
Lecture 1. The sequence of prime numbers

Oleg Viro

1 Prime numbers and the set of all prime numbers

1.1 Primes and composites

Let n be a natural number. A natural number d is said to divide n and is
called a divisor of d if n = d · q for some natural number q.

The number 1 divides any natural number n, because n = 1 · n. For the
same reason, any natural number divides itself.

A natural number n > 1 is called prime if it has no other divisors, only
1 and n divide n.

Otherwise n > 1 is called composite. Number 1 is not called prime or
composite.

Lemma 1. Any natural number n > 1 is divisible by some prime number.

Proof. If n is a prime number, then it is divisible by itself. If not, then
it is a composite number and is a product q1p1 of two numbers different
from n and 1. They are smaller than n. If p1 is prime, then we are done:
we found a prime divisor p1 of n. If not, then p1 is a composite number,
and there exist natural numbers q2 and p2 such that p1 = q2p2 (and hence
n = q1q2p2) and 1 < q2 < p1, 1 < p2 < p1. Acting in this way, we get
eventually either a prime divisor pk of n, or a sequence of factorizations
n = q1p1 = q1q2p2 = q1q2q3p3 = . . . in which n > p1 > p2 > p3 > · · · > 1.
A decreasing sequence of natural numbers cannot be infinite. The length is
not greater than n− 2. Thus we get a prime divisor of n.

Lemma 2. p · q + 1 is not divisible by p for any natural numbers p and q
with p > 1.

Proof. Assume the opposite, then pq + 1 = pr for some natural r. Then
p(r − q) = 1. Since p > 1 and r − q is a natural number, p(r − q) > 1.
Contradiction.
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1.2 The number of prime numbers

Theorem 1. The set of prime numbers is infinite.

Proof. Assume the opposite. Let p1, p2, . . . , pn be the list of all prime num-
bers. Consider N = p1p2 . . . pn + 1. By Lemma ??, N is divisible by some
prime number. By Lemma 2, N is not divisible by any of p1, . . . , pn. By
assumption, any prime number is one of p1,. . . , pn. Contradiction.

1.3 Digression on the history

Theorem 1 is traced back to Euclid. It is instructive to compare is statement
and proof with the original Proposition 20 in Book IX of the Elements. See

http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX20.html

Here is its text: “Proposition 20. Prime numbers are more than any
assigned multitude of prime numbers.

Let A, B, and C be the assigned prime numbers. I say that there are
more prime numbers than A, B, and C.

Take the least number DE measured by A, B, and C. (Comment: i.e.,
DE is the least common multiple of A, B, and C.) Add the unit DF to
DE. Then EF is either prime or not.

First, let it be prime. Then the prime numbers A, B, C, and EF have
been found which are more than A, B, and C.

Next, let EF not be prime. Therefore it is measured by some prime
number. Let it be measured by the prime number G.

I say that G is not the same with any of the numbers A, B, and C.
If possible, let it be so. Now A, B, and C measure DE, therefore G

also measures DE. But it also measures EF . Therefore G, being a number,
measures the remainder, the unit DF , which is absurd.

Therefore G is not the same with any one of the numbers A, B, and C.
And by hypothesis it is prime. Therefore the prime numbers A, B, C, and
G have been found which are more than the assigned multitude of A, B,
and C.

Therefore, prime numbers are more than any assigned multitude of prime
numbers. ”

Comment by David E. Joyce:
“This proposition states that there are more than any finite number of

prime numbers, that is to say, there are infinitely many primes.
Outline of the proof

2



Suppose that there are n primes, a1, a2, ..., an. Euclid, as usual, takes an
specific small number, n = 3, of primes to illustrate the general case. Let m
be the least common multiple of all of them. (This least common multiple
was also considered in proposition IX.14. It wasn’t noted in the proof of
that proposition that the least common multiple of primes is their product,
and it isn’t noted in this proof, either.)

Consider the number m + 1. If it’s prime, then there are at least n + 1
primes.

So suppose m + 1 is not prime. Then according to proposition VII.31,
some prime g divides it. But g cannot be any of the primes a1, a2, ..., an,
since they all divide m and do not divide m + 1. Therefore, there are at
least n + 1 primes. Q.E.D.

This proposition is not used in the rest of the Elements.”

1.4 Gaps between subsequent primes

Theorem 2. For any natural number N there exist subsequent prime num-
bers p and q such that q − p > N .

Proof. Let p1, p2, . . . pn be all the prime numbers that are less than or equal
to N . Consider numbers

a2 =p1p2 . . . pn + 2

a3 =p1p2 . . . pn + 3

. . .

aN =p1p2 . . . pn + N

None of them is prime. To prove that ai is not prime, we consider separately
two cases: (1) i is prime, (2) i is composite.

If i is a prime number pj ≤ N the number ai = p1p2 . . . pn + i =
p1p2 . . . pn + pj is divisible by pj . If i ≤ N is composite. Then i is di-
visible by some prime pj < N , that is i = pjs for some natural number s.
Hence ai = p1p2 . . . pn+ i = p1p2 . . . pn+pjs is divisible by pj . Observe, that
in either case, pj < ai and divisiblity of ai by pj means that ai is composite.

Thus we have constructed a collection of N − 1 subsequent composite
numbers. The greatest prime number number p < a2 and the least prime
number q > aN have the desired properties: they are prime and q − p >
N .

1.5 Primes with a given remainder under division by 3

The whole set N of natural numbers is the union of the following three sets:
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• the natural numbers divisible by 3,

• the natural numbers which gives remainder 1 under division by 3,

• the natural numbers which gives remainder 2 under division by 3.

The sets are formed by numbers belonging to three arithmetic series:

3, 6, 9, 12, . . . 3n, . . .

1, 4, 7, 10, 13, . . . 3n + 1, . . .

2, 5, 8, 11, 14, . . . 3n + 2, . . .

The first of these sets starts with prime number 3, but it all other its
elements are composite.

Theorem 3. The set of prime numbers contained in the arithmetic series
2, 5, 8, 11, . . . , 3n + 2, . . . is infinite.

Lemma 3. The product of any two natural numbers belonging to the arith-
metic series 1, 4, 7, 10, 13, . . . 3n+1, . . . belongs to the same arithmetic series.

Proof. Any element of this arithmetic series can be presented as 3x + 1 for
some integer x. Consider the product of two such numbers. Present them
as 3x + 1 and 3y + 1 for some integers x and y. Then

(3x + 1)(3y + 1) = 9xy + 3x + 3y + 1 = 3(3xy + x + y) + 1.

Hence, the product gives remainder 1 under division by 3.

Proof of Theorem 3. Assume the contrary that the set of prime numbers
contained in the arithmetic series 2, 5, 8, 11, . . . , 3n + 2, . . . is finite. Let p1,
p2, . . . pn be all the prime members of this series. (So, p1 = 2, p2 = 5, etc.)

Let M = 3 · p1 · p2 . . . pn − 1. First, observe that M belongs to the
arithmetic series under consideration, because M = 3 · p1 · p2 . . . pn − 1 =
3(p1 ·p2 . . . pn−1)+3−1 = 3(p1 ·p2 . . . pn−1)+2. Second, M is not divisible
by 3, or p1, . . . , pn. Thus it may have prime divisors belonging only to the
arithmetic series 4, 7, 10, . . . , 3n + 1. But according Lemma 3 product of
members of this series also belongs to this series. Contradiction.
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