
SIMILARITY

OLEG VIRO

Euclidean Geometry can be described as a study of the properties of
geometric figures, but not all conceivable properties. Only the proper-
ties which do not change under isometries deserve to be called geometric
properties and studied in Euclidian Geometry.
Some geometric properties are invariant under transformations that

belong to wider classes. One such class of transformations is similarity
transformations. Roughly they can be described as transformations
preserving shapes, but changing scales: magnifying or contracting.
The part of Euclidean Geometry that studies the geometric proper-

ties unchanged by similarity transformations is called the similarity ge-

ometry. Similarity geometry can be introduced in a number of different
ways. The most straightforward of them is based on the notion of ratio
of segments.
The similarity geometry is an integral part of Euclidean Geometry.

However, its main notions emerge in traditional presentations of Eu-
clidean Geometry (in particular in the textbook by Hadamard that we
use) in a very indirect way. Below it is shown how this can be done ac-
cording to the standards of modern mathematics. But first, in Sections
1 - 4, the traditional definitions for ratio of segments and the Euclidean
distance are summarized.

1. Ratio of commensurable segments. If a segment CD can be
obtained by summing up of n copies of a segment AB, then we say

that
CD

AB
= n and

AB

CD
=
1

n
.

If for segments AB and CD there exists a segment EF and natural

numbers p and q such that
AB

EF
= p and

CD

EF
= q, then AB and CD are

said to be commensurable,
AB

CD
is defined as

p

q
and the segment EF is

called a common measure of AB and CD.

The ratio
AB

CD
does not depend on the common measure EF .

This can be deduced from the following two statements.
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For any two commensurable segments there exists the greatest common

measure.

The greatest common measure can be found by geometric version of
the Euclidean algorithm, for an English translation of Euclid’s text and
its discussion from the modern viewpoint see
http://aleph0.clarku.edu/d̃joyce/java/elements/bookVII/propVII2.html

If EF is the greatest common measure of segments AB and CD and GH

is a common measure of AB and CD, then there exists a natural number

n such that
EF

GH
= n.

If a segment AB is longer than a segment CD and these segments

are commensurable with a segment EF , then
AB

EF
>
CD

EF
.

2. Incommensurable segments. There exist segments that are not
commensurable. For example, a side and diagonal of a square are not
commensurable, see, for example,
http://www.learner.org/courses/mathilluminated/units/3/textbook/03.php

Segments that are not commensurable are called incommensurable.

For incommensurable segments AB and CD the ratio
AB

CD
is defined

as the unique real number r such that

● r <
EF

CD
for any segment EF , which is longer than AB and

commensurable with CD;

●
EF

CD
< r for any segment EF , which is shorter than AB and

commensurable with CD.

3. Thales’ Theorem. (See Sections 113 and 114 of the text-
book.) Let ABC be a triangle, D be a point on AB and E be a point

on BC. If DE ∥ AC, then

BD

DA
=
BE

EC
.

�

A

E

D

B C

Corollary. Under the assumptions of Thales’ Theorem,

BD

BA
=
BE

BC
=
DE

AC
.
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4. Distance. If we choose a segment AB and call it the unit, then we

can assign to any other segment CD the number
CD

AB
, call it the length

of CD and denote by ∣CD∣.
Further, the length ∣CD∣ of segment CD is called then the dis-

tance between points C and D and denote by dist(C,D). Of course,
dist(C,D) depends on the choice of AB. Define ∣CD∣ and dist(C,D)
to be 0 if C = D.
The distance between points has the following properties:

● it is symmetric, dist(C,D) = dist(D,C) for any points C, D;
● dist(C,D) = 0 if and only if C =D;
● triangle inequality, dist(C,D) ≤ dist(C,E) + dist(E,D).

The first two of these properties are obvious, the last one was proven,
see Section 26 of the textbook.

5. Metric spaces. In mathematics there are many functions which
have these 3 properties. Therefore it was productive to create the
following notion of metric space. A metric space is an arbitrary set X
equipped with a function d ∶ X ×X → R+ such that

● d(a, b) = d(b, a) for any a, b ∈X ;
● d(a, b) = 0 if and only if a = b;
● d(a, b) ≤ d(a, c) + d(c, b) for any a, b, c ∈ X .

Thus the plane with a selected unit segment AB and d(C,D) = dist(C,D)
(as in Section 4 above) is a metric space.

6. Definition of similarity transformations. LetX and Y be met-
ric spaces with distances dX and dY , respectively. A map T ∶ X → Y

is said to be a similarity transformation with ratio k ∈ R, k ≥ 0, if
dY (T (a), T (b)) = kdX(a, b) for any a, b ∈ X .
Other terms used in the same situation: a similarity transformation

may call a dilation, or dilatation, the ratio may call also the coefficient

of the dilation.
Most often the notion of similarity transformation is applied when

X = Y and dX = dY . We will consider it when X = Y is the plane or the
3-space and the distance is defined via the length of the corresponding
segment, and the length is defined by a choice of unit segment, as
above.
General properties of similarity transformations.
1. Any isometry is a similarity transformation with ratio 1.
2. Composition S ○T of similarity transformations T and S with ratios
k and l, respectively, is a similarity transformation with ratio kl.
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7. Homothety. A profound example of dilation with ratio different
from 1 is a homothety.
Definition. Let k be a positive real number, O be a point on the
plane. The map which maps O to itself and any point A ≠ O to a point

B such that the rays OA and OB coincide and
OB

OA
= k is called the

homothety centered at O with ratio k.
Composition T ○S of homotheties T and S with the same center and

ratios k and l, respectively, is the homothety with the same center and
the ratio kl. In particular, any homothety is invertible and the inverse
transformation is the homothety with the same center and the inverse
ratio.

Theorem 1. A homothety T with ratio k is a similarity transforma-

tion with ratio k.

Proof. We need to prove that T (A)T (B)
AB

= k for any segment AB. Con-
sider, first, the case when O does not belong to the line AB. Then
OAB is a triangle, and OT (A)T (B) is also a triangle.
Assume that k < 1. Then T (A) belongs to the segment OA. Draw a

segment T (A)C parallel to AB with the end point C belonging to OB.

Then by Corollary of Thales’ Theorem, OC

OB
= OT (A)

OA
= k. Therefore C =

T (B). Again, by Corollary of Thales’ Theorem, T (A)T (B)
AB

= OT (A)
OA
= k.

If k > 1, then A belongs to OT (A). Draw the segment AC parallel
to T (A)T (B) and having the end point C on the segment OT (B). By

Corollary of Thales’ Theorem, OT (B)
OC

= OT (A)
OA
= k. Therefore C = T (B).

Again, by Corollary of Thales’ Theorem, T (A)T (B)
AB

= OT (A)
OA
= k.

The easy case, when points A, B, O are collinear, consider as an
exercise. �

Corollary. Any similarity transformation T with ratio k of the plane is

a composition of an isometry and a homothety with ratio k.

Proof. Consider a composition T ○H of T with a homothety with ratio
k−1. This composition is a similarity transformation with ratio k−1k = 1,
that is an isometry. Denote this isometry by I. Thus I = T ○ H .
Multiply both sides of this equality by H−1 from the right hand side:
I ○H−1 = T ○H ○H−1 = T . �

Theorem 2. A similarity transformation of a plane is invertible.

Proof. By Corollary of Theorem 1, any similarity transformation T is
a composition of an isometry and a homothety. A homothety is invert-
ible, as was noticed above. An isometry of the plane is a composition of
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at most three reflections. Each reflection is invertible, because its com-
position with itself is the identity. A composition of invertible maps is
invertible. �

Corollary. The transformation inverse to a similarity transformation T

with ratio k is a similarity transformation with ratio k−1.

8. Similar figures. Plane figures F1 and F2 are said to be similar if
there exists a similarity transformation T such that T (F1) = F2.
Any two congruent figures are similar. In particular, any two lines

are congruent and hence similar, any two rays are congruent and hence
similar.
Segments are not necessarily congruent, but nonetheless any two

segments are similar. Indeed, first, by a congruence transformation
one can make any segment parallel to another segment, and then find
a homothety mapping one of the segments to the other one.
Any two circles (or any two disks) are similar. Indeed, if the circles

have the same radius, then one can find a translation mapping one
them onto the other one, otherwise one can find a homothety mapping
one of them onto the other one.

Theorem 3. A figure similar to a segment is a segment.

Lemma. Characterization of points belonging to a segment.

A point C belongs to a segment AB if and only if ∣AC ∣ + ∣CB∣ = ∣AB∣.

Proof. If C belongs to AB, then the segment AB is the sum of segments
AC and CB and hence ∣AC ∣ + ∣CB∣ = ∣AB∣.
If point C does not belong to the line AB, then ∣AC ∣ + ∣CB∣ > ∣AB∣

by Theorem 26 of the textbook (the triangle inequality).
If C belongs to the line AB, but does not belong to the segment

AB, then either AC contains B or BC contains A. In the former case
∣AC ∣ > ∣AB∣, in the latter ∣BC ∣ > ∣AB∣. In both cases, the equality
∣AC ∣ + ∣CB∣ = ∣AB∣ does not hold true. �

Proof of Theorem 3 . The relation ∣AC ∣ + ∣CB∣ = ∣AB∣ characterizing
the set of points of segment AB is invariant under a similarity trans-
formation. Indeed, if T is a similarity transformation with ratio k, then
∣T (A)T (C)∣ = k∣AC ∣, ∣T (C)T (B)∣ = k∣CB∣, and ∣T (A)T (B)∣ = k∣AB∣.
Therefore, if C belongs to AB, then ∣AC ∣ + ∣CB∣ = ∣AB∣,

∣T (A)T (C)∣ + ∣T (C)T (B)∣ = k∣AC ∣ + k∣CB∣

= k(∣AC ∣ + ∣CB∣) = k∣AB∣ = ∣T (A)T (B)∣
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and hence T (C) belongs to the segment T (A)T (B). Thus the image
of segment [AB] under T is contained in the segment [T (A)T (B)]:

T ([AB]) ⊂ [T (A)T (B)].

Similarly, T −1[T (A)T (B)] ⊂ [AB]. Therefore,

[T (A)T (B)] = TT −1[T (A)T (B)] ⊂ T [AB].

Hence T ([AB]) = [T (A)T (B)]. �

Exercises.
1. Prove that a figure similar to a line is a line.
2. Prove that a figure similar to a ray is a ray.
3. Prove that a figure similar to a circle is a circle.

Theorem 4. A figure similar to an angle is an angle. Two angles are

similar if and only they are congruent.

Proof. Recall that an angle is a figure consisting of two rays starting
from the same point. Since a figure similar to a ray is a ray and a
similarity transformation of an angle onto another figure should map
the common point of the rays to a common point of their images, the
image of an angle under a similarity transformation is an angle.
Consider now two similar angles and prove that they are congruent.

Let T be a similarity mapping an angle ∠A to an angle ∠B. Let the
ratio of T be k. Let H be the homothety centered at the vertex of
B with ratio k−1. The image of ∠B under H is ∠B. Therefore the
composition H ○T maps ∠A onto ∠B. This composition is a similarity
mapping with ratio k ⋅ k−1 = 1. Hence, H ○ T is an isometry mapping
∠A onto ∠B. �

9. Similarity tests for triangles.

Theorem 5 (AA-test). If in triangles ABC and A′B′C ′ the angles

∠A, ∠A′ are congruent and angles ∠B, ∠B′ are congruent, then

△ABC is similar to △A′B′C ′.

Proof. Without loss of generality we may assume that A′B′ is shorter
than AB. Find a point D on AB such that ∣BD∣ = ∣B′A′∣. Draw a
segment DE parallel to AC. By ASA test for congruence of triangles,
△A′B′C ′ is congruent to △DBE. By Corollary of Thales’ Theorem,
DB

AB
= BE

BC
. Hence, the homothety centered at B with ratio DB

AB
maps

△ABC onto △DBE. �
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Theorem 6 (SAS-test). If in triangles ABC and A′B′C ′ the angles

∠A, ∠A′ are congruent and

A′B′

AB
=
A′C ′

AC

then △ABC is similar to △A′B′C ′.

Proof. Without loss of generality we may assume that A′B′ is shorter
than AB. Find a point D on AB such that ∣BD∣ = ∣B′A′∣. Draw a seg-
ment DE parallel to AC. By Corollary of Thales’ Theorem, DB

AB
= BE

BC
,

and therefore ∣BE∣ = ∣B′C ′∣. By SAS test for congruence of triangles,
△A′B′C ′ is congruent to △DBE. The homothety centered at B with
ratio DB

AB
maps △ABC onto △DBE. �

Theorem 7 (SSS-test). If in triangles ABC and A′B′C ′

A′B′

AB
=
B′C ′

BC
=
C ′A′

CA

then △ABC is similar to △A′B′C ′.

Proof. Without loss of generality we may assume that A′B′ is shorter
than AB. Find a point D on AB such that ∣BD∣ = ∣B′A′∣. Draw a
segment DE parallel to AC. By Corollary of Thales’ Theorem, DB

AB
=

BE

BC
= DE

AC
. Therefore ∣BE∣ = ∣B′C ′∣ and ∣DE∣ = ∣A′C ′∣. By SSS test

for congruence of triangles, △A′B′C ′ is congruent to △DBE. The
homothety centered at B with ratio DB

AB
maps △ABC onto△DBE. �


