set of all interior

points of X is 
alled the interior of X and denoted by intX. The set of all

boundary points of X is 
alled the boundary of X and denoted by ∂X.

These terms (interior and boundary) are used also with di�erent meaning.

The notions of boundary and interior points of a set in a topologi
al spa
e and

the interior part and boundary of a set in a topologi
al spa
e are introdu
ed

in general topology, see, e.g., Se
tion 6 in the �rst volume [?℄ of this textbook.

They have almost nothing to do with the notions dis
ussed here. In both

senses the terminology is 
lassi
al, whi
h is impossible to 
hange. This does

not 
reate usually a danger of 
onfusion.

Notations are not as 
ommonly a

epted as words. We take an easy op-

portunity to sele
t unambiguous notations: we denote the interior part of

a set A in a topologi
al spa
e X by IntX A or IntA, while the interior of

a lo
ally Eu
lidean spa
e X is denoted by intX; the boundary of a set in

a topologi
al spa
e is denoted by symbol Fr, while the boundary of lo
ally

Eu
lidean spa
e is denoted by symbol ∂.

47.H. For a lo
ally Eu
lidean spa
e X the interior intX is an open dense

subset of X, the boundary ∂X is a 
losed nowhere dense subset of X.

47.I. The interior of a lo
ally Eu
lidean spa
e of dimension n is a lo
ally Eu-


lidean spa
e of dimension n without boundary (i.e., with empty boundary;

in symbols: ∂(intX) = ∅).

47.J. The boundary of a lo
ally Eu
lidean spa
e of dimension n is a lo
ally

Eu
lidean spa
e of dimension n − 1 without boundary (i.e., with empty

boundary; in symbols: ∂(∂X) = ∅).

47.K. intRn+ ⊃ {x ∈ Rn : x1 > 0} and

∂Rn+ ⊂ {x ∈ R
n : x1 = 0}.

47.7. For any x, y ∈ {x ∈ R
n : x1 = 0}, there exists a homeomorphism f : Rn

+ →
R

n
+ with f(x) = y.

47.L. Either ∂Rn+ = ∅ (and then ∂X = ∅ for any lo
ally Eu
lidean spa
e

X of dimension n), or ∂Rn+ = {x ∈ R
n : x1 = 0}.
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In fa
t, the se
ond alternative holds true. However, this is not easy to prove

for all dimensions. Let us start with the lowest ones.

47.M. Prove that ∂R1
+ = {0}.

47.N. Prove that ∂R2
+ = {x ∈ R2 : x1 = 0}. (Cf. 47.F.1.)

47.8. Dedu
e that a ∂Rn
+ = {x ∈ R

n : x1 = 0} from πn−1(S
n−1) = Z. (Cf. 47.N,

47.5)

47.O. Dedu
e from ∂Rn+ = {x ∈ Rn : x1 = 0} for all n ≥ 1 that

int(X × Y ) = intX × intY

and

∂(X × Y ) = (∂(X) × Y ) ∪ (X × ∂Y ).

The last formula resembles Leibniz formula for derivative of a produ
t.

47.P. Riddle. Can this be just a 
oin
iden
e?

47.Q. Prove that

(1) ∂(I × I) = (∂I × I) ∪ (I × ∂I),

(2) ∂Dn = Sn−1
,

(3) ∂(S1 × I) = S1 × ∂I = S1 ∐ S1
,

(4) the boundary of Möbius strip is homeomorphi
 to 
ir
le.

47.R Corollary. Möbius strip is not homeomorphi
 to 
ylinder S1 × I.
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48. Manifolds

⌈48′1⌋ De�nition of Manifold

A topologi
al spa
e is 
alled a manifold of dimension n if it is

• lo
ally Eu
lidean of dimension n,

• se
ond 
ountable,

• Hausdor�.

48.A. Prove that the three 
onditions of the de�nition are independent (i.e.,

there exist spa
es not satisfying any one of the three 
onditions and satisfying

the other two.)

48.A.1. Prove that R ∪i R, where i : {x ∈ R : x < 0} → R is the in
lusion, is

a non-Hausdor� lo
ally Eu
lidean spa
e of dimension one.

48.B. Che
k whether the spa
es listed in Problem 47.B are manifolds.

A 
ompa
t manifold without boundary is said to be 
losed. As in the 
ase

of interior and boundary, this term 
oin
ides with one of the basi
 terms of

general topology. Of 
ourse, the image of a 
losed manifold under embedding

into a Hausdor� spa
e is a 
losed subset of this Hausdor� spa
e (as any


ompa
t subset of a Hausdor� spa
e). However absen
e of boundary does

not work here, and even non-
ompa
t manifolds may be 
losed subsets. They

are 
losed in themselves, as any spa
e. Here we meet again an ambiguity

of 
lassi
al terminology. In the 
ontext of manifolds the term 
losed relates

rather to the idea of a 
losed surfa
e.

⌈48′2⌋ Components of Manifold

48.C. A 
onne
ted 
omponent of a manifold is a manifold.

48.D. A 
onne
ted 
omponent of a manifold is path-
onne
ted.

48.E. A 
onne
ted 
omponent of a manifold is open in the manifold.

48.F. A manifold is the sum of its 
onne
ted 
omponents.

48.G. The set of 
onne
ted 
omponents of any manifold is 
ountable. If the

manifold is 
ompa
t, then the number of the 
omponents is �nite.

48.1. Prove that a manifold is 
onne
ted, i� its interior is 
onne
ted.

48.H. The fundamental group of a manifold is 
ountable.
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⌈48′3⌋ Making New Manifolds out of Old Ones

48.I. Prove that an open subspa
e of a manifold of dimension n is a manifold

of dimension n.

48.J. The interior of a manifold of dimension n is a manifold of dimension

n without boundary.

48.K. The boundary of a manifold of dimension n is a manifold of dimension

n− 1 without boundary.

48.2. The boundary of a 
ompa
t manifold of dimension n is a 
losed manifold

of dimension n− 1.

48.L. If X is a manifold of dimension p and Y is a manifold of dimension q
then X × Y is a manifold of dimension p+ q.

48.M. Prove that a 
overing spa
e (in narrow sense) of a manifold is a

manifold of the same dimension.

48.N. Prove that if the total spa
e of a 
overing is a manifold then the base

is a manifold of the same dimension.

48.O. Let X and Y be manifolds of dimension n, A and B 
omponents of

∂X and ∂Y respe
tively. Then for any homeomorphism h : B → A the spa
e

X ∪h Y is a manifold of dimension n.

48.O.1. Prove that the result of gluing of two 
opy of Rn
+ by the identity map

of the boundary hyperplane is homeomorphi
 to Rn
.

48.P. Let X and Y be manifolds of dimension n, A and B 
losed subsets

of ∂X and ∂Y respe
tively. If A and B are manifolds of dimension n − 1
then for any homeomorphism h : B → A the spa
e X ∪h Y is a manifold of

dimension n.

⌈48′4⌋ Double

48.Q. Can a manifold be embedded into a manifold of the same dimension

without boundary?

Let X be a manifold. Denote by DX the spa
e X ∪id∂X X obtained by

gluing of two 
opies of X by the identity mapping id∂X : ∂X → ∂X of the

boundary.

48.R. Prove thatDX is a manifold without boundary of the same dimension

as X.

DX is 
alled the double of X.

48.S. Prove that a double of a manifold is 
ompa
t, i� the original manifold

is 
ompa
t.
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⌈48′5x⌋ Collars and Bites

Let X be a manifold. An embedding c : ∂X × I → X su
h that c(x, 0) = x
for ea
h x ∈ ∂X is 
alled a 
ollar of X. A 
ollar 
an be thought of as a

neighborhood of the boundary presented as a 
ylinder over boundary.

48.Tx. Every manifold has a 
ollar.

Let U be an open set in the boundary of a manifold X . For a 
ontinuous

fun
tion ϕ : ∂X → R+ with ϕ−1(0,∞) = U set

Bϕ = {(x, t) ∈ ∂X × R+ : t ≤ ϕ(x)}.
A bite on X at U is an embedding b : Bϕ → X with some ϕ : ∂X → R+ su
h

that b(x, 0) = x for ea
h x ∈ ∂X .

This is a generalization of 
ollar. Indeed, a 
ollar is a bite at U = ∂X with

ϕ = 1.

48.Tx.1. Prove that if U ⊂ ∂X is 
ontained in an open subset of X homeo-

morphi
 to Rn
+, then there exists a bite of X at U .

48.Tx.2. Prove that for any bite b : B → X of a manifold X the 
losure of

X r b(B) is a manifold.

48.Tx.3. Let b1 : B1 → X be a bite ofX and b2 : B2 → Cl(Xrb1(B1)) be a bite
of Cl(Xrb1(B1)). Constru
t a bite b : B → X ofX with b(B) = b1(B1)∪b2(B2).

48.Tx.4. Prove that if there exists a bite of X at ∂X then there exists a 
ollar

of X .

48.Ux. For any two 
ollars c1, c2 : ∂X × I → X there exists a homeomor-

phism h : X → X with h(x) = x for x ∈ ∂X su
h that h ◦ c1 = c2.

This means that a 
ollar is unique up to homeomorphism.

48.Ux.1. For any 
ollar c : ∂X × I → X there exists a 
ollar c′ : ∂X × I → X
su
h that c(x, t) = c′(x, t/2).

48.Ux.2. For any 
ollar c : ∂X × I → X there exists a homeomorphism

h : X → X ∪x 7→(x,1) ∂X × I

with h(c(x, t)) = (x, t).
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49. Isotopy

⌈49′1⌋ Isotopy of Homeomorphisms

Let X and Y be topologi
al spa
es, h, h′ : X → Y homeomorphisms. A

homotopy ht : X → Y , t ∈ [0, 1] 
onne
ting h and h′ (i.e., with h0 = h,
h1 = h′) is 
alled an isotopy between h and h′ if ht is a homeomorphism for

ea
h t ∈ [0, 1]. Homeomorphisms h, h′ are said to be isotopi
 if there exists

an isotopy between h and h′.

49.A. Being isotopi
 is an equivalen
e relation on the set of homeomor-

phisms X → Y .

49.B. Find a topologi
al spa
e X su
h that homotopy between homeomor-

phisms X → X does not imply isotopy.

This means that isotopy 
lassi�
ation of homeomorphisms 
an be more re-

�ned than homotopy 
lassi�
ation of them.

49.1. Classify homeomorphisms of 
ir
le S1
to itself up to isotopy.

49.2. Classify homeomorphisms of line R
1
to itself up to isotopy.

The set of isotopy 
lasses of homeomorphisms X → X (i.e. the quotient

of the set of self-homeomorphisms of X by isotopy relation) is 
alled the

mapping 
lass group or homeotopy group of X.

49.C. For any topologi
al spa
e X, the mapping 
lass group of X is a group

under the operation indu
ed by 
omposition of homeomorphisms.

49.3. Find the mapping 
lass group of the union of the 
oordinate lines in the

plane.

49.4. Find the mapping 
lass group of the union of bouquet of two 
ir
les.

⌈49′2⌋ Isotopy of Embeddings and Sets

Homeomorphisms are topologi
al embeddings of spe
ial kind. The notion

of isotopy of homeomorphism is extended in an obvious way to the 
ase of

embeddings. Let X and Y be topologi
al spa
es, h, h′ : X → Y topologi
al

embeddings. A homotopy ht : X → Y , t ∈ [0, 1] 
onne
ting h and h′ (i.e.,
with h0 = h, h1 = h′) is 
alled an (embedding) isotopy between h and h′ if ht
is an embedding for ea
h t ∈ [0, 1]. Embeddings h, h′ are said to be isotopi


if there exists an isotopy between h and h′.

49.D. Being isotopi
 is an equivalen
e relation on the set of embeddings

X → Y .
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A family At, t ∈ I of subsets of a topologi
al spa
e X is 
alled an isotopy

of the set A = A0, if the graph Γ = {(x, t) ∈ X × I |x ∈ At} of the

family is �brewise homeomorphi
 to the 
ylinder A × I, i. e. there exists a
homeomorphism A× I → Γ mapping A× {t} to Γ ∩X × {t} for any t ∈ I.
Su
h a homeomorphism gives rise to an isotopy of embeddings Φt : A→ X,

t ∈ I with Φ0 = in, Φt(A) = At. An isotopy of a subset is also 
alled a

subset isotopy. Subsets A and A′
of the same topologi
al spa
e X are said

to be isotopi
 in X, if there exists a subset isotopy At of A with A′ = A1.

49.E. It is easy to see that this is an equivalen
e relation on the set of

subsets of X.

As it follows immediately from the de�nitions, any embedding isotopy deter-

mines an isotopy of the image of the initial embedding and any subset isotopy

is a

ompanied with an embedding isotopy. However the relation between

the notions of subset isotopy and embedding isotopy is not too 
lose be
ause

of the following two reasons:

(1) an isotopy Φt a

ompanying a subset isotopy At starts with the

in
lusion of A0 (while arbitrary isotopy may start with any embed-

ding);

(2) an isotopy a

ompanying a subset isotopy is determined by the

subset isotopy only up to 
omposition with an isotopy of the iden-

tity homeomorphism A → A (an isotopy of a homeomorphism is a

spe
ial 
ase of embedding isotopies, sin
e homeomorphisms 
an be


onsidered as a sort of embeddings).

An isotopy of a subset A in X is said to be ambient, if it may be a

ompanied

with an embedding isotopy Φt : A→ X extendible to an isotopy Φ̃t : X → X
of the identity homeomorphism of the spa
e X. The isotopy Φ̃t is said to

be ambient for Φt. This gives rise to obvious re�nements of the equivalen
e

relations for subsets and embeddings introdu
ed above.

49.F. Find isotopi
, but not ambiently isotopi
 sets in [0, 1].

49.G. If sets A1, A2 ⊂ X are ambiently isotopi
 then the 
omplements

X rA1 and X rA2 are homeomorphi
 and hen
e homotopy equivalent.

49.5. Find isotopi
, but not ambiently isotopi
 sets in R.

49.6. Prove that any isotopi
 
ompa
t subsets of R are ambiently isotopi
.

49.7. Find isotopi
, but not ambiently isotopi
 
ompa
t sets in R3
.

49.8. Prove that any two embeddings S1 → R
3
are isotopi
. Find embeddings

S1 → R
3
that are not ambiently isotopi
.
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⌈49′3⌋ Isotopies and Atta
hing

49.Hx. Any isotopy ht : ∂X → ∂X extends to an isotopy Ht : X → X.

49.Ix. Let X and Y be manifolds of dimension n, A and B 
omponents of

∂X and ∂Y respe
tively. Then for any isotopi
 homeomorphisms f, g : B →
A the manifolds X ∪f Y and X ∪g Y are homeomorphi
.

49.Jx. Let X and Y be manifolds of dimension n, let B be a 
ompa
t

subset of ∂Y . If B is a manifold of dimension n−1 then for any embeddings

f, g : B → ∂X ambiently isotopi
 in ∂X the manifolds X ∪f Y and X ∪g Y
are homeomorphi
.

⌈49′4⌋ Conne
ted Sums

49.K. Let X and Y be manifolds of dimension n, and ϕ : Rn → X, ψ :
R
n → Y be embeddings. Then

X r ϕ(IntDn) ∪ψ(Sn)→Xrϕ(IntDn):ψ(a)7→ϕ(a) Y r ψ(IntDn)

is a manifold of dimension n.

This manifold is 
alled a 
onne
ted sum of X and Y .

49.L. Show that the topologi
al type of the 
onne
ted sum of X and Y
depends not only on the topologi
al types of X and Y .

49.M. Let X and Y be manifolds of dimension n, and ϕ : Rn → X, ψ :
Rn → Y be embeddings. Let h : X → X be a homeomorphism. Then the


onne
ted sums of X and Y de�ned via ψ and ϕ, on one hand, and via ψ
and h ◦ ϕ, on the other hand, are homeomorphi
.

49.9. Find pairs of manifolds 
onne
ted sums of whi
h are homeomorphi
 to

(1) S1
,

(2) Klein bottle,

(3) sphere with three 
ross
aps.

49.10. Find a dis
onne
ted 
onne
ted sum of 
onne
ted manifolds. Des
ribe,

under what 
ir
umstan
es this 
an happen.
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Proofs and Comments

47.A Ea
h point in a 0-dimensional lo
ally Eu
lidean spa
e has a neighbor-

hood homeomorphi
 to R
0
and hen
e 
onsisting of a single point. Therefore

ea
h point is open.

47.D No. In a lo
ally Eu
lidean spa
e of dimension 0 ea
h point is open,

see 47.A. In a lo
ally Eu
lidean spa
e of dimension n there are points whi
h

have a neighborhood homeomorphi
 to R
n
, and in Rn with n > 0 points are

not open.

47.E No. Assume there exists a lo
ally Eu
lidean spa
e X of dimensions 1

and n > 1. Let a ∈ X. It has a neighborhood homeomorphi
 to R1
or R1

+. In

R
1
+ ea
h point ex
ept 0 has a neighborhood homeomorphi
 to R

1
. Therefore

without loss of generality we may assume that a has a neighborhood, say U ,
homeomorphi
 to R

1
. Noti
e that for any point of U , U is a neighborhood,

therefore any point in U has a neighborhood homeomorphi
 to R1
.

Sin
e X is lo
ally Eu
lidean of dimension n > 0, there exists a neighbor-

hood of a homeomorphi
 either R
n
or R

n
+. In R

n
+ any point whi
h does not

belong to the boundary hyperplane has a neighborhood {x ∈ Rn | x1 > 0}
homeomorphi
 to Rn. Therefore without loss of generality we may assume

that a has a neighborhood homeomorphi
 to Rn.

In Rn open balls for a base of neighborhoods. Therefore any neighborhood

of a 
ontains a neighborhood homeomorphi
 to R
n
. Hen
e there exists a

neighborhood V ⊂ U of a homeomorphi
 to R
n
. In turn, in U whi
h is

homeomorphi
 to R1
there is a base of neighborhoods homeomorphi
 to R1

.

There exists an element W of this base whi
h is 
ontained in V .

Now 
onsider U r a ⊃ V r a ⊃ W r a. The set U r a has two 
onne
ted


omponents, V r a is 
onne
ted. Therefore V r a is 
ontained in one of

the 
onne
ted 
omponents of U r a. On the other hand, W r a has two


onne
ted 
omponents, and a homeomorphism U → R
1
maps them to open

intervals adja
ent to the image of a from opposite sides. The 
omponent of

W r a do not �t to a single 
onne
ted 
omponent of U r a. However, being
subsets of a 
onne
ted V r a ⊂ U r a, they must �t in a single
onne
ted


omponent of U r a. Contradi
tion.

Another proof isindi
ated in problems 47.3 and 47.4.

47.G A point of a lo
ally Eu
lidean spa
e of dimension n is a boundary

point if it has no neighborhood homeomorphi
 to R
n
.
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(A usual mistake is to say that a point is boundary if it has a neighborhood

homeomorphi
 to R
n
+. Why this is not 
orre
t 
an be seen already in the


ase of R
n
+: in this spa
e ea
h point has a neighborhood homeomorphi
 to

Rn+, the whole spa
e.)

47.N We have to prove that 0 has no neighborhood homeomorphi
 to R

in R
1
+. Assume, it has. Let U be su
h a neighborhood. Sin
e [0, ε) is a base

of neighborhoods of 0 in R
1
+, there exists neighborhood V from this base


ontained in U . In turn, there is a neighborhood W ⊂ V whi
h is homeo-

morphi
 to R, sin
e in R (a− ε, a+ ε) 
onstitute a base of neighborhoods of
a ∈ R.

Consider in
lusions W r a ⊂ V r a ⊂ U r a. The middle set is 
onne
ted,

hen
e it is 
ontained in one of the 
onne
ted 
omponents of U r a. Hen
e,
both 
onne
ted 
omponents of W r a are 
ontained in one 
onne
ted 
om-

ponent of U r a. However, a homeomorphism U → R maps W onto an

open interval and 
onne
ted 
omponents of W r a are 
ontained in di�erent


onne
ted 
omponents of U r a. Cf. proof of 47.E.



Chapter XI

Manifolds of Low

Dimensions

In di�erent geometri
 subje
ts there are di�erent ideas whi
h dimensions are

low and whi
h high. In topology of manifolds low dimension means at most

4. However, in this 
hapter only dimensions up to 2 will be 
onsidered, and

even most of two-dimensional topology will not be tou
hed. Manifolds of

dimension 4 are the most mysterious obje
ts of the �eld. Dimensions higher

than 4 are easier: there is enough room for most of the 
onstru
tions that

topology needs.

50. One-Dimensional Manifolds

⌈50′1⌋ Zero-Dimensional Manifolds

This se
tion is devoted to topologi
al 
lassi�
ation of manifolds of dimension

one. We 
ould skip the 
ase of 0-dimensional manifolds due to triviality of

the problem.

50.A. Two 0-dimensional manifolds are homeomorphi
 i� they have the

same number of points.

The 
ase of 1-dimensional manifolds is also simple, but requires more de-

tailed 
onsiderations. Surprisingly, many textbooks manage to ignore 1-
dimensional manifolds absolutely.

328
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⌈50′2⌋ Redu
tion to Conne
ted Manifolds

50.B. Two manifolds are homeomorphi
 i� there exists a one-to-one 
orre-

sponden
e between their 
omponents su
h that the 
orresponding 
omponents

are homeomorphi
.

Thus, for topologi
al 
lassi�
ation of n-dimensional manifolds it su�
es to


lassify only 
onne
ted n-dimensional manifolds.

⌈50′3⌋ Examples

50.C. What 
onne
ted 1-manifolds do you know?

(1) Do you know any 
losed 
onne
ted 1-manifold?

(2) Do you know a 
onne
ted 
ompa
t 1-manifold, whi
h is not 
losed?

(3) What non-
ompa
t 
onne
ted 1-manifolds do you know?

(4) Is there a non-
ompa
t 
onne
ted 1-manifolds with boundary?

⌈50′4⌋ How to Distinguish Them From Ea
h Other?

50.D. Fill the following table with pluses and minuses.

Manifold X Is X 
ompa
t? Is ∂X empty?

S1

R
1

I

R
1
+

⌈50′5⌋ Statements of Main Theorems

50.E. Any 
onne
ted manifold of dimension 1 is homeomorphi
 to one of

the following for manifolds:

• 
ir
le S1
,

• line R1
,

• interval I,

• half-line R
1
+.

This theorem may be splitted into the following four theorems:

50.F. Any 
losed 
onne
ted manifold of dimension 1 is homeomorphi
 to


ir
le S1
.
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50.G. Any non-
ompa
t 
onne
ted manifold of dimension 1 without bound-

ary is homeomorphi
 to line R
1
.

50.H. Any 
ompa
t 
onne
ted manifold of dimension 1 with nonempty bound-

ary is homeomorphi
 to interval I.

50.I. Any non-
ompa
t 
onne
ted manifold of dimension one with nonempty

boundary is homeomorphi
 to half-line R
1
+.

⌈50′6⌋ Lemma on 1-Manifold Covered with Two Lines

50.J Lemma. Any 
onne
ted manifold of dimension 1 
overed with two

open sets homeomorphi
 to R1
is homeomorphi
 either to R1

, or S1
.

Let X be a 
onne
ted manifold of dimension 1 and U, V ⊂ X be its open subsets

homeomorphi
 to R. Denote by W the interse
tion U ∩ V . Let ϕ : U → R and

ψ : V → R be homeomorphisms.

50.J.1. Prove that ea
h 
onne
ted 
omponent of ϕ(W ) is either an open in-

terval, or an open ray, or the whole R.

50.J.2. Prove that a homeomorphism between two open 
onne
ted subsets of

R is a (stri
tly) monotone 
ontinuous fun
tion.

50.J.3. Prove that if a sequen
e xn of points of W 
onverges to a point a ∈
U rW then it does not 
onverge in V .

50.J.4. Prove that if there exists a bounded 
onne
ted 
omponent C of ϕ(W )
then C = ϕ(W ), V =W , X = U and hen
e X is homeomorphi
 to R.

50.J.5. In the 
ase of 
onne
ted W and U 6= V , 
onstru
t a homeomorphism

X → R whi
h takes:

• W to (0, 1),

• U to (0,+∞), and

• V to (−∞, 1).

50.J.6. In the 
ase of W 
onsisting of two 
onne
ted 
omponents, 
onstru
t a

homeomorphism X → S1
, whi
h takes:

• W to {z ∈ S1 : −1/
√
2 < Im(z) < 1/

√
2},

• U to {z ∈ S1 : −1/
√
2 < Im(z)}, and

• V to {z ∈ S1 : Im(z) < 1/
√
2}.

⌈50′7⌋ Without Boundary

50.F.1. Dedu
e Theorem 50.F from Lemma 50.I.

50.G.1. Dedu
e from Lemma 50.I that for any 
onne
ted non-
ompa
t one-

dimensional manifold X without a boundary there exists an embedding X → R

with open image.

50.G.2. Dedu
e Theorem 50.G from 50.G.1.
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⌈50′8⌋ With Boundary

50.H.1. Prove that any 
ompa
t 
onne
ted manifold of dimension 1 
an be

embedded into S1
.

50.H.2. List all 
onne
ted subsets of S1
.

50.H.3. Dedu
e Theorem 50.H from 50.H.2, and 50.H.1.

50.I.1. Prove that any non-
ompa
t 
onne
ted manifold of dimension 1 
an be

embedded into R1
.

50.I.2. Dedu
e Theorem 50.I from 50.I.1.

⌈50′9⌋ Corollaries of Classi�
ation

50.K. Prove that 
onne
ted sum of 
losed 1-manifolds is de�ned up home-

omorphism by topologi
al types of summands.

50.L. Whi
h 0-manifolds bound a 
ompa
t 1-manifold?

⌈50′10⌋ Orientations of 1-manifolds

Orientation of a 
onne
ted non-
losed 1-manifold is a linear order on the set

of its points su
h that the 
orresponding interval topology (see, e.g., 7.P. )


oin
ides with the topology of this manifold.

Orientation of a 
onne
ted 
losed 1-manifold is a 
y
li
 order on the set of

its points su
h that the topology of this 
y
li
 order (see 8

′
3x) 
oin
ides with

the topology of the 1-manifold.

Orientation of an arbitrary 1-manifold is a 
olle
tion of orientations of its


onne
ted 
omponents (ea
h 
omponent is equipped with an orientation).

50.M. Any 1-manifold admits an orientation.

50.N. An orientation of 1-manifold indu
es an orientation (i.e., a linear

ordering of points) on ea
h subspa
e homeomorphi
 to R or R+. Vi
e versa,

an orientation of a 1-manifold is determined by a 
olle
tion of orientations

of its open subspa
es homeomorphi
 to R or R+, if the subspa
es 
over the

manifold and the orientations agree with ea
h other: the orientations of any

two subspa
es de�ne the same orientation on ea
h 
onne
ted 
omponent of

their interse
tion.

50.O. Let X be a 
y
li
ly ordered set, a ∈ X and B ⊂ X r {a}. De�ne in
X r {a} a linear order indu
ed, as in 8.Jx, by the 
y
li
 order on X r {a},
and equip B with the linear order indu
ed by this linear order on X r {a}.
Prove that if B admits a bije
tive monotone map onto R, or [0; 1], or [0; 1),
or (0; 1], then this linear order on B does not depend on a.
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The 
onstru
tion of 50.O allows one to de�ne an orientation on any 1-
manifold whi
h is a subspa
e of an oriented 
losed 1-manifold. A 1-manifold,

whi
h is a subspa
e of an oriented non-
losed 1-manifold X, inherits from X
an orientation as a linear order. Thus, any 1-manifold, whi
h is a subspa
e of

an oriented 1-manifold X, inherits from X an orientation. This orientation

is said to be indu
ed by the orientation of X.

A topologi
al embedding X → Y of an oriented 1-manifold to another one

is said to preserve the orientation if it maps the orientation of X to the

orientation indu
ed on the image by the orientation of Y .

50.P. Any two orientation preserving embeddings of an oriented 
onne
ted

1-manifold X to an oriented 
onne
ted 1-manifold Y are isotopi
.

50.Q. If two embeddings of an oriented 1-manifold X to an oriented 1-
manifold Y are isotopi
 and one of the embeddings preserves the orientation,

then the other one also preserves the orientation

50.R Corollary. Orientation of a 
losed segment is determined by the or-

dering of its end points.

An orientation of a segment is shown by an arrow dire
ted from the initial

end point to the �nal one.

50.S. A 
onne
ted 1-manifold admits two orientations. A 1-manifold 
on-

sisting of n 
onne
ted 
omponents admits 2n orientations.

⌈50′11⌋ Mapping Class Groups

50.T. Find the mapping 
lass groups of

(1) S1
, (2) R

1
, (3) R

1
+,

(4) [0, 1], (5) S1 ∐ S1
, (6) R

1
+ ∐ R

1
+.

50.1. Find the mapping 
lass group of an arbitrary 1-manifold with �nite number

of 
omponents.

⌈50′12⌋ Involutions

Re
all that a non-identity 
ontinuous map f : X → X is 
alled an involution

if f2 = idX .

50.U. A 
ontinuous involution of a topologi
al spa
e is a homeomorphism.

50.2. Prove that an involution of a non-
losed 
onne
ted 1-manifold reverses ori-

entation.

50.3. Riddle. Relate the pre
eding problem with the fa
t that any 1-manifold

is orientable.

50.4. Does Theorem 50.2 generalize to any periodi
 homeomorphism of a non-


losed 
onne
ted manifold?
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50.5. Does a non-
losed 
onne
ted 1-manifold admit a homeomorphism f 6= id
with f9 = id?

50.6. Prove that an orientation preserving involution of a 1-manifold has no �xed

points.

Involutions f, g : X → X are said to be equivalent if there exists a home-

omorphism h : X → X su
h that hg = fh. In other words, equivalen
e of

involutions is 
onjuga
y in the group of all homeomorphisms of X.

50.V Classi�
ation of involutions on 
onne
ted 1-manifolds.

(1) Any involution of S1
is equivalent either to the antipodal symmetry z 7→

−z, or symmetry against a line z 7→ z.

(2) Any involution of R is equivalent to the symmetry against the origin

x 7→ −x.

(3) Any involution of I is equivalent to the symmetry against the midpoint

x 7→ 1
2 − x.

(4) Half-line R+ does not admit an involution.

50.7. Classify involutions up to equivalen
e on an arbitrary 1-manifold.
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51. Two-Dimensional Manifolds: General

Pi
ture

⌈51′1⌋ Examples

Deleting from the torus S1×S1
the interior of an embedded disk, we obtain

a handle. Similarly, deleting from the two-sphere the interior of n disjoint

embedded disks, we obtain a sphere with n holes.

51.A. A sphere with a hole is homeomorphi
 to the disk D2
.

51.B. A sphere with two holes is homeomorphi
 to the 
ylinder S1 × I.

∼
=

∼
=

A sphere with three holes has a spe
ial name. It is 
alled pantaloons or just

pants .

∼
=

The result of atta
hing p 
opies of a handle to a sphere with p holes via

embeddings homeomorphi
ally mapping the boundary 
ir
les of the handles

onto those of the holes is a sphere with p handles, or, in a more 
eremonial

way (and less understandable, for a while), an orientable 
onne
ted 
losed

surfa
e of genus p.

51.1. Prove that a sphere with p handles is well de�ned up to homeomorphism

(i.e., the topologi
al type of the result of gluing does not depend on the atta
hing

embeddings).

51.C. A sphere with one handle is homeomorphi
 to the torus S1 × S1
.
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∼
=

51.D. A sphere with two handles is homeomorphi
 to the result of gluing

together two 
opies of a handle via the identity map of the boundary 
ir
le.

∼
=

A sphere with two handles is a pretzel . Sometimes, this word also denotes a

sphere with more handles.

The Möbius strip or Möbius band is de�ned as I2/[(0, t) ∼ (1, 1 − t)]. In

other words, this is the quotient spa
e of the square I2 by the partition into


entrally symmetri
 pairs of points on the verti
al edges of I2, and singletons

that do not lie on the verti
al edges. The Möbius strip is obtained, so to

speak, by identifying the verti
al sides of a square in su
h a way that the

dire
tions shown on them by arrows are superimposed:

51.E. Prove that the Möbius strip is homeomorphi
 to the surfa
e that is

swept in R
3
by a segment rotating in a half-plane around the midpoint, while

the half-plane rotates around its boundary line. The ratio of the angular

velo
ities of these rotations is su
h that the rotation of the half-plane through

360◦ takes the same time as the rotation of the segment through 180◦. See
Figure.
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The spa
e obtained from a sphere with q holes by atta
hing q 
opies of the
Möbius strip via embeddings of the boundary 
ir
les of the Möbius strips

onto the boundary 
ir
les of the holes (the boundaries of the holes) is a

sphere with q 
ross-
aps, or a nonorientable 
onne
ted 
losed surfa
e of genus

q.

51.2. Prove that a sphere with q 
ross-
aps is well de�ned up to homeomorphism

(i.e., the topologi
al type of the result of gluing does not depend on the atta
hing

embeddings).

51.F. A sphere with a 
ross-
ap is homeomorphi
 to the proje
tive plane.

Klein bottle is I2/[(t, 0) ∼ (t, 1), (0, t) ∼ (1, 1 − t)]. In other words, this is

the quotient spa
e of square I2 by the partition into

• singletons in its interior,

• pairs of points (t, 0), (t, 1) on horizontal edges that lie on the same

verti
al line,

• pairs of points (0, t), (1, 1− t) symmetri
 with respe
t to the 
enter

of the square that lie on the verti
al edges, and

• the quadruple of verti
es.

51.3. Present the Klein bottle as a quotient spa
e of

(1) a 
ylinder;

(2) the Möbius strip.

51.4. Prove that S1 × S1/[(z, w) ∼ (−z, w̄)] is homeomorphi
 to the Klein bottle.

(Here w̄ denotes the 
omplex number 
onjugate to w.)

51.5. Embed the Klein bottle in R
4
(
f. 51.E and 51.3).

51.6. Embed the Klein bottle in R
4
so that the image of this embedding under

the orthogonal proje
tion R
4 → R

3
would look as follows:
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51.G. A sphere with two 
ross-
aps is homeomorphi
 to the Klein bottle.

A sphere, spheres with handles, and spheres with 
ross-
aps are basi
 sur-

fa
es.

51.H. Prove that a sphere with p handles and q 
ross-
aps is homeomorphi


to a sphere with 2p+ q 
ross-
aps (here q > 0).

51.7. Classify up to homeomorphism those spa
es whi
h are obtained by atta
hing

p 
opies of S1×I to a sphere with 2p holes via embeddings of the boundary 
ir
les

of the 
ylinders onto the boundary 
ir
les of the sphere with holes.

51.I. What 
onne
ted 2-manifolds do you know?

(1) List 
losed 
onne
ted 2-manifold that you know.

(2) Do you know a 
onne
ted 
ompa
t 2-manifold, whi
h is not 
losed?

(3) What non-
ompa
t 
onne
ted 2-manifolds do you know?

(4) Is there a non-
ompa
t 
onne
ted 2-manifolds with non-empty bound-

ary?

51.8. Constru
t non-homeomorphi
 non-
ompa
t 
onne
ted manifolds of dimen-

sion two without boundary and with isomorphi
 in�nitely generated fundamental

group.

For notions relevant to this problem see what follows.

⌈51′2x⌋ Ends and Odds

Let X be a non-
ompa
t Hausdor� topologi
al spa
e, whi
h is a union of an

in
reasing sequen
e of its 
ompa
t subspa
es

C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ X.

Ea
h 
onne
ted 
omponent U of X r Cn is 
ontained in some 
onne
ted


omponent of X r Cn−1. A de
reasing sequen
e U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃ . . .
of 
onne
ted 
omponents of

(X r C1) ⊃ (X r C2) ⊃ · · · ⊃ (X r Cn) ⊃ . . .

respe
tively is 
alled an end of X with respe
t to C1 ⊂ · · · ⊂ Cn ⊂ . . . .
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51.Jx. Let X and Cn be as above, D be a 
ompa
t set in X and V a


onne
ted 
omponent of XrD. Prove that there exists n su
h that D ⊂ Cn.

51.Kx. Let X and Cn be as above, Dn be an in
reasing sequen
e of 
ompa
t

sets of X with X = ∪∞

n=1Dn. Prove that for any end U1 ⊃ · · · ⊃ Un ⊃ . . .
of X with respe
t to Cn there exists a unique end V1 ⊃ · · · ⊃ Vn ⊃ . . . of X
with respe
t to Dn su
h that for any p there exists q su
h that Vq ⊂ Up.

51.Lx. Let X, Cn and Dn be as above. Then the map of the set of ends of

X with respe
t to Cn to the set of ends of X with respe
t to Dn de�ned by

the statement of ?? is a bije
tion.

Theorem 51.Lx allows one to speak about ends of X without spe
ifying a

system of 
ompa
t sets

C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ X

with X = ∪∞

n=1Cn. Indeed, 51.Kx and 51.Lx establish a 
anoni
al one-to-one


orresponden
e between ends of X with respe
t to any two systems of this

kind.

51.Mx. Prove that R
1
has two ends, R

n
with n > 1 has only one end.

51.Nx. Find the number of ends for the universal 
overing spa
e of the

bouquet of two 
ir
les.

51.Ox. Does there exist a 2-manifold with a �nite number of ends whi
h


annot be embedded into a 
ompa
t 2-manifold?

51.Px. Prove that for any 
ompa
t set K ⊂ S2
with 
onne
ted 
omplement

S2
r K there is a natural map of the set of ends of S2

r K to the set of


onne
ted 
omponents of K.

Let W be an open set of X. The set of ends U1 ⊃ · · · ⊃ Un ⊃ . . . of X su
h

that Un ⊂W for su�
iently large n is said to be open.

51.Qx. Prove that this de�nes a topologi
al stru
ture in the set of ends of

X.

The set of ends of X equipped with this topologi
al stru
ture is 
alled the

spa
e of ends of X. Denote this spa
e by E(X).

51.8.1. Constru
t non-
ompa
t 
onne
ted manifolds of dimension two without

boundary and with isomorphi
 in�nitely generated fundamental group, but with

non-homeomorphi
 spa
es of ends.

51.8.2. Constru
t non-
ompa
t 
onne
ted manifolds of dimension two without

boundary and with isomorphi
 in�nitely generated fundamental group, but with

di�erent number of ends.
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51.8.3. Constru
t non-
ompa
t 
onne
ted manifolds of dimension two without

boundary with isomorphi
 in�nitely generated fundamental group and the same

number of ends, but with di�erent topology in the spa
e of ends.

51.8.4. Let K be a 
ompletely dis
onne
ted 
losed set in S2
. Prove that the

map E(S2 rK) → K de�ned in ?? is 
ontinuous.

51.8.5. Constru
t a 
ompletely dis
onne
ted 
losed set K ⊂ S2
su
h that this

map is a homeomorphism.

51.Rx. Prove that there exists an un
ountable family of pairwise nonhome-

omorphi
 
onne
ted 2-manifolds without boundary.

The examples of non-
ompa
t manifolds dimension 2 presented above show

that there are too many non-
ompa
t 
onne
ted 2-manifolds. This makes im-

possible any really useful topologi
al 
lassi�
ation of non-
ompa
t 2-manifolds.

Theorems redu
ing the homeomorphism problem for 2-manifolds of this type

to the homeomorphism problem for their spa
es of ends do not seem to be

useful: spa
es of ends look not mu
h simpler than the surfa
es themselves.

However, there is a spe
ial 
lass of non-
ompa
t 2-manifolds, whi
h admits a

simple and useful 
lassi�
ation theorem. This is the 
lass of simply 
onne
ted

non-
ompa
t 2-manifolds without boundary. We postpone its 
onsideration

to se
tion 56

′
4x. Now we turn to the 
ase, whi
h is the simplest and most

useful for appli
ations.

⌈51′3⌋ Homeomorphism and Homotopy Classi�
ations of Basi


Surfa
es

51.S. The fundamental group of a sphere with g handles admits the following

presentation:

〈a1, b1, a2, b2, . . . ag, bg | a1b1a−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g = 1〉.

51.T. The fundamental group of a sphere with g 
ross-
aps admits the fol-

lowing presentation:

〈a1, a2, . . . ag | a21a22 . . . a2g = 1〉.

51.U. Spheres with di�erent numbers of handles have non-isomorphi
 fun-

damental groups.

When we want to prove that two �nitely presented groups are not isomor-

phi
, one of the �rst natural moves is to abelianize the groups. (Re
all that

to abelianize a group G means to quotient G out by the 
ommutator sub-

group. The 
ommutator subgroup [G,G] is the normal subgroup generated

by the 
ommutators a−1b−1ab for all a, b ∈ G. Abelianization means adding

relations ab = ba for any a, b ∈ G.)
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Abelian �nitely generated groups are well known. Any �nitely generated

Abelian group is isomorphi
 to a produ
t of a �nite number of 
y
li
 groups.

If the abelianized groups are not isomorphi
, then the original groups are

not isomorphi
 as well.

51.U.1. The abelianized fundamental group of a sphere with g handles is a free

Abelian group of rank 2g (i.e., is isomorphi
 to Z2g
).

51.V. Fundamental groups of spheres with di�erent numbers of 
ross-
aps

are not isomorphi
.

51.V.1. The abelianized fundamental group of a sphere with g 
ross-
aps is

isomorphi
 to Zg−1 × Z2.

51.W Homotopy Classi�
ation of Basi
 Surfa
es.

Spheres with di�erent numbers of handles are not homotopy equivalent.

Spheres with di�erent numbers of 
ross-
aps are not homotopy equivalent.

A sphere with handles is not homotopy equivalent to a sphere with 
ross-
aps.

If X is a path-
onne
ted spa
e, then the abelianized fundamental group of X
is the 1-dimensional (or �rst) homology group of X and denoted by H1(X). If
X is not path-
onne
ted, then H1(X) is the dire
t sum of the �rst homology

groups of all path-
onne
ted 
omponents ofX. Thus 51.U.1 
an be rephrased

as follows: if Fg is a sphere with g handles, then H1(Fg) = Z2g
.

⌈51′4⌋ Closed Surfa
es

51.X. Any 
onne
ted 
losed manifold of dimension two is homeomorphi


either to sphere S2
, or sphere with handles, or sphere with 
ross
aps.

Re
all that a

ording to Theorem 51.W the basi
 surfa
es represent pair-

wise distin
t topologi
al (and even homotopy) types. Therefore, 51.W and

51.X together give topologi
al and homotopy 
lassi�
ations of 
losed two-

dimensional manifolds.

We do not re
ommend to have a try at proving Theorem 51.X immediately

and, espe
ially, in the form given above. All known proofs of 51.X 
an be

de
omposed into two main stages: �rstly, a manifold under 
onsideration is

equipped with some additional stru
ture (like triangulation or smooth stru
-

ture); then using this stru
ture a required homeomorphism is 
onstru
ted.

Although the �rst stage appears in the proof ne
essarily and is rather di�-


ult, it is not useful outside the proof. Indeed, any 
losed 2-manifold, whi
h

we meet in a 
on
rete mathemati
al 
ontext, is either equipped, or 
an be

easily equipped with the additional stru
ture. The methods of imposing the
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additional stru
ture are mu
h easier, than a general proof of existen
e for

su
h a stru
ture in an arbitrary 2-manifold.

Therefore, we suggest for the �rst 
ase to restri
t ourselves to the se
ond

stage of the proof of Theorem 51.X, prefa
ing it with general notions related

to the most 
lassi
al additional stru
ture, whi
h 
an be used for this purpose.

⌈51′5⌋ Compa
t Surfa
es with Boundary

As in the 
ase of one-dimensional manifolds, 
lassi�
ation of 
ompa
t two-

dimensional manifolds with boundary 
an be easily redu
ed to the 
lassi�
a-

tion of 
losed manifolds. In the 
ase of one-dimensional manifolds it was very

useful to double a manifold. In two-dimensional 
ase there is a 
onstru
tion

providing a 
losed manifold related to a 
ompa
t manifold with boundary

even 
loser than the double.

51.Y. Contra
ting to a point ea
h 
onne
ted 
omponent of the boundary of

a two-dimensional 
ompa
t manifold with boundary gives rise to a 
losed

two-dimensional manifold.

51.9. A spa
e homeomorphi
 to the quotient spa
e of 51.Y 
an be 
onstru
ted

by atta
hing 
opies of D2
one to ea
h 
onne
ted 
omponent of the boundary.

51.Z. Any 
onne
ted 
ompa
t manifold of dimension 2 with nonempty boun-

dary is homeomorphi
 either to sphere with holes, or sphere with handles and

holes, or sphere with 
ross
aps and holes.
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52. Triangulations

⌈52′1⌋ Triangulations of Surfa
es

By an Eu
lidean triangle we mean the 
onvex hall of three non-
ollinear points

of Eu
lidean spa
e. Of 
ourse, it is homeomorphi
 to disk D2
, but it is not

solely the topologi
al stru
ture that is relevant now. The boundary of a

triangle 
ontains three distinguished points, its verti
es, whi
h divide the

boundary into three pie
es, its edges. A topologi
al triangle in a topologi
al

spa
e X is an embedding of an Eu
lidean triangle into X. A vertex (re-

spe
tively, edge) of a topologi
al triangle T → X is the image of a vertex (

respe
tively, edge) of T in X.

A set of topologi
al triangles in a 2-manifold X is a triangulation of X pro-

vided the images of these triangles form a fundamental 
over of X and any

two of the images either are disjoint or interse
t in a 
ommon side or in a


ommon vertex.

52.A. Prove that in the 
ase of 
ompa
t X the former 
ondition (about

fundamental 
over) means that the number of triangles is �nite.

52.B. Prove that the 
ondition about fundamental 
over means that the


over is lo
ally �nite.

⌈52′2⌋ Triangulation as 
ellular de
omposition

52.C. A triangulation of a 2-manifold turns it into a 
ellular spa
e, 0-
ells

of whi
h are the verti
es of all triangles of the triangulation, 1-
ells are the

sides of the triangles, and 2-
ells are the interiors of the triangles.

This result allows us to apply all the terms introdu
ed above for 
ellular

spa
es. In parti
ular, we 
an speak about skeletons, 
ellular subspa
es and


ells. However,in the latter two 
ases we rather use terms triangulated sub-

spa
e and simplex. Triangulations and terminology related to them appeared

long before 
ellular spa
es. Therefore in this 
ontext the adje
tive 
ellular is

repla
ed usually by adje
tives triangulated or simpli
ial.

⌈52′3⌋ Two Properties of Triangulations of Surfa
es

52.D Unrami�ed. Let E be a side of a triangle involved into a triangulation

of a 2-manifold X. Prove that there exist at most two triangles of this

triangulation for whi
h E is a side. Cf. ??, ?? and 2.10.

52.E Lo
al strong 
onne
tedness. Let V be a vertex of a triangle in-

volved into a triangulation of a 2-manifold X and T , T ′
be two triangles
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of the triangulation adja
ent to V . Prove that there exists a sequen
e

T = T1, T2, . . . , Tn = T ′
of triangles of the triangulation su
h that V is

a vertex of ea
h of them and triangles Ti, Ti+1 have 
ommon side for ea
h

i = 1, . . . , n− 1.

⌈52′4x⌋ S
heme of Triangulation

Triangulations allow to des
ribe a surfa
e by a simple 
ombinatorial obje
t.

Let X be a 2-manifold and T a triangulation of X. Denote the set of verti
es

of T by V . Denote by Σ2 the set of triples of verti
es, whi
h are verti
es of a

triangle of T . Denote by Σ1 the set of pairs of verti
es, whi
h are verti
es of a

side of T . Put Σ0 = S. This is the set of verti
es of T . Put Σ = Σ2∪Σ1∪Σ0.

The pair (V,Σ) is 
alled the (
ombinatorial) s
heme of T .
52.Fx. Prove that the 
ombinatorial s
heme (V,Σ) of a triangulation of a

2-manifold has the following properties:

(1) Σ is a set 
onsisting of subsets of V ,

(2) ea
h element of Σ 
onsists of at most 3 elements of V ,

(3) three-element elements of Σ 
over V ,

(4) any subset of an element of Σ belongs to Σ,

(5) interse
tion of any 
olle
tion of elements of Σ belongs to Σ,

(6) for any two-element element of Σ there exist exa
tly two three-

element elements of Σ 
ontaining it.

Re
all that obje
ts of this kind appeared above, in Se
tion 24

′
3x. Let V

be a set and Σ is a set of �nite subsets of V . The pair (V,Σ) is 
alled a

triangulation s
heme if

• any subset of an element of Σ belongs to Σ,

• interse
tion of any 
olle
tion of elements of Σ belongs to Σ,

• any one element subset of V belongs to Σ.

For any simpli
ial s
heme (V,Σ) in 24

′
3x a topologi
al spa
e S(V,Σ) was


onstru
ted. This is, in fa
t, a 
ellular spa
e, see 42.Ux.

52.Gx. Prove that if (V,Σ) is the 
ombinatorial s
heme of a triangulation

of a 2-manifold X then S(V,Σ) is homeomorphi
 to X.

52.Hx. Let (V,Σ) be a triangulation s
heme su
h that

(1) V is 
ountable,

(2) ea
h element of Σ 
onsists of at most 3 elements of V ,
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(3) three-element elements of Σ 
over V ,

(4) for any two-element element of Σ there exist exa
tly two three-

element elements of Σ 
ontaining it

Prove that (V,Σ) is a 
ombinatorial s
heme of a triangulation of a 2-manifold.

⌈52′5⌋ Examples

52.1. Consider the 
over of torus obtained in the obvious way from the 
over of

the square by its halves separated by a diagonal of the square.

Is it a triangulation of torus? Why not?

52.2. Prove that the simplest triangulation of S2

onsists of 4 triangles.

52.3*. Prove that a triangulation of torus S1 × S1

ontains at least 14 triangles,

and a triangulation of the proje
tive plane 
ontains at least 10 triangles.

⌈52′6⌋ Subdivision of a Triangulation

A triangulation S of a 2-manifold X is said to be a subdivision of a triangu-

lation T , if ea
h triangle of S is 
ontained in some triangle

1

of T . Then S is

also 
alled a re�nement of T .
There are several standard ways to subdivide a triangulation. Here is one

of the simplest of them. Choose a point inside a triangle τ , 
all it a new

vertex, 
onne
t it by disjoint ar
s with verti
es of τ and 
all these ar
s

new edges. These ar
s divide τ to three new triangles. In the original

triangulation repla
e τ by these three new triangles. This operation is 
alled

a star subdivision 
entered at τ . See Figure 1.

52.I. Give a formal des
ription of a star subdivision 
entered at a triangle

τ . I.e., present it as a 
hange of a triangulation thought of as a 
olle
tion of

topologi
al triangles. What three embeddings of Eu
lidean triangles are to

repla
e τ? Show that the repla
ement gives rise to a triangulation. Des
ribe

the 
orresponding operation on the 
ombinatorial s
heme.

Here is another subdivision de�ned lo
ally. One adds a new vertex taken

on an edge ε of a given triangulation. One 
onne
ts the new vertex by two

1

Although triangles whi
h form a triangulation of X have been de�ned as topologi
al em-

beddings, we hope that a reader guess that when one of su
h triangles is said to be 
ontained in

another one this means that the image of the embedding whi
h is the former triangle is 
ontained

in the image of the other embedding whi
h is the latter.
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τ

Figure 1. Star subdivision 
entered at triangle τ

.

new edges to the verti
es of the two tringles adja
ent to ε. The new edges

divide these triangles, ea
h to two new triangles. The rest of triangles of

the original triangulation are not a�e
ted. This operation is 
alled a star

subdivision 
entered at ε. See Figure 2.

ε

Figure 2. Star subdivision 
entered at edge ε.

52.J. Give a formal des
ription of a star subdivision 
entered at edge ε.
What four embeddings of Eu
lidean triangles are to repla
e the topologi
al

triangles with edge ε? Show that the repla
ement gives rise to a triangula-

tion. Des
ribe the 
orresponding operation on the 
ombinatorial s
heme.

52.4. Find a triangulation and its subdivision, whi
h 
annot be presented as a


omposition of star subdivisions at edges or triangles.

52.5*. Prove that any subdivision of a triangulation of a 
ompa
t surfa
e 
an be

presented as a 
omposition of a �nite sequen
es of star subdivisions 
entered at

edges or triangles and operations inverse to su
h subdivisions.

By a bari
entri
 subdivision of a triangle we 
all a 
omposition of a star

subdivision 
entered at this tringle followed by star subdivisions at ea
h of

its edges. See Figure 3.

Bari
entri
 subdivision of a triangulation of 2-manifold is a subdivision whi
h

is a simultaneous bari
entri
 subdivision of all triangles of this triangulation.

See Figure 4.
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Figure 3. Bari
entri
 subdivision of a triangle.

ε

Figure 4. Bari
entri
 subdivision of a triangulation.

52.K. Establish a natural one-to-one 
orresponden
e between verti
es of a

bari
entri
 subdivision a simpli
es (i.e., verti
es, edges and triangles) of the

original tringulation.

52.L. Establish a natural one-to-one 
orresponden
e between triangles of a

bari
entri
 subdivision and triples ea
h of whi
h is formed of a triangle of

the original triangulation, an edge of this triangle and a vertex of this edge.

The expression bari
entri
 subdivision has appeared in a diiferent 
ontext,

see Se
tion 21. Let us relate the two notions sharing this name .

52.Mx Bari
entri
 subdivision of a triangulation and its s
heme.

Prove that the 
ombinatorial s
heme of the bari
entri
 subdivision of a tri-

angulation of a 2-manifold 
oin
ides with the bari
entri
 subdivision of the

s
heme of the original triangulation (see 24

′
4x).

⌈52′7⌋ Homotopy Type of Compa
t Surfa
e with Non-Empty Bound-

ary

52.N. Any 
ompa
t 
onne
ted triangulated 2-manifold with non-empty bound-

ary 
ollapses to a one-dimensional simpli
ial subspa
e.

52.O. Any 
ompa
t 
onne
ted triangulated 2-manifold with non-empty bound-

ary is homotopy equivalent to a bouquet of 
ir
les.

52.P. The Euler 
hara
teristi
 of a triangulated 
ompa
t 
onne
ted 2-manifold

with non-empty boundary does not depend on triangulation. It is equal to

1 − r, where r is the rank of the one-dimensional homology group of the

2-manifold.
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52.Q. The Euler 
hara
teristi
 of a triangulated 
ompa
t 
onne
ted 2-manifold

with non-empty boundary is not greater than 1.

52.R. The Euler 
hara
teristi
 of a triangulated 
losed 
onne
ted 2-manifold

with non-empty boundary is not greater than 2.

⌈52′8⌋ Triangulations in dimension one

By an Eu
lidean segment we mean the 
onvex hall of two di�erent points

of a Eu
lidean spa
e. It is homeomorphi
 to I. A topologi
al segment or

topologi
al edge in a topologi
al spa
e X is a topologi
al embedding of an

Eu
lidean segment into X. A set of topologi
al segments in a 1-manifold X
is a triangulation of X if the images of these topologi
al segments 
onstitute

a fundamental 
over of X and any two of the images either are disjoint or

interse
t in one 
ommon end point.

Traingulations of 1-manifolds are similar to triangulations of 2-manifolds


onsidered above.

52.S. Find 
ounter-parts for theorems above. Whi
h of them have no


ounter-parts? What is a 
ounter-part for the property 52.D? What are


ounter-parts for star and bari
entri
 subdivisions?

52.T. Find homotopy 
lassi�
ation of triangulated 
ompa
t 1-manifolds us-

ing arguments similar to the ones from Se
tion 52

′
7. Compare with the

topologi
al 
lassi�
ation of 1-manifolds obtained in Se
tion 50.

52.U. What values take the Euler 
hara
teristi
 on 
ompa
t 1-manifolds?

52.V. What is relation of the Euler 
hara
teristi
 of a 
ompa
t triangulated

1-manifold X and the number of ∂X?

52.W. Triangulation of a 2-manifold X gives rise to a triangulation of its

boundary ∂X. Namely, the edges of the triangualtion of ∂X are the sides of

triangles of the original triangulation whi
h lie in ∂X.

⌈52′9⌋ Triangualtions in higher dimensions

52.X. Generalize everything presented above in this se
tion to the 
ase of

manifolds of higher dimensions.
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53. Handle De
omposition

⌈53′1⌋ Handles and Their Anatomy

Together with triangulations, it is useful to 
onsider representations of a

manifold as a union of balls of the same dimension, but adja
ent to ea
h

other as if they were thi
kening of 
ells of a 
ellular spa
e

A spa
e Dp ×Dn−p
is 
alled a (standard) handle of dimension n and index p.

Its subset Dp × {0} ⊂ Dp × Dn−p
is 
alled the 
ore of handle Dp ×Dn−p

,

and a subset {0} ×Dn−p ⊂ Dp ×Dn−p
is 
alled its 
o
ore. The boundary

∂(Dp ×Dn−p) = of the handle Dp ×Dn−p

an be presented as union of its

base Dp × Sn−p−1
and 
obase Sp−1 ×Dn−p

.

53.A. Draw all standard handles of dimensions ≤ 3.

A topologi
al embedding h of the standard handle Dp ×Dn−p
of dimension

n and index p into a manifold of the same dimansion n is 
alled a handle of

dimension n and index p. The image under h of IntDp × IntDn−p
is 
alled

the interior of h, the image of the 
ore h(Dp × {0}) of the standard handle

is 
alled the 
ore of h, the image h({0} ×Dn−p) of 
o
ore, the 
o
ore, et
.

⌈53′2⌋ Handle De
omposition of Manifold

Let X be a manifold of dimension n. A 
olle
ton of n-dimensional handles

in X is 
alled a handle de
omposition of X, if

(1) the images of these handles 
onstitute a lo
ally �nite 
over of X,

(2) the interiors of these handles are pairwise disjoint,

(3) the base of ea
h of the handles is 
ontained in the union of 
obases

of the handles of smaller indi
es.

Let X be a manifold of dimension n with boundary. A 
olle
tion of n-
dimensional handles in X is 
alled a handle de
omposion of X modulo bound-

ary, if

(1) the images of these handles 
onstitute a lo
ally �nite 
over of X,

(2) the interiors of these handles are pairwise disjoint,

(3) the base of ea
h of the handles is 
ontained in the union of ∂X and


obases of the handles of smaller indi
es.

A 
omposition of a handle h : Dp×Dn−p → X with the homeomorphism of

transposition of the fa
tors Dp ×Dn−p → Dn−p ×Dp
turns the handle h of

index p into a handle of the same dimension n, but of the 
omplementary
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index n− p. The 
ore of the handle turns into the 
o
ore, while the base, to


obase.

53.B. Composing ea
h handle with the homeomorphism transposing the

fa
tors turns a handle de
omposition of manifold into a handle de
omposition

modulo boundary of the same manifold. Vi
e versa, a handle de
omposition

modulo boundary turns into a handle de
omposition of the same manifold.

Handle de
ompositions obtained from ea
h other in this way are said to be

dual to ea
h other.

53.C. Riddle. For n-dimensional manifold with boundary split into two

(n−1)-dimensional manifolds with disjoint 
losures, de�ne handle de
ompo-

sition modulo one of these manifolds so that the dual handle de
omposition

would be modulo the 
omplementary part of the boundary.

53.1. Find handle de
ompositions with a minimal number of handles for the

following manifolds:

(a) 
ir
le S1
; (b) sphere Sn

; (
) ball Dn

(d) torus S1 × S1
; (e) handle; (f) 
ylinder S1 × I ;

(g) Möbius band; (h) proje
tive plane

RP 2
;

(i) proje
tive spa
e

RPn
;

(j) sphere with p
handles;

(k) sphere with p

ross-
aps;

(l) sphere with n
holes.

⌈53′3⌋ Handle De
omposition and Triangulation

Let X be a 2-manifold, τ its triangulation, τ ′ its bari
entri
 subdivision, and
τ ′′ the bari
entri
 subdivision of τ ′. For ea
h simplex S of τ denote by HS

the union of all simpli
es of τ ′′ whi
h 
ontain the unique vertex of τ ′ that
lies in

∫

S. Thus, if S is a vertex then HS is the union of all triangles of

τ ′′ 
ontaining this vertex, if S is an edge then HS is the union all of the

triangles of τ ′′ whi
h interse
t with S but do not 
ontain any of its verti
es,

and, �nally, if S is a triangle of τ then HS is the union of all triangles of τ ′′

whi
h lie in S but do not interse
t its boundary.

53.D Handle De
omposition out of a Triangulation. Sets HS 
onsti-

tute a handle de
omposition of X. The index of HS equals the dimension of

S.

53.E. Can every handle de
omposition of a 2-manifold be 
onstru
ted from

a triangulation as indi
ated in 53.D?

53.F. How to triangulate a 2-manifold whi
h is equipped with a handle

de
omposition?
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Figure 5. Constru
tion of a handle de
omposition from a triangulation.

⌈53′4⌋ Regular Neighborhoods

Let X be a 2-manifold, τ its triangulation, and A be a simpli
ial subspa
e of

X. The union of all those simpli
es of the double bari
entri
 subdivision τ ′′

of τ whi
h interse
t A is 
alled the regular or se
ond bari
entri
 neighborhood

of A (with respe
t to τ).

Of 
ourse, usually regular neighborhood is not open in X, sin
e it is the

union of simpli
es, whi
h are 
losed. So, it is a neighborhood of A only in

wide sense (its interior 
ontains A).

53.G. A regular neighborhood of A in X is a 2-manifold. It 
oin
ides with

the union of handles 
orresponding to the simpli
es 
ontained in A. These

handles 
onstitute a handle de
omposition of the regular neighborhood.

53.H Collaps Indu
es Homemorphism. Let X be a triangulated 2-

manifold and A ⊂ X be its triangulated subspa
e. If X ց A then X is

homeomorphi
 to a regular neighborhood of A.

53.I. Any triangulated 
ompa
t 
onne
ted 2-manifold with non-empty bound-

ary is homeomorphi
 to a regular neighborhood of some of its 1-dimensional

triangulated subspa
es.

53.J. In a triangulated 2-manifold, any triangulated subspa
e whi
h is a

tree has regular neighborhood homeomorphi
 to disk.

53.K. In a triangulated 2-manifold, any triangulated subspa
e homeomor-

phi
 to 
ir
le has regular neighborhood homeomorphi
 either to the Möbius

band or 
ylinder S1 × I.

In the former 
ase the 
ir
le is said to be one-sided, in the latter, two-sided.

⌈53′5⌋ Cutting 2-Manifold Along a Curve

53.L Cut Along a Curve. Let F be a triangulated surfa
e and C ⊂ F be

a 
ompa
t one-dimensional manifold 
ontained in the 1-skeleton of F and
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satisfying 
ondition ∂C = ∂F ∩ C. Prove that there exists a 2-manifold T
and surje
tive map p : T → F su
h that:

(1) p| : T r p−1(C) → F r C is a homeomorphism,

(2) p| : p−1(C) → C is a two-fold 
overing.

53.M Uniqueness of Cut. The 2-manifold T and map p whi
h exist a
-


ording to Theorem 53.L, are unique up to homeomorphism: if T̃ and p̃ are
other 2-manifold and map satisfying the same hypothesis then there exists

a homeomorphism h : T̃ → T su
h that p ◦ h = p̃.

The 2-manifold T des
ribed in 53.L is 
alled the result of 
utting of F along

C. It is denoted by F C. This is not at all the 
omplement F r C,
although a 
opy of F rC is 
ontained in F C as a dense subset homotopy

equivalent to the whole F C.

53.N Triangulation of Cut Result. F C possesses a unique triangula-

tion su
h that the natural map F C → F maps homeomorphi
ally edges

and triangles of this triangulation onto edges and, respe
tivly, triangles of

the original triangulation of F .

53.O. Let X be a triangulated 2-manifold, C be its triangulated subspa
e

homeomorphi
 to 
ir
le, and let F be a regular neighborhood of C in X.

Prove

(1) F C 
onsists of two 
onne
ted 
omponents, if C is two-sided on

X, it is 
onne
ted if C is one-sided;

(2) the inverse image of C under the natural map X C → X 
onsists

of two 
onne
ted 
omponents if C is two-sided on X, it is 
onne
ted

if C is one-sided on X.

This proposition dis
loses the meaning of words one-sided and two-sided


ir
le on a 2-manifold. Indeed, both 
onne
ted 
omponents of the result of


utting of a regular neighborhood, and 
onne
ted 
omponents of the inverse

image of the 
ir
le 
an 
laim its right to be 
alled a side of the 
ir
le or a

side of the 
ut.

53.2. Des
ribe the topologi
al type of F C for the following F and C:

(1) F is sphere S2
, and C is its equator;

(2) F is a Möbius strip, and C is its middle 
ir
le (deformation retra
t);

(3) F = S1 × S1
, C = S1 × 1;

(4) F is torus S1 × S1
standardly embedded into R

3
, and C is the trefoil

knot lying on F , that is {(z, w) ∈ S1 × S1 | z2 = w3};
(5) F is a Möbius strip, C is a segment: �ndtwo topologi
ally di�erent

position of C on F and des
ribe F C for ea
h of them;

(6) F = RP 2
, C = RP 1

.
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(7) F = RP 2
, C is homeomorphi
 to 
ir
le: �nd two topologi
ally di�erent

position C on F and des
ribe F C for ea
h of them.

53.P Euler Chara
teristi
 and Cut. Let F be a triangulated 
ompa
t

2-manifold and C ⊂
∫

F be a 
losed one-dimensional 
ontained in the 1-

skeleton of the triangulation of F . Then χ(F C) = χF .

53.Q. Find the Euler 
hara
teristi
 of F C, if ∂C 6= ∅.

53.R Generalized Cut (In
ise). Let F be a triangulated 2-manifold and

C ⊂ F be a 
ompa
t 1-dimensional manifold 
ontained in 1-skeleton of F
and satisfying 
ondition ∂F ∩C ⊂ ∂C. Let D = Cr (∂Cr∂F ). Prove that
there exist a 2-manifold T and suje
tive 
ontinuous map p : T → F su
h

that:

(1) p| : T r p−1(D) → F rD is a homeomorphism,

(2) p| : p−1(D) → D is a two-fold 
overing.

53.S Uniqueness of Cut. The 2-manifold T and map p, whi
h exist a
-


ording to Theorem 53.R, ae unique up to homeomorphism: if T̃ and p̃ are

other 2-manifold and map satisfying the same hypothesis then there exists

a homeomorphism h : T̃ → T su
h that p ◦ h = p̃.

The 2-Manifold T des
ribed in 53.R is also 
alled the result of 
utting of F
along C and denoted by F C.

53.3. Show that if C is a segment 
ontained in the interior of a 2-manifold F then

F C is homeomorphi
 to F rIntB, where B is the subset of

∫
F homeomorphi


to disk.

53.4. Show that if C is a segment su
h that one of its end points is in

∫
F and

the other one is on ∂F then F C is homeomorphi
 to F .

⌈53′6⌋ Orientations

Re
all that an orientation of a segment is a linear order of the set of its points.

It is determined by its restri
tion to the set of its end points, see 50.R. To

des
ribe an orientation of a segment it su�
es to say whi
h of its end points

is initial and whi
h is �nal.

Similarly, orientation of a triangle 
an be des
ribed in a number of ways,

ea
h of whi
h 
an be 
hosen as the de�nition. By an orientation of a triangle

one means a 
olle
tion of orientations of its edges su
h that ea
h vertex of the

triangle is the �nal point for one of the edges adja
ent to it and initial point

for the other edge. Thus, an orientation of a triangle de�nes an orientation

on ea
h of its sides.

A segment admits two orientations. A triangle also admits two orientations:

one is obtained from another one by 
hange of the orientation on ea
h side
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of the triangle. Therefore an orientation of any side of a triangle de�nes an

orientation of the triangle.

Verti
es of an oriented triangle are 
y
li
ly ordered: a vertex A follows im-

mediately the vertex B whi
h is the initial vertex of the edge whi
h �nishes

at A. Similarly the edges of an oriented triangle are 
y
li
ly ordered: a side

a follows immediately the side b whi
h �nal end point is the initial point of

a.

Vi
e versa, ea
h of these 
y
li
 orders de�nes an orientation of the triangle.

An orientation of a triangulation of a 2-manifold is a 
olle
tion of orientations

of all triangles 
onstituting the triangulation su
h that for ea
h edge the

orientations de�ned on it by the orientations of the two adja
ent triangles

are opposite to ea
h other. A triangulation is said to be orientable, if it

admits an orientation.

53.T Number of Orientations. A triangulation of a 
onne
ted 2-manifold

is either non-orientable or admits exa
tly two orientations. These two ori-

entations are opposite to ea
h other. Ea
h of them 
an be re
overed from the

orientation of any triangle involved in the triangulation.

53.U Lifting of Triangulation. Let B be a triangulated surfa
e and p :
X → B be a 
overing. Can you equip X with a triangulation?

53.V Lifting of Orientation. Let B be an oriented triangulated surfa
e

and p : X → B be a 
overing. Equip X with a triangulation su
h that p
maps ea
h simplex of this triangulation homeomorphi
ally onto a simplex of

the original triangulation of B. Is this triangulation orientable?

53.W. Let X be a triangulated surfa
e, C ⊂ X be a 1-dimensional manifold


ontained in 1-skeleton of X. If the triangulation of X is orientable, then C
is two-sided.
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54. Topologi
al Classi�
ation of Compa
t

Triangulated 2-Manifolds

⌈54′1⌋ Spines and Their Regular Neighborhoods

Let X be a triangulated 
ompa
t 
onne
ted 2-manifold with non-empty

boundary. A simpli
ial subspa
e S of the 1-skeleton of X is a spine of X if

X 
ollapses to S.

54.A. Let X be a triangulated 
ompa
t 
onne
ted 2-manifold with non-empty

boundary. Then a regular neighborhood of its spine is homeomorphi
 to X.

54.B Corollary. A triangulated 
ompa
t 
onne
ted 2-manifold with non-

empty boundary admits a handle de
omposition without handles of index 2.

A spine of a 
losed 
onne
ted 2-manifold is a spine of this manifold with an

interior of a triangle from the triangulation removed.

54.C. A triangulated 
losed 
onne
ted 2-manifold admits a handle de
om-

position with exa
tly one handle of index 2.

54.D. A spine of a triangulated 
losed 
onne
ted 2-manifold is 
onne
ted.

54.E Corollary. The Euler 
hara
teristi
 of a 
losed 
onne
ted triangulated

2-manifold is not greater than 2. If it is equal to 2, then the 2-manifold is

homeomorphi
 to S2
.

54.F Corollary: Extremal Case. Let X be a 
losed 
onne
ted triangu-

lated 2-manifold X. If χ(X) = 2, then X is homeomorphi
 to S2
.

⌈54′2⌋ Simply 
onne
ted 
ompa
t 2-manifolds

54.G. A simply 
onne
ted 
ompa
t triangulated 2-manifold with non-empty

boundary 
ollapses to a point.

54.H Corollary. A simply 
onne
ted 
ompa
t triangulated 2-manifold with

non-empty boundary is homeomorphi
 to disk D2
.

54.I Corollary. Let X be a 
ompa
t 
onne
ted triangulated 2-manifold X
with ∂X 6= ∅. If χ(X) = 1, then X is homeomorphi
 to D2

.

⌈54′3⌋ Splitting o� 
ross
aps and handles

54.J. A non-orientable triangulated 2-manifold X is a 
onne
ted sum of

RP 2
and a triangulated 2-manifold Y . If X is 
onne
ted, then Y is also


onne
ted.
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54.K. Under 
onditions of Theorem 54.J, ifX is 
ompa
t then Y is 
ompa
t

and χ(Y ) = χ(X) + 1.

54.L. If on an orientable 
onne
ted triangulated 2-manifold X there is a

simple 
losed 
urve C 
ontained in the 1-skeleton of X su
h that X r C
is 
onne
ted, then C is 
ontained in a simpli
ial subspa
e H of X homeo-

morphi
 to torus with a hole and X is a 
onne
ted sum of a torus and a

triangulated 
onne
ted orientable 2-manifold Y .

If X is 
ompa
t, then Y is 
ompa
t and χ(Y ) = χ(X) + 2.

54.M. A 
ompa
t 
onne
ted triangulated 2-manifold with non-empty 
on-

ne
ted boundary is a 
onne
ted sum of a disk and some number of 
opies of

the proje
tive plane and/or torus.

54.N Corollary. A simply 
onne
ted 
losed triangulated 2-manifold is home-

omorphi
 to S2
.

54.O. A 
ompa
t 
onne
ted triangulated 2-manifold with non-empty bound-

ary is a 
onne
ted sum of a sphere with holes and some number of 
opies of

the proje
tive plane and/or torus.

54.P. A 
losed 
onne
ted triangulated 2-manifold is a 
onne
ted sum of some

number of 
opies of the proje
tive plane and/or torus.

⌈54′4⌋ Splitting of a Handle on a Non-Orientable 2-Manifold

54.Q. A 
onne
ted sum of torus and proje
tive plane is homeomorphi
 to a


onne
ted sum of three 
opies of the proje
tive plane.

54.Q.1. On torus there are 3 simple 
losed 
urves whi
h meet at a single point

transversal to ea
h other.

54.Q.2. A 
onne
ted sum of a surfa
e S with RP 2

an be obtained by deleting

an open disk from S and identifying antipodal points on the boundary of the

hole.

54.Q.3. On a 
onne
ted sum of torus and proje
tive plane there exist three

disjoint one-sided simple 
losed 
urves.

⌈54′5⌋ Final Formulations

54.R. Any 
onne
ted 
losed triangulated 2-manifold is homeomorphi
 either

to sphere, or sphere with handles, or sphere with 
ross
aps.

54.S. Any 
onne
ted 
ompa
t triangulated 2-manifold with non-empty bound-

ary is homeomorphi
 either to sphere with holes, or sphere with holes and

handles, or sphere with holes and 
ross
aps.



356 XI. Manifolds of Low Dimensions

54.1. Find the pla
e for the Klein Bottle in the above 
lassi�
ation.

54.2. Prove that any 
losed triangulated surfa
e with non-orientable triangulation

is homeomorphi
 either to proje
tive plane number of handles or Klein bottle with

handles. (Here the number of handles is allowed to be null.)
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55. Cellular Approa
h to Topologi
al

Classi�
ation of Compa
t surfa
es

In this se
tion we 
onsider another, more 
lassi
al and detailed solution of

the same problem. We 
lassify 
ompa
t triangulated 2-manifolds in a way

whi
h provides also an algorithm building a homeomorphism between a given

surfa
e and one of the standard surfa
es.

⌈55′1⌋ Families of Polygons

Triangulations provide a 
ombinatorial des
ription of 2-dimensional mani-

folds, but this des
ription is usually too bulky. Here we will study other,

more pra
ti
al way to present 2-dimensional manifolds 
ombinatorially. The

main idea is to use larger building blo
ks.

Let F be a 
olle
tion of 
onvex polygons P1, P2, . . . . Let the sides of these

polygons be oriented and paired o�. Then we say that this is a family of

polygons. There is a natural quotient spa
e of the sum of polygons involved

in a family: one identi�es ea
h side with its pair-mate by a homeomorphism,

whi
h respe
ts the orientations of the sides. This quotient spa
e is 
alled

just the quotient of the family.

55.A. Prove that the quotient of the family of polygons is a 2-manifold

without boundary.

55.B. Prove that the topologi
al type of the quotient of a family does not


hange when the homeomorphism between the sides of a distinguished pair

is repla
ed by other homeomorphism whi
h respe
ts the orientations.

55.C. Prove that any triangulation of a 2-manifold gives rise to a family of

polygons whose quotient is homeomorphi
 to the 2-manifold.

A family of polygons 
an be des
ribed 
ombinatorially: Assign a letter to

ea
h distinguished pair of sides. Go around the polygons writing down the

letters assigned to the sides and equipping a letter with exponent −1 if the

side is oriented against the dire
tion in whi
h we go around the polygon. At

ea
h polygon we write a word. The word depends on the side from whi
h

we started and on the dire
tion of going around the polygon. Therefore it

is de�ned up to 
y
li
 permutation and inversion. The 
olle
tion of words

assigned to all the polygons of the family is 
alled a phrase asso
iated with

the family of polygons. It des
ribes the family to the extend su�
ient to

re
overing the topologi
al type of the quotient.
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55.1. Prove that the quotient of the family of polygons asso
iated with phrase

aba−1b−1
is homeomorphi
 to S1 × S1

.

55.2. Identify the topologi
al type of the quotient of the family of polygons as-

so
iated with phrases

(1) aa−1
;

(2) ab, ab;
(3) aa;
(4) abab−1

;

(5) abab;
(6) abcabc;
(7) aabb;
(8) a1b1a

−1

1 b−1

1 a2b2a
−1

2 b−1

2 . . . agbga
−1
g b−1

g ;

(9) a1a1a2a2 . . . agag.

55.D. A 
olle
tion of words is a phrase asso
iated with a family of polygons,

i� ea
h letter appears twi
e in the words.

A family of polygons is 
alled irredu
ible if the quotient is 
onne
ted.

55.E. A family of polygons is irredu
ible, i� a phrase asso
iated with it does

not admit a division into two 
olle
tions of words su
h that there is no letter

involved in both 
olle
tions.

⌈55′2⌋ Operations on Family of Polygons

Although any family of polygons de�nes a 2-manifold, there are many fami-

lies de�ning the same 2-manifold. There are simple operations whi
h 
hange

a family, but do not 
hange the topologi
al type of the quotient of the family.

Here are the most obvious and elementary of these operations.

(1) Simultaneous reversing orientations of sides belonging to one of the

pairs.

(2) Sele
t a pair of sides and subdivide ea
h side in the pair into two

sides. The orientations of the original sides de�ne the orderings of

the halves. Unite the �rst halves into one new pair of sides, and

the se
ond halves into the other new pair. The orientations of the

original sides de�ne in an obvious way orientations of their halves.

This operation is 
alled 1-subdivision. In the quotient it e�e
ts in

subdivision of a 1-
ell (whi
h is the image of the sele
ted pair of

sides) into two 1-
ells. This 1-
ells is repla
ed by two 1-
ells and

one 0-
ell.

(3) The inverse operation to 1-subdivision. It is 
alled 1-
onsolidation.

(4) Cut one of the polygons along its diagonal into two polygons. The

sides of the 
ut 
onstitute a new pair. They are equipped with

an orientation su
h that gluing the polygons by a homeomorphism
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respe
ting these orientations re
overs the original polygon. This

operation is 
alled 2-subdivision. In the quotient it e�e
ts in subdi-

vision of a 2-
ell into two new 2-
ells along an ar
 whose end-points

are 0-
ells (may be 
oin
iding). The original 2-
ell is repla
ed by

two 2-
ells and one 1-
ell.

(5) The inverse operation to 2-subdivision. It is 
alled 2-
onsolidation.

⌈55′3⌋ Topologi
al and Homotopy Classi�
ation of Closed Sur-

fa
es

55.F Redu
tion Theorem. Any �nite irredu
ible family of polygons 
an

be redu
ed by the �ve elementary operations to one of the following standard

families:

(1) aa−1

(2) a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g

(3) a1a1a2a2 . . . agag for some natural g.

55.G Corollary, see 54.R. Any triangulated 
losed 
onne
ted manifold of

dimension 2 is homeomorphi
 to either sphere, or sphere with handles, or

sphere with 
ross
aps.

Theorems 55.G and 51.W provide 
lassi�
ations of triangulated 
losed 
on-

ne
ted 2-manifolds up to homeomorphisms and homotopy equivalen
e.

55.F.1 Redu
tion to Single Polygon. Any �nite irredu
ible family of poly-

gons 
an be redu
ed by elementary operations to a family 
onsisting of a single

polygon.

55.F.2 Can
ellation. A family of polygons 
orresponding to a phrase 
on-

taining a fragment aa−1
or a−1a, where a is any letter, 
an be transformed by

elementary operations to a family 
orresponding to the phrase obtained from

the original one by erasing this fragment, unless the latter is the whole original

phrase.

55.F.3 Redu
tion to Single Vertex. An irredu
ible family of polygons 
an

be turned by elementary transformations to a polygon su
h that all its verti
es

are proje
ted to a single point of the quotient.

55.F.4 Separation of Cross
ap. A family 
orresponding to a phrase 
on-

sisting of a word XaY a, where X and Y are words and a is a letter, 
an be

transformed to the family 
orresponding to the phrase bbY −1X .

55.F.5. If a family, whose quotient has a single vertex in the natural 
ell

de
omposition, 
orresponds to a phrase 
onsisting of a word XaY a−1
, where X

and Y are nonempty words and a is a letter, then X = UbU ′
and Y = V b−1V ′

.

55.F.6 Separation of Handle. A family 
orresponding to a phrase 
onsisting

of a word UbU ′aV b−1V ′a−1
, where U , U ′

, V , and V ′
are words and a, b are

letters, 
an be transformed to the family presented by phrase dcd−1c−1UV ′V U ′
.
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55.F.7 Handle plus Cross
ap Equals 3 Cross
aps. A family 
orrespond-

ing to phrase aba−1b−1ccX 
an be transformed by elementary transformations

to the family 
orresponding to phrase abdbadX .
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56. Re
ognizing Closed Surfa
es

56.A. What is the topologi
al type of the 2-manifold, whi
h 
an be obtained

as follows: Take two disjoint 
opies of disk. Atta
h three parallel strips 
on-

ne
ting the disks and twisted by π. The resulting surfa
e S has a 
onne
ted

boundary. Atta
h a 
opy of disk along its boundary by a homeomorphism

onto the boundary of the S. This is the spa
e to re
ognize.

56.B. Euler 
hara
teristi
 of the 
ellular spa
e obtained as quotient of a

family of polygons is invariant under homotopy equivalen
es.

56.1. How 
an 56.B help to solve 56.A?

56.2. Let X be a 
losed 
onne
ted surfa
e. What values of χ(X) allow to re
over

the topologi
al type of X? What ambiguity is left for other values of χ(X)?

⌈56′1⌋ Orientations

By an orientation of a polygon one means orientation of all its sides su
h

that ea
h vertex is the �nal end point for one of the adja
ent sides and initial

for the other one. Thus an orientation of a polygon in
ludes orientation of

all its sides. Ea
h segment 
an be oriented in two ways, and ea
h polygon


an be oriented in two ways.

An orientation of a family of polygons is a 
olle
tion of orientations of all the

polygons 
omprising the family su
h that for ea
h pair of sides one of the

pair-mates has the orientation inherited from the orientation of the polygon


ontaining it while the other pair-mate has the orientation opposite to the

inherited orientation. A family of polygons is said to be orientable if it

admits an orientation.

56.3. Whi
h of the families of polygons from Problem 55.2 are orientable?

56.4. Prove that a family of polygons asso
iated with a word is orientable i� ea
h

letter appear in the word on
e with exponent −1 and on
e with exponent 1.

56.C. Orientability of a family of polygons is preserved by the elementary

operations.

A surfa
e is said to be orientable if it 
an be presented as the quotient of an

orientable family of polygons.

56.D. A surfa
e S is orientable, i� any family of polygons whose quotient

is homeomorphi
 to S is orientable.

56.E. Spheres with handles are orientable. Spheres with 
ross
aps are not.
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⌈56′2⌋ More About Re
ognizing Closed Surfa
es

56.5. How 
an the notion of orientability and 56.C help to solve 56.A?

56.F. Two 
losed 
onne
ted manifolds of dimension two are homeomorphi


i� they have the same Euler 
hara
teristi
 and either are both orientable or

both non-orientable.

⌈56′3⌋ Re
ognizing Compa
t Surfa
es with Boundary

56.G. Riddle. Generalize orientabilty to the 
ase of non
losed manifolds

of dimension two. (Give as many generalization as you 
an and prove that

they are equivalent. The main 
riterium of su

ess is that the generalized

orientability should help to re
ognize the topologi
al type.)

56.H. Two 
ompa
t 
onne
ted manifolds of dimension two are homeomor-

phi
 i� they have the same Euler 
hara
teristi
, are both orientable or both

nonorientable and their boundaries have the same number of 
onne
ted 
om-

ponents.

⌈56′4x⌋ Simply Conne
ted Surfa
es

56.Ix Theorem

∗
. Any simply 
onne
ted non-
ompa
t manifold of dimension

two without boundary is homeomorphi
 to R
2
.

56

′
4x.1. Any simply 
onne
ted triangulated non-
ompa
t manifold without

boundary 
an be presented as the union of an in
reasing sequen
e of 
ompa
t

simpli
ial subspa
es C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ . . . su
h that ea
h of them is

a 2-manifold with boundary and IntCn ⊂ Cn+1 for ea
h n.

56

′
4x.2. Under 
onditions of 56

′
4x.1 the sequen
e Cn 
an be modi�ed in su
h

a way that ea
h Cn be
omes simply 
onne
ted.

56.Jx Corollary. The universal 
overing of any surfa
e with empty bound-

ary and in�nite fundamental group is homeomorphi
 to R2
.
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Proofs and Comments

50.A Indeed, any 0-dimensional manifold is just a 
ountable dis
rete topo-

logi
al spa
e, and the only topologi
al invariant needed for topologi
al 
las-

si�
ation of 0-manifolds is the number of points.

50.B Ea
h manifold is the sum of its 
onne
ted 
omponents.

50.C (1) S1
, (2) I, (3) R, R+, (4) R+.

50.D

Manifold X Is X 
ompa
t? Is ∂X empty?

S1 + +

R
1 − +

I + −
R
1
+ − −

51.A For example, the stereographi
 proje
tion from an inner point of the

hole maps the sphere with a hole onto a disk homeomorphi
ally.

51.B The stereographi
 proje
tion from an inner point of one of the holes

homeomorphi
ally maps the sphere with two holes onto a �disk with a hole�.

Prove that the latter is homeomorphi
 to a 
ylinder. (Another option: if

we take the 
enter of the proje
tion in the hole in an appropriate way, then

the proje
tion maps the sphere with two holes onto a 
ir
ular ring, whi
h is

obviously homeomorphi
 to a 
ylinder.)

51.C By de�nition, the handle is homeomorphi
 to a torus with a hole,

while the sphere with a hole is homeomorphi
 to a disk, whi
h pre
isely �lls

in the hole.

51.D Cut a sphere with two handles into two symmetri
 parts ea
h of whi
h

is homeomorphi
 to a handle.

22.I To simplify the formulas, we repla
e the square I2 by a re
tangle.

Here is a formal argument: 
onsider the map

ϕ : [0, 2π] × [−1
2 ,

1
2 ] → R

3 : (x, y) 7→
(

(1 + y sin x
2 ) cos x, (1 + y sin x

2 ) sin x, y cos
x
2

)

.

Che
k that ϕ really maps the square onto the Möbius strip and that S(ϕ)
is the given partition. Certainly, the starting point of the argument is not a

spe
i�
 formula. First of all, you should imagine the required map. We map

the horizontal midsegment of the unit square onto the midline of the Möbius

strip, and we map ea
h of the verti
al segments of the square onto a segment
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of the strip orthogonal to the midline. This mapping maps the verti
al sides

of the square to one and the same segment, but here the opposite verti
es of

the square are identi�ed with ea
h other (
he
k this).

51.F Combine the results of 51.A and 22.J.

51.G Consider the Klein bottle as a quotient spa
e of a square and 
ut

the square into 5 horizontal (re
tangular) strips of equal width. Then the

quotient spa
e of the middle strip is a Möbius band, the quotient spa
e of the

union of the two extreme strips is one more Möbius band, and the quotient

spa
e of the remaining two strips is a ring, i.e., pre
isely a sphere with two

holes. (Here is another, maybe more visual, des
ription. Look at the pi
ture

of the Klein bottle: it has a horizontal plane of symmetry. Two horizontal

planes 
lose to the plane of symmetry 
ut the Klein bottle into two Möbius

bands and a ring.)

51.H The most visual approa
h here is as follows: single out one of the

handles and one of the �lms. Repla
e the handle by a �tube� whose boundary


ir
les are atta
hed to those of two holes on the sphere, whi
h should be

su�
iently small and 
lose to ea
h other. After that, start moving one of

the holes. (The topologi
al type of the quotient spa
e does not 
hange in the


ourse of su
h a motion.) First, bring the hole to the boundary of the �lm,

then shift it onto the �lm, drag it on
e along the �lm, shift it from the �lm,

and, �nally, return the hole to the initial spot. As a result, we transform the

initial handle (a torus with a hole) into a Klein bottle with a hole, whi
h

splits into two Möbius bands (see Problem 22.U), i.e., into two �lms.

51.Ox Yes, for example, a plane with in�nite number of handles.

51.S See, for example, Se
tion 46.

51.T See, for example, Se
tion 46.

51.U.1 Indeed, the single relation in the fundamental group of the sphere

with g handles means that the produ
t of g 
ommutators of the generators

ai and bi equals 1, and so it �vanishes� after the abelianization.

51.V.1 Taking the elements a1, . . . , ag−1, and bn = a1a2 . . . ag as generators
in the 
ommuted group, we obtain an Abelian group with a single relation

b2n = 1.

51.W The �rst statement follows from 51.U.1, the se
ond from 51.V.1 and

the third one, from 51.U.1 and 51.V.1.

52.U All non-negative inetegers.

52.V χ(X) = 1
2χ(∂X) = 1

2♯(∂X). To prove this, 
onsider double DX of

X, and observe that χ(DX) = 2χ(X) − χ(∂X), while χ(DX) = 0, sin
e
DX is a 
losed 1-manifold.
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53.V Yes, it is orientable. An orientation 
an be obtain by taking on ea
h

triangle of X the orientation whi
h is mapped by p to the orientation of its

image.

54.Q.1 Represent the torus as the quotient spa
e of the unit square. Take

the images of a diagonal of the square and the two segments 
onne
ting the

midpoints of the opposite sides of the square.


