2.35 Basis length does not depend on basis.

2.35 **Basis length does not depend on basis.**

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

Let B_1, B_2 be two bases of V.

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

Let B_1, B_2 be two bases of V . Then B_1 is linearly independent, B_2 spans V

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

Let B_1, B_2 be two bases of V. Then B_1 is linearly independent, B_2 spans $V \implies length(B_1) \le length(B_2)$.

2.35 **Basis length does not depend on basis.**

```
Let B_1, B_2 be two bases of V. Then B_1 is linearly independent, B_2 spans V \implies length(B_1) \leq length(B_2). B_2 is linearly independent, B_1 spans V
```

2.35 **Basis length does not depend on basis.**

```
Let B_1, B_2 be two bases of V.

Then B_1 is linearly independent, B_2 spans V \implies length(B_1) \leq length(B_2).

B_2 is linearly independent, B_1 spans V \implies length(B_1) \geq length(B_2).
```

2.35 **Basis length does not depend on basis.**

```
Let B_1, B_2 be two bases of V.

Then B_1 is linearly independent, B_2 spans V \implies length(B_1) \leq length(B_2).

B_2 is linearly independent, B_1 spans V \implies length(B_1) \geq length(B_2).

Hence length(B_1) = length(B_2).
```

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

```
Let B_1, B_2 be two bases of V.

Then B_1 is linearly independent, B_2 spans V \implies length(B_1) \leq length(B_2).

B_2 is linearly independent, B_1 spans V \implies length(B_1) \geq length(B_2).

Hence length(B_1) = length(B_2).
```

2.36 **Definition** The **dimension** $\dim V$ of a finite-dimensional vector space V

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

```
Let B_1, B_2 be two bases of V.

Then B_1 is linearly independent, B_2 spans V \implies length(B_1) \leq length(B_2).

B_2 is linearly independent, B_1 spans V \implies length(B_1) \geq length(B_2).

Hence length(B_1) = length(B_2).
```

2.36 **Definition** The **dimension** $\dim V$ of a finite-dimensional vector space V is the length of any basis of V.

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

```
Let B_1, B_2 be two bases of V.

Then B_1 is linearly independent, B_2 spans V \implies length(B_1) \leq length(B_2).

B_2 is linearly independent, B_1 spans V \implies length(B_1) \geq length(B_2).

Hence length(B_1) = length(B_2).
```

2.36 **Definition** The **dimension** $\dim V$ of a finite-dimensional vector space V is the length of any basis of V.

2.37 Examples $\dim \mathbb{F}^n = n$,

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

```
Let B_1, B_2 be two bases of V.

Then B_1 is linearly independent, B_2 spans V \implies length(B_1) \leq length(B_2).

B_2 is linearly independent, B_1 spans V \implies length(B_1) \geq length(B_2).

Hence length(B_1) = length(B_2).
```

2.36 **Definition** The **dimension** $\dim V$ of a finite-dimensional vector space V is the length of any basis of V.

2.37 Examples $\dim \mathbb{F}^n = n$, $\dim \mathcal{P}_m(\mathbb{F}) =$

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

```
Let B_1, B_2 be two bases of V.

Then B_1 is linearly independent, B_2 spans V \implies length(B_1) \leq length(B_2).

B_2 is linearly independent, B_1 spans V \implies length(B_1) \geq length(B_2).

Hence length(B_1) = length(B_2).
```

2.36 **Definition** The **dimension** $\dim V$ of a finite-dimensional vector space V is the length of any basis of V.

2.37 Examples $\dim \mathbb{F}^n = n$, $\dim \mathcal{P}_m(\mathbb{F}) = m+1$.

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

```
Let B_1, B_2 be two bases of V.

Then B_1 is linearly independent, B_2 spans V \implies length(B_1) \leq length(B_2).

B_2 is linearly independent, B_1 spans V \implies length(B_1) \geq length(B_2).

Hence length(B_1) = length(B_2).
```

2.36 **Definition** The **dimension** $\dim V$ of a finite-dimensional vector space V is the length of any basis of V.

2.37 Examples $\dim \mathbb{F}^n = n$, $\dim \mathcal{P}_m(\mathbb{F}) = m+1$.

Warning Dimension depends on the field:

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

```
Let B_1, B_2 be two bases of V.

Then B_1 is linearly independent, B_2 spans V \implies length(B_1) \leq length(B_2).

B_2 is linearly independent, B_1 spans V \implies length(B_1) \geq length(B_2).

Hence length(B_1) = length(B_2).
```

2.36 **Definition** The **dimension** $\dim V$ of a finite-dimensional vector space V is the length of any basis of V.

2.37 Examples $\dim \mathbb{F}^n = n$, $\dim \mathcal{P}_m(\mathbb{F}) = m+1$.

Warning Dimension depends on the field: $\dim_{\mathbb{C}} \mathbb{C}^n = n$, while $\dim_{\mathbb{R}} \mathbb{C}^n = 2n$.

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

Let B_1, B_2 be two bases of V.

Then B_1 is linearly independent, B_2 spans $V \implies length(B_1) \leq length(B_2)$. B_2 is linearly independent, B_1 spans $V \implies length(B_1) \geq length(B_2)$.

Hence $length(B_1) = length(B_2)$.

- 2.36 **Definition** The **dimension** $\dim V$ of a finite-dimensional vector space V is the length of any basis of V.
- 2.37 Examples $\dim \mathbb{F}^n = n$, $\dim \mathcal{P}_m(\mathbb{F}) = m+1$.

Warning Dimension depends on the field: $\dim_{\mathbb{C}} \mathbb{C}^n = n$, while $\dim_{\mathbb{R}} \mathbb{C}^n = 2n$.

2.38 Dimension of a subspace \leq dimension of space.

2.35 **Basis length does not depend on basis.**

Any two bases of a finite-dimensional vector space have the same length.

Let B_1, B_2 be two bases of V. Then B_1 is linearly independent, B_2 spans $V \implies length(B_1) \le length(B_2)$.

 B_2 is linearly independent, B_1 spans $V \implies length(B_1) \ge length(B_2)$.

Hence $length(B_1) = length(B_2)$.

- 2.36 **Definition** The **dimension** $\dim V$ of a finite-dimensional vector space V is the length of any basis of V.
- 2.37 Examples $\dim \mathbb{F}^n = n$, $\dim \mathcal{P}_m(\mathbb{F}) = m+1$.

Warning Dimension depends on the field: $\dim_{\mathbb{C}} \mathbb{C}^n = n$, while $\dim_{\mathbb{R}} \mathbb{C}^n = 2n$.

2.38 **Dimension of a subspace** \leq **dimension of space.** If U is a subspace of a finite-dimensional vector space V, then $\dim U \leq \dim V$.

2.39 Linearly independent list of the right length is a basis.

2.39 Linearly independent list of the right length is a basis.

Proof. A linearly independent list can be extended to a basis

2.39 Linearly independent list of the right length is a basis.

Proof. A linearly independent list can be extended to a basis,

but the length cannot increase.

■

2.39 Linearly independent list of the right length is a basis.

Proof. A linearly independent list can be extended to a basis,

but the length cannot increase.

2.41 Example

 $1,(x-5)^2,(x-5)^3$ is a basis of the subspace $\{p\in\mathcal{P}_3(\mathbb{R})\mid p'(5)=0\}$ of $\mathcal{P}_3(\mathbb{R})$.

2.39 Linearly independent list of the right length is a basis.

Proof. A linearly independent list can be extended to a basis,

but the length cannot increase.

2.41 Example

 $1,(x-5)^2,(x-5)^3$ is a basis of the subspace $\{p\in\mathcal{P}_3(\mathbb{R})\mid p'(5)=0\}$ of $\mathcal{P}_3(\mathbb{R})$.

2.42 **Spanning list of the right length is a basis.**

2.39 Linearly independent list of the right length is a basis.

Proof. A linearly independent list can be extended to a basis,

but the length cannot increase.

2.41 Example

 $1,(x-5)^2,(x-5)^3$ is a basis of the subspace $\{p\in\mathcal{P}_3(\mathbb{R})\mid p'(5)=0\}$ of $\mathcal{P}_3(\mathbb{R})$.

2.42 **Spanning list of the right length is a basis.**

Proof. A spanning list can be reduced to a basis

2.39 Linearly independent list of the right length is a basis.

Proof. A linearly independent list can be extended to a basis,

but the length cannot increase. ■

2.41 Example

 $1,(x-5)^2,(x-5)^3$ is a basis of the subspace $\{p\in\mathcal{P}_3(\mathbb{R})\mid p'(5)=0\}$ of $\mathcal{P}_3(\mathbb{R})$.

2.42 **Spanning list of the right length is a basis.**

Proof. A spanning list can be reduced to a basis, but the length cannot decrease.

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space,

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space, $\dim(U_1+U_2)=\dim U_1+\dim U_2-\dim(U_1\cap U_2)$

Proof. Let u_1, \ldots, u_m be a basis of $U_1 \cap U_2$.

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space, $\dim(U_1+U_2)=\dim U_1+\dim U_2-\dim(U_1\cap U_2)$

Proof. Let u_1,\ldots,u_m be a basis of $U_1\cap U_2$. Extend it to a basis $u_1,\ldots,u_m,v_1,\ldots,v_j$ of U_1 ,

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space, $\dim(U_1+U_2)=\dim U_1+\dim U_2-\dim(U_1\cap U_2)$

Proof. Let u_1, \ldots, u_m be a basis of $U_1 \cap U_2$.

Extend it to a basis $u_1, \ldots, u_m, v_1, \ldots, v_j$ of U_1 , and a basis $u_1, \ldots, u_m, w_1, \ldots, w_k$ of U_2 .

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space, $\dim(U_1+U_2)=\dim U_1+\dim U_2-\dim(U_1\cap U_2)$

Proof. Let u_1,\ldots,u_m be a basis of $U_1\cap U_2$. Extend it to a basis $u_1,\ldots,u_m,v_1,\ldots,v_j$ of U_1 , and a basis $u_1,\ldots,u_m,w_1,\ldots,w_k$ of U_2 . Clearly, $U_1,U_2\subset \operatorname{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k)$.

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space, $\dim(U_1+U_2)=\dim U_1+\dim U_2-\dim(U_1\cap U_2)$

Proof. Let u_1,\ldots,u_m be a basis of $U_1\cap U_2$. Extend it to a basis $u_1,\ldots,u_m,v_1,\ldots,v_j$ of U_1 , and a basis $u_1,\ldots,u_m,w_1,\ldots,w_k$ of U_2 . Clearly, $U_1,U_2\subset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k)$. Hence $U_1+U_2\subset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k)$.

```
Proof. Let u_1,\ldots,u_m be a basis of U_1\cap U_2. Extend it to a basis u_1,\ldots,u_m,v_1,\ldots,v_j of U_1, and a basis u_1,\ldots,u_m,w_1,\ldots,w_k of U_2. Clearly, U_1,U_2\subset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k). Hence U_1+U_2\subset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k). Clearly, U_1+U_2\supset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k).
```

```
Proof. Let u_1,\ldots,u_m be a basis of U_1\cap U_2. Extend it to a basis u_1,\ldots,u_m,v_1,\ldots,v_j of U_1, and a basis u_1,\ldots,u_m,w_1,\ldots,w_k of U_2. Clearly, U_1,U_2\subset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k). Hence U_1+U_2\subset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k). Clearly, U_1+U_2\supset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k). Hence U_1+U_2=\mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k).
```

```
Proof. Let u_1,\ldots,u_m be a basis of U_1\cap U_2. Extend it to a basis u_1,\ldots,u_m,v_1,\ldots,v_j of U_1, and a basis u_1,\ldots,u_m,w_1,\ldots,w_k of U_2. Clearly, U_1,U_2\subset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k). Hence U_1+U_2\subset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k). Clearly, U_1+U_2\supset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k). Hence U_1+U_2=\mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k). Let us prove that the list u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k is linearly indepedent.
```

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space,

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Proof. Let u_1, \ldots, u_m be a basis of $U_1 \cap U_2$.

Extend it to a basis $u_1, \ldots, u_m, v_1, \ldots, v_j$ of U_1 , and a basis $u_1, \ldots, u_m, w_1, \ldots, w_k$ of U_2 .

Clearly, $U_1, U_2 \subset \operatorname{span}(u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k)$.

Hence $U_1 + U_2 \subset \operatorname{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Clearly, $U_1+U_2\supset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k)$.

Hence $U_1 + U_2 = \text{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Let us prove that the list $u_1, \ldots, u_m, v_1, \ldots, v_i, w_1, \ldots, w_k$ is linearly indepedent.

Let $a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_jv_j + c_1w_1 + \cdots + c_kw_k = 0$.

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space,

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Proof. Let u_1, \ldots, u_m be a basis of $U_1 \cap U_2$.

Extend it to a basis $u_1, \ldots, u_m, v_1, \ldots, v_j$ of U_1 , and a basis $u_1, \ldots, u_m, w_1, \ldots, w_k$ of U_2 .

Clearly, $U_1, U_2 \subset \operatorname{span}(u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k)$.

Hence $U_1 + U_2 \subset \operatorname{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Clearly, $U_1+U_2\supset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k)$.

Hence $U_1 + U_2 = \text{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Let us prove that the list $u_1, \ldots, u_m, v_1, \ldots, v_i, w_1, \ldots, w_k$ is linearly indepedent.

Let $a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_jv_j + c_1w_1 + \cdots + c_kw_k = 0$. Rewrite as $c_1w_1 + \cdots + c_kw_k = -a_1u_1 - \cdots - a_mu_m - b_1v_1 - \cdots - b_jv_j$.

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space,

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Proof. Let u_1, \ldots, u_m be a basis of $U_1 \cap U_2$.

Extend it to a basis $u_1, \ldots, u_m, v_1, \ldots, v_j$ of U_1 , and a basis $u_1, \ldots, u_m, w_1, \ldots, w_k$ of U_2 .

Clearly, $U_1, U_2 \subset \operatorname{span}(u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k)$.

Hence $U_1 + U_2 \subset \operatorname{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Clearly, $U_1+U_2\supset \operatorname{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k)$.

Hence $U_1 + U_2 = \text{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Let us prove that the list $u_1, \ldots, u_m, v_1, \ldots, v_i, w_1, \ldots, w_k$ is linearly indepedent.

Let $a_1u_1+\cdots+a_mu_m+b_1v_1+\cdots+b_jv_j+c_1w_1+\cdots+c_kw_k=0\,.$ Rewrite as $c_1w_1+\cdots+c_kw_k=-a_1u_1-\cdots-a_mu_m-b_1v_1-\cdots-b_jv_j\,.$ Hence $c_1w_1+\cdots+c_kw_k\in U_1\cap U_2$

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space,

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Proof. Let u_1, \ldots, u_m be a basis of $U_1 \cap U_2$.

Extend it to a basis $u_1, \ldots, u_m, v_1, \ldots, v_j$ of U_1 , and a basis $u_1, \ldots, u_m, w_1, \ldots, w_k$ of U_2 .

Clearly, $U_1, U_2 \subset \operatorname{span}(u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k)$.

Hence $U_1 + U_2 \subset \operatorname{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Clearly, $U_1+U_2\supset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k)$.

Hence $U_1 + U_2 = \text{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Let us prove that the list $u_1, \ldots, u_m, v_1, \ldots, v_i, w_1, \ldots, w_k$ is linearly indepedent.

Let $a_1u_1+\cdots+a_mu_m+b_1v_1+\cdots+b_jv_j+c_1w_1+\cdots+c_kw_k=0.$ Rewrite as $c_1w_1+\cdots+c_kw_k=-a_1u_1-\cdots-a_mu_m-b_1v_1-\cdots-b_jv_j.$ Hence $c_1w_1+\cdots+c_kw_k\in U_1\cap U_2 \text{ , and } c_1w_1+\cdots+c_kw_k=d_1u_1+\cdots+d_mu_m \text{ .}$

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space,

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Proof. Let u_1, \ldots, u_m be a basis of $U_1 \cap U_2$.

Extend it to a basis $u_1, \ldots, u_m, v_1, \ldots, v_j$ of U_1 , and a basis $u_1, \ldots, u_m, w_1, \ldots, w_k$ of U_2 .

Clearly, $U_1, U_2 \subset \operatorname{span}(u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k)$.

Hence $U_1 + U_2 \subset \operatorname{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Clearly, $U_1+U_2\supset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k)$.

Hence $U_1 + U_2 = \text{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Let us prove that the list $u_1, \ldots, u_m, v_1, \ldots, v_i, w_1, \ldots, w_k$ is linearly indepedent.

Let $a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_jv_j + c_1w_1 + \cdots + c_kw_k = 0$.

Rewrite as $c_1w_1 + \cdots + c_kw_k = -a_1u_1 - \cdots - a_mu_m - b_1v_1 - \cdots - b_jv_j$.

Hence $c_1w_1+\cdots+c_kw_k\in U_1\cap U_2$, and $c_1w_1+\cdots+c_kw_k=d_1u_1+\cdots+d_mu_m$.

Hence $c_i = 0$ and $d_i = 0$ for all i.

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space, $\dim(U_1+U_2)=\dim U_1+\dim U_2-\dim(U_1\cap U_2)$

Proof. Let
$$u_1, \ldots, u_m$$
 be a basis of $U_1 \cap U_2$.

Extend it to a basis $u_1, \ldots, u_m, v_1, \ldots, v_j$ of U_1 , and a basis $u_1, \ldots, u_m, w_1, \ldots, w_k$ of U_2 .

Clearly, $U_1, U_2 \subset \operatorname{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Hence $U_1 + U_2 \subset \operatorname{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Clearly, $U_1+U_2\supset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k)$.

Hence $U_1 + U_2 = \mathrm{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Let us prove that the list $u_1, \ldots, u_m, v_1, \ldots, v_i, w_1, \ldots, w_k$ is linearly indepedent.

Let $a_1u_1+\cdots+a_mu_m+b_1v_1+\cdots+b_jv_j+c_1w_1+\cdots+c_kw_k=0$. Rewrite as $c_1w_1+\cdots+c_kw_k=-a_1u_1-\cdots-a_mu_m-b_1v_1-\cdots-b_jv_j$. Hence $c_1w_1+\cdots+c_kw_k\in U_1\cap U_2$, and $c_1w_1+\cdots+c_kw_k=d_1u_1+\cdots+d_mu_m$. Hence $c_i=0$ and $d_i=0$ for all i. Hence $a_1u_1+\cdots+a_mu_m+b_1v_1+\cdots+b_jv_j=0$.

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space,

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Proof. Let u_1, \ldots, u_m be a basis of $U_1 \cap U_2$.

Extend it to a basis $u_1, \ldots, u_m, v_1, \ldots, v_j$ of U_1 , and a basis $u_1, \ldots, u_m, w_1, \ldots, w_k$ of U_2 .

Clearly, $U_1, U_2 \subset \operatorname{span}(u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k)$.

Hence $U_1 + U_2 \subset \operatorname{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Clearly, $U_1+U_2\supset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k)$.

Hence $U_1 + U_2 = \text{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Let us prove that the list $u_1, \ldots, u_m, v_1, \ldots, v_i, w_1, \ldots, w_k$ is linearly indepedent.

Let $a_1u_1+\cdots+a_mu_m+b_1v_1+\cdots+b_jv_j+c_1w_1+\cdots+c_kw_k=0$. Rewrite as $c_1w_1+\cdots+c_kw_k=-a_1u_1-\cdots-a_mu_m-b_1v_1-\cdots-b_jv_j$. Hence $c_1w_1+\cdots+c_kw_k\in U_1\cap U_2$, and $c_1w_1+\cdots+c_kw_k=d_1u_1+\cdots+d_mu_m$. Hence $c_i=0$ and $d_i=0$ for all i. Hence $a_1u_1+\cdots+a_mu_m+b_1v_1+\cdots+b_jv_j=0$. Then $a_i=0$ and $b_i=0$, since $u_1,\ldots,u_m,v_1,\ldots,v_j$ is a basis of U_1 .

2.43 **Theorem.** For any subspaces U_1 and U_2 of a finit-dimensional space,

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Proof. Let u_1, \ldots, u_m be a basis of $U_1 \cap U_2$.

Extend it to a basis $u_1, \ldots, u_m, v_1, \ldots, v_j$ of U_1 , and a basis $u_1, \ldots, u_m, w_1, \ldots, w_k$ of U_2 .

Clearly, $U_1, U_2 \subset \operatorname{span}(u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k)$.

Hence $U_1 + U_2 \subset \operatorname{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Clearly, $U_1+U_2\supset \mathrm{span}(u_1,\ldots,u_m,v_1,\ldots,v_j,w_1,\ldots,w_k)$.

Hence $U_1 + U_2 = \text{span}(u_1, \dots, u_m, v_1, \dots, v_j, w_1, \dots, w_k)$.

Let us prove that the list $u_1, \ldots, u_m, v_1, \ldots, v_i, w_1, \ldots, w_k$ is linearly indepedent.

Let $a_1u_1+\cdots+a_mu_m+b_1v_1+\cdots+b_jv_j+c_1w_1+\cdots+c_kw_k=0$. Rewrite as $c_1w_1+\cdots+c_kw_k=-a_1u_1-\cdots-a_mu_m-b_1v_1-\cdots-b_jv_j$. Hence $c_1w_1+\cdots+c_kw_k\in U_1\cap U_2$, and $c_1w_1+\cdots+c_kw_k=d_1u_1+\cdots+d_mu_m$. Hence $c_i=0$ and $d_i=0$ for all i. Hence $a_1u_1+\cdots+a_mu_m+b_1v_1+\cdots+b_jv_j=0$. Then $a_i=0$ and $b_i=0$, since $u_1,\ldots,u_m,v_1,\ldots,v_j$ is a basis of U_1 .

Let V and W be vector spaces over a field ${\mathbb F}$.

Let V and W be vector spaces over a field $\mathbb F$.

Let V and W be vector spaces over a field $\mathbb F$.

$$T(u+v) = Tu + Tv$$
 for all $u, v \in V$

Let V and W be vector spaces over a field $\mathbb F$.

$$T(u+v) = Tu + Tv$$
 for all $u, v \in V$ (T is additive);

Let V and W be vector spaces over a field $\mathbb F$.

3.2 **Definition** A map $T: V \to W$ is said to be **linear** if:

$$T(u+v) = Tu + Tv$$
 for all $u, v \in V$

(*T* is additive);

 $T(\lambda v) = \lambda(Tv)$ for all $\lambda \in \mathbb{F}$ and all $v \in V$

Let V and W be vector spaces over a field $\mathbb F$.

$$T(u+v) = Tu + Tv$$
 for all $u, v \in V$ (T is additive);

$$T(\lambda v) = \lambda(Tv)$$
 for all $\lambda \in \mathbb{F}$ and all $v \in V$ (T is homogeneous.)

Let V and W be vector spaces over a field $\mathbb F$.

3.2 **Definition** A map $T: V \to W$ is said to be **linear** if:

$$T(u+v) = Tu + Tv$$
 for all $u, v \in V$ (T is additive);

$$T(\lambda v) = \lambda(Tv)$$
 for all $\lambda \in \mathbb{F}$ and all $v \in V$ (T is homogeneous.)

Linear maps or linear transformations?

Let V and W be vector spaces over a field $\mathbb F$.

3.2 **Definition** A map $T: V \to W$ is said to be **linear** if:

$$T(u+v) = Tu + Tv$$
 for all $u, v \in V$ (T is additive);

$$T(\lambda v) = \lambda(Tv)$$
 for all $\lambda \in \mathbb{F}$ and all $v \in V$ (T is homogeneous.)

Linear maps or linear transformations? Tv or T(v)?

Let V and W be vector spaces over a field \mathbb{F} .

3.2 **Definition** A map $T: V \to W$ is said to be **linear** if:

$$T(u+v) = Tu + Tv$$
 for all $u, v \in V$ (T is additive);

$$T(\lambda v) = \lambda(Tv)$$
 for all $\lambda \in \mathbb{F}$ and all $v \in V$ (T is homogeneous.)

Linear maps or linear transformations?

$$Tv$$
 or $T(v)$?

3.3 **Notation** $\mathcal{L}(V,W) = \{\text{all the linear maps } V \to W\}$

Let V and W be vector spaces over a field $\mathbb F$.

3.2 **Definition** A map $T: V \to W$ is said to be **linear** if:

$$T(u+v) = Tu + Tv$$
 for all $u, v \in V$ (T is additive);

$$T(\lambda v) = \lambda(Tv)$$
 for all $\lambda \in \mathbb{F}$ and all $v \in V$ (T is homogeneous.)

Linear maps or linear transformations? Tv or T(v)?

3.3 **Notation** $\mathcal{L}(V, W) = \{\text{all the linear maps } V \to W\}$

Other notation: $\operatorname{Hom}_{\mathbb{F}}(V,W)$.

Zero

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations:

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations:

id,

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \text{ if } V \subset W$$

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \text{ if } V \subset W$$

Differentiation

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \text{ if } V \subset W$$

Differentiation

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$$

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \text{ if } V \subset W$$

Differentiation

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$$

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \text{ if } V \subset W$$

Differentiation

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$$

Integration

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \text{ if } V \subset W$$

Differentiation

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$$

Integration

$$T:\mathcal{P}(\mathbb{R})\to\mathbb{R}$$

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \quad \text{if } V \subset W$$

Differentiation

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$$

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) dx$$

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \quad \text{if } V \subset W$$

Differentiation

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$$

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) dx$$

Multiplication by x^3

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \quad \text{if } V \subset W$$

Differentiation

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$$

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) dx$$

Multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$

$$T:\mathcal{P}(\mathbb{F}) o\mathcal{P}(\mathbb{F})$$

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \text{ if } V \subset W$$

Differentiation

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$$

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) dx$$

Multiplication by
$$x^3$$
 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): (Tp)(x) = x^3p(x)$

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \text{ if } V \subset W$$

Differentiation

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$$

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) dx$$

Multiplication by
$$x^3$$
 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): (Tp)(x) = x^3p(x)$

Backward shift

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

in:
$$\mathcal{L}(V, W) : x \mapsto x$$
 if $V \subset W$

Differentiation

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$$

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) dx$$

Multiplication by
$$x^3$$
 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): (Tp)(x) = x^3p(x)$

Backward shift

$$T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty})$$

Zero

$$0 \in \mathcal{L}(V, W) : x \mapsto 0$$

Identity

$$I \in \mathcal{L}(V, V) : x \mapsto x$$

Other notations: id, or 1.

Inclusion

$$\operatorname{in}: \mathcal{L}(V, W): x \mapsto x \text{ if } V \subset W$$

Differentiation

$$D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}): Dp = p'$$

Integration

$$T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}: Tp = \int_{0}^{1} p(x) dx$$

Multiplication by
$$x^3$$
 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): (Tp)(x) = x^3p(x)$

Backward shift

$$T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty}) : T(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots)$$

Proof. T(0) = T(0+0) = T(0) + T(0).

Proof. T(0) = T(0+0) = T(0) + T(0). Subtract T(0) from both sides.

A linear map takes 0 to 0

3.11 **Theorem.** Let $T: V \to W$ be a linear map. Then T(0) = 0.

Proof. T(0) = T(0+0) = T(0) + T(0). Subtract T(0) from both sides. 0 = T(0)

Proof. T(0) = T(0+0) = T(0) + T(0). Subtract T(0) from both sides. 0 = T(0)

3.12 **Definition** For $T\in\mathcal{L}(V,W)$, the null space of T is null $T=\{v\in V\mid Tv=0\}$,

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\}$, the subset of V consisting of those vectors that T maps to 0.

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\} \text{ ,}$ the subset of V consisting of those vectors that T maps to 0.

Another name: kernel.

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\} \text{ ,}$ the subset of V consisting of those vectors that T maps to 0.

Another name: **kernel**. Notation: $\operatorname{Ker} T$.

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\} \text{ ,}$ the subset of V consisting of those vectors that T maps to 0.

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\} \text{ ,}$ the subset of V consisting of those vectors that T maps to 0.

3.13 Examples

ullet For $T:V o W:v\mapsto 0$, $\operatorname{null} T=$

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\} \text{ ,}$ the subset of V consisting of those vectors that T maps to 0.

3.13 Examples

ullet For $T:V o W:v\mapsto 0$,

 $\operatorname{null} T = V$

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\} \text{ ,}$ the subset of V consisting of those vectors that T maps to 0.

- ullet For $T:V o W:v\mapsto 0$, $\operatorname{null} T=V$
- ullet For differentiation $D:\mathcal{P}(\mathbb{R}) o\mathcal{P}(\mathbb{R})$, $\mathrm{null}\,D=$

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\}$, the subset of V consisting of those vectors that T maps to 0.

- ullet For $T:V o W:v\mapsto 0$, $\operatorname{null} T=V$
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{null} D = \{\text{constants}\}$

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\}$, the subset of V consisting of those vectors that T maps to 0.

- ullet For $T:V o W:v\mapsto 0$, $\operatorname{null} T=V$
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{null} D = \{ \text{constants} \}$
- ullet For multiplication by x^3 $T:\mathcal{P}(\mathbb{F}) o \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, $\operatorname{null} T =$

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\}$, the subset of V consisting of those vectors that T maps to 0.

- ullet For $T:V o W:v\mapsto 0$, $\operatorname{null} T=V$
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{null} D = \{ \text{constants} \}$
- For multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, $\operatorname{null} T = 0$

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\}$, the subset of V consisting of those vectors that T maps to 0.

- For $T: V \to W: v \mapsto 0$, $\operatorname{null} T = V$
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{null} D = \{ \text{constants} \}$
- ullet For multiplication by x^3 $T:\mathcal{P}(\mathbb{F}) o\mathcal{P}(\mathbb{F}):Tp=x^3p(x)$, $\operatorname{null} T=0$
- ullet For backward shift $T\in\mathcal{L}(\mathbb{F}^\infty,F^\infty):T(x_1,x_2,x_3,\dots)=(x_2,x_3,x_4,\dots)$ $\mathrm{null}\,T=$

3.12 **Definition** For $T \in \mathcal{L}(V,W)$, the null space of T is $\operatorname{null} T = \{v \in V \mid Tv = 0\}$, the subset of V consisting of those vectors that T maps to 0.

- For $T: V \to W: v \mapsto 0$, $\operatorname{null} T = V$
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{null} D = \{ \text{constants} \}$
- ullet For multiplication by x^3 $T:\mathcal{P}(\mathbb{F}) o\mathcal{P}(\mathbb{F}):Tp=x^3p(x)$, $\operatorname{null} T=0$
- For backward shift $T\in\mathcal{L}(\mathbb{F}^\infty,F^\infty):T(x_1,x_2,x_3,\dots)=(x_2,x_3,x_4,\dots)$ $\operatorname{null} T=\{(a,0,0,\dots)\mid a\in\mathbb{F}\}$

3.14 **Theorem.**

3.14 **Theorem.** For $T \in \mathcal{L}(V, W)$, $\operatorname{null} T$ is a subspace of V.

3.14 **Theorem.** For $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

Proof. As we know (by 3.11) T(0) = 0.

3.14 **Theorem.** For $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

3.14 **Theorem.** For $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

Proof. As we know (by 3.11) T(0) = 0. Hence $0 \in \operatorname{null} T$.

 $u, v \in \text{null } T \implies$

3.14 **Theorem.** For $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

$$u, v \in \text{null } T \implies T(u+v) = T(u) + T(v) = 0 + 0 = 0$$

3.14 **Theorem.** For $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

$$u, v \in \operatorname{null} T \implies T(u+v) = T(u) + T(v) = 0 + 0 = 0 \implies u+v \in \operatorname{null} T$$
.

3.14 **Theorem.** For $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

$$u, v \in \operatorname{null} T \implies T(u+v) = T(u) + T(v) = 0 + 0 = 0 \implies u+v \in \operatorname{null} T$$
.

$$u \in \text{null } T, \lambda \in \mathbb{F} \implies T(\lambda u) = \lambda T u = \lambda 0 = 0$$

3.14 **Theorem.** For $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

$$u, v \in \operatorname{null} T \implies T(u+v) = T(u) + T(v) = 0 + 0 = 0 \implies u+v \in \operatorname{null} T$$
.

$$u \in \text{null } T, \lambda \in \mathbb{F} \implies T(\lambda u) = \lambda T u = \lambda 0 = 0 \implies \lambda u \in \text{null } T$$

3.14 **Theorem.** For $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

$$u, v \in \operatorname{null} T \implies T(u+v) = T(u) + T(v) = 0 + 0 = 0 \implies u+v \in \operatorname{null} T$$
.

$$u \in \text{null } T, \lambda \in \mathbb{F} \implies T(\lambda u) = \lambda T u = \lambda 0 = 0 \implies \lambda u \in \text{null } T$$

Injectivity and the null space

3.15 **Definition**

A map $T:V \to W$ is called **injective** if

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu=Tv \implies u=v$.

3.15 **Definition**

A map $T:V\to W$ is called **injective** if $Tu=Tv\implies u=v$.

A map $T:V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V\to W$ is injective $\iff u\neq v \implies Tu\neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V\to W$ is injective $\iff u\neq v \implies Tu\neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \Longrightarrow

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V\to W$ is injective $\iff u\neq v \implies Tu\neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \text{null } T$.

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V\to W$ is injective $\iff u\neq v \implies Tu\neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V\to W$ is injective $\iff u\neq v \implies Tu\neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$

 \leftarrow

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T: V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$

 \longleftarrow Let $u,v\in V$, Tu=Tv .

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V\to W$ is injective $\iff u\neq v \implies Tu\neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V\to W$ is injective $\iff u\neq v \implies Tu\neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V\to W$ is injective $\iff u\neq v \implies Tu\neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$

 $\longleftarrow \quad \text{Let} \ \ u,v \in V \text{ , } \ Tu = Tv \text{ . } \quad \text{Then } \ 0 = Tu - Tv = T(u-v).$

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$

 $\iff \text{ Let } u,v \in V \text{ , } Tu = Tv \text{ . Then } 0 = Tu - Tv = T(u-v). \\ \text{ Hence } u-v \in \operatorname{null} T$

3.15 **Definition**

A map $T:V\to W$ is called **injective** if $Tu=Tv\implies u=v$.

A map $T:V \to W$ is injective $\iff u \neq v \implies Tu \neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$

 $\iff \text{ Let } u,v\in V \text{ , } Tu=Tv \text{ . Then } 0=Tu-Tv=T(u-v). \\ \text{ Hence } u-v\in \operatorname{null} T=\{0\}$

3.15 **Definition**

A map $T:V \to W$ is called **injective** if $Tu = Tv \implies u = v$.

A map $T:V\to W$ is injective $\iff u\neq v \implies Tu\neq Tv$.

3.16 T is injective \iff null $T = \{0\}$.

Proof

 \implies Recall $0 \in \operatorname{null} T$. If $\operatorname{null} T \neq \{0\}$, then $\exists v \in \operatorname{null} T$, $v \neq 0$

 $\iff \text{ Let } u,v\in V \text{ , } Tu=Tv\text{ . Then } 0=Tu-Tv=T(u-v). \\ \text{ Hence } u-v\in \operatorname{null} T=\{0\} \implies u=v\text{ . } \blacksquare$

For a map $T:V \to W$, the **range** of T is $\operatorname{range} T = \{Tv \mid v \in V\}$

Range

3.17 **Definition**

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

Another name: **image**.

Range

3.17 **Definition**

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

Another name: **image**. Notation: $\operatorname{Im} T$.

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

Range

3.17 **Definition**

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

3.18 Examples

ullet For $T:V o W:v\mapsto 0$, $\operatorname{range} T=$

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

3.18 Examples

• For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- ullet For differentiation $D: \mathcal{P}(\mathbb{R}) o \mathcal{P}(\mathbb{R})$, $\mathrm{range}\, D = 0$

Range

3.17 **Definition**

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\mathrm{range}\, D = \mathcal{P}(\mathbb{R})$.

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\mathrm{range}\, D = \mathcal{P}(\mathbb{R}).$
- \bullet For multiplication by x^3 $T:\mathcal{P}(\mathbb{F})\to\mathcal{P}(\mathbb{F}):Tp=x^3p(x)$, range T=

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{range} D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, $\mathrm{range}\, T = \mathsf{polynomials}$ without monomials of degree < 3.

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, $\operatorname{range} D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T:\mathcal{P}(\mathbb{F})\to\mathcal{P}(\mathbb{F}):Tp=x^3p(x)$, $\mathrm{range}\,T=\text{polynomials without monomials of degree }<3.$
 - 3.14 The range of a linear map is a subspace.

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

3.18 Examples

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, range $D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F}): Tp = x^3p(x)$, $\mathrm{range}\, T = \mathsf{polynomials}$ without monomials of degree < 3.

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

3.18 Examples

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, range $D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T:\mathcal{P}(\mathbb{F})\to\mathcal{P}(\mathbb{F}):Tp=x^3p(x)$, $\mathrm{range}\,T=\text{polynomials without monomials of degree }<3.$

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0.

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

3.18 Examples

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, range $D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T:\mathcal{P}(\mathbb{F})\to\mathcal{P}(\mathbb{F}):Tp=x^3p(x)$, $\mathrm{range}\,T=\text{polynomials without monomials of degree }<3.$

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0\in \mathrm{range}\,T$, since T(0)=0 . If $w\in \mathrm{range}\,T$ and $\lambda\in\mathbb{F}$, then $\exists v\in V: w=Tv$, $T(\lambda v)=\lambda Tv=\lambda w$

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

3.18 Examples

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, range $D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T:\mathcal{P}(\mathbb{F})\to\mathcal{P}(\mathbb{F}):Tp=x^3p(x)$, $\mathrm{range}\,T=\text{polynomials without monomials of degree }<3.$

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0. If $w \in \operatorname{range} T$ and $\lambda \in \mathbb{F}$, then $\exists v \in V : w = Tv$, $T(\lambda v) = \lambda Tv = \lambda w \in \operatorname{range} T$.

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

3.18 Examples

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, range $D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T:\mathcal{P}(\mathbb{F})\to\mathcal{P}(\mathbb{F}):Tp=x^3p(x)$, $\mathrm{range}\,T=\text{polynomials without monomials of degree }<3.$

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W .

Proof $0 \in \operatorname{range} T$, since T(0) = 0. If $w \in \operatorname{range} T$ and $\lambda \in \mathbb{F}$, then $\exists v \in V : w = Tv$, $T(\lambda v) = \lambda Tv = \lambda w \in \operatorname{range} T$. $w_1, w_2 \in \operatorname{range} T \implies \exists v_1, v_2 \in V : w_1 = Tv_1, w_2 = Tv_2$

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

3.18 Examples

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, range $D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T:\mathcal{P}(\mathbb{F})\to\mathcal{P}(\mathbb{F}):Tp=x^3p(x)$, $\mathrm{range}\,T=\text{polynomials without monomials of degree }<3.$

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0. If $w \in \operatorname{range} T$ and $\lambda \in \mathbb{F}$, then $\exists v \in V : w = Tv$, $T(\lambda v) = \lambda Tv = \lambda w \in \operatorname{range} T$. $w_1, w_2 \in \operatorname{range} T \implies \exists v_1, v_2 \in V : w_1 = Tv_1, w_2 = Tv_2$ $\implies w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2)$

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

3.18 Examples

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, range $D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T:\mathcal{P}(\mathbb{F})\to\mathcal{P}(\mathbb{F}):Tp=x^3p(x)$, $\mathrm{range}\,T=\text{polynomials without monomials of degree }<3.$

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0. If $w \in \operatorname{range} T$ and $\lambda \in \mathbb{F}$, then $\exists v \in V : w = Tv$, $T(\lambda v) = \lambda Tv = \lambda w \in \operatorname{range} T$. $w_1, w_2 \in \operatorname{range} T \implies \exists v_1, v_2 \in V : w_1 = Tv_1, w_2 = Tv_2$ $\implies w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2) \in \operatorname{range} T$.

For a map $T:V\to W$, the **range** of T is $\operatorname{range} T=\{Tv\mid v\in V\}$, the subset of W consisting of those vectors that are of the form Tv for some $v\in V$.

3.18 Examples

- For $T: V \to W: v \mapsto 0$, range $T = \{0\}$.
- For differentiation $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$, range $D = \mathcal{P}(\mathbb{R})$.
- For multiplication by x^3 $T:\mathcal{P}(\mathbb{F})\to\mathcal{P}(\mathbb{F}):Tp=x^3p(x)$, $\mathrm{range}\,T=\text{polynomials without monomials of degree }<3.$

3.14 The range of a linear map is a subspace.

For $T \in \mathcal{L}(V, W)$, range T is a subspace of W.

Proof $0 \in \operatorname{range} T$, since T(0) = 0. If $w \in \operatorname{range} T$ and $\lambda \in \mathbb{F}$, then $\exists v \in V : w = Tv$, $T(\lambda v) = \lambda Tv = \lambda w \in \operatorname{range} T$. $w_1, w_2 \in \operatorname{range} T \implies \exists v_1, v_2 \in V : w_1 = Tv_1, w_2 = Tv_2$ $\implies w_1 + w_2 = Tv_1 + Tv_2 = T(v_1 + v_2) \in \operatorname{range} T$.