
1. Sets

1′1. Sets and elements

In an intellectual activity, one of the most profound actions is gathering ob-
jects in groups. The gathering is performed in mind and is not accompanied
with any action in the physical world.

As soon as the group has been created and assigned a name, it can be a
subject of thoughts and arguments and, in particular, can be included into
other groups.

Mathematics has an elaborated system of notions, which organizes and reg-
ulates creating those groups and manipulating them. The system is called
the naive set theory. This name is a slightly misleading, because this is rather
a language than a theory.

The �rst words in this language are set and element. By a set we understand
an arbitrary collection of various objects. An object included into the collec-
tion is an element of the set. A set consists of its elements. It is also formed

by them. In order to diversify the wording, the word set is replaced by the
word collection. Sometimes other words, such as class, family , and group,
are used in the same sense, but this is not quite safe because each of these
words is associated in modern mathematics with a more special meaning,
and hence should be used instead of the word set with caution.

If x is an element of a set A, then we write x ∈ A and say that x belongs

to A and A contains x. The sign ∈ is a variant of the Greek letter epsilon,
which corresponds to the �rst letter of the Latin word element . To make the
notation more �exible, the formula x ∈ A is also allowed to be written in
the form A 3 x. The disrespect to the origin of the notation is payed o� by
emphasizing a meaningful similarity to the inequality symbols < and >.
To state that x is not an element of A, we write x 6∈ A or A 63 x.

1′2. Equality of sets

A set is determined by its elements. The set is nothing but a collection of
its elements. This manifests most sharply in the following principle (called
Axiom of Extensionality):

Two sets are considered equal if and only if they have the same elements.

In this sense, the word set has slightly disparaging meaning. When some-
thing is called a set, this shows, maybe unintentionally, a lack of interest to
whatever organization of the elements of this set.
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For example, when we say that a line is a set of points, we assume that
two lines coincide if and only if they consist of the same points. On the
other hand, we commit ourselves to consider all relations between points on
a line (e.g., the distance between points, the order of points on the line, etc.)
separately from the notion of line.

We may think of sets as of boxes that can be built e�ortlessly around ele-
ments, just to distinguish them from the rest of the world. The cost of this
lightness is that such a box is not more than the collection of elements placed
inside. It is a little more than just a name: it is a declaration of our wish to
think about this collection of things as of entity and not to go into details
about the nature of its members-elements. Elements, in turn, may also be
sets, but as long as we consider them elements, they play the role of atoms,
with their own original nature ignored.

In modern Mathematics, the words set and element are very common and
appear in most texts. They are even overused, that is used at instances when
it is not appropriate. For example, it is not good to use the word element as
a replacement for other, more meaningful word. When you call something
an element , then the set whose element this one is should be clear. The
word element makes sense only in combination with the word set , unless we
deal with a non-mathematical term (like chemical element), or a rare old-
fashioned exception from the common mathematical terminology (sometimes
the expression under the sign of integral is called an in�nitesimal element ;
lines, planes, and other geometric images are also called elements in old
texts). Euclid's famous book on Geometry is called Elements, too.

1′3. The empty set

Thus, an element may not be without a set. However, a set may have no
elements. Actually, there is such a set. This set is unique because a set is
completely determined by its elements. It is the empty set denoted1 by ∅.

1′4. Basic sets of numbers

In addition to ∅, there are some other sets so important that they have their
own special names and denoted by special symbols.

The set of all positive integers, i.e., 1, 2, 3, 4,. . . , etc., is denoted by N.

The set of all integers, both positive, negative, and the zero, is denoted by
Z.

The set of all rational numbers (join to the integers all the numbers that are
presented by fractions, like 2/3 and −7

5 ) is denoted by Q.

1Other symbols, like Λ, are also in use, but ∅ has become most common one.
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The set of all real numbers (obtained by adjoining to rational numbers the

numbers like
√
2 and π = 3.14 . . . ) is denoted by R.

The set of complex numbers is denoted by C.

1′5. Describing a set by listing its elements

A set presented by a list a, b, . . . , x of its elements is denoted by the symbol
{a, b, . . . , x}. In other words, the list of objects enclosed in curly brackets
denotes the set whose elements are listed. For example, {1, 2, 123} denotes
the set consisting of the numbers 1, 2, and 123. The symbol {a, x,A} denotes
the set consisting of three elements: a, x, and A, whatever objects these three
letters denote.

1.1 What is {∅}? How many elements does it contain?

1.2 Which of the following formulas are correct:

1) ∅ ∈ {∅, {∅}}; 2) {∅} ∈ {{∅}}; 3) ∅ ∈ {{∅}}?

A set consisting of a single element is called a singleton. This is any set which
can be presented as {a} for some a.

1.3 Is {{∅}} a singleton?

Notice that the sets {1, 2, 3} and {3, 2, 1, 2} are equal since they have the
same elements. At �rst glance, lists with repetitions of elements are never
needed. There even arises a temptation to prohibit usage of lists with rep-
etitions in such notation. However, as it often happens to temptations to
prohibit something, this would not be wise. Indeed, quite often one cannot
say a priori whether there are repetitions or not. For example, the elements
in the list may depend on a parameter, and under certain values of the
parameter some entries of the list coincide, while for other values they don't.

1.4 How many elements do the following sets contain?

1) {1, 2, 1}; 2) {1, 2, {1, 2}}; 3) {{2}};
4) {{1}, 1}; 5) {1,∅}; 6) {{∅},∅};
7) {{∅}, {∅}}; 8) {x, 3x− 1} for x ∈ R.

1′6. Subsets and inclusions
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If A and B are sets and every element of A also belongs to B, then we say
that A is a subset of B, or B includes or contains A, and write A ⊂ B or
B ⊃ A.

The inclusion signs ⊂ and ⊃ resemble the inequality signs < and
> for a good reason: in the world of sets, the inclusion signs are obvious
counterparts for the signs of inequality. However,there is a deep di�erence
between the notions of inequality and inclusion: no number a satis�es the
inequality a < a, while any set A contains itself:

1.A Re�exivity of inclusion. Inclusion A ⊂ A holds true for any A.

Proof. Recall that, by the de�nition of an inclusion, A ⊂ B means that each element of
A is an element of B. Therefore, the statement that we must prove can be rephrased as
follows: each element of A is an element of A. This is tautologically correct. ���

Thus, the inclusion signs are not truly genuine counterparts of the inequality
signs < and >. They are closer to ≤ and ≥.
Sometimes, being inspired by signs ≤ and ≥, inclusions are denoted by sym-
bols ⊆ and ⊇ or even j and k, reserving the symbols ⊂ and ⊃ for strict
inclusions, that prohibit equality, like strict inequalities. We follow the main-
stream mathematical notation in which the signs ⊆, ⊇, j and k are not used
and strict inclusions are denoted by ( and ) or by $ and %.

Inclusion ⊂ and inequality ≤ are not only similar, but are closely related.
We will discuss this later, section ??.

1.B Ubiguity of the empty set. ∅ ⊂ A for any set A. In other words, the
empty set is present in each set as a subset.

Proof. Recall that, by the de�nition of inclusion, A ⊂ B means that each element of A
is an element of B. Thus, we need to prove that any element of ∅ belongs to A. This is
true because ∅ does not contain any elements. ���

It may happen that you are not satis�ed with this proof. Arguments about
the empty set may confuse at �rst. To this end, look at

Another proof of 1.B. Let us resort to the question whether the statement which we prove
can be wrong. How can it happen that ∅ is not a subset of A? This is possible only if
∅ contains an element which is not an element of A. However, ∅ does not contain such
elements because ∅ contains no elements at all. ���

Thus, each set A has two obvious subsets: the empty set ∅ and A itself. A
subset of A di�erent from ∅ and A is a proper subset of A. This word is used
when we do not want to consider the obvious subsets (which are improper).
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1.C Transitivity of inclusion. If A, B, and C are sets, A ⊂ B and B ⊂ C,
then A ⊂ C.

Proof. We must prove that each element of A is an element of C. Let x ∈ A. Since
A ⊂ B, it follows that x ∈ B. Since B ⊂ C, the latter (i.e., x ∈ B) implies x ∈ C. This is
what we had to prove. ���

1′7. De�ning a set by a condition (a set-builder no-
tation)

As we know (see 1′5), a set can be described by presenting a list of its ele-
ments. This simplest way may be not available or, at least, be not the easiest
one. For example, it is easy to say: �the set of all solutions of the following
equation� and write down the equation. This is a reasonable description
of the set. At least, it is unambiguous. Having accepted it, we may start
speaking on the set, studying its properties, and eventually may be lucky to
solve the equation and obtain the list of its solutions. Although the latter
task may be di�cult, this should not prevent us from discussing the set until
the time when the equation will be solved. (Solution of some equations took
centuries!)

Thus, we see another way for describing a set: formulate properties that
distinguish the elements of the set among elements of some wider and already
known set. Here is the corresponding notation:

The subset of a set A consisting of the elements x
that satisfy a condition P (x) is denoted by {x ∈ A | P (x)}.

1.5 Present the following sets by lists of their elements (i.e., in the form {a, b, . . . })

(a) {x ∈ N | x < 5}, (b) {x ∈ N | x < 0}, (c) {x ∈ Z | x < 0}.

The set-builder notation unveils a close relation between logic statements
and sets. Every statement P about elements of a set A de�nes a subset
{x ∈ A | P (x)} of A. On the other hand, any subset B ⊂ A gives rise to a
property of elements of A: namely, the property of belonging to B, that is
x ∈ B.
For example, let us �gure out what on the side of logic statements corre-
sponds to inclusion. Let B and C are subsets of a set A. Let B = {x ∈ A |
P (x)} and C = {x ∈ A | Q(x)}, that is P and Q are the statements de�ning
B and C, respectively. Inclusion B ⊂ C means that each element of B is an
element of C. In other words, if x ∈ B, then x ∈ C, or, in terms of P and Q,
if P (x), then Q(x). Thus, the inclusion B ⊂ C corresponds to implication
�if P (x), then Q(x)�.
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1′8. Conditional and biconditional

In everyday English the meaning of the �if ... then� construction is ambigu-
ous. The construction �if P , then Q� always means that if P is true, then Q
is true also. Sometimes that is all it means; other times it means something
more: that if P is false, Q must be false either. In the �rst case we say about
conditional statement, in the second case, about biconditional. In ordinary ev-
eryday English, usually one decides from the context whether conditional or
biconditional sense is intended.

Mathematicians tend to avoid ambiguities. They have agreed to use the
construction �if ... then� in the �rst, conditional sense, as above, so that a
statement of the form �If P , then Q� means that if P is true, Q is true also,
but if P is false, Q may be either true or false.

There is an important exception from this agreement: in a de�nition, when
a new word is introduced, mathematicians use �if� in the biconditional sense.
For example, when de�ning the notion of subset, we say: �A is a subset of
B if each element of A belongs to B� - and this means that whenever we
say that A is a subset of B, each element of A does belong to B. An extra
evidence that the word �if� is understood biconditionally are expressions �is

called�, �is said to be� and �one says that�, which introduce new words.

However, this is the only exception. In any other mathematical context a
sentence �P if Q� is not understood biconditionally.

Biconditional statements are not rare guests in the mathematical language.
They appear very often, probably, more often than in everyday English.
They are presented by the words �if and only if . In writing, this expression
is often abbreviated to a single word i�. So, we write �P i� Q� instead of
�P if and only if Q. Another way to express the same: �P is necessary and

su�cient for Q.� There is also a formula-synonym: P ⇐⇒ Q.

A conditional sentence �if P , then Q� also can be replaced by formula: P ⇒
Q. Here is a list of other ways to say the same:

• P is su�cient for Q,

• Q is necessary for P ,

• P only if Q,

• P implies Q.
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1′9. For proving equality of sets, prove two inclusions

Working with sets, we need from time to time to prove that two sets, say
A and B, which may have emerged in quite di�erent ways, are equal. The
most common way to do this is provided by the following theorem.

1.D Test for equality of sets.
A = B if and only if A ⊂ B and B ⊂ A.

Proof. We have already seen that A ⊂ A. Hence, if A = B, then, indeed, A ⊂ B and
B ⊂ A. On the other hand, A ⊂ B means that each element of A belongs to B, while
B ⊂ A means that each element of B belongs to A. Hence, A and B have the same
elements, i.e., they are equal. ���

1′10. Inclusion versus belonging

1.E x ∈ A if and only if {x} ⊂ A.
Despite this obvious relation between the notions of belonging ∈ and in-
clusion ⊂ and similarity of the symbols ∈ and ⊂, the concepts are quite
di�erent. Indeed, A ∈ B means that A is an element in B (i.e., one of the
indivisible pieces constituting B), while A ⊂ B means that A is made of
some of the elements of B.

In particular, we have A ⊂ A, while A 6∈ A for any reasonable A. Thus,
belonging is not re�exive. One more di�erence: belonging is not transitive,
while inclusion is.

1.F Non-transitivity of belonging. Construct three sets A, B, and C such
that A ∈ B and B ∈ C, but A 6∈ C. Cf. 1.C.

Construction. Take A = {1}, B = {{1}}, and C = {{{1}}}. ���

Remark. It is more di�cult to construct sets A, B, and C such that A ∈ B,
B ∈ C, and A ∈ C. Though, it is possible. Take, for example, A = {1},
B = {{1}}, and C = {{1}, {{1}}}.

1.G Non-re�exivity of belonging. Construct a set A such that A 6∈ A.
Cf. 1.A.

Construction. It is easy to construct a set A with A 6∈ A. Take A = ∅, or A = N, or
A = {1}, . . . ���

1.6 May belonging be re�exive for a set? Construct a set X such that X ∈ X.

Construction. A set X such that X ∈ X is a strange creature. It would not appear in a
real problem, unless you think really globally. Take for X the set of all sets. ���
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Mathematicians avoid such sets. There are good reasons for this. If we think overly
globally, the thoughts may become insane. If we consider the set of all sets, then why not
to consider the set Y of all sets X such that X 6∈ X? Does Y belongs to itself? If Y ∈ Y ,
then Y 6∈ Y since each element X of Y has the property that X 6∈ X. If Y 6∈ Y , then
Y ∈ Y since Y is the set of ALL sets X such that X 6∈ X. This contradiction shows that
our de�nition of Y does not make sense. An easy way to avoid this paradox is to prohibit
consideration of sets with the property X ∈ X. The set of all sets is not a legitimate set.

1′11. Intersection and union

The intersection of sets A and B is the set formed of their common elements,

i.e., elements belonging both to A and B. It is denoted by A ∩ B and
described by the formula

A ∩B = {x | x ∈ A and x ∈ B}.

Sets A and B are said to be disjoint if A ∩B = ∅. In other words, sets

are disjoint if they have no common elements.

The union of sets A and B is
the set formed by all elements that belong to at least one of the two sets.

The union of A and B is denoted by A ∪B. It is described by the formula

A ∪B = {x | x ∈ A or x ∈ B}.
Here the conjunction or should be understood in the inclusive way: the
statement �x ∈ A or x ∈ B� means that x belongs to at least one of the sets
A and B, and, maybe, to both of them. This agrees with the usage of the
word �or� commonly accepted in mathematics.

In everyday English, the word �or� is ambiguous. Sometimes the statement
�P or Q� means �P or Q, or both� and sometimes it means �P or Q, but
not both�. The intended meaning usually is recovered from the context.

Mathematicians tend to keep their language free of ambiguities. In particu-
lar, they have agreed to use the word �or� only in the �rst sense, so that the
statement �P or Q� always means �P or Q, or both.� If one means �P or Q,
but not both,� then one has to include the phrase �but not both� explicitly.

1.H Commutativity of ∩ and ∪. For any two sets A and B, we have

A ∩B = B ∩A and A ∪B = B ∪A.

1.7 Prove that for any set A we have

A ∩A = A, A ∪A = A, A ∪∅ = A, and A ∩∅ = ∅.

1.8 Prove that for any sets A and B we have2

A ⊂ B, i� A ∩B = A, i� A ∪B = B.
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1.I Associativity of ∩ and ∪. For any sets A, B, and C, we have

(A ∩B) ∩ C = A ∩ (B ∩ C) and (A ∪B) ∪ C = A ∪ (B ∪ C).

Associativity allows us not to care about brackets and sometimes even omit
them. We de�ne A∩B ∩C = (A∩B)∩C = A∩ (B ∩C) and A∪B ∪C =
(A ∪B) ∪ C = A ∪ (B ∪ C).

1′12. The notion of map

A map f of a set X to a set Y is a triple consisting of X, Y , and a rule,3

which assigns to every element of X exactly one element of Y .

There are other words with the same meaning: mapping , function, etc. (Spe-
cial kinds of maps may have special names like functional, operator, se-

quence, family , �bration, etc.)

If f is a map of X to Y , then we write f : X → Y , or X
f−→ Y . The element

b of Y assigned by f to an element a of X is denoted by f(a) and called the
image of a under f , or the f -image of a. In order to state that b = f(a), one

may write also a
f7→ b, or f : a 7→ b. We also de�ne maps by formulas like

f : X → Y : a 7→ b, where b is explicitly expressed in terms of a.

1.9 Let X and Y be sets consisting of p and q elements, respectively. Find the number
of maps X → Y .

1′13. The main classes of maps

A map f : X → Y is a surjective map, or just a surjection if every element of
Y is the image of at least one element of X. (We also say that f is onto.)
A map f : X → Y is an injective map, injection, or one-to-one map if every
element of Y is the image of at most one element of X. A map is a bijective

map, bijection if it is both surjective and injective.

1.10 Let X and Y be sets consisting of p and q elements, respectively. Find the number
of injections X → Y .

1.11* Let X and Y be sets consisting of p and q elements, respectively. Find the number

of surjections X → Y .

2Here, as usual, i� stands for �if and only if�.
3Certainly, the rule (as everything in the set theory) may be thought of as a set. Section

?? below. Namely, the rule can be converted to (or, if you prefer, encoded by) the set Γf of the
ordered pairs (x, y) with x ∈ X and y ∈ Y such that the rule assigns y to x. This is the graph of
f . It is a subset of X × Y . Recall that X × Y is the set of all ordered pairs (x, y) with x ∈ X and
y ∈ Y .
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1′14. Identity and inclusion

The identity map of a set X is the map idX : X → X : x 7→ x. It is denoted
by id if X is clear from the context. If A is a subset of X, then the map
inA : A→ X : x 7→ x is the inclusion map, or just inclusion, of A into X. It
is denoted just by in when A and X are clear.

1′15. Composition

The composition of maps f : X → Y and g : Y → Z is the map g ◦ f : X →
Z : x 7→ g

(
f(x)

)
.

1.J Associativity. h◦(g◦f) = (h◦g)◦f for any maps f : X → Y , g : Y → Z,
and h : Z → U .

Proof. Let x ∈ X. Then

h ◦ (g ◦ f)(x) = h(g ◦ f)(x)) = h(g(f(x))) = (h ◦ g)(f(x)) = (h ◦ g) ◦ f(x).

1.K f ◦ idX = f = idY ◦f for any f : X → Y .

1.L A composition of injections is injective.

Proof. Let x1 6= x2. Then f(x1) 6= f(x2) because f is injective, and g(f(x1)) 6= g(f(x2))

because g is injective.

1.M If the composition g ◦ f is injective, then so is f .

Proof. If f is not injective, then there exist x1 6= x2 with f(x1) = f(x2). However, then

(g ◦ f)(x1) = (g ◦ f)(x2), which contradicts the injectivity of g ◦ f .

1.N A composition of surjections is surjective.

Proof. Let f : X → Y and g : Y → Z be surjective. Then we have f(X) = Y , whence

g(f(X)) = g(Y ) = Z.

1.O If the composition g ◦ f is surjective, then so is g.

Proof. This follows from the obvious inclusion Im(g ◦ f) ⊂ Im g.

1.P A composition of bijections is a bijection.

Proof. This follows from 1.L and 1.N.

1.12 Let a composition g ◦ f be bijective. Is then f or g necessarily bijective?

1′16. Inverse and invertible

A map g : Y → X is inverse to a map f : X → Y if g ◦ f = idX and
f ◦ g = idY . A map having an inverse map is invertible.
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1.Q A map is invertible i� it is a bijection.

Proof. Use 1.M and 1.O. Let f : X → Y be a bijection. Then, by the

surjectivity, for each y ∈ Y there exists x ∈ X such that y = f(x), and, by the injectivity,

such an element of X is unique. Putting g(y) = x, we obtain a map g : Y → X. It is easy

to check (please, do it!) that g is inverse to f .

1.R If an inverse map exists, then it is unique.

Proof. This is actually obvious. On the other hand, it is interesting to look at a �mechan-

ical� proof. Let two maps g, h : Y → X be inverse to a map f : X → Y . Consider the

composition g◦f ◦h : Y → X. On the one hand, we have g◦f ◦h = (g◦f)◦h = idX ◦h = h.

On the other hand, we have g ◦ f ◦ h = g ◦ (f ◦ h) = g ◦ idY = g.

2. Numbers

2′1. Natural numbers

For most people, mathematics starts with numbers. Everybody knows nat-
ural numbers. They are 1, 2, 3, 4, 5, . . . . Natural numbers are used to count
the number of elements in �nite sets. The nature of the set and its elements
does not matter.

Natural numbers come with several structures. They are ordered: 1 < 2 <
3 < 4 < . . . . Arithmetic operations can be performed on natural numbers.
Natural numbers come with a whole package of these things. That's what
we mean speaking about the system of natural numbers.

Then other systems of numbers come, because natural numbers are insu�-
cient for many purposes. Some objects that we count can be split into pieces,
and to take the pieces into account, one need to extend the notion of number
and introduce fractions. Then similarly one needs to add negative numbers.
Then one realizes that some quantities are not co-measurable and various
sorts of real numbers appear. Then one realizes that real numbers do not al-
low us to solve some equations, and we add complex numbers. Then. . . This
process continues further, although the school frameworks do not reach that
far.

The beginning of the process hides in the memory of childhood. In these
notes, it is revisited. We start with the natural numbers. The goal is to show
the roots and reasonings that lie behind the notions which are commonly
known.
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Natural numbers are so close to the
basics of the human nature that most
mathematicians prefer to consider them
given by God. Indeed, there is a famous
phrase attributed to a German mathemati-
cian Leopold Kronecker: �God created the
natural numbers, and all the rest is the
work of man.� The other numbers, like inte-
gers, rational numbers, real numbers, com-
plex numbers, etc. can be built up of the
natural numbers given by God.

Leopold Kronecker (1823-1891)

The natural numbers are important habitants of the mathematical universe.
The set of all natural numbers is denoted by a special symbol N. This is
a rare honor for an object in the mathematical world to possess a special
commonly accepted notation.

As usual, what is claimed to be given by God can be explained without him.

2′2. Cardinal numbers

Numbers can be built up out of the task that they serve for. A natural
number is used to measure the number of elements in a set. Thus a natural
number can be described via the sets that have this number of elements.

Sets with the same number of elements admit a bijection of one to the other.

2.A Existence of bijections between sets is an equivalence relation.

Observe that this theorem is true for any sets (not only for �nite ones). Let
us formulate it more explicitly, with extra details. These extra details really
prove it.

• For each set X there exists a bijection X → X. In particular, the
identity map id : X → X (which maps each a ∈ X to the same a)
is a bijection.

• If there exists a bijection f : X → Y , then there exists a bijection

Y → X. In particular, the inverse map f−1 : Y → X is a bijection.

• If there exist bijections f : X → Y and g : Y → Z, then there exists

a bijection X → Z. In particular, the composition g ◦ f : X → Z is
a bijection.

These statements mean, respectively, re�exivity, symmetry, and transitivity
of the relation �there exists a bijection X → Y .� Thus this relation is an
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equivalence relation. Sets X and Y such that there exists a bijection X → Y
are said to be equinumerous or equipotent.

An equivalence relation de�nes a partition of all sets into classes of equivalent
sets (called also equivalence classes). Equivalence classes for the relation of
being equinumerous are called cardinal numbers. The cardinal number of a
setX is denoted by card(X). This is the class of all sets that admit bijections
to X (and hence to each other).

A set can be either �nite or in�nite. Natural numbers are the cardinal
numbers of �nite sets. Although our main interest is the system of natural
numbers, for a while we will study a broader system of all cardinal numbers.
We will restrict ourselves to natural numbers as soon as we will come across
the properties that are not shared with all cardinal numbers.

2′3. Operations with sets and numbers

Arithmetic operations with numbers come from the corresponding operations
with �nite sets.

Addition is related to union: the number of elements in the union of sets A
and B is the sum of the numbers of elements in A and in B, provided A and
B are disjoint (i.e., A ∩B = ∅).

Similarly, multiplication of numbers is related to the corresponding operation
with sets. The (Cartesian) product of sets A and B is the set of ordered pairs
(a, b) with the �rst element a taken from A and the second element b taken
from B:

A×B = {(a, b) | a ∈ A, b ∈ B}.

The number of A × B is the product of the numbers of elements in A and
in B.

The union and Cartesian product operations are de�ned for arbitrary sets,
no matter �nite or in�nite. This motivates the following generalizations
of addition and multiplication from natural numbers to arbitrary cardinal
numbers. Most important properties are preserved under the generalizations.
This gives an opportunity to revisit the properties and discuss their nature
and proofs in the new high generality.

Let a and b be cardinal numbers. Their sum a+ b is de�ned as the cardinal
number of the union A ∪ B of any two disjoint sets A and B that have
cardinal numbers a and b, respectively.

This de�nition requires a proof. Indeed, it presumes that the cardinal num-
ber of A ∪B does not depend on choice of A and B. Let us prove that this
is really the case.
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Let A′ and B′ be other disjoint sets with cardinal numbers a and b. Then
there exist bijections f : A → A′ and g : B → B′, and they de�ne a map
A ∪ B → A′ ∪ B′ which coincides with f on A and with g on B. Since
A ∩ B = ∅, this map is well-de�ned. (If the intersection was not empty,
there could be ambiguity for a common element of A and B: maps f and g
could map it to di�erent elements.) The map A∪B → A′ ∪B′ de�ned by f
and g is bijective, since f and g are bijective. ���

The operation of union is associative and commutative, therefore the ad-
dition of cardinal numbers is associative and commutative. (Recall that
associativity means (a + b) + c = a + (b + c), and commutativity means
a+ b = b+ a.)

Multiplication of cardinal numbers is de�ned similarly: the product a · b of
cardinal numbers a and b is de�ned as the cardinal number of the Carte-
sian product A × B of sets A and B that have cardinal numbers a and b,
respectively.

Like the de�nition of sum of cardinal numbers above, this de�nition requires
a proof of independence on the choice of A and B. Let A′ and B′ be other
sets with cardinal numbers a and b and let f : A → A′ and g : B → B′ be
bijections. Then one can build up a bijection A×B → A′ ×B′. Namely let
us map (a, b) to (f(a), g(b)). This map is invertible, the inverse to it is made
out of the maps inverse to f and g in the same manner.

Multiplication of cardinal numbers has the same properties as the multipli-
cation of natural numbers.

2.B . Commutativity of multiplication.. For any cardinal numbers a and b,

a · b = b · a

Proof. Let A and B be sets with cardinal numbers a and b, respectively. Then A×B has
cardinal number a · b and B × A has cardinal number b · a. The equality between these
cardinal numbers follows from existence of the bijection A×B → B×A. Such a bijection
is de�ned by the formula (a, b) 7→ (b, a). ���

2.C . Associativity of multiplication.. For any cardinal numbers a, b and c,

(a · b) · c = a · (b · c).

Proof. Let A, B and C be sets with cardinal numbers a, b and c, respectively. The theorem
is proved by constructing a bijection (A×B)×C → A× (B×C). This is done by formula
((a, b), c) 7→ (a, (b, c)). This is nothing but a bare rearrangement of parantheses. ���

2.D . Distributivity.. For any cardinal numbers a, b and c,

(a+ b) · c = a · c+ b · c.

Proof. Let A, B and C be sets with cardinal numbers a, b and c, respectively. Assume
that A∩B = ∅. Then the set (A∪B)×C has cardinal number (a+ b) · c. The sets A×C
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and B × C are disjoint, the set (A × C) ∪ (B × C) has cardinal number a · c + b · c and
(A ∪B)× C = (A× C) ∪ (B × C). ���

2′4. The zero

The cardinal number of ∅ is called the zero and denoted by 0. Sometimes
it is considered a natural number, sometimes not. Historically it appeared
much later than other natural numbers.

The empty set is disjoint with any set A. Obviously, A ∪∅ = A for any set
A. Thus a+ 0 = a for any cardinal number a.

What is a · 0? In order to answer to this question, consider an arbitrary set
A and its product by the empty set. The set A × ∅ consists of pairs (x, y)
where x in an element of A and y is an element of ∅. However, ∅ has no
element. Thus A×∅ = ∅ and a · 0 = 0 for any cardinal number a.

2′5. The one

A set consisting of a single element is called a singleton. For whatever object
A one can construct the set that consists just of this object. It is denoted
by {A}. The object A may be a set itself, and may contain lots of elements,
or may have no elements at all (this happens if A = ∅), but speaking about
{A} we keep in mind only one thing, as an element: A. The set {∅} is
not empty, it is a singleton, it has the only element, and this element is the
empty set ∅.

Between two singletons X and Y only one map exists: the only element of
X is mapped to the only element of Y . In other words, the set of all maps
from a singleton to a singleton is a singleton.

Notice that the only map from a singleton to a singleton is a bijection. Thus
all the singletons are equinumerous. The cardinal number represented by
them is called one and denoted by 1.

2.E For any cardinal number a, the product a · 1 equals a.

Proof. Let A be a set with card(A) = a and B be a singleton, B = {y}. Then card(A×
B) = a · 1. Bijection A×B → A : (x, y) 7→ x proves the equality a · 1 = a. ���

2′6. Ordering of cardinal numbers

2.F Let X, Y be sets and X 6= ∅. An injection X → Y exists if and only if

a surjection Y → X exists.

Proof. If ϕ : X → Y is an injection. Consider a map ψ : X → ϕ(X) de�ned by ϕ. It maps
each a ∈ X to ϕ(a). The map ψ is both injection (as a submap of injection) and surjection.
Hence, it is a bijection, and is invertible. Take the inverse map ψ−1 : ϕ(X) → X and
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extend it somehow to the whole Y ⊃ ϕ(X). Since X 6= ∅, there exists an element a ∈ X,
and we can map to a each element b of Y which does not belong to ϕ(X). The extended
map Y → X is surjective, because even its restriction to ϕ(X) is surjective.

Now assume that there is a surjective map ψ : Y → X. For each a ∈ X, its preimage
ψ−1(a) = {b ∈ Y | ψ(b) = a} is not empty (becuase of surjectivity of ψ). Choose for each
a ∈ X an element from the ψ−1(a) and denote it by φ(a). This de�nes a map φ : X → Y .
It is injective, because for any two distinct a, a′ ∈ X the preimages ψ−1(a) and ψ−1(a′),
from which we selected φ(a) and φ(a′), are disjoint. ���

Observe that we used the assumption X 6= ∅ only in the �rst part of the
proof, when we proved that existence of injection implies existence of surjec-
tion in the opposite direction. The assumption is indeed necessary, because
the empty set is mapped injectively into any set, while a non-epmty set does
not admit any map into the empty one.

A cardinal number a is said to be not greater than a cardinal number b if for
a set A with cardinal number a and B with cardinal number b there exists
an injection A → B. The statement a is not greater than b is expressed by
formula a ≤ b (the same formula as for usual numbers).

2.1 Prove that this de�nition is correct: the existence of injection does not depend on
the choice of representatives A and B of a and b.

Notice that this inequality is not strict: an injection A→ B may happen to
be a bijection, and existence of bijection ensures that a = b.

Moreover, existence on injection which is not a bijection does not contradict
to the equality. Indeed, there exists a non-bijective injections N → N, for
example, N→ N : n 7→ n+ 1.

The inequality for cardinal numbers has the usual properties of non-strict
inequality:

• Re�exivity. a ≤ a for any cardinal number a;

• Transitivity. if a ≤ b and b ≤ c, then a ≤ c for any cardinal
numbers a, b, c;

• Totality. a ≤ b or b ≤ a for any cardinal numbers a, b;

• Antisymmetry. if a ≤ b and b ≤ a, then a = b.

The last property, antisymmetry, is well-known as Cantor-Bernstein-Schroeder
theorem. There is a nice elementary proof, see wikipedia. The others have
easier proofs, that are left to the reader as exercises.

Overall, the part of theory of cardinal numbers outlined above provides a
clear and elementary foundation for the standard order in the set of natural
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numbers. However, there are speci�c properties of �nite cardinal numbers
(i.e., natural numbers), that force us to stay with natural numbers.

2′7. Special properties of �nite sets and numbers

What set is �nite? Intuitive idea of �nite set is that its elements can be
enumerated by �nitely many natural numbers.

There are properties distinguishing �nite sets from in�nite ones and formu-
lated without use of numbers. Probably the most convenient of them is this
one:

2.G (Dedekind). A set X is �nite if and only if there exists no injective

but not surjective map X → X.

Proof. Assume that an injective non-surjective map f : X → X exists.

Then X r f(X) 6= ∅. It is mapped by f bi-
jectively onto f(X r f(X)) = f(X) r f(f(X)),
which in turn is mapped by f bijectively onto
f(f(X)) r f(f(f(X))), etc. Notice that these
sets are pairwise disjoint and non-empty. Take
an element of the �rst of them, a ∈ X such that
a 6∈ f(X). It gives rise to an in�nite sequence
a, f(a), f(f(a)), f(f(f(a))), . . . . Thus, X is in�-
nite as it contains an in�nite set. Richard Dedekind (1831-1916)

Assume that X is in�nite. Then it contains an in�nite sequence x1, x2, x3, . . . of pairwise
distinct elements. Construct the map that maps xi to xi+1 and is identity on the comple-
ment of the {x1, x2, x3, . . . }. This map is injection, but x1 does not belong to its image,
therefore it is not bijective. ���

2.H Corollary. A set X is �nite if and only if there exists no surjective

non-bijective map X → X.

Proof. It follows from theorems 2.G and 2.F. ���

2.I Corollary. a = a+ 1 for any in�nite cardinal number a.

Proof. First, notice that a ≤ a + 1. On the other hand, let A be a set with cardA = a.
By Theorem 2.G, there is an injective but not surjective map f : A → A. Let {b} be a
singleton with b 6∈ A. Let a ∈ Arf(A). De�ne a map A∪{b} → A as f on A and sending
b to a. It is injective. So a+ 1 ≤ a. Hence a+ 1 = a. ���

2′8. Making natural numbers out of nothing

The empty set allows to generate some simple non-empty sets. For example,
the set {∅} consists of a single element, which is the empty set ∅. The
cardinal number of {∅} is called one and denoted by 1.
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Then one can create a set {∅, {∅}} consisting of two elements: ∅ and {∅}.
The cardinal number of this set is called two and denoted by 2.

And so on. . . Each next set is obtained by adjoining to the preceding one a
single new element. In the desertous environment of initial notions of the
set theory for this extra element we may take just the preceding set, which
was just cooked up in the preceding step.

The �rst sets in the sequence looks as follows:

{∅},
{∅, {∅}},
{∅, {∅}, {∅, {∅}}},
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},
. . .

More generally, for every set X we de�ne the successor X+ of X to be the set
obtained by adjoiningX to the elements ofX; in other wordsX+ = X∪{X}.
The same notation will be used for the cardinal numbers: if x denotes the
cardinal number of a set X, then x+ denotes the cardinal number of the set
X+. Then the (canonical sets representing) natural numbers are de�ned as
follows.

0 = card(∅),

1 =0+ = card(∅+) = card({∅}),
2 =1+ = card({∅}+) card({∅, {∅}}),
3 =2+ = card({∅, {∅}}+) = card{∅, {∅}, {∅, {∅}},
. . .

The cardinal numbers 1, 2, 3, . . . obtained in this construction, can be iden-
ti�ed with the natural numbers sharing their names.

Notice that the set of numbers {0, 1, 2, . . . , n} has cardinal number n+. So,
the construction above can be also described by formula

n+ = card({0, 1, 2, . . . , n}).

Observe also that n+ = n+ 1 for any cardinal number n.

2′9. Axioms for natural numbers

The natural numbers line up in the order of increase. It starts from number
1. Then for each natural number n there is the next one, the number n+ 1,
the successor of n which is greater than than n by one. It di�ers from all
the preceding numbers.



2. Numbers 19

This well-known image is formalized
by Peano axioms. In 1889 a young
Italian mathematician Giuseppe
Peano published a collection of �ve
axioms in his book, The principles of

arithmetic presented by a new method

(Latin: Arithmetices principia, nova

methodo exposita).
Giuseppe Peano (1858-1932) in 1887.

Peano axiom 1. There is number 1 ∈ N.

Peano axiom 2. For any n ∈ N there exists a unique n′ ∈ N, called the
successor of n.

Peano axiom 3. For all n ∈ N, n′ 6= 1.

Peano axiom 4. Given elements n and m in N, if n′ = m′ then n = m.

Peano axiom 5. If K is a subset of N such that 1 ∈ K, and together
with each element n of K the successor n′ of n is also contained in K, then
K = N.

In the contemporary mathematical language these axioms describe N as

• a set containing an element 1 (this is Peano axiom 1)

• and equipped with a map n 7→ n′ (this is Peano axiom 2)

• which is injective (Peano axiom 3)

• and such that the image of this map is contained in Nr{1} (Peano
axiom 4)

• and the only subset of N containing 1 and invariant under the map
n 7→ n′ is the whole N. (Peano axiom 5).

Peano axiom 5 is related to proofs by mathematical induction. Let someone
want to prove for each n a statement S(n), which depends on a natural
number n. Denote by K the set of numbers n for which S(n) is true. To
prove S(n) for all values of n is equivalent to proving that K = N. Peano
axiom 5 claims that for this it su�ces to prove S(1) (i.e., to prove that
1 ∈ K) and to prove implication S(n) ⇒ S(n + 1) (i.e., together with each
n ∈ K the successor n′ of n is also contained in K.)

Exercises

1. Prove that n′ 6= n for any n ∈ N.

2. Prove that the image of map n 7→ n′ is N r {1}.
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This can be reformulated as follows: for each n ∈ N such that n 6= 1 there exists m ∈ N
such that n = m′.

3. Prove that the map N→ N r {1} : n 7→ n′ is invertible.

In other words, the successor of a natural number de�nes the number uniquely.

The arithmetic operations (addition and multiplication) in the Peano setup
are de�ned axiomatically.

The following two properties de�ne addition:

(1) n+ 1 = n′

(2) p+ q′ = (p+ q)′ for all p and q in N.

These properties can be used to prove associativity and commutativity of
addition.

Multiplication is de�ned by similar properties

(1) n · 1 = n

(2) p · q′ = p+ (p · q).

Peano axioms provide a cumbersome, but logically clean and self-contained
approach to natural numbers.
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