Lecture 3. Pythagorean Triples

Oleg Viro

February 1, 2016

Warm Up Exercise

Write down the Pythagorean Theorem.

Warm Up Exercise

Write down the Pythagorean Theorem.
Correct Answer. In any right triangle, the length c of its hypothenuse and lengths a, b of its legs, $a^{2}+b^{2}=c^{2}$.

Warm Up Exercise

Write down the Pythagorean Theorem.
Correct Answer. In any right triangle, the length c of its hypothenuse and lengths a, b of its legs, $a^{2}+b^{2}=c^{2}$.

Write down the converse theorem.

Warm Up Exercise

Write down the Pythagorean Theorem.
Correct Answer. In any right triangle, the length c of its hypothenuse and lengths a, b of its legs, $a^{2}+b^{2}=c^{2}$.

Converse Theorem. For any real positive numbers a, b, c such that $a^{2}+b^{2}=c^{2}$, there exists a right triangle with legs a, b, and hypotenuse c.

Warm Up Exercise

Write down the Pythagorean Theorem.
Correct Answer. In any right triangle, the length c of its hypothenuse and lengths a, b of its legs, $a^{2}+b^{2}=c^{2}$.

Converse Theorem. For any real positive numbers a, b, c such that $a^{2}+b^{2}=c^{2}$, there exists a right triangle with legs a, b, and hypotenuse c.

- Is this true?

Warm Up Exercise

Write down the Pythagorean Theorem.
Correct Answer. In any right triangle, the length c of its hypothenuse and lengths a, b of its legs, $a^{2}+b^{2}=c^{2}$.

Converse Theorem. For any real positive numbers a, b, c such that $a^{2}+b^{2}=c^{2}$, there exists a right triangle with legs a, b, and hypotenuse c.

- Is this true?
- How to prove?

Warm Up Exercise

Write down the Pythagorean Theorem.
Correct Answer. In any right triangle, the length c of its hypothenuse and lengths a, b of its legs, $a^{2}+b^{2}=c^{2}$.

Converse Theorem. For any real positive numbers a, b, c such that $a^{2}+b^{2}=c^{2}$, there exists a right triangle with legs a, b, and hypotenuse c.

- Is this true?
- How to prove?
- Is it possible that numbers a, b, c such that $a^{2}+b^{2}=c^{2}$ are all positive integers?

Warm Up Exercise

Write down the Pythagorean Theorem.
Correct Answer. In any right triangle, the length c of its hypothenuse and lengths a, b of its legs, $a^{2}+b^{2}=c^{2}$.

Converse Theorem. For any real positive numbers a, b, c such that $a^{2}+b^{2}=c^{2}$, there exists a right triangle with legs a, b, and hypotenuse c.

- Is this true?
- How to prove?
- Is it possible that numbers a, b, c such that $a^{2}+b^{2}=c^{2}$ are all positive integers?

A triple (a, b, c) of positive integers such that $a^{2}+b^{2}=c^{2}$ is called a Pythagorean triple.

Warm Up Exercise

Write down the Pythagorean Theorem.
Correct Answer. In any right triangle, the length c of its hypothenuse and lengths a, b of its legs, $a^{2}+b^{2}=c^{2}$.

Converse Theorem. For any real positive numbers a, b, c such that $a^{2}+b^{2}=c^{2}$, there exists a right triangle with legs a, b, and hypotenuse c.

- Is this true?
- How to prove?
- Is it possible that numbers a, b, c such that $a^{2}+b^{2}=c^{2}$ are all positive integers?

A triple (a, b, c) of positive integers such that $a^{2}+b^{2}=c^{2}$ is called a Pythagorean triple.
A triangle with sides $3,4,5$ is called the Egyptian triangle.

Warm Up Exercise

Write down the Pythagorean Theorem.
Correct Answer. In any right triangle, the length c of its hypothenuse and lengths a, b of its legs, $a^{2}+b^{2}=c^{2}$.

Converse Theorem. For any real positive numbers a, b, c such that $a^{2}+b^{2}=c^{2}$, there exists a right triangle with legs a, b, and hypotenuse c.

- Is this true?
- How to prove?
- Is it possible that numbers a, b, c such that $a^{2}+b^{2}=c^{2}$ are all positive integers?

A triple (a, b, c) of positive integers such that $a^{2}+b^{2}=c^{2}$ is called a Pythagorean triple.
A triangle with sides $3,4,5$ is called the Egyptian triangle. Why?

Warm Up Exercise

Write down the Pythagorean Theorem.
Correct Answer. In any right triangle, the length c of its hypothenuse and lengths a, b of its legs, $a^{2}+b^{2}=c^{2}$.

Converse Theorem. For any real positive numbers a, b, c such that $a^{2}+b^{2}=c^{2}$, there exists a right triangle with legs a, b, and hypotenuse c.

- Is this true?
- How to prove?
- Is it possible that numbers a, b, c such that $a^{2}+b^{2}=c^{2}$ are all positive integers?

A triple (a, b, c) of positive integers such that $a^{2}+b^{2}=c^{2}$ is called a Pythagorean triple.
A triangle with sides $3,4,5$ is called the Egyptian triangle. Why?
Problem: Find all Pythagorean triples.

- Warm Up Exercise

Number theory
approach
Diophantine equation

- Primitive solutions
- Arithmetics of evens
and odds
- Squares modulo 4
- New unknowns
- Solution
- Done?
- Pythagorian points
- Parametrizations of the circle

Number theory approach Diophantine equation

Primitive solutions

If (a, b, c) is a Pythagorean triple, then for any $k \in \mathbb{N}$
the triple $(k a, k b, k c)$ is Pythagorean.

Primitive solutions

If (a, b, c) is a Pythagorean triple, then for any $k \in \mathbb{N}$
the triple $(k a, k b, k c)$ is Pythagorean.
A Pythagorean triple is said to be primitive if it cannot be obtained as ($k a, k b, k c$) with $k \in \mathbb{N}, k>1$ from a Pythagorean triple (a, b, c).

Primitive solutions

If (a, b, c) is a Pythagorean triple, then for any $k \in \mathbb{N}$
the triple $(k a, k b, k c)$ is Pythagorean.
A Pythagorean triple is said to be primitive if it cannot be obtained as ($k a, k b, k c$) with $k \in \mathbb{N}, k>1$ from a Pythagorean triple (a, b, c).

Lemma 1. A Pythagorean triple (a, b, c) is primitive if and only if
a, b and c have no common divisors.

Primitive solutions

If (a, b, c) is a Pythagorean triple, then for any $k \in \mathbb{N}$
the triple $(k a, k b, k c)$ is Pythagorean.
A Pythagorean triple is said to be primitive if it cannot be obtained as ($k a, k b, k c$) with $k \in \mathbb{N}, k>1$ from a Pythagorean triple (a, b, c).

Lemma 1. A Pythagorean triple (a, b, c) is primitive if and only if a, b and c have no common divisors.

Lemma 2. Presence of odds. In a primitive Pythagorean triple, at least one of the numbers is odd.

Arithmetics of evens and odds

Addition:
even + even $=$ even,

Arithmetics of evens and odds

Addition:
even + even $=$ even, even + odd $=$ odd,

Arithmetics of evens and odds

Addition:
even + even $=$ even, even + odd $=$ odd, odd + odd $=$ even.

Arithmetics of evens and odds

Addition:
even + even $=$ even, even + odd $=$ odd, odd + odd $=$ even.
In equality $X+Y=Z$, the number of odd numbers is even (2 or 0),

Arithmetics of evens and odds

Addition:
even + even $=$ even, even + odd $=$ odd, odd + odd $=$ even.
In equality $X+Y=Z$, the number of odd numbers is even (2 or 0), the number of even numbers is odd (1 or 3).

Arithmetics of evens and odds

Addition:
even + even $=$ even, even + odd $=$ odd, odd + odd $=$ even.
In equality $X+Y=Z$, the number of odd numbers is even (2 or 0), the number of even numbers is odd (1 or 3).

Squaring: $n \in \mathbb{N}$ is odd $\Longleftrightarrow n^{2}$ is odd.

Arithmetics of evens and odds

Addition:
even + even $=$ even, even + odd $=$ odd, odd + odd $=$ even.
In equality $X+Y=Z$, the number of odd numbers is even (2 or 0), the number of even numbers is odd (1 or 3).

Squaring: $n \in \mathbb{N}$ is odd $\Longleftrightarrow n^{2}$ is odd.
In a primitive Pythagorean triple, two numbers are odd and one is even.

Arithmetics of evens and odds

Addition:
even + even $=$ even, even + odd $=$ odd, odd + odd $=$ even.
In equality $X+Y=Z$, the number of odd numbers is even (2 or 0), the number of even numbers is odd (1 or 3).

Squaring: $n \in \mathbb{N}$ is odd $\Longleftrightarrow n^{2}$ is odd.
In a primitive Pythagorean triple, two numbers are odd and one is even.
Which numbers can be odd? a, b, c ?

Arithmetics of evens and odds

Addition:
even + even $=$ even, even + odd $=$ odd, odd + odd $=$ even.
In equality $X+Y=Z$, the number of odd numbers is even (2 or 0), the number of even numbers is odd (1 or 3).

Squaring: $n \in \mathbb{N}$ is odd $\Longleftrightarrow n^{2}$ is odd.
In a primitive Pythagorean triple, two numbers are odd and one is even.
Which numbers can be odd? a, b, c ?
The answer: c must be odd, one of a and b is even, another one is odd.

Squares modulo 4

The square of an even number is divisible by four.

Squares modulo 4

The square of an even number is divisible by four.

The square of an odd number has remainder 1 under division by 4 .

Squares modulo 4

The square of an even number is divisible by four.

The square of an odd number has remainder 1 under division by 4 .

Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.

Squares modulo 4

The square of an even number is divisible by four.

The square of an odd number has remainder 1 under division by 4 .

Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.
We say: x is congruent to y modulo m.

Squares modulo 4

The square of an even number is divisible by four.

The square of an odd number has remainder 1 under division by 4 .
Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.
We say: x is congruent to y modulo m.
Introduced in 1798 by Carl Friedrich Gauss (Gau β) (1777-1855), when he was 21, in Disquisitiones Arithmeticae.

Squares modulo 4

The square of an even number is divisible by four.

$$
n \equiv 0 \bmod 2 \Longrightarrow n^{2} \equiv 0 \bmod 4
$$

The square of an odd number has remainder 1 under division by 4 .

Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.

Squares modulo 4

The square of an even number is divisible by four.

$$
n \equiv 0 \bmod 2 \Longrightarrow n^{2} \equiv 0 \bmod 4
$$

The square of an odd number has remainder 1 under division by 4 .

$$
n \equiv 1 \bmod 2 \Longrightarrow n^{2} \equiv 1 \bmod 4
$$

Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.

Squares modulo 4

The square of an even number is divisible by four.

$$
n \equiv 0 \bmod 2 \Longrightarrow n^{2} \equiv 0 \bmod 4
$$

The square of an odd number has remainder 1 under division by 4 .

$$
n \equiv 1 \bmod 2 \Longrightarrow n^{2} \equiv 1 \bmod 4
$$

Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.
Exercise. Prove that moreover $n \equiv 1 \bmod 2 \Longrightarrow n^{2} \equiv 1 \bmod 8$.

Squares modulo 4

The square of an even number is divisible by four.

$$
n \equiv 0 \bmod 2 \Longrightarrow n^{2} \equiv 0 \bmod 4
$$

The square of an odd number has remainder 1 under division by 4 .

$$
n \equiv 1 \bmod 2 \Longrightarrow n^{2} \equiv 1 \bmod 4
$$

Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.
Theorem. If c is an integer such that $c \equiv 2$, or $3 \bmod 4$, then the equation $x^{2}=c$ has no integer solution.

Squares modulo 4

The square of an even number is divisible by four.

$$
n \equiv 0 \bmod 2 \Longrightarrow n^{2} \equiv 0 \bmod 4
$$

The square of an odd number has remainder 1 under division by 4 .

$$
n \equiv 1 \bmod 2 \Longrightarrow n^{2} \equiv 1 \bmod 4
$$

Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.
Theorem. If c is an integer such that $c \equiv 2$, or $3 \bmod 4$, then the equation $x^{2}=c$ has no integer solution.

If both a and b are odd, then $a^{2}+b^{2} \equiv 1+1 \equiv 2 \bmod 4$.

Squares modulo 4

The square of an even number is divisible by four.

$$
n \equiv 0 \bmod 2 \Longrightarrow n^{2} \equiv 0 \bmod 4
$$

The square of an odd number has remainder 1 under division by 4 .

$$
n \equiv 1 \bmod 2 \Longrightarrow n^{2} \equiv 1 \bmod 4
$$

Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.
Theorem. If c is an integer such that $c \equiv 2$, or $3 \bmod 4$, then the equation $x^{2}=c$ has no integer solution.

If both a and b are odd, then $a^{2}+b^{2} \equiv 1+1 \equiv 2 \bmod 4$.
Then $a^{2}+b^{2} \neq c^{2}$.

Squares modulo 4

The square of an even number is divisible by four.

$$
n \equiv 0 \bmod 2 \Longrightarrow n^{2} \equiv 0 \bmod 4
$$

The square of an odd number has remainder 1 under division by 4 .

$$
n \equiv 1 \bmod 2 \Longrightarrow n^{2} \equiv 1 \bmod 4
$$

Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.
Theorem. If c is an integer such that $c \equiv 2$, or $3 \bmod 4$, then the equation $x^{2}=c$ has no integer solution.

If both a and b are odd, then $a^{2}+b^{2} \equiv 1+1 \equiv 2 \bmod 4$.
Then $a^{2}+b^{2} \neq c^{2}$. In a primitive Pythagorean triple (a, b, c), c is odd, one of a and b is even, another is odd.

Squares modulo 4

The square of an even number is divisible by four.

$$
n \equiv 0 \bmod 2 \Longrightarrow n^{2} \equiv 0 \bmod 4
$$

The square of an odd number has remainder 1 under division by 4 .

$$
n \equiv 1 \bmod 2 \Longrightarrow n^{2} \equiv 1 \bmod 4
$$

Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.
Theorem. If c is an integer such that $c \equiv 2$, or $3 \bmod 4$, then the equation $x^{2}=c$ has no integer solution.

If both a and b are odd, then $a^{2}+b^{2} \equiv 1+1 \equiv 2 \bmod 4$.
Then $a^{2}+b^{2} \neq c^{2}$. In a primitive Pythagorean triple (a, b, c),
c is odd, one of a and b is even, another is odd.
Without loss of generality, let us assume that a is odd and b is even.

Squares modulo 4

The square of an even number is divisible by four.

$$
n \equiv 0 \bmod 2 \Longrightarrow n^{2} \equiv 0 \bmod 4
$$

The square of an odd number has remainder 1 under division by 4 .

$$
n \equiv 1 \bmod 2 \Longrightarrow n^{2} \equiv 1 \bmod 4
$$

Notation: $x \equiv y \bmod m$ means $x-y$ is divisible by m.
Theorem. If c is an integer such that $c \equiv 2$, or $3 \bmod 4$, then the equation $x^{2}=c$ has no integer solution.

If both a and b are odd, then $a^{2}+b^{2} \equiv 1+1 \equiv 2 \bmod 4$.
Then $a^{2}+b^{2} \neq c^{2}$. In a primitive Pythagorean triple (a, b, c), c is odd, one of a and b is even, another is odd.
Without loss of generality, let us assume that a is odd and b is even.
Rewrite $a^{2}+b^{2}=c^{2}$ as $b^{2}=c^{2}-a^{2}$ and further as $b^{2}=(c-a)(c+a)$.

New unknowns

$$
\left\{\begin{array} { l l }
{ c \equiv 1 } & { \operatorname { m o d } 2 } \\
{ a \equiv 1 } & { \operatorname { m o d } 2 }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
c-a \equiv 0 & \bmod 2 \\
c+a \equiv 0 & \bmod 2
\end{array}\right.\right.
$$

New unknowns

$$
\left\{\begin{array} { l l }
{ c \equiv 1 } & { \operatorname { m o d } 2 } \\
{ a \equiv 1 } & { \operatorname { m o d } 2 }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
c-a \equiv 0 & \bmod 2 \\
c+a \equiv 0 & \bmod 2
\end{array}\right.\right.
$$

The sum and difference of two odd numbers is even.

New unknowns

$$
\left\{\begin{array} { l l }
{ c \equiv 1 } & { \operatorname { m o d } 2 } \\
{ a \equiv 1 } & { \operatorname { m o d } 2 }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
c-a \equiv 0 & \bmod 2 \\
c+a \equiv 0 & \bmod 2
\end{array}\right.\right.
$$

The sum and difference of two odd numbers is even.
Denote $c+a=2 P, c-a=2 Q$ and $b=2 R$.

New unknowns

$$
\left\{\begin{array} { l l }
{ c \equiv 1 } & { \operatorname { m o d } 2 } \\
{ a \equiv 1 } & { \operatorname { m o d } 2 }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
c-a \equiv 0 & \bmod 2 \\
c+a \equiv 0 & \bmod 2
\end{array}\right.\right.
$$

The sum and difference of two odd numbers is even.

$$
\left\{\begin{array}{l}
c+a=2 P \\
c-a=2 Q
\end{array}\right.
$$

New unknowns

$$
\left\{\begin{array} { l l }
{ c \equiv 1 } & { \operatorname { m o d } 2 } \\
{ a \equiv 1 } & { \operatorname { m o d } 2 }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
c-a \equiv 0 & \bmod 2 \\
c+a \equiv 0 & \bmod 2
\end{array}\right.\right.
$$

The sum and difference of two odd numbers is even.

$$
\left\{\begin{array}{l}
c+a=2 P \\
c-a=2 Q
\end{array}\right.
$$

This system can be solved as follows:

$$
\left\{\begin{array}{l}
c=P+Q \\
a=P-Q
\end{array}\right.
$$

New unknowns

$$
\left\{\begin{array} { l l }
{ c \equiv 1 } & { \operatorname { m o d } 2 } \\
{ a \equiv 1 } & { \operatorname { m o d } 2 }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
c-a \equiv 0 & \bmod 2 \\
c+a \equiv 0 & \bmod 2
\end{array}\right.\right.
$$

The sum and difference of two odd numbers is even.

$$
\left\{\begin{array}{l}
c+a=2 P \\
c-a=2 Q
\end{array}\right.
$$

This system can be solved as follows:

$$
\left\{\begin{array}{l}
c=P+Q \\
a=P-Q
\end{array}\right.
$$

For a primitive Pythagorean triple, P and Q have no common divisor.

New unknowns

$$
\left\{\begin{array} { l l }
{ c \equiv 1 } & { \operatorname { m o d } 2 } \\
{ a \equiv 1 } & { \operatorname { m o d } 2 }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
c-a \equiv 0 & \bmod 2 \\
c+a \equiv 0 & \bmod 2
\end{array}\right.\right.
$$

The sum and difference of two odd numbers is even.

$$
\left\{\begin{array}{l}
c+a=2 P \\
c-a=2 Q
\end{array}\right.
$$

This system can be solved as follows:

$$
\left\{\begin{array}{l}
c=P+Q \\
a=P-Q
\end{array}\right.
$$

For a primitive Pythagorean triple, P and Q have no common divisor. Recall $b^{2}=c^{2}-a^{2}=(c+a)(c-a)=4 P Q=4 R^{2}$.

Solution

Summary: a primitive Pythagorean triple (a, b, c) can be obtained from relatively prime integers P and Q that are related to a, b, c by formulas $c=P+Q, a=P-Q$ and $b^{2}=4 P Q$.

Solution

Summary: a primitive Pythagorean triple (a, b, c) can be obtained from relatively prime integers P and Q that are related to a, b, c by formulas $c=P+Q, a=P-Q$ and $b^{2}=4 P Q$.

Equation $a^{2}+b^{2}=c^{2}$ is equivalent to $P Q=R^{2}$, where $b=2 R$.

Solution

Summary: a primitive Pythagorean triple (a, b, c) can be obtained from relatively prime integers P and Q that are related to a, b, c by formulas $c=P+Q, a=P-Q$ and $b^{2}=4 P Q$.

Equation $a^{2}+b^{2}=c^{2}$ is equivalent to $P Q=R^{2}$, where $b=2 R$.
P and Q are squares,
since they are relatively prime and $P Q$ is a square.

Solution

Summary: a primitive Pythagorean triple (a, b, c) can be obtained from relatively prime integers P and Q that are related to a, b, c by formulas $c=P+Q, a=P-Q$ and $b^{2}=4 P Q$.
Equation $a^{2}+b^{2}=c^{2}$ is equivalent to $P Q=R^{2}$, where $b=2 R$.
P and Q are squares,
since they are relatively prime and $P Q$ is a square.
$\left\{\begin{array}{l}P=u^{2} \\ Q=v^{2} \\ R=u v\end{array}\right.$

Solution

Summary: a primitive Pythagorean triple (a, b, c) can be obtained from relatively prime integers P and Q that are related to a, b, c by formulas $c=P+Q, a=P-Q$ and $b^{2}=4 P Q$.
Equation $a^{2}+b^{2}=c^{2}$ is equivalent to $P Q=R^{2}$, where $b=2 R$.
P and Q are squares,
since they are relatively prime and $P Q$ is a square.
$\left\{\begin{array}{l}P=u^{2} \\ Q=v^{2} \\ R=u v\end{array} \quad\right.$ Express the Pythagorean triple: $\left\{\begin{array}{l}a=u^{2}-v^{2} \\ b=2 u v \\ c=u^{2}+v^{2}\end{array}\right.$

Solution

Summary: a primitive Pythagorean triple (a, b, c) can be obtained from relatively prime integers P and Q that are related to a, b, c by formulas $c=P+Q, a=P-Q$ and $b^{2}=4 P Q$.
Equation $a^{2}+b^{2}=c^{2}$ is equivalent to $P Q=R^{2}$, where $b=2 R$.
P and Q are squares,
since they are relatively prime and $P Q$ is a square.
$\left\{\begin{array}{l}P=u^{2} \\ Q=v^{2} \\ R=u v\end{array}\right.$ Express the Pythagorean triple: $\left\{\begin{array}{l}a=u^{2}-v^{2} \\ b=2 u v \\ c=u^{2}+v^{2}\end{array}\right.$
Verify: for any integers u, v (no matter odd, relatively prime, or not)

$$
\begin{aligned}
a^{2}+b^{2}= & \left(u^{2}-v^{2}\right)^{2}+(2 u v)^{2} \\
= & u^{4}-2 u^{2} v^{2}+v^{4}+4 u^{2} v^{2}=u^{4}+ \\
& 2 u^{2} v^{2}+v^{4} \\
& =\left(u^{2}+v^{2}\right)^{2}=c^{2}
\end{aligned}
$$

Done?

All primitive Pythagorean triples are $\left(2 u v, u^{2}-v^{2}, u^{2}+v^{2}\right)$ for relatively prime u and v, one of which is even.

Done?

All primitive Pythagorean triples are ($2 u v, u^{2}-v^{2}, u^{2}+v^{2}$) for relatively prime u and v, one of which is even.

At this point we could stop: we have solved the problem.

Done?

All primitive Pythagorean triples are $\left(2 u v, u^{2}-v^{2}, u^{2}+v^{2}\right)$ for relatively prime u and v, one of which is even.

At this point we could stop: we have solved the problem.
What else to desire?

Done?

All primitive Pythagorean triples are $\left(2 u v, u^{2}-v^{2}, u^{2}+v^{2}\right)$ for relatively prime u and v, one of which is even.

At this point we could stop: we have solved the problem.
What else to desire?
What may a mathematician desire at this point?

Done?

All primitive Pythagorean triples are $\left(2 u v, u^{2}-v^{2}, u^{2}+v^{2}\right)$ for relatively prime u and v, one of which is even.

At this point we could stop: we have solved the problem.
What else to desire?
What may a mathematician desire at this point?
A mathematician would ask: What did we learn?

Done?

All primitive Pythagorean triples are $\left(2 u v, u^{2}-v^{2}, u^{2}+v^{2}\right)$ for relatively prime u and v, one of which is even.

At this point we could stop: we have solved the problem.
What else to desire?
What may a mathematician desire at this point?
A mathematician would ask: What did we learn?
What other problems can we solve using this experience?

Done?

All primitive Pythagorean triples are $\left(2 u v, u^{2}-v^{2}, u^{2}+v^{2}\right)$ for relatively prime u and v, one of which is even.

At this point we could stop: we have solved the problem.
What else to desire?
What may a mathematician desire at this point?
A mathematician would ask: What did we learn?
What other problems can we solve using this experience?
What generalizations of this problem can be handled in this way?

Done?

All primitive Pythagorean triples are ($2 u v, u^{2}-v^{2}, u^{2}+v^{2}$) for relatively prime u and v, one of which is even.

At this point we could stop: we have solved the problem.
What else to desire?
What may a mathematician desire at this point?
A mathematician would ask: What did we learn?
What other problems can we solve using this experience?
What generalizations of this problem can be handled in this way?
It is not geometry.

Done?

All primitive Pythagorean triples are ($2 u v, u^{2}-v^{2}, u^{2}+v^{2}$) for relatively prime u and v, one of which is even.

At this point we could stop: we have solved the problem.
What else to desire?
What may a mathematician desire at this point?
A mathematician would ask: What did we learn?
What other problems can we solve using this experience?
What generalizations of this problem can be handled in this way?
It is not geometry. Until the proof has turned into a comics,
some mathematicians would not be satisfied.

Done?

All primitive Pythagorean triples are $\left(2 u v, u^{2}-v^{2}, u^{2}+v^{2}\right)$ for relatively prime u and v, one of which is even.

At this point we could stop: we have solved the problem.
What else to desire?
What may a mathematician desire at this point?
A mathematician would ask: What did we learn?
What other problems can we solve using this experience?
What generalizations of this problem can be handled in this way?
It is not geometry. Until the proof has turned into a comics, some mathematicians would not be satisfied.

Pythagorean triples come from Geometry.
Where is Geometry?

Pythagorian points

$c=\sqrt{a^{2}+b^{2}}$ is recovered from the rest of Pythagorian triple.

Pythagorian points

$c=\sqrt{a^{2}+b^{2}}$ is recovered from the rest of Pythagorian triple.
The rest is a point (a, b) on the Cartesian plane.

Pythagorian points

$c=\sqrt{a^{2}+b^{2}}$ is recovered from the rest of Pythagorian triple.
The rest is a point (a, b) on the Cartesian plane. It has integer coordinates (a, b) and integer distance $c=\sqrt{a^{2}+b^{2}}$ from the origin.

Pythagorian points

$c=\sqrt{a^{2}+b^{2}}$ is recovered from the rest of Pythagorian triple.
The rest is a point (a, b) on the Cartesian plane. It has integer coordinates (a, b) and integer distance $c=\sqrt{a^{2}+b^{2}}$ from the origin.

This is a geometric incarnation of Pythagorian triple (a, b, c),
a Pythagorian point.

Pythagorian points

$c=\sqrt{a^{2}+b^{2}}$ is recovered from the rest of Pythagorian triple.
The rest is a point (a, b) on the Cartesian plane. It has integer coordinates (a, b) and integer distance $c=\sqrt{a^{2}+b^{2}}$ from the origin.

This is a geometric incarnation of Pythagorian triple (a, b, c), a Pythagorian point.
If (a, b) is a Pythagorean point and $c=\sqrt{a^{2}+b^{2}}$, then $\left(\frac{a}{c}, \frac{b}{c}\right)$ is a rational point on the circle $x^{2}+y^{2}=1$.

Pythagorian points

$c=\sqrt{a^{2}+b^{2}}$ is recovered from the rest of Pythagorian triple.
The rest is a point (a, b) on the Cartesian plane. It has integer coordinates (a, b) and integer distance $c=\sqrt{a^{2}+b^{2}}$ from the origin.

This is a geometric incarnation of Pythagorian triple (a, b, c),
a Pythagorian point.
If (a, b) is a Pythagorean point and $c=\sqrt{a^{2}+b^{2}}$, then $\left(\frac{a}{c}, \frac{b}{c}\right)$ is a rational point on the circle $x^{2}+y^{2}=1$.
Conversly, if (p, q) is a rational point on $x^{2}+y^{2}=1$, then on the line $y=\frac{q}{p} x$ there are Pythagorean points.

Pythagorian points

$c=\sqrt{a^{2}+b^{2}}$ is recovered from the rest of Pythagorian triple.
The rest is a point (a, b) on the Cartesian plane. It has integer coordinates (a, b) and integer distance $c=\sqrt{a^{2}+b^{2}}$ from the origin.

This is a geometric incarnation of Pythagorian triple (a, b, c),
a Pythagorian point.
If (a, b) is a Pythagorean point and $c=\sqrt{a^{2}+b^{2}}$, then $\left(\frac{a}{c}, \frac{b}{c}\right)$ is a rational point on the circle $x^{2}+y^{2}=1$.
Conversly, if (p, q) is a rational point on $x^{2}+y^{2}=1$, then on the line $y=\frac{q}{p} x$ there are Pythagorean points.
The problem that we solved was find all Pythagorain points.

Pythagorian points

$c=\sqrt{a^{2}+b^{2}}$ is recovered from the rest of Pythagorian triple.
The rest is a point (a, b) on the Cartesian plane. It has integer coordinates (a, b) and integer distance $c=\sqrt{a^{2}+b^{2}}$ from the origin.

This is a geometric incarnation of Pythagorian triple (a, b, c),
a Pythagorian point.
If (a, b) is a Pythagorean point and $c=\sqrt{a^{2}+b^{2}}$, then $\left(\frac{a}{c}, \frac{b}{c}\right)$ is a rational point on the circle $x^{2}+y^{2}=1$.
Conversly, if (p, q) is a rational point on $x^{2}+y^{2}=1$, then on the line $y=\frac{q}{p} x$ there are Pythagorean points.
The problem that we solved was find all Pythagorain points.
Reformulation: find all rational points on the unit circle $x^{2}+y^{2}=1$.

Parametrizations of the circle

On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.

Parametrizations of the circle

On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.

Parametrizations of the circle

On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.

Parametrizations of the circle

On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Nice formulas! Homogeneous! Divide by u^{2}

Parametrizations of the circle

On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Nice formulas! Homogeneous! Divide by u^{2}
Then $\cos \alpha=\frac{1-\frac{v^{2}}{u^{2}}}{1+\frac{v^{2}}{u^{2}}}$ and $\sin \alpha=\frac{2 v / u}{1+\frac{v^{2}}{u^{2}}}$.

Parametrizations of the circle

On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Nice formulas! Homogeneous! Divide by u^{2}
Then $\cos \alpha=\frac{1-\frac{v^{2}}{u^{2}}}{1+\frac{v^{2}}{u^{2}}}$ and $\sin \alpha=\frac{2 v / u}{1+\frac{v^{2}}{u^{2}}}$.
Let $\frac{v}{u}=t$. Then $\cos \alpha=\frac{1-t^{2}}{1+t^{2}}$ and $\sin \alpha=\frac{2 t}{1+t^{2}}$

Parametrizations of the circle

On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Nice formulas! Homogeneous! Divide by u^{2}
Then $\cos \alpha=\frac{1-\frac{v^{2}}{u^{2}}}{1+\frac{v^{2}}{u^{2}}}$ and $\sin \alpha=\frac{2 v / u}{1+\frac{v^{2}}{u^{2}}}$.
Let $\frac{v}{u}=t$. Then $\cos \alpha=\frac{1-t^{2}}{1+t^{2}}$ and $\sin \alpha=\frac{2 t}{1+t^{2}}$
If $u=\cos \beta$ and $v=\sin \beta$, then
$\cos \alpha=\cos ^{2} \beta-\sin ^{2} \beta=\cos 2 \beta, \sin \alpha=2 \cos \beta \sin \beta=\sin 2 \beta$.

Parametrizations of the circle

On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Nice formulas! Homogeneous! Divide by u^{2}
Then $\cos \alpha=\frac{1-\frac{v^{2}}{u^{2}}}{1+\frac{v^{2}}{u^{2}}}$ and $\sin \alpha=\frac{2 v / u}{1+\frac{v^{2}}{u^{2}}}$.
Let $\frac{v}{u}=t$. Then $\cos \alpha=\frac{1-t^{2}}{1+t^{2}}$ and $\sin \alpha=\frac{2 t}{1+t^{2}}$
If $u=\cos \beta$ and $v=\sin \beta$, then
$\cos \alpha=\cos ^{2} \beta-\sin ^{2} \beta=\cos 2 \beta, \sin \alpha=2 \cos \beta \sin \beta=\sin 2 \beta$.
$t=\frac{v}{u}=\frac{\sin \beta}{\cos \beta}=\tan \beta=\tan \frac{\alpha}{2}$

Parametrizations of the circle

On the unit circle, any point is $(\cos \alpha, \sin \alpha)$ for some α.
Find α such that both $\cos \alpha$ and $\sin \alpha$ are rational.
The answer: $\cos \alpha=\frac{u^{2}-v^{2}}{u^{2}+v^{2}}$ and $\sin \alpha=\frac{2 u v}{u^{2}+v^{2}}$ for $u, v \in \mathbb{N}$.
Nice formulas! Homogeneous! Divide by u^{2}
Then $\cos \alpha=\frac{1-\frac{v^{2}}{u^{2}}}{1+\frac{v^{2}}{u^{2}}}$ and $\sin \alpha=\frac{2 v / u}{1+\frac{v^{2}}{u^{2}}}$.
Let $\frac{v}{u}=t$. Then $\cos \alpha=\frac{1-t^{2}}{1+t^{2}}$ and $\sin \alpha=\frac{2 t}{1+t^{2}}$
If $u=\cos \beta$ and $v=\sin \beta$, then
$\cos \alpha=\cos ^{2} \beta-\sin ^{2} \beta=\cos 2 \beta, \sin \alpha=2 \cos \beta \sin \beta=\sin 2 \beta$.
$t=\frac{v}{u}=\frac{\sin \beta}{\cos \beta}=\tan \beta=\tan \frac{\alpha}{2}$
Riddle:
Draw on a picture all the heroes: $\alpha, \cos \alpha, \sin \alpha, \beta$, and $t=\tan \beta$.

