Head to tail compositions

Oleg Viro

November 27, 2014

Plane Isometries

Theorem. Any isometry of \mathbb{R}^{2} is a composition of ≤ 3 reflections in lines.

Plane Isometries

Theorem. Any isometry of \mathbb{R}^{2} is a composition of ≤ 3 reflections in lines.

Lemma. A plane isometry is determined by its restriction to any three non-collinear points. \square

Plane Isometries

Theorem. Any isometry of \mathbb{R}^{2} is a composition of ≤ 3 reflections in lines.
Proof of Theorem. Given an isometry:

Plane Isometries

Theorem. Any isometry of \mathbb{R}^{2} is a composition of ≤ 3 reflections in lines.

Proof of Theorem.

Plane Isometries

Theorem. Any isometry of \mathbb{R}^{2} is a composition of ≤ 3 reflections in lines.

Proof of Theorem.

Plane Isometries

Theorem. Any isometry of \mathbb{R}^{2} is a composition of ≤ 3 reflections in lines.

Proof of Theorem.

Plane Isometries

Theorem. Any isometry of \mathbb{R}^{2} is a composition of ≤ 3 reflections in lines.

Proof of Theorem.

Compositions of reflections in parallel lines

Compositions of reflections in parallel lines

is a translation

Compositions of reflections in parallel lines

is a translation

Compositions of reflections in parallel lines

is a translation

The decomposition is not unique:

Compositions of reflections in parallel lines

is a translation

The decomposition is not unique:
$R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$
iff l^{\prime}, m^{\prime} can be obtained from l, m by a translation.

Compositions of reflections in parallel lines

is a translation

The decomposition is not unique:
$R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$
iff l^{\prime}, m^{\prime} can be obtained from l, m by a translation.

Compositions of reflections in intersecting lines

Compositions of reflections in intersecting lines

is a rotation

Compositions of reflections in intersecting lines

is a rotation

Decomposition of rotation is not unique:

Compositions of reflections in intersecting lines

is a rotation

Decomposition of rotation is not unique:

$$
\begin{aligned}
& R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}} \\
& \text { iff } l^{\prime}, m^{\prime} \text { can be obtained from } l, m \text { by a rotation } \\
& \\
& \quad \text { about the intersection point } m \cap l .
\end{aligned}
$$

Compositions of reflections in intersecting lines

is a rotation

Decomposition of rotation is not unique:

$$
\begin{aligned}
& R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}} \\
& \\
& \text { iff } l^{\prime}, m^{\prime} \text { can be obtained from } l, m \text { by a rotation } \\
& \\
& \quad \text { about the intersection point } m \cap l .
\end{aligned}
$$

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \nmid 2$ and $3 \nmid 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \nmid 2$ and $3 \nmid 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \nmid 2$ and $3 \nmid 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1 \nmid 2$ and $3 \nmid 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let either $1 \nVdash 2$ or $3 \nVdash 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let either $1 \nVdash 2$ or $3 \nVdash 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let either $1 \nVdash 2$ or $3 \nVdash 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let either $1 \nVdash 2$ or $3 \nVdash 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let either $1 \nVdash 2$ or $3 \nVdash 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let either $1 \nVdash 2$ or $3 \nVdash 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines.
Let $1|\mid 2$ and $3 \| 4$.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. \square

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. \square

Proof of Theorem. By Lemma, any relation can be reduced to a relation of length ≤ 3.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. \square

Proof of Theorem. By Lemma, any relation can be reduced to a relation of length ≤ 3.
A composition of odd number of reflections reverses orientation and cannot be id .

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. \square

Proof of Theorem. By Lemma, any relation can be reduced to a relation of length ≤ 3.
A composition of odd number of reflections reverses orientation and cannot be id.
A composition of two different reflections is not identity.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. \square

Generalization of Lemma. In \mathbb{R}^{n},
a composition of any $n+2$ reflections in hyperplanes is a composition of n reflections in hyperplanes.

Relations

Theorem. Any relation among reflections in lines follow from relations $R_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$, where $l, m, l^{\prime}, m^{\prime}$ are as above.

Lemma. A composition of any 4 reflections in lines can be transformed by these relations to a composition of 2 reflections in lines. \square

Generalization of Lemma. In \mathbb{R}^{n},
a composition of any $n+2$ reflections in hyperplanes is a composition of n reflections in hyperplanes.

Generalization of Theorem. Any relation among reflections in hyperplanes of \mathbb{R}^{n} follow from relations $\mathbb{R}_{l}^{2}=1$ and $R_{l} \circ R_{m}=R_{l^{\prime}} \circ R_{m^{\prime}}$.

Flips and flippers
Generalize reflections!

Flips and flippers

Generalize reflections!

A flip is an isometry which is
an involution (i.e., has period 2) and is determined by its fixed point set.

Flips and flippers

Generalize reflections!

A flip is an isometry which is
an involution (i.e., has period 2) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.

Flips and flippers

Generalize reflections!
A flip is an isometry which is
an involution (i.e., has period 2) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.
Key example: $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto 2 a-x$, the reflection of \mathbb{R} in a point a.

Flips and flippers

Generalize reflections!

A flip is an isometry which is
an involution (i.e., has period 2) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.
Key example: $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto 2 a-x$, the reflection of \mathbb{R} in a point a. $a \mapsto 2 a-a=a$

Flips and flippers

Generalize reflections!

A flip is an isometry which is
an involution (i.e., has period 2) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.
Key example: $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto 2 a-x$, the reflection of \mathbb{R} in a point a.
Generalization: a symmetry of \mathbb{R}^{n} in a k-subspace.

Flips and flippers

Generalize reflections!
A flip is an isometry which is
an involution (i.e., has period 2) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.
Key example: $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto 2 a-x$, the reflection of \mathbb{R} in a point a.
Generalization: a symmetry of \mathbb{R}^{n} in a k-subspace.
Further examples in hyperbolic spaces, spheres, projective spaces and other symmetric spaces.

Flips and flippers

Generalize reflections!
A flip is an isometry which is
an involution (i.e., has period 2) and is determined by its fixed point set.

Flipper is the fixed point set of a flip.
Key example: $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto 2 a-x$, the reflection of \mathbb{R} in a point a.
Generalization: a symmetry of \mathbb{R}^{n} in a k-subspace.
Further examples in hyperbolic spaces, spheres, projective spaces and other symmetric spaces.

Correspondence Flipper $S \longleftrightarrow$ Flip in S is
the shortest connection between
simple static geometric objects - flippers - and isometries.

Symmetry about a point

is a flip.

Symmetry about a point

is a flip. Composition of flips in points

$$
A{ }^{\bullet} B
$$

Symmetry about a point

is a flip. Composition of flips in points

Symmetry about a point

is a flip. Composition of flips in points

Symmetry about a point

is a flip. Composition of flips in points

Symmetry about a point

is a flip. Composition of flips in points is a translation:

Symmetry about a point

is a flip. Composition of flips in points is a translation:

$$
\overrightarrow{A B}=\frac{1}{2} \overrightarrow{X R_{B}\left(R_{A}(X)\right.}
$$

Symmetry about a point

is a flip. Composition of flips in points is a translation:

$$
\overrightarrow{A B}=\frac{1}{2} \widehat{X R_{B}\left(R_{A}(X)\right.}
$$

$\overrightarrow{A B}$ is half the arrow representing $R_{B} \circ R_{A}$.

Head to tail

Compare the head to tail addition $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$

$$
\text { to }\left(R_{C} \circ R_{B}\right) \circ\left(R_{B} \circ R_{A}\right)=R_{C} \circ R_{B}^{2} \circ R_{A}=R_{C} \circ R_{A} \text {. }
$$

Flip-flop decomposition

Which isometries are compositions of two flips?

Flip-flop decomposition

Which isometries are compositions of two flips?
Any isometry of \mathbb{R}^{n}.

Flip-flop decomposition

Which isometries are compositions of two flips?
Any isometry of \mathbb{R}^{n}.
Djokovič Theorem. Any isometry of a non-degenerate inner product space over any field can be presented as a composition of two involutions isomteries.
(Product of two involutions, Arch. Math. 18 (1967), 582-584.)

Flip-flop decomposition

Which isometries are compositions of two flips?
Any isometry of \mathbb{R}^{n}.
Djokovič Theorem. Any isometry of a non-degenerate inner product space over any field can be presented as a composition of two involutions isomteries.
(Product of two involutions, Arch. Math. 18 (1967), 582-584.)
Corollary. Any isometry of an affine space with a non-degenerate bilinear form can be presented as a composition of two flips.

Flip-flop decomposition

Which isometries are compositions of two flips?
Any isometry of \mathbb{R}^{n}.
Djokovič Theorem. Any isometry of a non-degenerate inner product space over any field can be presented as a composition of two involutions isomteries.
(Product of two involutions, Arch. Math. 18 (1967), 582-584.)
Corollary. Any isometry of an affine space with a non-degenerate bilinear form can be presented as a composition of two flips.

Corollary. Any isometry of a hyperbolic space, sphere, projective space, etc. is a composition of two flips.
A flip-flop decomposition.

Biflippers

An ordered pair of flippers (A, B) is a biflipper, an analogue for an arrow representing a translation.

Biflippers

An ordered pair of flippers (A, B) is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect A and B with the shortest arrow.

Biflippers

An ordered pair of flippers (A, B) is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect A and B with the shortest arrow.

Biflippers

An ordered pair of flippers (A, B) is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect A and B with the shortest arrow.

If $A \cap B \neq \varnothing$,

Biflippers

An ordered pair of flippers (A, B) is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect A and B with the shortest arrow.

If $A \cap B \neq \varnothing$,

Biflippers

An ordered pair of flippers (A, B) is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect A and B with the shortest arrow.

If $A \cap B \neq \varnothing$,

To what extent are the representations non-unique?

Biflippers

An ordered pair of flippers (A, B) is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect A and B with the shortest arrow.

If $A \cap B \neq \varnothing$,

To what extent are the representations non-unique?

Equivalence relation:

$$
(A, B) \sim\left(A^{\prime}, B^{\prime}\right) \quad \text { if } \quad R_{B} \circ R_{A}=R_{B^{\prime}} \circ R_{A^{\prime}}
$$

Biflippers

An ordered pair of flippers (A, B) is a biflipper, an analogue for an arrow representing a translation.
If $A \cap B=\varnothing$, then we connect A and B with the shortest arrow.

If $A \cap B \neq \varnothing$,

To what extent are the representations non-unique?

Equivalence relation:

$$
(A, B) \sim\left(A^{\prime}, B^{\prime}\right) \quad \text { if } \quad R_{B} \circ R_{A}=R_{B^{\prime}} \circ R_{A^{\prime}}
$$

Problem. Find an explicit description for the equivalence.

Biflippers for a rotation

Biflippers for a rotation

an ordered pair of lines.

Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.

Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.

Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.
On a picture the order of lines is shown by an oriented arc.

Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.
On a picture the order of lines is shown by an oriented arc.
Equivalent biflippers are obtained by rotations about the vertex.

Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.
On a picture the order of lines is shown by an oriented arc.
Equivalent biflippers are obtained by rotations about the vertex.

Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.
On a picture the order of lines is shown by an oriented arc.
Equivalent biflippers are obtained by rotations about the vertex.

Biflippers for a rotation

an ordered pair of lines.
The lines intersect at the center of rotation.
The angle between the lines is half the rotation angle.
On a picture the order of lines is shown by an oriented arc.
Equivalent biflippers are obtained by rotations about the vertex.

Head to tail for rotations

Head to tail for rotations

Given two rotations, present them by biflippers.

Head to tail for rotations

Given two rotations, present them by biflippers.
By rotating the biflippers, make the second line in the first biflipper
to coincide with the first line in the second, so that the biflippers are (l, m) and (m, n).

Head to tail for rotations

Given two rotations, present them by biflippers.
By rotating the biflippers, make the second line in the first biflipper
to coincide with the first line in the second, so that the biflippers are (l, m) and (m, n).

Head to tail for rotations

Given two rotations, present them by biflippers.
By rotating the biflippers, make the second line in the first biflipper
to coincide with the first line in the second,
so that the biflippers are (l, m) and (m, n).
Erase m and draw an oriented arc from l to n,
i.e., form the ordered angle (l, n).

Head to tail for rotations

Given two rotations, present them by biflippers.
By rotating the biflippers, make the second line in the first biflipper
to coincide with the first line in the second,
so that the biflippers are (l, m) and (m, n).
Erase m and draw an oriented arc from l to n,
i.e., form the ordered angle (l, n).

Composing reflections in line and point

This is a glide reflection!

Composing reflections in line and point

Indeed!

This is a glide reflection!

Composing reflections in line and point

Indeed!

This is a glide reflection!

Composing reflections in line and point

Indeed!

This is a glide reflection!

Biflippers for a glide reflection

A biflipper for a glide reflection may glide along itself.

Biflippers for a glide reflection

A biflipper for a glide reflection may glide along itself.

Biflippers for a glide reflection

A biflipper for a glide reflection may glide along itself.

Head to tail for glide reflections

Head to tail for glide reflections

Given two glide reflections, present them by biflippers.

Head to tail for glide reflections

Given two glide reflections, present them by biflippers.
The head in the first biflipper and tail in the second one
should NOT be lines.

Head to tail for glide reflections

Given two glide reflections, present them by biflippers.
The head in the first biflipper and tail in the second one
should NOT be lines.
By gliding the biflippers, make the head of the first biflipper
coinciding with the tail of the second. so that the biflippers are $\overrightarrow{l O}$ and $\overrightarrow{O n}$.

Head to tail for glide reflections

Given two glide reflections, present them by biflippers.
The head in the first biflipper and tail in the second one
should NOT be lines.
By gliding the biflippers, make the head of the first biflipper
coinciding with the tail of the second.
so that the biflippers are $\overrightarrow{l O}$ and $\overrightarrow{O n}$.

Head to tail for glide reflections

Given two glide reflections, present them by biflippers.
The head in the first biflipper and tail in the second one
should NOT be lines.
By gliding the biflippers, make the head of the first biflipper
coinciding with the tail of the second.
so that the biflippers are $\overrightarrow{l O}$ and $\overrightarrow{O n}$.
Draw an oriented arc from l to n

Head to tail for glide reflections

Given two glide reflections, present them by biflippers.
The head in the first biflipper and tail in the second one
should NOT be lines.
By gliding the biflippers, make the head of the first biflipper
coinciding with the tail of the second.
so that the biflippers are $\overrightarrow{l O}$ and $\overrightarrow{O n}$.
Draw an oriented arc from l to n

Head to tail for glide reflections

Given two glide reflections, present them by biflippers.
The head in the first biflipper and tail in the second one
should NOT be lines.
By gliding the biflippers, make the head of the first biflipper
coinciding with the tail of the second.
so that the biflippers are $\overrightarrow{l O}$ and $\overrightarrow{O n}$.
Draw an oriented arc from l to n and erase O.

Head to tail for glide reflections

Given two glide reflections, present them by biflippers.
The head in the first biflipper and tail in the second one
should NOT be lines.
By gliding the biflippers, make the head of the first biflipper
coinciding with the tail of the second.
so that the biflippers are $\overrightarrow{l O}$ and $\overrightarrow{O n}$.
Draw an oriented arc from l to n and erase O.

Head to tail for glide reflections

Given two glide reflections, present them by biflippers.
The head in the first biflipper and tail in the second one
should NOT be lines.
By gliding the biflippers, make the head of the first biflipper
coinciding with the tail of the second.
so that the biflippers are $\overrightarrow{l O}$ and $\overrightarrow{O n}$.
Draw an oriented arc from l to n and erase O.

This is a rotation!

Head to tail for glide reflections

Given two glide reflections, present them by biflippers.
The head in the first biflipper and tail in the second one should NOT be lines.
By gliding the biflippers, make the head of the first biflipper
coinciding with the tail of the second.
so that the biflippers are $\overrightarrow{l O}$ and $\overrightarrow{O n}$.
Draw an oriented arc from l to n and erase O.

Exercise. Find head to tail rules for rotation ○ glide reflection.

In the 3-space. Rotation

In the 3-space. Rotation

In the 3-space. Rotation

In the 3-space. Rotation

In the 3-space. Rotation

Everything like on the plane.

In the 3-space. Rotation

A biflipper formed by two intersecting lines defines a rotation of the 3 -space about the axis \perp to the plane of the lines.

In the 3-space. Rotation

A biflipper formed by two intersecting lines defines a rotation of the 3 -space about the axis \perp to the plane of the lines.

Rotations of 2-sphere

Rotations of 2-sphere

Biflippers:

Rotations of 2-sphere

Biflippers:

Head to tail for rotations:

Rotations of 2-sphere

Biflippers:

Head to tail for rotations:

Rotations of 2-sphere

Biflippers:

Head to tail for rotations:

Rotations of 2-sphere

Biflippers:

Head to tail for rotations:

Rotations of 2-sphere

Biflippers:

Head to tail for rotations:

Biflipper vs. angular displacement vector vs. unit quaternion.

Rotations of 2-sphere

Biflippers:

Head to tail for rotations:

Biflipper vs. angular displacement vector vs. unit quaternion.
The rotation encoded by bilipper $\overrightarrow{w v}$ is defined by quaternion
$v w=v \times w-v \cdot w$.

Parade of biflippers

On line:

Parade of biflippers

On plane:

translations

Parade of biflippers

On plane:

translations

rotation

glide reflections

reflections

On sphere:

rotations

rotary reflections

reflections

Parade of biflippers

On plane:

translations

rotation

glide reflections

reflections

On sphere:

rotations

rotary reflections

reflections

On the hyperbolic plane:

rotation

parallel

translation

glide reflections

reflections motion

Biflippers in the 3-space

translations

central symmetries
-

rotations

symmetries about a line (half-turns)
glide symmetries about a line

reflections

glide reflections

screw

motion

In hyperbolic 3-space

rotation

parallel motion

translation

screw motion

rotary reflections

parallel reflections

glide reflections

Screw displacement

A biflipper presenting a screw displacement is an arrow with two perpendicular lines at the end points skew to each other.

Screw displacement

Head to tail for screws

Given two screw displacement, present them by biflippers.

Head to tail for screws

Given two screw displacement, present them by biflippers.
Find the common perpendicular for the axes of the biflippers.

Head to tail for screws

Given two screw displacement, present them by biflippers.
Find the common perpendicular for the axes of the biflippers.
By gliding the biflippers along their axes and rotating about the axes, make the arrowhead of the first biflipper coinciding with the tail of the second biflipper.

Head to tail for screws

Given two screw displacement, present them by biflippers.
Find the common perpendicular for the axes of the biflippers.
By gliding the biflippers along their axes and rotating about the axes, make the arrowhead of the first biflipper coinciding with the tail of the second biflipper.

Head to tail for screws

Given two screw displacement, present them by biflippers.
Find the common perpendicular for the axes of the biflippers.
Find common perpendicular for the tail of the first biflipper and head of the second biflipper. Draw an arrow along it connecting the flippers which are left.

Head to tail for screws

Given two screw displacement, present them by biflippers.
Find the common perpendicular for the axes of the biflippers.
Find common perpendicular for the tail of the first biflipper and head of the second biflipper. Draw an arrow along it connecting the flippers which are left.

Head to tail for screws

Given two screw displacement, present them by biflippers.
Find the common perpendicular for the axes of the biflippers.
Find common perpendicular for the tail of the first biflipper and head of the second biflipper. Draw an arrow along it connecting the flippers which are left. Erase old arrows and their common flippers.

Head to tail for screws

Given two screw displacement, present them by biflippers.
Find the common perpendicular for the axes of the biflippers.
Find common perpendicular for the tail of the first biflipper and head of the second biflipper. Draw an arrow along it connecting the flippers which are left. Erase old arrows and their common flippers.

Last page


```
Last page
```


Last page

Thank you for your attention!

Last page

Thank you for your attention!

Last page

Thank you for your attention!

Last page

Thank you for your attention!

