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Write down the Pythagorean Theorem.

Correct Answer. In any right triangle, the length c of its hypothenuse

and lengths a , b of its legs, a2 + b2 = c2 .

Converse Theorem. For any real positive numbers a , b , c such that

a2 + b2 = c2 , there exists a right triangle with legs a , b , and

hypotenuse c .

• Is this true?

• How to prove?

• Is it possible that numbers a , b , c such that a2 + b2 = c2 are all

positive integers?

A triple (a, b, c) of positive integers such that a2 + b2 = c2 is called a

Pythagorean triple.

A triangle with sides 3,4,5 is called the Egyptian triangle. Why?

Problem: Find all Pythagorean triples.
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If (a, b, c) is a Pythagorean triple, then for any k ∈ N

the triple (ka, kb, kc) is Pythagorean.

A Pythagorean triple is said to be primitive if it cannot be obtained as

(ka, kb, kc) with k ∈ N , k > 1 from a Pythagorean triple (a, b, c) .

Lemma 1. A Pythagorean triple (a, b, c) is primitive if and only if

a , b and c have no common divisors.

Lemma 2. Presence of odds. In a primitive Pythagorean triple,

at least one of the numbers is odd.
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Addition:

even + even = even , even + odd = odd , odd+ odd = even .

In equality X +Y = Z , the number of odd numbers is even (2 or 0),

the number of even numbers is odd (1 or 3).

Squaring: n ∈ N is odd ⇐⇒ n2 is odd.

In a primitive Pythagorean triple, two numbers are odd and one is even.

Which numbers can be odd? a , b , c ?

The answer: c must be odd,

one of a and b is even, another one is odd.
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The square of an odd number has remainder 1 under division by 4 .

Notation: x ≡ y mod m means x− y is divisible by m .

We say: x is congruent to y modulo m .

Introduced in 1798 by Carl Friedrich Gauss (Gauβ) (1777-1855),

when he was 21, in Disquisitiones Arithmeticae.
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The square of an even number is divisible by four.

n ≡ 0 mod 2 =⇒ n2 ≡ 0 mod 4
The square of an odd number has remainder 1 under division by 4 .

n ≡ 1 mod 2 =⇒ n2 ≡ 1 mod 4
Notation: x ≡ y mod m means x− y is divisible by m .

Theorem. If c is an integer such that c ≡ 2 , or 3 mod 4 ,

then the equation x2 = c has no integer solution.

If both a and b are odd, then a2 + b2 ≡ 1 + 1 ≡ 2 mod 4 .

Then a2 + b2 6= c2 . In a primitive Pythagorean triple (a, b, c) ,

c is odd, one of a and b is even, another is odd.

Without loss of generality, let us assume thata is odd and b is even.

Rewrite a2 + b2 = c2 as b2 = c2 − a2

and further as b2 = (c− a)(c+ a) .
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{

c ≡ 1 mod 2

a ≡ 1 mod 2
=⇒

{

c− a ≡ 0 mod 2

c+ a ≡ 0 mod 2

The sum and difference of two odd numbers is even .

{

c+ a = 2P

c− a = 2Q

This system can be solved as follows:

{

c = P +Q

a = P −Q

For a primitive Pythagorean triple, P and Q have no common divisor.

Recall b2 = c2 − a2 = (c+ a)(c− a) = 4PQ = 4R2 .
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from relatively prime integers P and Q that are related to a, b, c by

formulas c = P +Q , a = P −Q and b2 = 4PQ .

Equation a2 + b2 = c2 is equivalent to PQ = R2 , where b = 2R .

P and Q are squares,

since they are relatively prime and PQ is a square.










P = u2

Q = v2

R = uv

Express the Pythagorean triple:











a = u2 − v2

b = 2uv

c = u2 + v2

Verify: for any integers u, v (no matter odd, relatively prime, or not)

a2 + b2 = (u2 − v2)2 + (2uv)2

= u4 − 2u2v2 + v4 + 4u2v2 = u4 + 2u2v2 + v4

= (u2 + v2)2 = c2
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All primitive Pythagorean triples are (2uv, u2 − v2, u2 + v2) for

relatively prime u and v , one of which is even.

At this point we could stop: we have solved the problem.

What else to desire?

What may a mathematician desire at this point?

A mathematician would ask: What did we learn?

What other problems can we solve using this experience?

What generalizations of this problem can be handled in this way?

It is not geometry. Until the proof has turned into a comics,

some mathematicians would not be satisfied.

Pythagorean triples come from Geometry.

Where is Geometry?
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c =
√
a2 + b2 is recovered from the rest of Pythagorian triple.

The rest is a point (a, b) on the Cartesian plane. It has integer

coordinates (a, b) and integer distance c =
√
a2 + b2 from the origin.

This is a geometric incarnation of Pythagorian triple (a, b, c) ,

a Pythagorian point.

If (a, b) is a Pythagorean point and c =
√
a2 + b2 ,

then (a
c
, b
c
) is a rational point on the circle x2 + y2 = 1 .

Conversly, if (p, q) is a rational point on x2 + y2 = 1 ,

then on the line y = q
p
x there are Pythagorean points.

The problem that we solved was find all Pythagorain points.
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a2 + b2 is recovered from the rest of Pythagorian triple.

The rest is a point (a, b) on the Cartesian plane. It has integer

coordinates (a, b) and integer distance c =
√
a2 + b2 from the origin.

This is a geometric incarnation of Pythagorian triple (a, b, c) ,

a Pythagorian point.

If (a, b) is a Pythagorean point and c =
√
a2 + b2 ,

then (a
c
, b
c
) is a rational point on the circle x2 + y2 = 1 .

Conversly, if (p, q) is a rational point on x2 + y2 = 1 ,

then on the line y = q
p
x there are Pythagorean points.

The problem that we solved was find all Pythagorain points.

Reformulation: find all rational points on the unit circle x2 + y2 = 1 .
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Riddle:

Draw on a picture all the heroes: α , cosα , sinα , β , and t = tanβ .
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