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Introduction

The subject of the book: Elementary Topology

Elementary means close to elements, basics. It is impossible to deter-
mine precisely, once and for all, which topology is elementary and which
is not. The elementary part of a subject is the part with which an expert
starts to teach a novice.

We suppose that our student is ready to study topology. So, we do not
try to win her or his attention and benevolence by hasty and obscure stories
about mysterious and attractive things such as the Klein bottle,1 though
the Klein bottle will appear in its turn. However, we start with what a
topological space is, that is, we start with general topology.

General topology became a part of the general mathematical language
a long time ago. It teaches one to speak clearly and precisely about things
related to the idea of continuity. It is not only needed to explain what,
finally, the Klein bottle is, but it is also a way to introduce geometrical
images into any area of mathematics, no matter how far from geometry the
area may be at first glance.

As an active research area, general topology is practically completed.
A permanent usage in the capacity of a general mathematical language has
polished its system of definitions and theorems. Indeed, nowadays, the study
of general topology resembles a study of a language rather than a study of
mathematics: one has to learn many new words, while the proofs of the
majority of the theorems are extremely simple. However, the quantity of

1A person who is looking for such elementary topology will easily find it in numerous books
with beautiful pictures on visual topology.
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xii Introduction

the theorems is huge. This comes as no surprise because they play the role
of rules that regulate usage of words.

The book consists of two parts. General topology is the subject of part
one. The second part is an introduction to algebraic topology via its most
classical and elementary segment, which emerges from the notions of funda-
mental group and covering space.

In our opinion, elementary topology also includes basic topology of man-
ifolds, i.e., spaces that look locally as the Euclidean space. One- and two-
dimensional manifolds, i.e., curves and surfaces are especially elementary.
However, a book should not be too thick, and so we had to stop.

Chapter 5, which is the last chapter of the first part, keeps somewhat
aloof. It is devoted to topological groups. The material is intimately re-
lated to a number of different areas of Mathematics. Although topological
groups play a profound role in those areas, it is not that important in the
initial study of general topology. Therefore, mastering this material may
be postponed until it appears in a substantial way in other mathematical
courses (which will concern the Lie groups, functional analysis, etc.). The
main reason why we included this material is that it provides a great variety
of examples and exercises.

Organization of the text

Even a cursory overview detects unusual features in the organization of
this book. We dared to come up with several innovations and hope that the
reader will quickly get used to them and even find them useful.

We know that the needs and interests of our readers vary, and realize
that it is very difficult to make a book interesting and useful for each reader.
To solve this problem, we formatted the text in such a way that the reader
could easily determine what (s)he can expect from each piece of the text.
We hope that this will allow the reader to organize studying the material of
the book in accordance with his or her tastes and abilities. To achieve this
goal, we use several tricks.

First of all, we distinguished the basic, so to speak, lecture line. This
is the material which we consider basic. It constitutes a minor part of the
text.

The basic material is often interrupted by specific examples, illustrative
and training problems, and discussion of the notions that are related to
these examples and problems, but are not used in what follows. Some of
the notions play a fundamental role in other areas of mathematics, but here
they are of minor importance.
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In a word, the basic line is interrupted by variations wherever possi-
ble. The variations are clearly separated from the basic theme by graphical
means.

The second feature distinguishing the present book from the majority
of other textbooks is that proofs are separated from formulations. Proofs
were removed entirely from the web version. This makes the book look
like a pure problem book. It would be easy to make the book looking like
hundreds of other mathematical textbooks. For this purpose, it suffices to
move all variations to the ends of their sections so that they would look like
exercises to the basic text, and put the proofs of theorems immediately after
their formulations.

For whom is this book?

A reader who has safely reached the university level in her/his education
may bravely approach this book. Super brave daredevils may try it even
earlier. However, we cannot say that no preliminary knowledge is required.
We suppose that the reader is familiar with real numbers, and, surely, with
natural, integer, and rational numbers too. A knowledge of complex num-
bers would also be useful, although one can manage without them in the
first part of the book.

We assume that the reader is acquainted with naive set theory, but admit
that this acquaintance may be superficial. For this reason, we make special
set-theoretical digressions where the knowledge of set theory is particularly
desirable.

We do not seriously rely on calculus, but because the majority of our
readers are already familiar with it, at least slightly, we do not hesitate to
resort to using notations and notions from calculus.

In the second part, experience in group theory will be useful, although
we give all necessary information about groups.

One of the most valuable acquisitions that the reader can make by mas-
tering the present book is new elements of mathematical culture and an
ability to understand and appreciate an abstract axiomatic theory. The
higher the degree in which the reader already possesses this ability, the
easier it will be for her or him to master the material of the book.

If you want to study topology on your own, do try to work with the
book. It may turn out to be precisely what you need. However, you should
attentively reread the rest of the Introduction again in order to understand
how the material is organized and how you can use it.
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The basic theme

The core of the book is made up of the material of the topology course
for students majoring in Mathematics at the Saint Petersburg (Leningrad)
State University. The core material makes up a relatively small part of the
book and involves nearly no complicated arguments.

The reader should not think that by selecting the basic theme the authors
just try to impose their tastes on her or him. We do not hesitate to do this
occasionally, but here our primary goal is to organize study of the subject.

The basic theme forms a complete entity. The reader who has mastered
the basic theme has mastered the subject. Whether the reader had looked
in the variations or not is her or his business. However, the variations have
been included in order to help the reader with mastering the basic material.
They are not exiled to the final pages of sections in order to have them at
hand precisely when they are most needed. By the way, the variations can
tell you about many interesting things. However, following the variations
too literally and carefully may take far too long.

We believe that the material presented in the basic theme is the minimal
amount of topology that must be mastered by every student who has decided
to become a professional mathematician.

Certainly, a student whose interests will be related to topology and other
geometrical disciplines will have to learn far more than the basic theme
includes. In this case the material can serve as a good starting point.

For a student who is not going to become a professional mathematician,
even a selective acquaintance with the basic theme might be useful. It may
be useful for preparation for an exam or just for catching a glimpse and a
feeling of abstract mathematics, with its emphasized value of definitions and
precise formulations.

Where are the proofs?

The book is tailored for a reader who is determined to work actively.

The proofs of theorems are separated from their formulations and placed at

the end of the current chapter. They are not included at all in the web version

of the book.

We believe that the first reaction to the formulation of any assertion
(coming immediately after the feeling that the formulation has been under-
stood) must be an attempt to prove the assertion—or to disprove it, if you
do not manage to prove it. An attempt to disprove an assertion may be
useful both for achieving a better understanding of the formulation and for
looking for a proof.
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By keeping the proofs away from the formulations, we want to encour-
age the reader to think through each formulation, and, on the other hand,
to make the book inconvenient for careless skimming. However, a reader
who prefers a more traditional style and, for some reason, does not wish to
work too actively can either find the proofs at the end of the chapter, or
skip them all together. (Certainly, in the latter case there is some danger of
misunderstanding.)

This style can also please an expert who needs a handbook and prefers
formulations not overshadowed by proofs. Most of the proofs are simple and
easy to discover.

Structure of the book

Basic structural units of the book are sections. They are divided into
numbered and titled subsections. Each subsection is devoted to a single
topic and consists of definitions, comments, theorems, exercises, problems,
and riddles.

By a riddle we mean a problem whose solution (and often also the mean-
ing) should be guessed rather than calculated or deduced from the formula-
tion.

Theorems, exercises, problems, and riddles belonging to the basic mate-
rial are numbered by pairs consisting of the number of the current section
and a letter, separated by a dot.

2.B. Riddle. Taking into account the number of the riddle, determine in
which section it must be contained. By the way, is this really a riddle?

The letters are assigned in alphabetical order. They number the assertions
inside a section.

A difficult problem (or theorem) is often followed by a sequence of as-
sertions that are lemmas to the problem. Such a chain often ends with a
problem in which we suggest the reader, armed with the lemmas just proven,
return to the initial problem (respectively, theorem).

Variations

The basic material is surrounded by numerous training problems and
additional definitions, theorems, and assertions. In spite of their relation
to the basic material, they usually are left outside of the standard lecture
course.

Such additional material is easy to recognize in the book by the smaller print
and wide margins, as shown here. Exercises, problems, and riddles that are not
included in the basic material, but are closely related to it, are numbered by pairs
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consisting of the number of a section and the number of the assertion in the limits
of the section.

2.5. Find a problem with the same number 2.5 in the main body of the book.

All solutions to problems are located at the end of the book published by

AMS. They are not included into the web version.

As is common, the problems that have seemed to be most difficult to
the authors are marked by an asterisk. They are included with different
purposes: to outline relations to other areas of mathematics, to indicate
possible directions of development of the subject, or just to please an ambi-
tious reader.

Additional themes

We decided to make accessible for interested students certain theoretical
topics complementing the basic material. It would be natural to include
them into lecture courses designed for senior (or graduate) students. How-
ever, this does not usually happen, because the topics do not fit well into
traditional graduate courses. Furthermore, studying them seems to be more
natural during the very first contacts with topology.

In the book, such topics are separated into individual subsections, whose
numbers contain the symbol x, which means extra. (Sometimes, a whole
section is marked in this way, and, in one case, even a whole chapter.)

Certainly, regarding this material as additional is a matter of taste and
viewpoint. Qualifying a topic as additional, we follow our own ideas about
what must be contained in the initial study of topology. We realize that
some (if not most) of our colleagues may disagree with our choice, but we
hope that our decorations will not hinder them from using the book.

Advices to the reader

You can use the present book when preparing for an exam in topology
(especially so if the exam consists in solving problems). However, if you
attend lectures in topology, then it is reasonable to read the book before
the lectures, and try to prove the assertions in it on your own before the
lecturer will prove them.

The reader who can prove assertions of the basic theme on his or her
own needn’t solve all of the problems suggested in the variations, and can
resort to a brief acquaintance with their formulations and solve only the
most difficult of them. On the other hand, the more difficult it is for you
to prove assertions of the basic theme, the more attention you should pay
to illustrative problems, and the less attention should be paid to problems
with an asterisk.
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Many of our illustrative problems are easy to come up with. Moreover,
when seriously studying a subject, one should permanently cook up ques-
tions of this kind.

On the other hand, some problems presented in the book are not easy
to come up with at all. We have widely used all kinds of sources, including
both literature and teachers’ folklore.

Notations

We did our best to avoid notations which are not commonly accepted.
The only exception is the use of a few symbols which are very convenient
and almost self-explanatory. Namely, within proofs symbols and

should be understood as (sub)titles. Each of them means that we
start proving the corresponding implication. Similarly, symbols ⊂ and ⊃
indicate the beginning of proofs of the corresponding inclusions.

How this book was created

In the basic theme, we follow the course of lectures composed by Vladimir
Abramovich Rokhlin at the Faculty of Mathematics and Mechanics of the
Leningrad State University in the 1960s. It seems appropriate to sketch the
circumstances of creating the course, although we started to write this book
only after Vladimir Abramovich’s death (1984).
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Vladimir Abramovich Rokhlin gives a lecture, 1960s.

In the 1960s, mathematics was one of the most attractive areas of science
for young people in the Soviet Union, being second maybe only to physics
among the natural sciences. Every year more than a hundred students were
enrolled in the mathematical subdivision of the Faculty.

Several dozen of them were alumnae and alumni of mathematical schools.
The system and contents of the lecture courses at the Faculty were seriously
updated.

Until Rokhlin developed his course, topology was taught in the Faculty
only in the framework of special courses. Rokhlin succeeded in including
a one-semester course on topology into the system of general mandatory
courses. The course consisted of three chapters devoted to general topol-
ogy, fundamental group and coverings, and manifolds, respectively. The
contents of the first two chapters differed only slightly from the basic ma-
terial of the book. The last chapter started with a general definition of a
topological manifold, included a topological classification of one-dimensional
manifolds, and ended either with a topological classification of triangulated
two-dimensional manifolds or with elements of differential topology, up to
embedding a smooth manifold in the Euclidean space.

Three of the four authors belong to the first generation of students who
attended Rokhlin’s lecture course. This was a one-semester course, three
hours a week in the first semester of the second year. At most two two-hour
lessons during the whole semester were devoted to solving problems. It was
not Rokhlin, but his graduate students who conducted these lessons. For
instance, in 1966–68 they were conducted by Misha Gromov—an outstand-
ing geometer, currently a professor of the Paris Institute des Hautes Etudies
Scientifiques and the New York Courant Institute. Rokhlin regarded the
course as a theoretical one and did not wish to spend lecture time solving
problems. Indeed, in the framework of the course one did not have to teach
students how to solve series of routine problems, like problems in techniques
of differentiation and integration, that are traditional for calculus.

Despite the fact that we built our book by starting from Rokhlin’s lec-
tures, the book will give you no idea about Rokhlin’s style. The lectures
were brilliant. Rokhlin wrote very little on the blackboard. Nevertheless, it
was very easy to take notes. He spoke without haste, with maximally simple
and ideally correct sentences.

For the last time, Rokhlin gave his mandatory topology course in 1973.
In August of 1974, because of his serious illness, the administration of the
Faculty had to look for a person who would substitute for Rokhlin as a
lecturer. The problem was complicated by the fact that the results of the
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exams in the preceding year were terrible. In 1973, the time allotted for the
course was increased up to four hours a week, while the number of students
had grown, and, respectively, the level of their training had decreased. As
a result, the grades for exams “crashed down”.

It was decided that the whole class, which consisted of about 175 stu-
dents, should be split into two classes. Professor Viktor Zalgaller was ap-
pointed to give lectures to the students who were going to specialize in
applied mathematics, while Assistant Professor Oleg Viro would give the
lectures to student-mathematicians. Zalgaller suggested introducing exer-
cise lessons—one hour a week. As a result, the time allotted for the lectures
decreased, and de facto the volume of the material also reduced along with
the time.

It remained to understand what to do in the exercise lessons. One had to
develop a system of problems and exercises that would give an opportunity
to revisit the definitions given in the lectures, and would allow one to develop
skills in proving easy theorems from general topology in the framework of a
simple axiomatic theory.

Problems in the first part of the book are a result of our efforts in this
direction. Gradually, exercise lessons and problems were becoming more
and more useful as long as we had to teach students with a lower level of
preliminary training. In 1988, the Publishing House of the Leningrad State
University published the problems in a small book, Problems in Topology.

Students found the book useful. One of them, Aleksĕı Solov’ev, even
translated it into English on his own initiative when he became a gradu-
ate student at the University of California. The translation initiated a new
stage of work on the book. We started developing the Russian and English
versions in parallel and practically covered the entire material of Rokhlin’s
course. In 2000, the Publishing House of the Saint Petersburg State Uni-
versity published the second Russian edition of the book, which already
included a chapter on the fundamental group and coverings.

The English version was used by Oleg Viro for his lecture course in the
USA (University of California) and Sweden (Uppsala University). The Rus-
sian version was used by Slava Kharlamov for his lecture courses in France
(Strasbourg University). The lectures have been given for quite different
audiences: both for undergraduate and graduate students. Furthermore,
few professors (some of whom the authors have not known personally) have
asked the authors’ permission to use the English version in their lectures,
both in the countries mentioned above and in other ones. New demands
upon the text have arisen. For instance, we were asked to include solutions
to problems and proofs of theorems in the book, in order to make it meet
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the Western standards and transform it from a problem book into a self-
sufficient textbook. After some hesitation, we fulfilled those requests, the
more so that they were upheld by the Publishing House of the American
Mathematical Society.
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Aleksĕı Solov’ev for translating the first edition of the book into English.
Our special gratitude is due to Viktor Abramovich Zalgaller, whose peda-
gogical experience and sincere wish to help played an invaluable role for us
at a time when we were young.

Each of us has been lucky to be a student of Vladimir Abramovich
Rokhlin, to whose memory we dedicate this book.

The authors, from left to right:
Oleg Yanovich Viro,
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Part 1

General Topology



Our goal in this part of the book is to teach the basics of the mathe-
matical language. More specifically, one of its most important components:
the language of set-theoretic topology, which treats the basic notions related
to continuity. The term general topology means: this is the topology that
is needed and used by most mathematicians. The permanent usage in the
capacity of a common mathematical language has polished its system of
definitions and theorems. Nowadays, studying general topology really more
resembles studying a language rather than mathematics: one needs to learn
a lot of new words, while proofs of most theorems are quite simple. On the
other hand, the theorems are numerous because they play the role of rules
regulating usage of words.

We have to warn students for whom this is one of their first mathematical
subjects. Do not hurry to fall in love with it. Do not let an imprinting
happen. This field may seem to be charming, but it is not very active
nowadays. Other mathematical subjects are also nice and can give exciting
opportunities for research. Check them out!



Chapter I

Structures and Spaces

1. Set-Theoretic Digression: Sets

We begin with a digression, which, however, we would like to consider un-
necessary. Its subject is the first basic notions of the naive set theory. This
is a part of the common mathematical language, too, but an even more
profound part than general topology. We would not be able to say anything
about topology without this part (look through the next section to see that
this is not an exaggeration). Naturally, it may be expected that the naive
set theory becomes familiar to a student when she or he studies Calculus or
Algebra, two subjects of study that usually precede topology. If this is true
in your case, then, please, just glance through this section and pass to the
next one.

⌈1′1⌋ Sets and Elements

In an intellectual activity, one of the most profound actions is gathering
objects in groups. The gathering is performed in mind and is not accom-
panied with any action in the physical world. As soon as the group has
been created and assigned a name, it can be a subject of thoughts and argu-
ments and, in particular, can be included into other groups. Mathematics
has an elaborate system of notions, which organizes and regulates creating
those groups and manipulating them. The system is called the naive set

theory , which, however, is a slightly misleading name because this is rather
a language than a theory.

3



4 I. Structures and Spaces

The first words in this language are set and element. By a set we
understand an arbitrary collection of various objects. An object included in
the collection is an element of the set. A set consists of its elements. It is also
formed by them. In order to diversify the wording, the word set is replaced
by the word collection. Sometimes other words, such as class, family , and
group, are used in the same sense, but this is not quite safe because each
of these words is associated in modern mathematics with a more special
meaning, and hence should be used instead of the word set with caution.

If x is an element of a set A, then we write x ∈ A and say that x belongs

to A and A contains x. The sign ∈ is a variant of the Greek letter epsilon,
which corresponds to the first letter of the Latin word element . To make
the notation more flexible, the formula x ∈ A is also allowed to be written in
the form A ∋ x. So, the origin of the notation is sort of ignored, but a more
meaningful similarity to the inequality symbols < and > is emphasized.
To state that x is not an element of A, we write x 6∈ A or A 6∋ x.

⌈1′2⌋ Equality of Sets

A set is determined by its elements. The set is nothing but a collection
of its elements. This manifests most sharply in the following principle: two

sets are considered equal if and only if they have the same elements. In this
sense, the word set has slightly disparaging meaning. When something is
called a set, this shows, maybe unintentionally, a lack of interest to whatever
organization of the elements of this set.

For example, when we say that a line is a set of points, we assume that
two lines coincide if and only if they consist of the same points. On the
other hand, we commit ourselves to consider all relations between points on
a line (e.g., the distance between points, the order of points on the line, etc.)
separately from the notion of a line.

We may think of sets as boxes that can be built effortlessly around
elements, just to distinguish them from the rest of the world. The cost of
this lightness is that such a box is not more than the collection of elements
placed inside. It is a little more than just a name: it is a declaration of our
wish to think about this collection of things as an entity and not to go into
details about the nature of its member-elements. Elements, in turn, may
also be sets, but as long as we consider them elements, they play the role of
atoms, with their own original nature ignored.

In modern mathematics, the words set and element are very common
and appear in most texts. They are even overused. There are instances
when it is not appropriate to use them. For example, it is not good to
use the word element as a replacement for other, more meaningful words.
When you call something an element , then the set whose element is this one
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should be clear. The word element makes sense only in combination with
the word set , unless we deal with a nonmathematical term (like chemical
element), or a rare old-fashioned exception from the common mathematical
terminology (sometimes the expression under the sign of integral is called
an infinitesimal element ; lines, planes, and other geometric images are also
called elements in old texts). Euclid’s famous book on geometry is called
Elements, too.

⌈1′3⌋ The Empty Set

Thus, an element may not be without a set. However, a set may have
no elements. Actually, there is such a set. This set is unique because a set
is completely determined by its elements. It is the empty set denoted1 by ∅.

⌈1′4⌋ Basic Sets of Numbers

In addition to ∅, there are some other sets so important that they have
their own special names and designations. The set of all positive integers,
i.e., 1, 2, 3, 4, 5, . . . , etc., is denoted by N. The set of all integers, both
positive, and negative, and zero, is denoted by Z. The set of all rational
numbers (add to the integers the numbers that are presented by fractions,
like 2/3 and −7

5 ) is denoted by Q. The set of all real numbers (obtained

by adjoining to rational numbers the numbers like
√

2 and π = 3.14 . . . ) is
denoted by R. The set of complex numbers is denoted by C.

⌈1′5⌋ Describing a Set by Listing Its Elements

A set presented by a list a, b, . . . , x of its elements is denoted by the
symbol {a, b, . . . , x}. In other words, the list of objects enclosed in curly
brackets denotes the set whose elements are listed. For example, {1, 2, 123}
denotes the set consisting of the numbers 1, 2, and 123. The symbol {a, x,A}
denotes the set consisting of three elements: a, x, and A, whatever objects
these three letters denote.

1.1. What is {∅}? How many elements does it contain?

1.2. Which of the following formulas are correct:

1) ∅ ∈ {∅, {∅}}; 2) {∅} ∈ {{∅}}; 3) ∅ ∈ {{∅}}?

A set consisting of a single element is a singleton. This is any set which
is presented as {a} for some a.

1.3. Is {{∅}} a singleton?

1Other designations, like Λ, are also in use, but ∅ has become a common one.
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Notice that the sets {1, 2, 3} and {3, 2, 1, 2} are equal since they have
the same elements. At first glance, lists with repetitions of elements are
never needed. There even arises a temptation to prohibit usage of lists with
repetitions in such notation. However this would not be wise. In fact, quite
often one cannot say a priori whether there are repetitions or not. For
example, the elements in the list may depend on a parameter, and under
certain values of the parameter some entries of the list coincide, while for
other values they don’t.

1.4. How many elements do the following sets contain?

1) {1, 2, 1}; 2) {1, 2, {1, 2}}; 3) {{2}};
4) {{1}, 1}; 5) {1,∅}; 6) {{∅},∅};
7) {{∅}, {∅}}; 8) {x, 3x− 1} for x ∈ R.

⌈1′6⌋ Subsets

If A and B are sets and every element of A also belongs to B, then we
say that A is a subset of B, or B includes A, and write A ⊂ B or B ⊃ A.

The inclusion signs ⊂ and ⊃ resemble the inequality signs < and
> for a good reason: in the world of sets, the inclusion signs are obvious
counterparts for the signs of inequalities.

1.A. Let a set A have a elements, and let a set B have b elements. Prove
that if A ⊂ B, then a ≤ b.

⌈1′7⌋ Properties of Inclusion

1.B Reflexivity of Inclusion. Any set includes itself: A ⊂ A holds true
for any A.

Thus, the inclusion signs are not completely true counterparts of the
inequality signs < and >. They are closer to ≤ and ≥. Notice that no
number a satisfies the inequality a < a.

1.C The Empty Set Is Everywhere. The inclusion ∅ ⊂ A holds true for
any set A. In other words, the empty set is present in each set as a subset.

Thus, each set A has two obvious subsets: the empty set ∅ and A itself.
A subset of A different from ∅ and A is a proper subset of A. This word
is used when we do not want to consider the obvious subsets (which are
improper).

1.D Transitivity of Inclusion. If A, B, and C are sets, A ⊂ B, and
B ⊂ C, then A ⊂ C.
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⌈1′8⌋ To Prove Equality of Sets, Prove Two Inclusions

Working with sets, we need from time to time to prove that two sets,
say A and B, which may have emerged in quite different ways, are equal.
The most common way to do this is provided by the following theorem.

1.E Criterion of Equality for Sets.

A = B if and only if A ⊂ B and B ⊂ A.

⌈1′9⌋ Inclusion Versus Belonging

1.F. x ∈ A if and only if {x} ⊂ A.

Despite this obvious relation between the notions of belonging ∈ and
inclusion ⊂ and similarity of the symbols ∈ and ⊂, the concepts are
quite different. Indeed, A ∈ B means that A is an element in B (i.e., one of
the indivisible pieces constituting B), while A ⊂ B means that A is made
of some of the elements of B.

In particular, we have A ⊂ A, while A 6∈ A for any reasonable A. Thus,
belonging is not reflexive. One more difference: belonging is not transitive,
while inclusion is.

1.G Non-Reflexivity of Belonging. Construct a set A such that A 6∈ A.
Cf. 1.B.

1.H Non-Transitivity of Belonging. Construct three sets A, B, and C
such that A ∈ B and B ∈ C, but A 6∈ C. Cf. 1.D.

⌈1′10⌋ Defining a Set by a Condition (Set-Builder Notation)

As we know (see Section 1′5), a set can be described by presenting a list
of its elements. This simplest way may be not available or, at least, may not
be the easiest one. For example, it is easy to say: “the set of all solutions of
the following equation” and write down the equation. This is a reasonable
description of the set. At least, it is unambiguous. Having accepted it, we
may start speaking on the set, studying its properties, and eventually may
be lucky to solve the equation and obtain the list of its solutions. (Though
the latter task may be difficult, this should not prevent us from discussing
the set.)

Thus, we see another way for a description of a set: to formulate prop-
erties that distinguish the elements of the set among elements of some wider
and already known set. Here is the corresponding notation: the subset of a
set A consisting of the elements x that satisfy a condition P (x) is denoted
by {x ∈ A | P (x)}.

1.5. Present the following sets by lists of their elements (i.e., in the form {a, b, . . . })
(a) {x ∈ N | x < 5}, (b) {x ∈ N | x < 0}, (c) {x ∈ Z | x < 0}.
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⌈1′11⌋ Intersection and Union

The intersection of sets A and B is the set consisting of their common
elements, i.e., elements belonging both to A and B. It is denoted by A ∩B
and is described by the formula

A ∩B = {x | x ∈ A and x ∈ B}.

Two sets A and B are disjoint if their intersection is empty, i.e., A∩B =
∅. In other words, they have no common elements.

The union of two sets A and B is the set consisting of all elements that
belong to at least one of the two sets. The union of A and B is denoted by
A ∪B. It is described by the formula

A ∪B = {x | x ∈ A or x ∈ B}.
Here the conjunction or should be understood in the inclusive way: the
statement “x ∈ A or x ∈ B” means that x belongs to at least one of the
sets A and B, and, maybe, to both of them.2

A B A B A B

A ∩B A ∪B
Figure 1. The sets A and B, their intersection A∩B, and their union
A ∪B.

1.I Commutativity of ∩ and ∪. For any two sets A and B, we have

A ∩B = B ∩A and A ∪B = B ∪A.

In the above figure, the first equality of Theorem 1.L is illustrated by
sketches. Such sketches are called Venn diagrams or Euler circles. They
are quite useful, and we strongly recommend trying to draw them for each
formula involving sets. (At least, for formulas with at most three sets, since
in this case they can serve as proofs! (Guess why?)).

1.6. Prove that for any set A we have

A ∩A = A, A ∪A = A, A ∪ ∅ = A, and A ∩ ∅ = ∅.

1.7. Prove that for any sets A and B we have3

A ⊂ B, iff A ∩B = A, iff A ∪B = B.

2To make formulas clearer, sometimes we slightly abuse the notation and instead of, say,
A ∪ {x}, where x is an element outside A, we write just A ∪ x. The same agreement holds true
for other set-theoretic operations.

3Here, as usual, iff stands for “if and only if”.
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1.J Associativity of ∩ and ∪. For any sets A, B, and C, we have

(A ∩B) ∩C = A ∩ (B ∩ C) and (A ∪B) ∪ C = A ∪ (B ∪ C).

Associativity allows us to not care about brackets and sometimes even
to omit them. We define A ∩ B ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C) and
A ∪ B ∪ C = (A ∪ B) ∪ C = A ∪ (B ∪ C). However, the intersection and
union of an arbitrarily large (in particular, infinite) collection of sets can be
defined directly, without reference to the intersection or union of two sets.
Indeed, let Γ be a collection of sets. The intersection of the sets in Γ is
the set formed by the elements that belong to every set in Γ. This set is
denoted by

⋂
A∈ΓA. Similarly, the union of the sets in Γ is the set formed

by elements that belong to at least one of the sets in Γ. This set is denoted
by
⋃

A∈ΓA.

1.K. The notions of intersection and union of an arbitrary collection of sets
generalize the notions of intersection and union of two sets: for Γ = {A,B},
we have ⋂

C∈Γ

C = A ∩B and
⋃

C∈Γ

C = A ∪B.

1.8. Riddle. How are the notions of system of equations and intersection of sets
related to each other?

1.L Two Distributivities. For any sets A, B, and C, we have

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C), (1)

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C). (2)

A A BB

C C C

(A ∩B) ∪ C (A ∪ C) (B ∪ C)= ∩

= ∩

Figure 2. The left-hand side (A ∩ B) ∪ C of equality (1) and the sets
A∪C and B ∪C, whose intersection is the right-hand side of the equal-

ity (1).

1.M. Draw a Venn diagram illustrating (2). Prove (1) and (2) by tracing all
details of the proofs in the Venn diagrams. Draw Venn diagrams illustrating
all formulas below in this section.

1.9. Riddle. Generalize Theorem 1.L to the case of arbitrary collections of sets.
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1.N Yet Another Pair of Distributivities. Let A be a set and let Γ be
a set consisting of sets. Then we have

A ∩
⋃

B∈Γ

B =
⋃

B∈Γ

(A ∩B) and A ∪
⋂

B∈Γ

B =
⋂

B∈Γ

(A ∪B).

⌈1′12⌋ Different Differences

The difference ArB of two sets A and B is the set of those elements of
A which do not belong to B. Here we do not assume that A ⊃ B.

If A ⊃ B, then the set ArB is also called the complement of B in A.

1.10. Prove that for any sets A and B their union A ∪ B is the union of the
following three sets: Ar B, B r A, and A ∩B, which are pairwise disjoint.

1.11. Prove that Ar (Ar B) = A ∩ B for any sets A and B.

1.12. Prove that A ⊂ B if and only if Ar B = ∅.

1.13. Prove that A ∩ (B r C) = (A ∩ B) r (A ∩ C) for any sets A, B, and C.

The set (ArB) ∪ (B rA) is the symmetric difference of the sets A and
B. It is denoted by A △ B.

A B A B A B

B rA ArB A △ B

Figure 3. Differences of the sets A and B.

1.14. Prove that for any sets A and B we have

A △ B = (A ∪B) r (A ∩B).

1.15 Associativity of Symmetric Difference. Prove that for any sets A, B,
and C we have

(A △ B) △ C = A △ (B △ C).

1.16. Riddle. Find a symmetric definition of the symmetric difference (A △ B) △

C of three sets and generalize it to arbitrary finite collections of sets.

1.17 Distributivity. Prove that (A △ B) ∩ C = (A ∩ C) △ (B ∩ C) for any sets
A, B, and C.

1.18. Does the following equality hold true for any sets A, B, and C:

(A △ B) ∪ C = (A ∪ C) △ (B ∪ C)?
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2. Topology on a Set

⌈2′1⌋ Definition of Topological Space

Let X be a set. Let Ω be a collection of its subsets such that:

(1) the union of any collection of sets that are elements of Ω belongs
to Ω;

(2) the intersection of any finite collection of sets that are elements of
Ω belongs to Ω;

(3) the empty set ∅ and the whole X belong to Ω.

Then

• Ω is a topological structure or just a topology4 on X;

• the pair (X,Ω) is a topological space;

• elements of X are points of this topological space;

• elements of Ω are open sets of the topological space (X,Ω).

The conditions in the definition above are the axioms of topological struc-

ture.

⌈2′2⌋ Simplest Examples

A discrete topological space is a set with the topological structure con-
sisting of all subsets.

2.A. Check that this is a topological space, i.e., all axioms of topological
structure hold true.

An indiscrete topological space is the opposite example, in which the
topological structure is the most meager. (It is also called trivial topology .)
It consists only of X and ∅.

2.B. This is a topological structure, is it not?

Here are slightly less trivial examples.

2.1. Let X be the ray [0,+∞), and let Ω consist of ∅, X, and all rays (a,+∞)
with a ≥ 0. Prove that Ω is a topological structure.

2.2. Let X be a plane. Let Σ consist of ∅, X, and all open disks centered at the
origin. Is Σ a topological structure?

2.3. Let X consist of four elements: X = {a, b, c, d}. Which of the following
collections of its subsets are topological structures in X, i.e., satisfy the axioms of
topological structure:

4Thus, Ω is important: it is called by the same word as the whole branch of mathematics.
Certainly, this does not mean that Ω coincides with the subject of topology, but nearly everything
in this subject is related to Ω.
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(1) ∅, X, {a}, {b}, {a, c}, {a, b, c}, {a, b};
(2) ∅, X, {a}, {b}, {a, b}, {b, d};
(3) ∅, X, {a, c, d}, {b, c, d}?

The space of Problem 2.1 is the arrow . We denote the space of Prob-
lem 2.3 (1) by . It is a sort of toy space made of 4 points. (The meaning
of the pictogram is explained below in Section 7′9.) Both spaces, as well
as the space of Problem 2.2, are not very important, but they provide nice
simple examples.

⌈2′3⌋ The Most Important Example: Real Line

Let X be the set R of all real numbers, Ω the set of arbitrary unions of
open intervals (a, b) with a, b ∈ R.

2.C. Check whether Ω satisfies the axioms of topological structure.

This is the topological structure which is always meant when R is consid-
ered as a topological space (unless another topological structure is explicitly
specified). This space is usually called the real line, and the structure is
referred to as the canonical or standard topology on R.

⌈2′4⌋ Additional Examples

2.4. Let X be R, and let Ω consist of the empty set and all infinite subsets of R.
Is Ω a topological structure?

2.5. Let X be R, and let Ω consists of the empty set and complements of all finite
subsets of R. Is Ω a topological structure?

The space of Problem 2.5 is denoted by RT1
and called the line with T1-

topology .

2.6. Let (X,Ω) be a topological space, Y the set obtained from X by adding a
single element a. Is

{{a} ∪ U | U ∈ Ω} ∪ {∅}

a topological structure in Y ?

2.7. Is the set {∅, {0}, {0, 1}} a topological structure in {0, 1}?

If the topology Ω in Problem 2.6 is discrete, then the topology on Y is
called a particular point topology or topology of everywhere dense point. The
topology in Problem 2.7 is a particular point topology; it is also called the
topology of a connected pair of points or Sierpiński topology .

2.8. List all topological structures in a two-element set, say, in {0, 1}.
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⌈2′5⌋ Using New Words: Points, Open Sets, Closed Sets

We recall that, for a topological space (X,Ω), elements of X are points,
and elements of Ω are open sets.5

2.D. Reformulate the axioms of topological structure using the words open
set wherever possible.

A set F ⊂ X is closed in the space (X,Ω) if its complement X r F is
open (i.e., X r F ∈ Ω).

⌈2′6⌋ Set-Theoretic Digression: De Morgan Formulas

2.E. Let Γ be an arbitrary collection of subsets of a set X. Then

X r
⋃

A∈Γ

A =
⋂

A∈Γ

(X rA), (3)

X r
⋂

A∈Γ

A =
⋃

A∈Γ

(X rA). (4)

Formula (4) is deduced from (3) in one step, is it not? These formulas are
nonsymmetric cases of a single formulation, which contains, in a symmetric way,
sets and their complements, unions, and intersections.

2.9. Riddle. Find such a formulation.

⌈2′7⌋ Properties of Closed Sets

2.F. Prove that:

(1) the intersection of any collection of closed sets is closed;

(2) the union of any finite number of closed sets is closed;

(3) the empty set and the whole space (i.e., the underlying set of the
topological structure) are closed.

⌈2′8⌋ Being Open or Closed

Notice that the property of being closed is not the negation of the prop-
erty of being open. (They are not exact antonyms in everyday usage, too.)

2.G. Find examples of sets that are

(1) both open and closed simultaneously (open-closed);

(2) neither open, nor closed.

5The letter Ω stands for the letter O which is the initial of the words with the same meaning:
Open in English, Otkrytyj in Russian, Offen in German, Ouvert in French.
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2.10. Give an explicit description of closed sets in
(1) a discrete space; (2) an indiscrete space;
(3) the arrow; (4) ;
(5) RT1

.

2.H. Is a closed segment [a, b] closed in R?

The concepts of closed and open sets are similar in a number of ways.
The main difference is that the intersection of an infinite collection of open
sets is not necessarily open, while the intersection of any collection of closed
sets is closed. Along the same lines, the union of an infinite collection of
closed sets is not necessarily closed, while the union of any collection of open
sets is open.

2.11. Prove that the half-open interval [0, 1) is neither open nor closed in R, but
is both a union of closed sets and an intersection of open sets.

2.12. Prove that the set A = {0} ∪
˘

1/n | n ∈ N
¯

is closed in R.

⌈2′9⌋ Characterization of Topology in Terms of Closed Sets

2.13. Suppose a collection F of subsets of X satisfies the following conditions:

(1) the intersection of any family of sets from F belongs to F ;
(2) the union of any finite number sets from F belongs to F ;
(3) ∅ and X belong to F .

Prove that then F is the set of all closed sets of a topological structure (which
one?).

2.14. List all collections of subsets of a three-element set such that there are
topologies where these collections are complete sets of closed sets.

⌈2′10⌋ Neighborhoods

A neighborhood of a point in a topological space is any open set contain-
ing this point. Analysts and French mathematicians (following N. Bourbaki)
prefer a wider notion of neighborhood: they use this word for any set con-
taining a neighborhood in the above sense.

2.15. Give an explicit description of all neighborhoods of a point in
(1) a discrete space; (2) an indiscrete space;
(3) the arrow; (4) ;
(5) a connected pair of points; (6) particular point topology.

⌈2′11x⌋ Open Sets on Line

2.Ix. Prove that every open subset of the real line is a union of disjoint open
intervals.

At first glance, Theorem 2.Ix suggests that open sets on the line are sim-
ple. However, an open set may lie on the line in a quite complicated manner.
Its complement may happen to be not that simple. The complement of an
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open set is a closed set. One can naively expect that a closed set on R is
a union of closed intervals. The next important example shows that this is
very far from being true.

⌈2′12x⌋ Cantor Set

Let K be the set of real numbers that are sums of series of the form∑∞
k=1 ak/3

k with ak ∈ {0, 2}.
In other words, K consists of the real numbers that have the form

0.a1a2 . . . ak . . . without the digit 1 in the number system with base 3.

2.Jx. Find a geometric description of K.

2.Jx.1. Prove that

(1) K is contained in [0, 1],

(2) K does not meet (1/3, 2/3),

(3) K does not meet
(

3s+1
3k , 3s+2

3k

)
for any integers k and s.

2.Jx.2. Present K as [0, 1] with an infinite family of open intervals removed.

2.Jx.3. Try to sketch K.

The set K is the Cantor set. It has a lot of remarkable properties and is
involved in numerous problems below.

2.Kx. Prove that K is a closed set in the real line.

⌈2′13x⌋ Topology and Arithmetic Progressions

2.Lx*. Consider the following property of a subset F of the set N of positive
integers: there is n ∈ N such that F contains no arithmetic progressions of
length n. Prove that subsets with this property together with the whole N

form a collection of closed subsets in some topology on N.

When solving this problem, you probably will need the following com-
binatorial theorem.

2.Mx Van der Waerden’s Theorem*. For every n ∈ N, there is N ∈ N

such that for any subset A ⊂ {1, 2, . . . , N}, either A or {1, 2, . . . , N} r A
contains an arithmetic progression of length n.

See [3].
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3. Bases

⌈3′1⌋ Definition of Base

The topological structure is usually presented by describing its part,
which is sufficient to recover the whole structure. A collection Σ of open
sets is a base for a topology if each nonempty open set is a union of sets in
Σ. For instance, all intervals form a base for the real line.

3.1. Can two distinct topological structures have the same base?

3.2. Find some bases for the topology of
(1) a discrete space; (2) ;
(3) an indiscrete space; (4) the arrow.

Try to choose the smallest possible bases.

3.3. Prove that any base of the canonical topology on R can be decreased.

3.4. Riddle. What topological structures have exactly one base?

⌈3′2⌋ When a Collection of Sets is a Base

3.A. A collection Σ of open sets is a base for the topology iff for every open
set U and every point x ∈ U there is a set V ∈ Σ such that x ∈ V ⊂ U .

3.B. A collection Σ of subsets of a set X is a base for a certain topology on
X iff X is the union of all sets in Σ and the intersection of any two sets in
Σ is the union of some sets in Σ.

3.C. Show that the second condition in Theorem 3.B (on the intersection)
is equivalent to the following one: the intersection of any two sets in Σ
contains, together with any of its points, a certain set in Σ containing this
point (cf. Theorem 3.A).

⌈3′3⌋ Bases for Plane

Consider the following three collections of subsets of R2:

• Σ2, which consists of all possible open disks (i.e., disks without
their boundary circles);

• Σ∞, which consists of all possible open squares (i.e., squares with-
out their sides and vertices) with sides parallel to the coordinate
axes;

• Σ1, which consists of all possible open squares with sides parallel
to the bisectors of the coordinate angles.

(The squares in Σ∞ and Σ1 are determined by the inequalities max{|x−
a|, |y − b|} < ρ and |x− a| + |y − b| < ρ, respectively.)
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3.5. Prove that every element of Σ2 is a union of elements of Σ∞.

3.6. Prove that the intersection of any two elements of Σ1 is a union of elements
of Σ1.

3.7. Prove that each of the collections Σ2, Σ∞, and Σ1 is a base for some topological
structure in R2, and that the structures determined by these collections coincide.

⌈3′4⌋ Subbases

Let (X,Ω) be a topological space. A collection ∆ of its open subsets is a
subbase for Ω provided that the collection

Σ = {V | V =
k
\

i=1

Wi, k ∈ N, Wi ∈ ∆}

of all finite intersections of sets in ∆ is a base for Ω.

3.8. Let X be a set, ∆ a collection of subsets of X. Prove that ∆ is a subbase
for a topology on X iff X =

S

W∈∆W .

⌈3′5⌋ Infiniteness of the Set of Prime Numbers

3.9. Prove that all (infinite) arithmetic progressions consisting of positive integers
form a base for some topology on N.

3.10. Using this topology, prove that the set of all prime numbers is infinite.

⌈3′6⌋ Hierarchy of Topologies

If Ω1 and Ω2 are topological structures in a set X such that Ω1 ⊂ Ω2,
then Ω2 is finer than Ω1, and Ω1 is coarser than Ω2. For instance, the
indiscrete topology is the coarsest topology among all topological structures
in the same set, while the discrete topology is the finest one, is it not?

3.11. Show that the T1-topology on the real line (see 2′4) is coarser than the
canonical topology.

Two bases determining the same topological structure are equivalent.

3.D. Riddle. Formulate a necessary and sufficient condition for two bases
to be equivalent without explicitly mentioning the topological structures
determined by the bases. (Cf. 3.7: the bases Σ2, Σ∞, and Σ1 must satisfy
the condition you are looking for.)
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4. Metric Spaces

⌈4′1⌋ Definition and First Examples

A function6 ρ : X ×X → R+ = {x ∈ R | x ≥ 0 } is a metric (or distance

function) on X if

(1) ρ(x, y) = 0 iff x = y;

(2) ρ(x, y) = ρ(y, x) for any x, y ∈ X;

(3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for any x, y, z ∈ X.

The pair (X, ρ), where ρ is a metric on X, is a metric space. Condition
(3) is the triangle inequality .

4.A. Prove that the function

ρ : X ×X → R+ : (x, y) 7→
{

0 if x = y,

1 if x 6= y

is a metric for any set X.

4.B. Prove that R × R → R+ : (x, y) 7→ |x− y| is a metric.

4.C. Prove that Rn × Rn → R+ : (x, y) 7→
√∑n

i=1(xi − yi)2 is a metric.

The metrics of Problems 4.B and 4.C are always meant when R and Rn

are considered as metric spaces, unless another metric is specified explicitly.
The metric of Problem 4.B is a special case of the metric of Problem 4.C.
All these metrics are called Euclidean.

⌈4′2⌋ Further Examples

4.1. Prove that Rn × Rn → R + : (x, y) 7→ maxi=1,...,n |xi − yi| is a metric.

4.2. Prove that Rn × Rn → R + : (x, y) 7→Pn
i=1 |xi − yi| is a metric.

The metrics in Rn introduced in Problems 4.C, 4.1, 4.2 are members of
an infinite sequence of metrics:

ρ(p) : (x, y) 7→
( n∑

i=1

|xi − yi|p
)1/p

, p ≥ 1.

4.3. Prove that ρ(p) is a metric for any p ≥ 1.

6The notions of function (mapping) and Cartesian square, as well as the corresponding no-
tation, are discussed in detail below, in Sections 9 and 20. Nevertheless, we hope that the reader
is acquainted with them, so we use them in this section without special explanations.
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4.3.1 Hölder Inequality. Let x1, . . . , xn, y1, . . . , yn ≥ 0, let p, q > 0,
and let 1/p+ 1/q = 1. Prove that

n∑

i=1

xiyi ≤
(

n∑

i=1

xpi

)1/p( n∑

i=1

yqi

)1/q

.

The metric of 4.C is ρ(2), that of 4.2 is ρ(1), and that of 4.1 can be denoted
by ρ(∞) and appended to the series since

lim
p→+∞

„ n
X

i=1

api

«1/p

= max ai

for any positive a1, a2, . . . , an.

4.4. Riddle. How is this related to Σ2, Σ∞, and Σ1 from Section 3?

For a real p ≥ 1, denote by l(p) the set of sequences x = {xi}i=1,2,... such that
the series

P

∞

i=1 |x|p converges.

4.5. Let p ≥ 1. Prove that for any two sequences x, y ∈ l(p) the series
P

∞

i=1 |xi − yi|p converges and that

(x, y) 7→
„ ∞
X

i=1

|xi − yi|p
«1/p

is a metric on l(p).

⌈4′3⌋ Balls and Spheres

Let (X, ρ) be a metric space, a ∈ X a point, r a positive real number.
Then the sets

Br(a) = {x ∈ X | ρ(a, x) < r }, (5)

Dr(a) = {x ∈ X | ρ(a, x) ≤ r }, (6)

Sr(a) = {x ∈ X | ρ(a, x) = r } (7)

are, respectively, the open ball , closed ball (or disk), and sphere of the space
(X, ρ) with center a and radius r.

⌈4′4⌋ Subspaces of a Metric Space

If (X, ρ) is a metric space and A ⊂ X, then the restriction of the metric
ρ to A×A is a metric on A, and so (A, ρ A×A) is a metric space. It is called
a subspace of (X, ρ).
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The disk D1(0) and the sphere S1(0) in Rn (with Euclidean metric,
see 4.C) are denoted by Dn and Sn−1 and called the (unit) n-disk and
(n−1)-sphere. They are regarded as metric spaces (with the metric induced
from Rn).

4.D. Check that D1 is the segment [−1, 1], D2 is a plane disk, S0 is the
pair of points {−1, 1}, S1 is a circle, S2 is a sphere, and D3 is a ball.

The last two assertions clarify the origin of the terms sphere and ball (in
the context of metric spaces).

Some properties of balls and spheres in an arbitrary metric space re-
semble familiar properties of planar disks and circles and spatial balls and
spheres.

4.E. Prove that for any points x and a of any metric space and any r >
ρ(a, x) we have

Br−ρ(a,x)(x) ⊂ Br(a) and Dr−ρ(a,x)(x) ⊂ Dr(a).

4.6. Riddle. What if r < ρ(x, a)? What is an analog for the statement of
Problem 4.E in this case?

⌈4′5⌋ Surprising Balls

However, balls and spheres in other metric spaces may have rather sur-
prising properties.

4.7. What are balls and spheres in R2 equipped with the metrics of 4.1 and 4.2?
(Cf. 4.4.)

4.8. Find D1(a), D1/2(a), and S1/2(a) in the space of 4.A.

4.9. Find a metric space and two balls in it such that the ball with the smaller
radius contains the ball with the bigger one and does not coincide with it.

4.10. What is the minimal number of points in the space which is required to be
constructed in 4.9?

4.11. Prove that the largest radius in 4.9 is at most twice the smaller radius.
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⌈4′6⌋ Segments (What Is Between)

4.12. Prove that the segment with endpoints a, b ∈ Rn can be described as

{x ∈ R
n | ρ(a, x) + ρ(x, b) = ρ(a, b) },

where ρ is the Euclidean metric.

4.13. How does the set defined as in Problem 4.12 look if ρ is the metric defined
in Problems 4.1 or 4.2? (Consider the case where n = 2 if it seems to be easier.)

⌈4′7⌋ Bounded Sets and Balls

A subset A of a metric space (X, ρ) is bounded if there is a number d > 0
such that ρ(x, y) < d for any x, y ∈ A. The greatest lower bound for such d
is the diameter of A. It is denoted by diam(A).

4.F. Prove that a set A is bounded iff A is contained in a ball.

4.14. What is the relation between the minimal radius of such a ball and diam(A)?

⌈4′8⌋ Norms and Normed Spaces

Let X be a vector space (over R). A function X → R + : x 7→ ||x|| is a norm if

(1) ||x|| = 0 iff x = 0;
(2) ||λx|| = |λ|||x|| for any λ ∈ R and x ∈ X;
(3) ||x + y|| ≤ ||x|| + ||y|| for any x, y ∈ X.

4.15. Prove that if x 7→ ||x|| is a norm, then

ρ : X ×X → R + : (x, y) 7→ ||x − y||

is a metric.

A vector space equipped with a norm is a normed space. The metric deter-
mined by the norm as in 4.15 transforms the normed space into a metric space in
a canonical way.

4.16. Look through the problems of this section and figure out which of the metric
spaces involved are, in fact, normed vector spaces.

4.17. Prove that every ball in a normed space is a convex7 set symmetric with
respect to the center of the ball.

4.18*. Prove that every convex closed bounded set in Rn that has a center of
symmetry and is not contained in any affine space except Rn itself is a unit ball
with respect to a certain norm, which is uniquely determined by this ball.

7Recall that a set A is convex if for any x, y ∈ A the segment connecting x and y is contained
in A. Certainly, this definition involves the notion of segment, so it makes sense only for subsets
of those spaces where the notion of segment connecting two points makes sense. This is the case
in vector and affine spaces over R.
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⌈4′9⌋ Metric Topology

4.G. The collection of all open balls in the metric space is a base for a
certain topology.

This topology is the metric topology . We also say that it is generated by
the metric. This topological structure is always meant whenever the metric
space is regarded as a topological space (for instance, when we speak about
open and closed sets, neighborhoods, etc. in this space).

4.H. Prove that the standard topological structure in R introduced in Sec-
tion 2 is generated by the metric (x, y) 7→ |x− y|.

4.19. What topological structure is generated by the metric of 4.A?

4.I. A set U is open in a metric space iff, together with each of its points,
the set U contains a ball centered at this point.

⌈4′10⌋ Openness and Closedness of Balls and Spheres

4.20. Prove that a closed ball is closed (here and below, we mean the metric
topology).

4.21. Find a closed ball that is open.

4.22. Find an open ball that is closed.

4.23. Prove that a sphere is closed.

4.24. Find a sphere that is open.

⌈4′11⌋ Metrizable Topological Spaces

A topological space is metrizable if its topological structure is generated
by a certain metric.

4.J. An indiscrete space is not metrizable if it is not a singleton (otherwise,
it has too few open sets).

4.K. A finite space X is metrizable iff it is discrete.

4.25. Which of the topological spaces described in Section 2 are metrizable?

⌈4′12⌋ Equivalent Metrics

Two metrics in the same set are equivalent if they generate the same
topology.

4.26. Are the metrics of 4.C, 4.1, and 4.2 equivalent?

4.27. Prove that two metrics ρ1 and ρ2 in X are equivalent if there are numbers
c, C > 0 such that

cρ1(x, y) ≤ ρ2(x, y) ≤ Cρ1(x, y)

for any x, y ∈ X.
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4.28. Generally speaking, the converse is not true.

4.29. Riddle. Hence, the condition of equivalence of metrics formulated in Prob-
lem 4.27 can be weakened. How?

4.30. The metrics ρ(p) in Rn defined right before Problem 4.3 are equivalent.

4.31*. Prove that the following two metrics ρ1 and ρC in the set of all continuous
functions [0, 1] → R are not equivalent:

ρ1(f, g) =

Z 1

0

˛

˛f(x) − g(x)
˛

˛dx, ρC(f, g) = max
x∈[0,1]

˛

˛f(x) − g(x)
˛

˛.

Is it true that one of the topological structures generated by them is finer than
the other one?

⌈4′13⌋ Operations with Metrics

4.32. 1) Prove that if ρ1 and ρ2 are two metrics in X, then ρ1+ρ2 and max{ρ1, ρ2}
also are metrics. 2) Are the functions min{ρ1, ρ2}, ρ1ρ2, and ρ1/ρ2 metrics? (By
definition, for ρ = ρ1/ρ2 we put ρ(x, x) = 0.)

4.33. Prove that if ρ : X ×X → R + is a metric, then

(1) the function (x, y) 7→ ρ(x, y)

1 + ρ(x, y)
is a metric;

(2) the function (x, y) 7→ min{ρ(x, y), 1} is a metric;
(3) the function (x, y) 7→ f

`

ρ(x, y)
´

is a metric if f satisfies the following
conditions:
(a) f(0) = 0,
(b) f is a monotone increasing function, and
(c) f(x+ y) ≤ f(x) + f(y) for any x, y ∈ R.

4.34. Prove that the metrics ρ and
ρ

1 + ρ
are equivalent.

⌈4′14⌋ Distances between Points and Sets

Let (X, ρ) be a metric space, A ⊂ X, and b ∈ X. The number ρ(b,A) =
inf{ ρ(b, a) | a ∈ A } is the distance from the point b to the set A.

4.L. Let A be a closed set. Prove that ρ(b,A) = 0 iff b ∈ A.

4.35. Prove that |ρ(x,A)− ρ(y,A)| ≤ ρ(x, y) for any set A and any points x and
y in a metric space.
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⌈4′15x⌋ Distance between Sets

Let A and B be two bounded subsets in a metric space (X, ρ). We define

dρ(A,B) = max
{
sup
a∈A

ρ(a,B), sup
b∈B

ρ(b,A)
}
.

This number is the Hausdorff distance between A and B.

4.Mx. Prove that the Hausdorff distance between bounded subsets of a
metric space satisfies conditions (2) and (3) in the definition of a metric.

4.Nx. Prove that for every metric space the Hausdorff distance is a metric
on the set of its closed bounded subsets.

Let A and B be two bounded polygons in the plane.8 We define

d△(A,B) = S(A) + S(B) − 2S(A ∩B),

where S(C) is the area of a polygon C.

4.Ox. Prove that d△ is a metric on the set of all bounded plane polygons.

We call d∆ the area metric .

4.Px. Prove that the area metric is not equivalent to the Hausdorff metric
on the set of all bounded plane polygons.

4.Qx. Prove that the area metric is equivalent to the Hausdorff metric on
the set of convex bounded plane polygons.

⌈4′16x⌋ Ultrametrics and p-Adic Numbers

A metric ρ is an ultrametric if it satisfies the ultrametric triangle inequality :

ρ(x, y) ≤ max{ρ(x, z), ρ(z, y)}
for any x, y, and z.

A metric space (X, ρ), where ρ is an ultrametric, is an ultrametric space.

8Although we assume that the notion of a bounded polygon is well known from elementary
geometry, nevertheless, we recall the definition. A bounded plane polygon is the set of the points
of a simple closed polygonal line γ and the points surrounded by γ. A simple closed polygonal line

(or polyline) is a cyclic sequence of segments each of which starts at the point where the previous
one ends and these are the only pairwise intersections of the segments.
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4.Rx. Check that only one metric in 4.A–4.2 is an ultrametric. Which one?

4.Sx. Prove that all triangles in an ultrametric space are isosceles (i.e., for
any three points a, b, and c, at least two of the three distances ρ(a, b), ρ(b, c),
and ρ(a, c) are equal).

4.Tx. Prove that spheres in an ultrametric space are not only closed (see
Problem 4.23), but also open.

The most important example of an ultrametric is the p-adic metric in
the set Q of rational numbers. Let p be a prime number. For x, y ∈ Q,
present the difference x − y as r

sp
α, where r, s, and α are integers, and r

and s are co-prime with p. We define ρ(x, y) = p−α.

4.Ux. Prove that ρ is an ultrametric.

⌈4′17x⌋ Asymmetrics

A function ρ : X ×X → R+ is an asymmetric on a set X if

(1) ρ(x, y) = 0 and ρ(y, x) = 0, iff x = y;

(2) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for any x, y, z ∈ X.

Thus, an asymmetric satisfies conditions 1 and 3 in the definition of a
metric, but, maybe, does not satisfy condition 2.

Here is example of an asymmetric taken “from real life”: the length of
the shortest path from one place to another by car in a city having one-way
streets.

4.Vx. Prove that if ρ : X ×X → R+ is an asymmetric, then the function

(x, y) 7→ ρ(x, y) + ρ(y, x)

is a metric on X.

Let A and B be two bounded subsets of a metric space (X, ρ). The
number aρ(A,B) = supb∈B ρ(b,A) is the asymmetric distance from A to B.

4.Wx. The function aρ on the set of bounded subsets of a metric space
satisfies the triangle inequality in the definition of an asymmetric.

4.Xx. Let (X, ρ) be a metric space. A set B ⊂ X is contained in all closed
sets containing A ⊂ X iff aρ(A,B) = 0.

4.Yx. Prove that aρ is an asymmetric on the set of all bounded closed
subsets of a metric space (X, ρ).

Let A and B be two polygons on the plane. We define

a∆(A,B) = S(B) − S(A ∩ B) = S(B r A),

where S(C) is the area of a polygon C.
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4.36x. Prove that a∆ is an asymmetric on the set of all planar polygons.

A pair (X, ρ), where ρ is an asymmetric on X, is an asymmetric space.
Certainly, any metric space is an asymmetric space, too. Open and closed
balls and spheres in an asymmetric space are defined as in a metric space,
see Section 4′3.

4.Zx. The set of all open balls of an asymmetric space is a base of a certain
topology.

We also say that this topology is generated by the asymmetric.

4.37x. Prove that the formula a(x, y) = max{x− y, 0} determines an asymmetric
on [0,∞), and the topology generated by this asymmetric is the arrow topology,
see Section 2′2.
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5. Subspaces

⌈5′1⌋ Topology for a Subset of a Space

Let (X,Ω) be a topological space, A ⊂ X. Denote by ΩA the collection
of sets A ∩ V , where V ∈ Ω: ΩA = {A ∩ V | V ∈ Ω}.
5.A. The collection ΩA is a topological structure in A.

The pair (A,ΩA) is a subspace of the space (X,Ω). The collection ΩA is
the subspace topology , the relative topology , or the topology induced on A
by Ω, and its elements are said to be sets open in A.
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5.B. The canonical topology on R1 coincides with the topology induced on
R1 as on a subspace of R2.

5.1. Riddle. How to construct a base for the topology induced on A by using a
base for the topology on X?

5.2. Describe the topological structures induced

(1) on the set N of positive integers by the topology of the real line;
(2) on N by the topology of the arrow;
(3) on the two-element set {1, 2} by the topology of RT1

;
(4) on the same set by the topology of the arrow.

5.3. Is the half-open interval [0, 1) open in the segment [0, 2] regarded as a sub-
space of the real line?

5.C. A set F is closed in a subspace A ⊂ X iff F is the intersection of A
and a closed subset of X.

5.4. If a subset of a subspace is open (respectively, closed) in the ambient space,
then it is also open (respectively, closed) in the subspace.

⌈5′2⌋ Relativity of Openness and Closedness

Sets that are open in a subspace are not necessarily open in the ambient
space.

5.D. The unique open set in R1 which is also open in R2 is ∅.

However, the following is true.
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5.E. An open set of an open subspace is open in the ambient space, i.e., if
A ∈ Ω, then ΩA ⊂ Ω.

The same relation holds true for closed sets. Sets that are closed in
the subspace are not necessarily closed in the ambient space. However, the
following is true.

5.F. Closed sets of a closed subspace are closed in the ambient space.

5.5. Prove that a set U is open in X iff each point in U has a neighborhood V in
X such that U ∩ V is open in V .

This allows us to say that the property of being open is local . Indeed, we can
reformulate 5.5 as follows: a set is open iff it is open in a neighborhood of each of
its points.

5.6. Show that the property of being closed is not local.

5.G Transitivity of Induced Topology. Let (X,Ω) be a topological space,
X ⊃ A ⊃ B. Then (ΩA)B = ΩB, i.e., the topology induced on B by the
relative topology of A coincides with the topology induced on B directly from
X.

5.7. Let (X, ρ) be a metric space, A ⊂ X. Then the topology on A generated by
the induced metric ρ A×A coincides with the relative topology induced on A by
the metric topology on X.

5.8. Riddle. The statement 5.7 is equivalent to a pair of inclusions. Which of
them is less obvious?

⌈5′3⌋ Agreement on Notation for Topological Spaces

Different topological structures in the same set are considered simulta-
neously rather seldom. This is why a topological space is usually denoted
by the same symbol as the set of its points, i.e., instead of (X,Ω) we write
just X. The same applies to metric spaces: instead of (X, ρ) we write just
X.
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6. Position of a Point with Respect to a
Set

This section is devoted to further expanding the vocabulary needed when
we speak about phenomena in a topological space.

⌈6′1⌋ Interior, Exterior, and Boundary Points

Let X be a topological space, A ⊂ X a subset, and b ∈ X a point. The
point b is

• an interior point of A if b has a neighborhood contained in A;

• an exterior point of A if b has a neighborhood disjoint with A;

• a boundary point of A if each neighborhood of b meets both A and
the complement of A.
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⌈6′2⌋ Interior and Exterior

The interior of a set A in a topological space X is the greatest (with
respect to inclusion) open set in X contained in A, i.e., an open set that
contains any other open subset of A. It is denoted by IntA or, in more
detail, by IntX A.

6.A. Every subset of a topological space has an interior. It is the union of
all open sets contained in this set.

6.B. The interior of a set A is the set of interior points of A.

6.C. A set is open iff it coincides with its interior.

6.D. Prove that in R:

(1) Int[0, 1) = (0, 1),

(2) Int Q = ∅, and

(3) Int(R r Q) = ∅.
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6.1. Find the interior of {a, b, d} in the space .

6.2. Find the interior of the interval (0, 1) on the line with the Zariski topology.

The exterior of a set is the greatest open set disjoint with A. Obviously,
the exterior of A is Int(X rA).

⌈6′3⌋ Closure

The closure of a set A is the smallest closed set containing A. It is
denoted by ClA or, more specifically, by ClX A.

6.E. Every subset of a topological space has a closure. It is the intersection
of all closed sets containing this set.

6.3. Prove that if A is a subspace of X and B ⊂ A, then ClAB = (ClX B) ∩ A.
Is it true that IntAB = (IntX B) ∩ A?

A point b is an adherent point for a set A if all neighborhoods of b meet
A.

6.F. The closure of a set A is the set of the adherent points of A.

6.G. A set A is closed iff A = ClA.

6.H. The closure of a set A is the complement of the exterior of A. In
formulas: ClA = X r Int(X rA), where X is the space and A ⊂ X.

6.I. Prove that in R we have:

(1) Cl[0, 1) = [0, 1],

(2) Cl Q = R, and

(3) Cl(R r Q) = R.

6.4. Find the closure of {a} in .

⌈6′4⌋ Closure in Metric Space

Let A be a subset and b a point of a metric space (X, ρ). We recall that
the distance ρ(b,A) from b to A is inf{ ρ(b, a) | a ∈ A } (see 4′14).

6.J. Prove that b ∈ ClA iff ρ(b,A) = 0.

⌈6′5⌋ Boundary

The boundary of a set A is the set ClA r IntA. It is denoted by FrA
or, in more detail, FrX A.

6.5. Find the boundary of {a} in .

6.K. The boundary of a set is the set of its boundary points.

6.L. Prove that a set A is closed iff FrA ⊂ A.
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6.6. 1) Prove that FrA = Fr(X r A). 2) Find a formula for FrA which is
symmetric with respect to A and X r A.

6.7. The boundary of a set A equals the intersection of the closure of A and the
closure of the complement of A: we have FrA = ClA ∩ Cl(X r A).

⌈6′6⌋ Closure and Interior with Respect to a Finer Topology

6.8. Let Ω1 and Ω2 be two topological structures in X such that Ω1 ⊂ Ω2. Let Cli
denote the closure with respect to Ωi. Prove that Cl1A ⊃ Cl2 A for any A ⊂ X.

6.9. Formulate and prove a similar statement about the interior.

⌈6′7⌋ Properties of Interior and Closure

6.10. Prove that if A ⊂ B, then IntA ⊂ IntB.

6.11. Prove that Int IntA = IntA.

6.12. Find out whether the following equalities hold true that for any sets A and
B:

Int(A ∩B) = IntA ∩ IntB, (8)

Int(A ∪B) = IntA ∪ IntB. (9)

6.13. Give an example in which one of equalities (8) and (9) is wrong.

6.14. In the example that you found when solving Problem 6.12, an inclusion of
one side into another one holds true. Does this inclusion hold true for arbitrary A
and B?

6.15. Study the operator Cl in a way suggested by the investigation of Int under-
taken in 6.10–6.14.

6.16. Find Cl{1}, Int[0, 1], and Fr(2,+∞) in the arrow.

6.17. Find Int
`

(0, 1] ∪ {2}
´

, Cl{ 1/n | n ∈ N }, and Fr Q in R.

6.18. Find Cl N, Int(0, 1), and Fr[0, 1] in RT1
. How do you find the closure and

interior of a set in this space?

6.19. Does a sphere contain the boundary of the open ball with the same center
and radius?

6.20. Does a sphere contain the boundary of the closed ball with the same center
and radius?

6.21. Find an example in which a sphere is disjoint with the closure of the open
ball with the same center and radius.

⌈6′8⌋ Compositions of Closure and Interior

6.22 Kuratowski’s Problem. How many pairwise distinct sets can one obtain
from of a single set by using the operators Cl and Int?

The following problems will help you to solve Problem 6.22.

6.22.1. Find a set A ⊂ R such that the sets A, ClA, and IntA are
pairwise distinct.
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6.22.2. Is there a set A ⊂ R such that

(1) A, ClA, IntA, and Cl IntA are pairwise distinct;
(2) A, ClA, IntA, and IntClA are pairwise distinct;
(3) A, ClA, IntA, Cl IntA, and IntClA are pairwise distinct?

If you find such sets, keep on going in the same way, and when you
fail to proceed, try to formulate a theorem explaining the failure.

6.22.3. Prove that Cl IntCl IntA = Cl IntA.

⌈6′9⌋ Sets with Common Boundary

6.23*. Find three open sets in the real line that have the same boundary. Is it
possible to increase the number of such sets?

⌈6′10⌋ Convexity and Int, Cl, and Fr

Recall that a set A ⊂ Rn is convex if together with any two points it contains
the entire segment connecting them (i.e., for any x, y ∈ A, every point z of the
segment [x, y] belongs to A).

Let A be a convex set in Rn.

6.24. Prove that ClA and IntA are convex.

6.25. Prove that A contains a ball if A is not contained in an (n−1)-dimensional
affine subspace of Rn.

6.26. When is FrA convex?

⌈6′11⌋ Characterization of Topology by Operations of Taking Clo-
sure and Interior

6.27*. Suppose that Cl∗ is an operator on the set of all subsets of a set X, which
has the following properties:

(1) Cl∗ ∅ = ∅,
(2) Cl∗A ⊃ A,
(3) Cl∗(A ∪ B) = Cl∗A ∪ Cl∗B,
(4) Cl∗ Cl∗A = Cl∗A.

Prove that Ω = {U ⊂ X | Cl∗(X r U) = X r U } is a topological structure
and Cl∗A is the closure of a set A in the space (X,Ω).

6.28. Present a similar system of axioms for Int.

⌈6′12⌋ Dense Sets

Let A and B be two sets in a topological space X. A is dense in B if
ClA ⊃ B, and A is everywhere dense if ClA = X.

6.M. A set is everywhere dense iff it meets any nonempty open set.

6.N. The set Q is everywhere dense in R.
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6.29. Give an explicit characterization of everywhere dense sets 1) in an indiscrete
space, 2) in the arrow, and 3) in RT1

.

6.30. Prove that a topological space is discrete iff it contains a unique everywhere
dense set. (By the way, which one?)

6.31. Formulate a necessary and sufficient condition on the topology of a space
which has an everywhere dense point. Find spaces in Section 2 that satisfy this
condition.

6.32. 1) Is it true that the union of everywhere dense sets is everywhere dense?
2) Is it true that the intersection of two everywhere dense sets is everywhere dense?

6.33. Prove that any two open everywhere dense sets have everywhere dense
intersection.

6.34. Which condition in Problem 6.33 is redundant?

6.35*. 1) Prove that a countable intersection of open everywhere dense sets in R

is everywhere dense. 2) Is it possible to replace R here by an arbitrary topological
space?

6.36*. Prove that Q is not the intersection of countably many open sets in R.

⌈6′13⌋ Nowhere Dense Sets

A set is nowhere dense if its exterior is everywhere dense.

6.37. Can a set be everywhere dense and nowhere dense simultaneously?

6.O. A set A is nowhere dense in X iff each neighborhood of each point
x ∈ X contains a point y such that the complement of A contains y together
with a neighborhood of y.

6.38. Riddle. What can you say about the interior of a nowhere dense set?

6.39. Is R nowhere dense in R2?

6.40. Prove that if A is nowhere dense, then IntClA = ∅.

6.41. 1) Prove that the boundary of a closed set is nowhere dense. 2) Is this true
for the boundary of an open set? 3) Is this true for the boundary of an arbitrary
set?

6.42. Prove that a finite union of nowhere dense sets is nowhere dense.

6.43. Prove that for every set A there exists a greatest open set B in which A is
dense. The extreme cases B = X and B = ∅ mean that A is either everywhere
dense or nowhere dense, respectively.

6.44*. Prove that R is not the union of countably many nowhere-dense subsets.

⌈6′14⌋ Limit Points and Isolated Points

A point b is a limit point of a set A if each neighborhood of b meets Arb.

6.P. Every limit point of a set is its adherent point.
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6.45. Present an example in which an adherent point is not a limit one.

A point b is an isolated point of a set A if b ∈ A and b has a neighborhood
disjoint with Ar b.

6.Q. A set A is closed iff A contains all of its limit points.

6.46. Find limit and isolated points of the sets (0, 1] ∪ {2} and { 1/n | n ∈ N }
in Q and in R.

6.47. Find limit and isolated points of the set N in RT1
.

⌈6′15⌋ Locally Closed Sets

A subset A of a topological space X is locally closed if each point of A has a
neighborhood U such that A ∩ U is closed in U (cf. Problems 5.5–5.6).

6.48. Prove that the following conditions are equivalent:

(1) A is locally closed in X;
(2) A is an open subset of its closure ClA;
(3) A is the intersection of open and closed subsets of X.
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7. Ordered Sets

This section is devoted to orders. They are structures on sets and occupy a
position in Mathematics almost as profound as topological structures. After
a short general introduction, we focus on relations between structures of
these two types. Similarly to metric spaces, partially ordered sets possess
natural topological structures. This is a source of interesting and impor-
tant examples of topological spaces. As we will see later (in Section 21),
practically all finite topological spaces appear in this way.

⌈7′1⌋ Strict Orders

A binary relation on a set X is a set of ordered pairs of elements of X,
i.e., a subset R ⊂ X ×X. Many relations are denoted by special symbols,
like ≺, ⊢, ≡, or ∼. When such notation is used, there is a tradition to write
xRy instead of writing (x, y) ∈ R. So, we write x ⊢ y, or x ∼ y, or x ≺ y,
etc. This generalizes the usual notation for the classical binary relations =,
<, >, ≤, ⊂, etc.

A binary relation ≺ on a set X is a strict partial order , or just a strict

order if it satisfies the following two conditions:

• Irreflexivity : There is no a ∈ X such that a ≺ a.

• Transitivity : a ≺ b and b ≺ c imply a ≺ c for any a, b, c ∈ X.

7.A Antisymmetry. Let ≺ be a strict partial order on a set X. There are
no x, y ∈ X such that x ≺ y and y ≺ x simultaneously.

7.B. Relation < in the set R of real numbers is a strict order.

The formula a ≺ b is sometimes read as “a is less than b” or “b is
greater than a”, but it is often read as “b follows a” or “a precedes b”. The
advantage of the latter two ways of reading is that then the relation ≺ is
not associated too closely with the inequality between real numbers.

⌈7′2⌋ Nonstrict Orders

A binary relation � on a set X is a nonstrict partial order , or just a
nonstrict order , if it satisfies the following three conditions:

• Transitivity : If a � b and b � c, then a � c for any a, b, c ∈ X.

• Antisymmetry : If a � b and b � a, then a = b for any a, b ∈ X.

• Reflexivity : a � a for any a ∈ X.

7.C. The relation ≤ on R is a nonstrict order.
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7.D. In the set N of positive integers, the relation a | b (a divides b) is a
nonstrict partial order.

7.1. Is the relation a | b a nonstrict partial order on the set Z of integers?

7.E. Inclusion determines a nonstrict partial order on the set of subsets of
any set X.

⌈7′3⌋ Relation between Strict and Nonstrict Orders

7.F. For each strict order ≺, there is a relation � defined on the same set
as follows: a � b if either a ≺ b, or a = b. This relation is a nonstrict order.

The nonstrict order � of 7.F is associated with the original strict order
≺.

7.G. For each nonstrict order �, there is a relation ≺ defined on the same
set as follows: a ≺ b if a � b and a 6= b. This relation is a strict order.

The strict order ≺ of 7.G is associated with the original nonstrict order
�.

7.H. The constructions of Problems 7.F and 7.G are mutually inverse: ap-
plied one after another in any order, they give the initial relation.

Thus, strict and nonstrict orders determine each other. They are just
different incarnations of the same structure of order. We have already met a
similar phenomenon in topology: open and closed sets in a topological space
determine each other and provide different ways for describing a topological
structure.

A set equipped with a partial order (either strict or nonstrict) is a par-

tially ordered set or, briefly, a poset. More formally speaking, a partially
ordered set is a pair (X,≺) formed by a set X and a strict partial order ≺
on X. Certainly, instead of a strict partial order ≺ we can use the corre-
sponding nonstrict order �.

Which of the orders, strict or nonstrict, prevails in each specific case is
a matter of convenience, taste, and tradition. Although it would be handy
to keep both of them available, nonstrict orders conquer situation by situa-
tion. For instance, nobody introduces special notation for strict divisibility.
Another example: the symbol ⊆, which is used to denote nonstrict inclu-
sion, is replaced by the symbol ⊂, which is almost never understood as a
designation solely for strict inclusion.

In abstract considerations, we use both kinds of orders: strict partial
orders are denoted by the symbol ≺, nonstrict ones by the symbol �.
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⌈7′4⌋ Cones

Let (X,≺) be a poset and let a ∈ X. The set {x ∈ X | a ≺ x} is
the upper cone of a, and the set {x ∈ X | x ≺ a} the lower cone of a.
The element a does not belong to its cones. Adding a to them, we obtain
completed cones: the upper completed cone or star C+

X(a) = {x ∈ X | a � x}
and the lower completed cone C−

X(a) = {x ∈ X | x � a}.

7.I Properties of Cones. Let (X,≺) be a poset. Then we have:

(1) C+
X(b) ⊂ C+

X(a), provided that b ∈ C+
X(a);

(2) a ∈ C+
X(a) for each a ∈ X;

(3) C+
X(a) = C+

X(b) implies a = b.

7.J Cones Determine an Order. Let X be an arbitrary set. Suppose for
each a ∈ X we fix a subset Ca ⊂ X so that

(1) b ∈ Ca implies Cb ⊂ Ca,

(2) a ∈ Ca for each a ∈ X, and

(3) Ca = Cb implies a = b.

We write a ≺ b if b ∈ Ca. Then the relation ≺ is a nonstrict order on X,
and for this order we have C+

X(a) = Ca.

7.2. Let C ⊂ R3 be a set. Consider the relation ⊳C on R3 defined as follows:
a⊳C b if b− a ∈ C. What properties of C imply that ⊳C is a partial order on R3?
What are the upper and lower cones in the poset (R3,⊳C)?

7.3. Prove that each convex cone C in R3 with vertex (0, 0, 0) and such that
P ∩C = {(0, 0, 0)} for some plane P satisfies the conditions found in the solution
to Problem 7.2.

7.4. Consider the space-time R4 of special relativity theory, where points represent
moment-point events and the first three coordinates x1, x2 and x3 are the spatial
coordinates, while the fourth one, t, is the time. This space carries a relation, “the
event (x1, x2, x3, t) precedes (and may influence) the event (ex1, ex2, ex3,et)”. The
relation is defined by the inequality

c(t̃− t) ≥
p

(ex1 − x1)2 + (ex2 − x2)2 + (ex3 − x3)2.

Is this a partial order? If yes, then what are the upper and lower cones of an
event?

7.5. Answer the versions of questions of the preceding problem in the case of
two- and three-dimensional analogs of this space, where the number of spatial
coordinates is 1 and 2, respectively.

⌈7′5⌋ Position of an Element with Respect to a Set

Let (X,≺) be a poset, A ⊂ X a subset. Then b is the greatest element

of A if b ∈ A and c � b for every c ∈ A. Similarly, b is the smallest element

of A if b ∈ A and b � c for every c ∈ A.
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7.K. An element b ∈ A is the smallest element of A iff A ⊂ C+
X(b); an

element b ∈ A is the greatest element of A iff A ⊂ C−
X(b).

7.L. Each set has at most one greatest and at most one smallest element.

An element b of a set A is a maximal element of A if A contains no
element c such that b ≺ c. An element b is a minimal element of A if A
contains no element c such that c ≺ b.

7.M. An element b of A is maximal iff A∩C−
X(b) = b; an element b of A is

minimal iff A ∩ C+
X(b) = b.

7.6. Riddle. 1) How are the notions of maximal and greatest elements related?
2) What can you say about a poset in which these notions coincide for each subset?

⌈7′6⌋ Linear Orders

Please, notice: the definition of a strict order does not require that for
any a, b ∈ X we have either a ≺ b, or b ≺ a, or a = b. The latter condition
is called a trichotomy . In terms of the corresponding nonstrict order, it is
reformulated as follows: any two elements a, b ∈ X are comparable: either
a � b, or b � a.

A strict order satisfying trichotomy is linear (or total). The correspond-
ing poset is linearly ordered (or totally ordered). It is also called just an
ordered set.9 Some orders do satisfy trichotomy.

7.N. The order < on the set R of real numbers is linear.

This is the most important example of a linearly ordered set. The words
and images rooted in it are often extended to all linearly ordered sets. For
example, cones are called rays, upper cones become right rays, while lower
cones become left rays.

7.7. A poset (X,≺) is linearly ordered iff X = C+
X(a) ∪ C−

X(a) for each a ∈ X.

7.8. The order a | b on the set N of positive integers is not linear.

7.9. For which X is the relation of inclusion on the set of all subsets of X a linear
order?

9Quite a bit of confusion was brought into the terminology by Bourbaki. At that time, linear
orders were called orders, nonlinear orders were called partial orders, and, in occasions when it
was not known if the order under consideration was linear, the fact that this was unknown was
explicitly stated. Bourbaki suggested to drop the word partial . Their motivation for this was that
a partial order is a phenomenon more general than a linear order, and hence deserves a shorter and
simpler name. This suggestion was commonly accepted in the French literature, but in English
literature it would imply abolishing a nice short word, poset , which seems to be an absolutely
impossible thing to do.
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⌈7′7⌋ Topologies Determined by Linear Order

7.O. Let (X,≺) be a linearly ordered set. Then the set X itself and all right
rays of X, i.e., sets of the form {x ∈ X | a ≺ x}, where a runs through X,
constitute a base for a topological structure in X.

The topological structure determined by this base is the right ray topology

of the linearly ordered set (X,≺). The left ray topology is defined similarly: it
is generated by the base consisting of X and sets of the form {x ∈ X | x ≺ a}
with a ∈ X.

7.10. The topology of the arrow (see Section 2) is the right ray topology of the
half-line [0,∞) equipped with the order <.

7.11. Riddle. To what extent is the assumption that the order be linear nec-
essary in Theorem 7.O? Find a weaker condition that implies the conclusion of
Theorem 7.O and allows us to speak about the topological structure described in
Problem 2.2 as the right ray topology of an appropriate partial order on the plane.

7.P. Let (X,≺) be a linearly ordered set. Then the subsets of X having the
forms

• {x ∈ X | a ≺ x}, where a runs through X,

• {x ∈ X | x ≺ a}, where a runs through X,

• {x ∈ X | a ≺ x ≺ b}, where a and b run through X

constitute a base for a topological structure in X.

The topological structure determined by this base is the interval topology

of the linearly ordered set (X,≺).

7.12. Prove that the interval topology is the smallest topological structure con-
taining the right ray and left ray topological structures.

7.Q. The canonical topology of the line is the interval topology of (R, <).

⌈7′8⌋ Poset Topology

7.R. Let (X,�) be a poset. Then the subsets of X having the form {x ∈
X | a � x}, where a runs through the entire X, constitute a base for a
topological structure in X.

The topological structure generated by this base is the poset topology .

7.S. In the poset topology, each point a ∈ X has the smallest (with respect
to inclusion) neighborhood. This is {x ∈ X | a � x}.

7.T. The following properties of a topological space are equivalent:

(1) each point has a smallest neighborhood,

(2) the intersection of any collection of open sets is open,
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(3) the union of any collection of closed sets is closed.

A space satisfying the conditions of Theorem 7.T is a smallest neigh-

borhood space.10 In such a space, open and closed sets satisfy the same
conditions. In particular, the set of all closed sets of a smallest neighbor-
hood space is also a topological structure, which is dual to the original one.
It corresponds to the opposite partial order.

7.13. How to characterize points open in the poset topology in terms of the
partial order? Answer the same question about closed points. (Slightly abusing
the terminology, here by points we mean the corresponding singletons.)

7.14. Directly describe open sets in the poset topology of R with order <.

7.15. Consider a partial order on the set {a, b, c, d} where the strict inequalities
are: c ≺ a, d ≺ c, d ≺ a, and d ≺ b. Check that this is a partial order and the
corresponding poset topology is the topology of described in Problem 2.3 (1).

7.16. Describe the closure of a point in a poset topology.

7.17. Which singletons are dense in a poset topology?

⌈7′9⌋ How to Draw a Poset

Now we can explain the pictogram , by which we denote the space
introduced in Problem 2.3(1). It describes the partial order on {a, b, c, d}
that determines the topology of this space by 7.15. Indeed, if we place a, b, c,

d

c

a

b

and d, i.e., the elements of the set under consideration,
at vertices of the graph of the pictogram, as shown in the
picture, then the vertices marked by comparable elements
are connected by a segment or ascending broken line, and
the greater element corresponds to the higher vertex.

In this way, we can represent any finite poset by a diagram. Elements
of the poset are represented by points. We have a ≺ b if and only if the
following two conditions are fulfilled: 1) the point representing b lies above
the point representing a, and 2) the two points are connected either by a
segment or by a polyline consisting of segments that connect points repre-
senting intermediate elements of a chain a ≺ c1 ≺ c2 ≺ · · · ≺ cn ≺ b. We
could have connected by a segment any two points corresponding to compa-
rable elements, but this would make the diagram excessively cumbersome.
This is why the segments that are determined by the others via transitivity
are not drawn. Such a diagram representing a poset is its Hasse diagram.

7.U. Prove that any finite poset is determined by a Hasse diagram.

10This class of topological spaces was introduced and studied by P. S. Alexandrov in 1935.
Alexandrov called them discrete. Nowadays, the term discrete space is used for a much narrower
class of topological spaces (see Section 2). The term smallest neighborhood space was introduced
by Christer Kiselman.
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7.V. Describe the poset topology on the set Z of integers defined by the
following Hasse diagram:

0

−1

−2

−3

−4

−5 1

2

3

4

5

6

The space of Problem 7.V is the digital line, or Khalimsky line. In this
space, each even number is closed and each odd one is open.

7.18. Associate with each even integer 2k the interval (2k− 1, 2k+ 1) of length 2
centered at this point, and with each odd integer 2k − 1, the singleton {2k − 1}.
Prove that a set of integers is open in the Khalimsky topology iff the union of sets
associated to its elements is open in R with the standard topology.

7.19. Among the topological spaces described in Section 2, find all those obtained
as posets with the poset topology. In the cases of finite sets, draw Hasse diagrams
describing the corresponding partial orders.
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8. Cyclic Orders

⌈8′1⌋ Cyclic Orders in Finite Sets

Recall that a cyclic order on a finite set X is a linear order considered
up to cyclic permutation. The linear order allows us to enumerate elements
of the set X by positive integers, so that X = {x1, x2, . . . , xn}. A cyclic
permutation transposes the first k elements with the last n − k elements
without changing the order inside each of the two parts of the set:

(x1, x2, . . . , xk, xk+1, xk+2, . . . , xn) 7→ (xk+1, xk+2, . . . , xn, x1, x2, . . . , xk).

When we consider a cyclic order, it makes no sense to say that one of its el-
ements is greater than another one, since an appropriate cyclic permutation
puts the two elements in the opposite order. However, it makes sense to say
that an element immediately precedes another one. Certainly, the very last
element immediately precedes the very first one: indeed, a nontrivial cyclic
permutation puts the first element immediately after the last one.

In a cyclically ordered finite set, each element a has a unique element b
next to a, i.e., which follows a immediately. This determines a map of the
set onto itself, namely, the simplest cyclic permutation

xi 7→
{
xi+1 if i < n,

x1 if i = n.

This permutation acts transitively (i.e., any element is mapped to any other
one by an appropriate iteration of the permutation).

8.A. Any map T : X → X that transitively acts on X determines a cyclic
order on X such that each a ∈ X precedes T (a).

8.B. An n-element set possesses exactly (n − 1)! pairwise distinct cyclic
orders.

In particular, a two-element set has only one cyclic order (which is so
uninteresting that sometimes it is said to make no sense), while any three-
element set possesses two cyclic orders.

⌈8′2x⌋ Cyclic Orders in Infinite Sets

One can consider cyclic orders on an infinite set. However, most of what
was said above does not apply to cyclic orders on infinite sets without an
adjustment. In particular, most of them cannot be described by showing
pairs of elements that are next to each other. For example, points of a
circle can be cyclically ordered clockwise (or counter-clockwise), but no point
immediately follows another point with respect to this cyclic order.
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Such “continuous” cyclic orders are defined almost in the same way as
cyclic orders on finite sets were defined above. The difference is that some-
times it is impossible to define cyclic permutations of a set in the necessary
quantity, and we have to replace them by cyclic transformations of linear
orders. Namely, a cyclic order is defined as a linear order considered up to
cyclic transformations, where by a cyclic transformation of a linear order
≺ on a set X we mean a passage from ≺ to a linear order ≺′ such that X
splits into subsets A and B such that the restrictions of ≺ and ≺′ to each
of them coincide, while a ≺ b and b ≺′ a for any a ∈ A and b ∈ B.

8.Cx. Existence of a cyclic transformation transforming linear orders to
each other determines an equivalence relation on the set of all linear orders
on a set.

A cyclic order on a set is an equivalence class of linear orders with respect
to the above equivalence relation.

8.Dx. Prove that for a finite set this definition is equivalent to the definition
in the preceding section.

8.Ex. Prove that the cyclic “counter-clockwise” order on a circle can be
defined along the definition of this section, but cannot be defined as a linear
order modulo cyclic transformations of the set for whatever definition of
cyclic transformations of circle. Describe the linear orders on the circle that
determine this cyclic order up to cyclic transformations of orders.

8.Fx. Let A be a subset of a set X. If two linear orders ≺′ and ≺ on X are
obtained from each other by a cyclic transformation, then their restrictions
to A are also obtained from each other by a cyclic transformation.

8.Gx Corollary. A cyclic order on a set induces a well-defined cyclic order
on every subset of this set.

8.Hx. A cyclic order on a set X can be recovered from the cyclic orders
induced by it on all three-element subsets of X.

8.Hx.1. A cyclic order on a set X can be recovered from the cyclic orders
induced by it on all three-element subsets of X containing a fixed element
a ∈ X .

Theorem 8.Hx allows us to describe a cyclic order as a ternary relation.
Namely, let a, b, and c be elements of a cyclically ordered set. Then we
write [a ≺ b ≺ c] if the induced cyclic order on {a, b, c} is determined by the
linear order in which the inequalities in the brackets hold true (i.e., b follows
a and c follows b).

8.Ix. Let X be a cyclically ordered set. Then the ternary relation [a ≺ b ≺ c]
on X has the following properties:
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(1) for any pairwise distinct a, b, c ∈ X, we have either [a ≺ b ≺ c], or
[b ≺ a ≺ c], but not both;

(2) [a ≺ b ≺ c], iff [b ≺ c ≺ a], iff [c ≺ a ≺ b], for any a, b, c ∈ X;

(3) if [a ≺ b ≺ c] and [a ≺ c ≺ d], then [a ≺ b ≺ d].

Vice versa, a ternary relation on X having these four properties determines
a cyclic order on the set X.

⌈8′3x⌋ Topology of Cyclic Order

8.Jx. Let X be a cyclically ordered set. Then the sets that belong to the
interval topology of every linear order determining the cyclic order on X
constitute a topological structure in X.

The topology defined in 8.Jx is the cyclic order topology .

8.Kx. The cyclic order topology determined by the cyclic counterclockwise
order of S1 is the topology generated by the metric ρ(x, y) = |x − y| on
S1 ⊂ C.



Chapter II

Continuity

9. Set-Theoretic Digression: Maps

⌈9′1⌋ Maps and Main Classes of Maps

A map f of a set X to a set Y is a triple consisting of X, Y , and a rule,1

which assigns to every element of X exactly one element of Y . There are
other words with the same meaning: mapping , function, etc. (Special kinds
of maps may have special names like functional , operator , etc.)

If f is a map of X to Y , then we write f : X → Y , or X
f→ Y . The

element b of Y assigned by f to an element a of X is denoted by f(a) and
called the image of a under f , or the f -image of a. We write b = f(a), or

a
f7→ b, or f : a 7→ b. We also define maps by formulas like f : X → Y : a 7→ b,

where b is explicitly expressed in terms of a.

A map f : X → Y is a surjective map, or just a surjection if every element
of Y is the image of at least one element of X. (We also say that f is onto.)
A map f : X → Y is an injective map, injection, or one-to-one map if every
element of Y is the image of at most one element of X. A map is a bijective

map, bijection, or invertible map if it is both surjective and injective.

1Certainly, the rule (as everything in set theory) may be thought of as a set. Namely, we
consider the set of the ordered pairs (x, y) with x ∈ X and y ∈ Y such that the rule assigns y to
x. This is the graph of f . It is a subset of X × Y . (Recall that X × Y is the set of all ordered
pairs (x, y) with x ∈ X and y ∈ Y .)

45
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⌈9′2⌋ Image and Preimage

The image of a set A ⊂ X under a map f : X → Y is the set of images
of all points of A. It is denoted by f(A). Thus, we have

f(A) = {f(x) | x ∈ A}.
The image of the entire set X (i.e., the set f(X)) is the image of f . It is
denoted by Im f .

The preimage of a set B ⊂ Y under a map f : X → Y is the set of
elements of X with images in B. It is denoted by f−1(B). Thus, we have

f−1(B) = {a ∈ X | f(a) ∈ B}.

Be careful with these terms: their etymology can be misleading. For
example, the image of the preimage of a set B can differ from B, and even if
it does not differ, it may happen that the preimage is not the only set with
this property. Hence, the preimage cannot be defined as a set whose image
is the given set.

9.A. We have f
(
f−1(B)

)
⊂ B for any map f : X → Y and any B ⊂ Y .

9.B. f
(
f−1(B)

)
= B iff B ⊂ Im f .

9.C. Let f : X → Y be a map, and let B ⊂ Y be such that f
(
f−1(B)

)
= B.

Then the following statements are equivalent:

(1) f−1(B) is the unique subset of X whose image equals B;

(2) for any a1, a2 ∈ f−1(B), the equality f(a1) = f(a2) implies a1 = a2.

9.D. A map f : X → Y is an injection iff for each B ⊂ Y such that
f
(
f−1(B)

)
= B the preimage f−1(B) is the unique subset of X with image

equal to B.

9.E. We have f−1
(
f(A)

)
⊃ A for any map f : X → Y and any A ⊂ X.

9.F. f−1
(
f(A)

)
= A iff f(A) ∩ f(X rA) = ∅.

9.1. Do the following equalities hold true for any A,B ⊂ Y and f : X → Y :

f−1(A ∪B) = f−1(A) ∪ f−1(B), (10)

f−1(A ∩B) = f−1(A) ∩ f−1(B), (11)

f−1(Y r A) = X r f−1(A)? (12)

9.2. Do the following equalities hold true for any A,B ⊂ X and f : X → Y :

f(A ∪B) = f(A) ∪ f(B), (13)

f(A ∩B) = f(A) ∩ f(B), (14)

f(X r A) = Y r f(A)? (15)

9.3. Give examples in which two of the above equalities (13)–(15) are false.
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9.4. Replace false equalities of 9.2 by correct inclusions.

9.5. Riddle. What simple condition on f : X → Y should be imposed in order
to make all equalities of 9.2 correct for any A,B ⊂ X?

9.6. Prove that for any map f : X → Y and any subsets A ⊂ X and B ⊂ Y we
have:

B ∩ f(A) = f
`

f−1(B) ∩A
´

.

⌈9′3⌋ Identity and Inclusion

The identity map of a set X is the map idX : X → X : x 7→ x. It is
denoted just by id if there is no ambiguity. If A is a subset of X, then the
map inA : A → X : x 7→ x is the inclusion map, or just inclusion, of A
into X. It is denoted just by in when A and X are clear.

9.G. The preimage of a set B under the inclusion in : A→ X is B ∩A.

⌈9′4⌋ Composition

The composition of maps f : X → Y and g : Y → Z is the map
g ◦ f : X → Z : x 7→ g

(
f(x)

)
.

9.H Associativity of Composition. We have h ◦ (g ◦ f) = (h ◦ g) ◦ f for
any maps f : X → Y , g : Y → Z, and h : Z → U .

9.I. We have f ◦ idX = f = idY ◦f for any f : X → Y .

9.J. A composition of injections is injective.

9.K. If the composition g ◦ f is injective, then so is f .

9.L. A composition of surjections is surjective.

9.M. If the composition g ◦ f is surjective, then so is g.

9.N. A composition of bijections is a bijection.

9.7. Let a composition g ◦ f be bijective. Is then f or g necessarily bijective?

⌈9′5⌋ Inverse and Invertible

A map g : Y → X is inverse to a map f : X → Y if g ◦ f = idX and
f ◦ g = idY . A map having an inverse map is invertible.

9.O. A map is invertible iff it is a bijection.

9.P. If an inverse map exists, then it is unique.
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⌈9′6⌋ Submaps

If A ⊂ X and B ⊂ Y , then for every f : X → Y such that f(A) ⊂ B we
have a map ab(f) : A → B : x 7→ f(x), which is called the abbreviation of
f to A and B, a submap, or a submapping . If B = Y , then ab(f) : A → Y
is denoted by f A and called the restriction of f to A. If B 6= Y , then
ab(f) : A→ B is denoted by f A,B or even simply f |.
9.Q. The restriction of a map f : X → Y to A ⊂ X is the composition of
the inclusion in : A→ X and f . In other words, f |A = f ◦ in.

9.R. Any submap (in particular, any restriction) of an injection is injective.

9.S. If a map possesses a surjective restriction, then it is surjective.
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10. Continuous Maps

⌈10′1⌋ Definition and Main Properties of Continuous Maps

Let X and Y be two topological spaces. A map f : X → Y is continuous

if the preimage of each open subset of Y is an open subset of X.

10.A. A map is continuous iff the preimage of each closed set is closed.

10.B. The identity map of any topological space is continuous.

10.C. Any constant map (i.e., a map with one-point image) is continuous.

10.1. Let Ω1 and Ω2 be two topological structures in a space X. Prove that the
identity map

id : (X,Ω1) → (X,Ω2)

is continuous iff Ω2 ⊂ Ω1.

10.2. Let f : X → Y be a continuous map. Find out whether or not it is
continuous with respect to

(1) a finer topology on X and the same topology on Y ,
(2) a coarser topology on X and the same topology on Y ,
(3) a finer topology on Y and the same topology on X,
(4) a coarser topology on Y and the same topology on X.

10.3. Let X be a discrete space, Y an arbitrary space. 1) Which maps X → Y
are continuous? 2) Which maps Y → X are continuous for each topology on Y ?

10.4. Let X be an indiscrete space, Y an arbitrary space. 2) Which maps Y → X
are continuous? 1) Which maps X → Y are continuous for each topology on Y ?

10.D. Let A be a subspace of X. The inclusion in : A→ X is continuous.

10.E. The topology ΩA induced on A ⊂ X by the topology of X is the
coarsest topology on A with respect to which the inclusion in : A → X is
continuous.

10.5. Riddle. The statement 10.E admits a natural generalization with the
inclusion map replaced by an arbitrary map f : A → X of an arbitrary set A.
Find this generalization.

10.F. A composition of continuous maps is continuous.

10.G. A submap of a continuous map is continuous.

10.H. A map f : X → Y is continuous iff ab(f) : X → f(X) is continuous.
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⌈10′2⌋ Reformulations of Definition

10.6. Prove that a map f : X → Y is continuous iff

Cl f−1(A) ⊂ f−1(ClA)

for each A ⊂ Y .

10.7. Formulate and prove similar criteria of continuity in terms of Int f−1(A)
and f−1(IntA). Do the same for Cl f(A) and f(ClA).

10.8. Let Σ be a base for the topology on Y . Prove that a map f : X → Y is
continuous iff f−1(U) is open for each U ∈ Σ.

⌈10′3⌋ More Examples

10.9. Consider the map

f : [0, 2] → [0, 2] : f(x) =

(

x if x ∈ [0, 1),

3 − x if x ∈ [1, 2].

Is it continuous (with respect to the topology induced from the real line)?

10.10. Consider the map f from the segment [0, 2] (with the relative topology
induced by the topology of the real line) into the arrow (see Section 2) defined by
the formula

f(x) =

(

x if x ∈ [0, 1],

x+ 1 if x ∈ (1, 2].

Is it continuous?

10.11. Give an explicit characterization of continuous maps of RT1
(see Section 2)

to R.

10.12. Which maps RT1
→ RT1

are continuous?

10.13. Give an explicit characterization of continuous maps of the arrow to itself.

10.14. Let f be a map of the set Z + of nonnegative numbers to R defined by the
formula

f(x) =

(

1/x if x 6= 0,

0 if x = 0.

Let g : Z + → f(Z +) be the submap of f . Induce a topology on Z + and f(Z +)
from R. Are f and the map g−1 inverse to g continuous?

⌈10′4⌋ Behavior of Dense Sets Under Continuous Maps

10.15. Prove that the image of an everywhere dense set under a surjective con-
tinuous map is everywhere dense.

10.16. Is it true that the image of a nowhere dense set under a continuous map
is nowhere dense?

10.17*. Do there exist a nowhere dense subset A of [0, 1] (with the topology
induced from the real line) and a continuous map f : [0, 1] → [0, 1] such that
f(A) = [0, 1]?
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⌈10′5⌋ Local Continuity

A map f from a topological space X to a topological space Y is contin-

uous at a point a ∈ X if for every neighborhood V of f(a) the point a has a
neighborhood U such that f(U) ⊂ V .

10.I. A map f : X → Y is continuous iff it is continuous at each point of
X.

10.J. Let X and Y be two metric spaces. A map f : X → Y is continuous
at a point a ∈ X iff each ball centered at f(a) contains the image of a ball
centered at a.

10.K. Let X and Y be two metric spaces. A map f : X → Y is continuous
at a point a ∈ X iff for every ε > 0 there exists δ > 0 such that for every
point x ∈ X the inequality ρ(x, a) < δ implies ρ

(
f(x), f(a)

)
< ε.

Theorem 10.K means that the definition of continuity usually studied
in Calculus, when applicable, is equivalent to the above definition stated in
terms of topological structures.

⌈10′6⌋ Properties of Continuous Functions

10.18. Let f, g : X → R be two continuous functions. Prove that the functions
X → R defined by the formulas

x 7→f(x) + g(x), (16)

x 7→f(x)g(x), (17)

x 7→f(x) − g(x), (18)

x 7→
˛

˛f(x)
˛

˛, (19)

x 7→max{f(x), g(x)}, (20)

x 7→min{f(x), g(x)} (21)

are continuous.

10.19. Prove that if 0 /∈ g(X), then the function

X → R : x 7→ f(x)

g(x)

is also continuous.

10.20. Find a sequence of continuous functions fi : R → R, (i ∈ N), such that
the function

R → R : x 7→ sup{ fi(x) | i ∈ N }
is not continuous.

10.21. Let X be a topological space. Prove that a function f : X → Rn : x 7→
(f1(x), . . . , fn(x)) is continuous iff so are all functions fi : X → R with i = 1, . . . , n.

Real p × q matrices form a space Mat(p× q,R), which differs from Rpq only
in the way its natural coordinates are numbered (they are numbered by pairs of
indices).
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10.22. Let f : X →Mat(p× q,R) and g : X →Mat(q × r,R) be two continuous
maps. Prove that the map

X → Mat(p× r,R) : x 7→ g(x)f(x)

is also continuous.

Recall that GL(n; R) is the subspace of Mat(n×n,R) consisting of all invert-
ible matrices.

10.23. Let f : X → GL(n; R) be a continuous map. Prove that X → GL(n; R) :
x 7→ (f(x))−1 is also continuous.

⌈10′7⌋ Continuity of Distances

10.L. For every subset A of a metric space X, the function X → R : x 7→
ρ(x,A) (see Section 4) is continuous.

10.24. Prove that the metric topology of a metric space X is the coarsest topology
with respect to which the function X → R : x 7→ ρ(x,A) is continuous for every
A ⊂ X.

⌈10′8⌋ Isometry

A map f of a metric space X to a metric space Y is an isometric em-

bedding if ρ
(
f(a), f(b)

)
= ρ(a, b) for any a, b ∈ X. A bijective isometric

embedding is an isometry .

10.M. Every isometric embedding is injective.

10.N. Every isometric embedding is continuous.

⌈10′9⌋ Contractive Maps

A map f : X → X of a metric space X is contractive if there exists α ∈ (0, 1)
such that ρ

`

f(a), f(b)
´

≤ αρ(a, b) for any a, b ∈ X.

10.25. Prove that every contractive map is continuous.

Let X and Y be two metric spaces. A map f : X → Y is a Hölder map if
there exist C > 0 and α > 0 such that ρ

`

f(a), f(b)
´

≤ Cρ(a, b)α for any a, b ∈ X.

10.26. Prove that every Hölder map is continuous.

⌈10′10⌋ Sets Defined by Systems of Equations and Inequalities

10.O. Let f1, . . . , fn : X → R be continuous functions. Then the subset of
X formed by solutions to the system of equations

f1(x) = · · · = fn(x) = 0

is closed.
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10.P. Let f1, . . . , fn : X → R be continuous functions. Then the subset of
X formed by solutions to the system of inequalities

f1(x) ≥ 0, . . . , fn(x) ≥ 0

is closed, while the set of solutions to the system of inequalities

f1(x) > 0, . . . , fn(x) > 0

is open.

10.27. Where in 10.O and 10.P can a finite system be replaced by an infinite
one?

10.28. Prove that in Rn (n ≥ 1) every proper algebraic set (i.e., a set defined by
algebraic equations) is nowhere dense.

⌈10′11⌋ Set-Theoretic Digression: Covers

A collection Γ of subsets of a set X is a cover or a covering of X if X is
the union of sets in Γ, i.e., X =

⋃
A∈ΓA. In this case, elements of Γ cover

X.

These words also have a more general meaning. A collection Γ of subsets
of a set Y is a cover or a covering of a set X ⊂ Y if X is contained in the
union of the sets in Γ, i.e., X ⊂ ⋃A∈ΓA. In this case, the sets in Γ are also
said to cover X.

⌈10′12⌋ Fundamental Covers

Consider a cover Γ of a topological space X. Each element of Γ inherits a
topological structure from X. When do these structures uniquely determine
the topology of X? In particular, what conditions on Γ ensure that the
continuity of a map f : X → Y follows from the continuity of its restrictions
to elements of Γ? To answer these questions, solve Problems 10.29–10.30
and 10.Q–10.V.

10.29. Find out whether or not this is true for the following covers:

(1) X = [0, 2], and Γ = {[0, 1], (1, 2]};
(2) X = [0, 2], and Γ = {[0, 1], [1, 2]};
(3) X = R, and Γ = {Q,R r Q};
(4) X = R, and Γ is the set of all one-point subsets of R.

A cover Γ of a space X is fundamental if: a set U ⊂ X is open iff for
every A ∈ Γ the set U ∩A is open in A.

10.Q. A cover Γ of a space X is fundamental iff: a set U ⊂ X is open,
provided U ∩A is open in A for every A ∈ Γ.

10.R. A cover Γ of a space X is fundamental iff: a set F ⊂ X is closed,
provided that F ∩A is closed in A for every A ∈ Γ.
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10.30. The cover of a topological space by singletons is fundamental iff the space
is discrete.

A cover of a topological space is open (respectively, closed) if it consists
of open (respectively, closed) sets. A cover of a topological space is locally

finite if every point of the space has a neighborhood meeting only a finite
number of elements of the cover.

10.S. Every open cover is fundamental.

10.T. A finite closed cover is fundamental.

10.U. Every locally finite closed cover is fundamental.

10.V. Let Γ be a fundamental cover of a topological space X, and let f :
X → Y be a map. If the restriction of f to each element of Γ is continuous,
then so is f .

A cover Γ′ is a refinement of a cover Γ if every element of Γ′ is contained in
an element of Γ.

10.31. Prove that if a cover Γ′ is a refinement of a cover Γ and Γ′ is fundamental,
then so is Γ.

10.32. Let ∆ be a fundamental cover of a topological space X, and let Γ be a
cover of X such that ΓA = {U ∩ A | U ∈ Γ } is a fundamental cover for the
subspace A ⊂ X for every A ∈ ∆. Prove that Γ is a fundamental cover of X.

10.33. Prove that the property of being fundamental is local, i.e., if every point
of a space X has a neighborhood V such that ΓV = {U ∩ V | U ∈ Γ } is a
fundamental cover of V , then Γ is fundamental.

⌈10′13x⌋ Monotone Maps

Let (X,≺) and (Y,≺) be two posets. A map f : X → Y is

• (non-strictly) monotonically increasing or just monotone if
f(a) � f(b) for any a, b ∈ X with a � b;

• (non-strictly) monotonically decreasing or antimonotone if
f(b) � f(a) for any a, b ∈ X with a � b;

• strictly monotonically increasing or just strictly monotone if
f(a) ≺ f(b) for any a, b ∈ X with a ≺ b;

• strictly monotonically decreasing or strictly antimonotone if
f(b) ≺ f(a) for any a, b ∈ X with a ≺ b.

10.Wx. Let X and Y be two linearly ordered sets. Then any surjective
strictly monotone or antimonotone map X → Y is continuous with respect
to the interval topology on X and Y .
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10.34x. Show that the surjectivity condition in 10.Wx is needed.

10.35x. Is it possible to remove the word strictly from the hypothesis of Theo-
rem 10.Wx?

10.36x. In the assumptions of Theorem 10.Wx, is f continuous with respect to
the right-ray or left-ray topologies?

10.Xx. A map f : X → Y of a poset to a poset is monotone increasing iff
it is continuous with respect to the poset topologies on X and Y .

⌈10′14x⌋ Gromov–Hausdorff Distance

10.37x. For any metric spaces X and Y , there exists a metric space Z such that
X and Y can be isometrically embedded in Z.

Isometrically embedding two metric space in a single one, we can consider the
Hausdorff distance between their images (see Section 4′15x). The infimum of such
Hausdorff distances over all pairs of isometric embeddings of metric spaces X and
Y in metric spaces is the Gromov–Hausdorff distance between X and Y .

10.38x. Do there exist metric spaces with infinite Gromov–Hausdorff distance?

10.39x. Prove that the Gromov–Hausdorff distance is symmetric and satisfies the
triangle inequality.

10.40x. Riddle. In what sense can the Gromov–Hausdorff distance satisfy the
first axiom of metric?

⌈10′15x⌋ Functions on the Cantor Set and Square-Filling Curves

Recall that the Cantor set K is the set of real numbers that are presented as
sums of series of the form

P

∞

n=1 an/3
n with an ∈ {0, 2}.

10.41x. Consider the map

γ1 : K → [0, 1] :
∞
X

n=1

an
3n

7→ 1

2

∞
X

n=1

an
2n
.

Prove that γ1 is a continuous surjection. Sketch the graph of γ1.

10.42x. Prove that the function

K → K :
∞
X

n=1

an
3n

7→
∞
X

n=1

a2n

3n

is continuous.

Denote by K2 the set {(x, y) ∈ R2 | x ∈ K, y ∈ K}.
10.43x. Prove that the map

γ2 : K → K2 :
∞
X

n=1

an
3n

7→
 

∞
X

n=1

a2n−1

3n
,

∞
X

n=1

a2n

3n

!

is a continuous surjection.

The unit segment [0, 1] is denoted by I , while the set

{(x1, . . . , xn) ⊂ R
n | 0 ≤ xi ≤ 1 for each i}

is denoted by In and called the (unit) n-cube.
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10.44x. Prove that the map γ3 : K → I2 defined as the composition of γ2 : K →
K2 and K2 → I2 : (x, y) 7→ (γ1(x), γ1(y)) is a continuous surjection.

10.45x. Prove that the map γ3 : K → I2 is a restriction of a continuous map.
(Cf. 2.Jx.2.)

The latter map is a continuous surjection I → I2. Thus, this is a curve
filling the square. A curve with this property was first constructed by G. Peano in
1890. Though the construction sketched above involves the same ideas as Peano’s
original construction, the two constructions are slightly different. A lot of other
similar examples have been found since then. You may find a nice survey of them
in Hans Sagan’s book Space-Filling Curves, Springer-Verlag 1994. Here is a sketch
of Hilbert’s construction.

10.46x. Prove that there exists a sequence of polygonal maps fn : I → I2 such
that

(1) fn connects all centers of the 4n equal squares with side 1/2n forming
an obvious subdivision of I2;

(2) we have dist(fn(x), fn−1(x)) ≤
√

2/2n+1 for any x ∈ I (here, dist de-
notes the metric induced on I2 by the standard Euclidean metric of
R2).

10.47x. Prove that any sequence of paths fn : I → I2 satisfying the conditions
of 10.46x converges to a map f : I → I2 (i.e., for any x ∈ I there exists a limit
f(x) = limn→∞ fn(x)), this map is continuous, and its image f(I) is dense in I2.

10.48x.2 Prove that any continuous map I → I2 with dense image is surjective.

10.49x. Generalize 10.43x - 10.48x to obtain a continuous surjection of I onto In.

2Although this problem can be solved by using theorems that are well known from Calculus,
we have to mention that it would be more appropriate to solve it after Section 17. Cf. Prob-
lems 17.P, 17.U, and 17.K.
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11. Homeomorphisms

⌈11′1⌋ Definition and Main Properties of Homeomorphisms

An invertible map f : X → Y is a homeomorphism if both this map and
its inverse are continuous.

11.A. Find an example of a continuous bijection which is not a homeomor-
phism.

11.B. Find a continuous bijection [0, 1) → S1 which is not a homeomor-
phism.

11.C. The identity map of a topological space is a homeomorphism.

11.D. A composition of homeomorphisms is a homeomorphism.

11.E. The inverse of a homeomorphism is a homeomorphism.

⌈11′2⌋ Homeomorphic Spaces

A topological space X is homeomorphic to a space Y if there exists a
homeomorphism X → Y .

11.F. Being homeomorphic is an equivalence relation.

11.1. Riddle. How is Theorem 11.F related to 11.C–11.E?

⌈11′3⌋ Role of Homeomorphisms

11.G. Let f : X → Y be a homeomorphism. Then U ⊂ X is open (in X)
iff f(U) is open (in Y ).

11.H. A map f : X → Y is a homeomorphism iff f is a bijection and
determines a bijection between the topological structures of X and Y .

11.I. Let f : X → Y be a homeomorphism. Then for every A ⊂ X

(1) A is closed in X iff f(A) is closed in Y ;

(2) f(ClA) = Cl(f(A));

(3) f(IntA) = Int(f(A));

(4) f(FrA) = Fr(f(A));

(5) A is a neighborhood of a point x ∈ X iff f(A) is a neighborhood of
the point f(x);

(6) etc.
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Therefore, homeomorphic spaces are completely identical from the topo-
logical point of view: a homeomorphism X → Y establishes a one-to-one
correspondence between all phenomena in X and Y that can be expressed
in terms of topological structures.3

⌈11′4⌋ More Examples of Homeomorphisms

11.J. Let f : X → Y be a homeomorphism. Prove that for every A ⊂ X
the submap ab(f) : A→ f(A) is also a homeomorphism.

11.K. Prove that every isometry (see Section 10) is a homeomorphism.

11.L. Prove that every nondegenerate affine transformation of Rn is a home-
omorphism.

11.M. Let X and Y be two linearly ordered sets. Any strictly monotone
surjection f : X → Y is a homeomorphism with respect to the interval
topological structures in X and Y .

11.N Corollary. Any strictly monotone surjection f : [a, b] → [c, d] is a
homeomorphism.

11.2. Let R be a positive real. Prove that the inversion

τ : R
n

r 0 → R
n

r 0 : x 7→ Rx

|x|2
is a homeomorphism.

11.3. Let H = {z ∈ C | Im z > 0} be the upper half-plane, let a, b, c, d ∈ R, and

let

˛

˛

˛

˛

a b
c d

˛

˛

˛

˛

> 0. Prove that

f : H → H : z 7→ az + b

cz + d

is a homeomorphism.

11.4. Let f : R → R be a bijection. Prove that f is a homeomorphism iff f is a
monotone function.

11.5. 1) Prove that every bijection of an indiscrete space onto itself is a homeo-
morphism. Prove the same 2) for a discrete space and 3) RT1

.

11.6. Find all homeomorphisms of the space (see Section 2) to itself.

11.7. Prove that every continuous bijection of the arrow onto itself is a homeo-
morphism.

3This phenomenon was used as a basis for defining the subject of topology in the first stages
of its development, when the notion of topological space had not yet been developed. At that
time, mathematicians studied only subspaces of Euclidean spaces, their continuous maps, and
homeomorphisms. Felix Klein, in his famous Erlangen Program, classified various geometries that
had emerged up to that time, like Euclidean, Lobachevsky, affine, and projective geometries, and
defined topology as a part of geometry that deals with properties preserved by homeomorphisms.
In fact, it was not assumed to be a program in the sense of something being planned, although
it became a kind of program. It was a sort of dissertation presented by Klein for receiving a
professor position at the Erlangen University.
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11.8. Find two homeomorphic spaces X and Y and a continuous bijection X → Y
which is not a homeomorphism.

11.9. Is γ2 : K → K2 considered in Problem 10.43x a homeomorphism? Recall
that K is the Cantor set, K2 = {(x, y) ∈ R2 | x ∈ K, y ∈ K}, and γ2 is defined by

∞
X

k=1

ak
3k

7→
 

∞
X

k=1

a2k−1

3k
,

∞
X

k=1

a2k

3k

!

.

⌈11′5⌋ Examples of Homeomorphic Spaces

Below the homeomorphism relation is denoted by ∼=. This notation is
not commonly accepted. In other textbooks, you may see any sign close to,
but distinct from =, e.g., ∼, ≃, ≈, etc.

11.O. Prove that

(1) [0, 1] ∼= [a, b] for any a < b;

(2) [0, 1) ∼= [a, b) ∼= (0, 1] ∼= (a, b] for any a < b;

(3) (0, 1) ∼= (a, b) for any a < b;

(4) (−1, 1) ∼= R;

(5) [0, 1) ∼= [0,+∞) and (0, 1) ∼= (0,+∞).

1x

a

b

x 1−1

11.P. Let N = (0, 1) ∈ S1 be the North Pole of the unit circle. Prove that
S1 rN ∼= R1.

11.Q. The graph of a continuous real-valued function defined on an interval
is homeomorphic to the interval.
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11.R. Sn r point ∼= Rn. (The first space is the “punctured sphere”.)

Here, and sometimes below, our notation is slightly incorrect: in the curly
brackets, we drop the initial part “(x, y) ∈ R2 |”.
11.10. Prove that the following plane domains are homeomorphic.

(1) The whole plane R2;
(2) open square Int I2 = {x, y ∈ (0, 1) };
(3) open strip {x ∈ (0, 1) };
(4) open upper half-plane H = { y > 0 };
(5) open half-strip {x > 0, y ∈ (0, 1) };
(6) open disk B2 = {x2 + y2 < 1 };
(7) open rectangle { a < x < b, c < y < d };
(8) open quadrant {x, y > 0 };
(9) open angle { x > y > 0 };

(10) { y2 + |x| > x }, i.e., the plane without the ray { y = 0 ≤ x };
(11) open half-disk {x2 + y2 < 1, y > 0 };
(12) open sector {x2 + y2 < 1, x > y > 0 }.

11.S. Prove that

(1) the closed disk D2 is homeomorphic to the square I2 = { (x, y) ∈
R2 | x, y ∈ [0, 1] };

(2) the open disk B2 = { (x, y) ∈ R2 | x2 + y2 < 1 } is homeomorphic
to the open square Int I2 = { (x, y) ∈ R2 | x, y ∈ (0, 1) };

(3) the circle S1 is homeomorphic to the boundary ∂I2 = I2 r Int I2

of the square.

11.T. Let ∆ ⊂ R2 be a planar bounded closed convex set with nonempty
interior U . Prove that

(1) ∆ is homeomorphic to the closed disk D2;

(2) U is homeomorphic to the open disk B2;

(3) Fr ∆ = FrU is homeomorphic to S1.

11.11. In which of the assertions in 11.T can we omit the assumption that the
closed convex set ∆ is bounded?

11.12. Classify up to homeomorphism all (nonempty) closed convex sets in the
plane. (Make a list without repeats; prove that every such set is homeomorphic
to a set in the list; postpone the proof of nonexistence of homeomorphisms till
Section 12.)

11.13*. Generalize the previous three problems to the case of sets in Rn with
arbitrary n.

The latter four problems show that angles are not essential in topology,
i.e., for a line or the boundary of a domain the property of having angles
is not preserved by homeomorphism. Here are two more problems in this
direction.
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11.14. Prove that every simple (i.e., without self-intersections) closed polygon
in R2 (as well as in Rn with n > 2) is homeomorphic to the circle S1.

11.15. Prove that every nonclosed simple finite unit polyline in R2 (as well as
in Rn with n > 2) is homeomorphic to the segment [0, 1].

The following problem generalizes the technique used in the previous two
problems and is actually used more often than it may seem at first glance.

11.16. Let X and Y be two topological spaces equipped with fundamental covers:
X =

S

αXα and Y =
S

α Yα. Suppose that f : X → Y is a map such that
f(Xα) = Yα for each α and the submap ab(f) : Xα → Yα is a homeomorphism.
Then f is a homeomorphism.

11.17. Prove that R2 r { |x|, |y| > 1 } ∼= I2 r {x, y ∈ {0, 1}}. (An “infinite cross”
is homeomorphic to a square without vertices.)

11.18*. A nonempty set Σ ⊂ R2 is “star-shaped with respect to a point c” if Σ
is a union of segments (and rays) with an endpoint at c. Prove that if Σ is open,
then Σ ∼= B2. (What can you say about a closed star-shaped set with nonempty
interior?)

11.19. Prove that the following plane figures are homeomorphic to each other.
(See 11.10 for our agreement about notation.)

(1) A half-plane: {x ≥ 0 };
(2) a quadrant: {x, y ≥ 0 };
(3) an angle: {x ≥ y ≥ 0 };
(4) a semi-open strip: { y ∈ [0, 1) };
(5) a square without three sides: { 0 < x < 1, 0 ≤ y < 1 };
(6) a square without two sides: { 0 ≤ x, y < 1 };
(7) a square without a side: { 0 ≤ x ≤ 1, 0 ≤ y < 1 };
(8) a square without a vertex: { 0 ≤ x, y ≤ 1 } r (1, 1);
(9) a disk without a boundary point: {x2 + y2 ≤ 1, y 6= 1 };

(10) a half-disk without the diameter: {x2 + y2 ≤ 1, y > 0 };
(11) a disk without a radius: { x2 + y2 ≤ 1 } r [0, 1];
(12) a square without a half of the diagonal: { |x| + |y| ≤ 1 } r [0, 1].

11.20. Prove that the following plane domains are homeomorphic to each other:

(1) punctured plane R2 r (0, 0);
(2) punctured open disk B2 r (0, 0) = { 0 < x2 + y2 < 1 };
(3) annulus { a < x2 + y2 < b }, where 0 < a < b;
(4) plane without a disk: R2 r D2;
(5) plane without a square: R2 r I2;
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(6) plane without a segment: R2 r [0, 1];
(7) R2 r ∆, where ∆ is a closed bounded convex set with Int∆ 6= ∅.

11.21. Let X ⊂ R2 be the union of several segments with a common endpoint.
Prove that the complement R2 r X is homeomorphic to the punctured plane.

11.22. Let X ⊂ R2 be a simple nonclosed finite polyline. Prove that its comple-
ment R2 r X is homeomorphic to the punctured plane.

11.23. Let K = {a1, . . . , an} ⊂ R2 be a finite set. The complement R2 r K
is a plane with n punctures. Prove that any two planes with n punctures are
homeomorphic, i.e., the position of a1, . . . , an in R2 does not affect the topological
type of R2 r {a1, . . . , an}.

11.24. Let D1, . . . ,Dn ⊂ R2 be n pairwise disjoint closed disks. Prove that the
complement of their union is homeomorphic to a plane with n punctures.

11.25. Let D1, . . . ,Dn ⊂ R2 be pairwise disjoint closed disks. The complement
of the union of their interiors is called a plane with n holes. Prove that any two
planes with n holes are homeomorphic, i.e., the location of disks D1, . . . , Dn does
not affect the topological type of R2 r

Sn
i=1 IntDi.

11.26. Let f, g : R → R be two continuous functions such that f < g. Prove
that the “strip” { (x, y) ∈ R2 | f(x) ≤ y ≤ g(x)} bounded by their graphs is
homeomorphic to the closed strip { (x, y) | y ∈ [0, 1] }.

11.27. Prove that a mug (with a handle) is homeomorphic to a doughnut.

11.28. Arrange the following items to homeomorphism classes: a cup, a saucer,
a glass, a spoon, a fork, a knife, a plate, a coin, a nail, a screw, a bolt, a nut, a
wedding ring, a drill, a flower pot (with a hole in the bottom), a key.

11.29. In a spherical shell (the space between two concentric spheres), one drilled
out a cylindrical hole connecting the boundary spheres. Prove that the rest is
homeomorphic to D3.

11.30. In a spherical shell, one made a hole connecting the boundary spheres and
having the shape of a knotted tube (see Figure below). Prove that the rest of the
shell is homeomorphic to D3.

11.31. Prove that the two surfaces shown in the uppermost Figure on the next
page are homeomorphic (they are called handles).
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11.32. Prove that the two surfaces shown in the Figure below are homeomorphic.
(They are homeomorphic to a projective plane with two holes. More details about
this is given in Section 22.)

11.33*. Prove that R3 r S1 ∼= R3 r
`

R1 ∪ (0, 0, 1)
´

. (What can you say in the
case of Rn?)

11.34. Prove that the subset of Sn defined in the standard coordinates in Rn+1 by
the inequality x2

1 +x2
2 + · · ·+x2

k < x2
k+1 + · · ·+x2

n is homeomorphic to Rnr Rn−k.

⌈11′6⌋ Examples of Nonhomeomorphic Spaces

11.U. Spaces containing different numbers of points are not homeomorphic.

11.V. A discrete space and a (non-one-point) indiscrete space are not home-
omorphic.

11.35. Prove that the spaces Z, Q (with topology induced from R), R, RT1
, and

the arrow are pairwise non-homeomorphic.

11.36. Find two spaces X and Y that are not homeomorphic, but there exist
continuous bijections X → Y and Y → X.

⌈11′7⌋ Homeomorphism Problem and Topological Properties

One of the classical problems in topology is the homeomorphism problem:

to find out whether or not two given topological spaces are homeomorphic.
In each special case, the character of solution depends mainly on the answer.
In order to prove that two spaces are homeomorphic, it suffices to present a
homeomorphism between them. This is essentially what one usually does in
this case (and what we did considering all examples of homeomorphic spaces
above). However, to prove that two spaces are not homeomorphic, it does
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not suffice to consider any special map, and usually it is impossible to review
all the maps. Therefore, proving the nonexistence of a homeomorphism
must involve indirect arguments. In particular, we may look for a property
or a characteristic shared by homeomorphic spaces and such that one of the
spaces has it, while the other one does not. Properties and characteristics
that are shared by homeomorphic spaces are called topological properties and
invariants. Obvious examples here are the cardinality (i.e., the number of
elements) of the set of points and the set of open sets (cf. Problems 11.34
and 11.U). Less obvious properties are the main object of the next chapter.

⌈11′8⌋ Information: Nonhomeomorphic Spaces

Euclidean spaces of different dimensions are not homeomorphic. The
disks Dp and Dq with p 6= q are not homeomorphic. The spheres Sp and
Sq with p 6= q are not homeomorphic. Euclidean spaces are homeomorphic
neither to balls, nor to spheres (of any dimension). Letters A and P are
not homeomorphic (if the lines are absolutely thin!). The punctured plane
R2r(0, 0) is not homeomorphic to the plane with a hole, R2r{x2+y2 < 1 }.

These statements are of different degrees of difficulty. Some of them are
considered in the next section. However, some of them cannot be proved by
techniques of this course. (See, e.g., [2].)

⌈11′9⌋ Embeddings

A continuous map f : X → Y is a (topological) embedding if the submap
ab(f) : X → f(X) is a homeomorphism.

11.W. The inclusion of a subspace into a space is an embedding.

11.X. Composition of embeddings is an embedding.

11.Y. Give an example of a continuous injection which is not a topological
embedding. (Find such an example above and create a new one.)

11.37. Find two topological spaces X and Y such that X can be embedded in Y ,
Y can be embedded in X, but X 6∼= Y .

11.38. Prove that Q cannot be embedded in Z.

11.39. 1) Can a discrete space be embedded in an indiscrete space? 2) What
about vice versa?

11.40. Prove that the spaces R, RT1
, and the arrow cannot be embedded in each

other.

11.41 Corollary of Inverse Function Theorem. Deduce the following state-
ment from the Inverse Function Theorem (see, e.g., any course of advanced calcu-
lus):
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Let f : Rn → Rn be a continuously differentiable map whose Jacobian
det(∂fi/∂xj) does not vanish at the origin 0 ∈ Rn. Then the origin has a neigh-
borhood U such that the restriction f |U : U → Rn is an embedding and f(U) is
open.

It is of interest that if U ⊂ Rn is an open set, then any continuous injection
f : U → Rn is an embedding and f(U) is also open in Rn. (Certainly, this also
implies that Rm and Rn with m 6= n are not homeomorphic.)

⌈11′10⌋ Equivalence of Embeddings

Two embeddings f1, f2 : X → Y are equivalent if there exist homeomor-
phisms hX : X → X and hY : Y → Y such that f2 ◦ hX = hY ◦ f1. (The
latter equality may be stated as follows: the diagram

X
f1−−−−→ Y

hX

y
yhY

X
f2−−−−→ Y

is commutative.)

An embedding S1 → R3 is called a knot.

11.42. Prove that any two knots f1, f2 : S1 → R3 with f1(S
1) = f2(S

1) are
equivalent.

11.43. Prove that two knots with images

are equivalent.

Information: There are nonequivalent knots. For instance, those with
images

and .





Chapter III

Topological Properties

12. Connectedness

⌈12′1⌋ Definitions of Connectedness and First Examples

A topological space X is connected if X has only two subsets that are
both open and closed: the empty set ∅ and the entire X. Otherwise, X is
disconnected .

A partition of a set is a cover of this set with pairwise disjoint subsets.
To partition a set means to construct such a cover.

12.A. A topological space is connected,
iff it does not admit a partition into two nonempty open sets,
iff it does not admit a partition into two nonempty closed sets.

12.1. 1) Is an indiscrete space connected? The same question for 2) the arrow
and 3) RT1

.

12.2. Describe explicitly all connected discrete spaces.

12.3. Describe explicitly all disconnected two-element spaces.

12.4. 1) Is the set Q of rational numbers (with the relative topology induced from
R) connected? 2) The same question for the set R r Q of irrational numbers.

12.5. Let Ω1 and Ω2 be two topologies in a set X, and let Ω2 be finer than Ω1

(i.e., Ω1 ⊂ Ω2). 1) If (X,Ω1) is connected, is (X,Ω2) connected? 2) If (X,Ω2) is
connected, is (X,Ω1) connected?

67
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⌈12′2⌋ Connected Sets

When we say that a set A is connected, we mean that A lies in some
topological space (which should be clear from the context) and, equipped
with the relative topology, A is a connected space.

12.6. Characterize disconnected subsets without mentioning the relative topology.

12.7. Is the set {0, 1} connected 1) in R, 2) in the arrow, 3) in RT1
?

12.8. Describe explicitly all connected subsets 1) of the arrow, 2) of RT1
.

12.9. Show that the set [0, 1] ∪ (2, 3] is disconnected in R.

12.10. Prove that every nonconvex subset of the real line is disconnected. (In
other words, each connected subset of the real line is a singleton or an interval.)

12.11. Let A be a subset of a space X. Prove that A is disconnected iff A has
two nonempty subsets B and C such that A = B ∪ C, B ∩ ClX C = ∅, and
C ∩ ClX B = ∅.

12.12. Find a space X and a disconnected subset A ⊂ X such that if U and V
are any two open sets partitioning X, then we have either U ⊃ A, or V ⊃ A.

12.13. Prove that for every disconnected set A in Rn there are disjoint open sets
U, V ⊂ Rn such that A ⊂ U ∪ V , U ∩A 6= ∅, and V ∩ A 6= ∅.

Compare 12.11–12.13 with 12.6.

⌈12′3⌋ Properties of Connected Sets

12.14. Let X be a space. If a set M ⊂ X is connected and A ⊂ X is open-closed,
then either M ⊂ A, or M ⊂ X r A.

12.B. The closure of a connected set is connected.

12.15. Prove that if a set A is connected and A ⊂ B ⊂ ClA, then B is connected.

12.C. Let {Aλ}λ∈Λ be a family of connected subsets of a space X. Assume
that any two sets in this family have nonempty intersection. Then

⋃
λ∈ΛAλ

is connected. (In other words: the union of pairwise intersecting connected
sets is connected.)

12.D Special case. If A,B ⊂ X are two connected sets with A ∩ B 6= ∅,
then A ∪B is also connected.

12.E. Let {Aλ}λ∈Λ be a family of connected subsets of a space X. Assume
that each set in this family meets Aλ0 for some λ0 ∈ Λ. Then

⋃
λ∈ΛAλ is

connected.

12.F. Let {Ak}k∈Z be a family of connected sets such that Ak ∩Ak+1 6= ∅

for each k ∈ Z. Prove that
⋃

k∈ZAk is connected.
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12.16. Let A and B be two connected sets such that A ∩ ClB 6= ∅. Prove that
A ∪ B is also connected.

12.17. Let A be a connected subset of a connected space X, and let B ⊂ X r A
be an open-closed set in the relative topology of X r A. Prove that A ∪ B is
connected.

12.18. Does the connectedness of A ∪ B and A ∩B imply that of A and B?

12.19. Let A and B be two sets such that both their union and intersection are
connected. Prove that A and B are connected if both of them are 1) open or 2)
closed.

. . .

. . .

12.20. Let A1 ⊃ A2 ⊃ . . . be an infinite decreasing sequence of closed connected
sets in the plane R2. Is

T

∞

k=1Ak a connected set?

⌈12′4⌋ Connected Components

A connected component of a space X is a maximal connected subset of
X, i.e., a connected subset that is not contained in any other (strictly) larger
connected subset of X.

12.G. Every point belongs to some connected component. Furthermore, this
component is unique. It is the union of all connected sets containing this
point.

12.H. Two connected components either are disjoint or coincide.

A connected component of a spaceX is also called just a component ofX.
Theorems 12.G and 12.H mean that connected components constitute a
partition of the whole space. The next theorem describes the corresponding
equivalence relation.

12.I. Prove that two points lie in the same component iff they belong to the
same connected set.

12.J Corollary. A space is connected iff any two of its points belong to the
same connected set.

12.K. Connected components are closed.

12.21. If each point of a space X has a connected neighborhood, then each con-
nected component of X is open.

12.22. Let x and y belong to the same component. Prove that any open-closed
set contains either both x and y, or none of them (cf. 12.37).
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⌈12′5⌋ Totally Disconnected Spaces

A topological space is totally disconnected if all of its components are
singletons.

12.L Obvious Example. Any discrete space is totally disconnected.

12.M. The space Q (with the topology induced from R) is totally discon-
nected.

Note that Q is not discrete.

12.23. Give an example of an uncountable closed totally disconnected subset of
the line.

12.24. Prove that Cantor set (see 2.Jx) is totally disconnected.

⌈12′6⌋ Boundary and Connectedness

12.25. Prove that if A is a proper nonempty subset of a connected space, then
FrA 6= ∅.

12.26. Let F be a connected subset of a space X. Prove that if A ⊂ X and
neither F ∩A, nor F ∩ (X r A) is empty, then F ∩ FrA 6= ∅.

12.27. Let A be a subset of a connected space. Prove that if FrA is connected,
then so is ClA.

12.28. Let X be a connected topological space, U, V ⊂ X two non-disjoint open
subsets none of which contains the other one. Prove that if their boundaries FrU
and FrV are connected, then FrU ∩ FrV 6= ∅

⌈12′7⌋ Connectedness and Continuous Maps

A continuous image of a space is its image under a continuous map.

12.N. A continuous image of a connected space is connected. (In other
words, if f : X → Y is a continuous map and X is connected, then f(X) is
also connected.)

12.O Corollary. Connectedness is a topological property.

12.P Corollary. The number of connected components is a topological in-
variant.

12.Q. A space X is disconnected iff there is a continuous surjection X →
S0.

12.29. Theorem 12.Q often yields short proofs of various results concerning con-
nected sets. Apply it for proving, e.g., Theorems 12.B–12.F and Problems 12.D

and 12.16.

12.30. Let X be a connected space, f : X → R a continuous function. Then
f(X) is an interval of R.

12.31. Suppose a space X has a group structure and the multiplication by any
element of the group (both from the left and from the right) is a continuous map
X → X. Prove that the component of unity is a normal subgroup.
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⌈12′8⌋ Connectedness on Line

12.R. The segment I = [0, 1] is connected.

There are several ways to prove Theorem 12.R. One of them is suggested
by 12.Q, but refers to the famous Intermediate Value Theorem from Calculus,
see 13.A. However, when studying topology, it would be more natural to find
an independent proof and deduce the Intermediate Value Theorem from The-
orems 12.R and 12.Q. Two problems below provide a sketch of basically the
same proof of 12.R. Cf. 2.Ix above.

12.R.1 Bisection Method. Let U and V be two subsets of I such that V =
I r U . Let a ∈ U , b ∈ V , and a < b. Prove that there exists a nondecreasing
sequence an with a1 = a, an ∈ U , and a nonincreasing sequence bn with b1 = b,
bn ∈ V , such that bn − an = (b − a)/2n−1.

12.R.2. Under assumptions of 12.R.1, if U and V are closed in I, then which
of them contains c = sup{an} = inf{bn}?

12.32. Deduce 12.R from the result of Problem 2.Ix.

12.S. Prove that every open set in R has countably many connected com-
ponents.

12.T. Prove that R1 is connected.

12.U. Each convex set in Rn is connected. (In particular, so are Rn itself,
the ball Bn, and the disk Dn.)

12.V Corollary. Intervals in R1 are connected.

12.W. Every star-shaped set in Rn is connected.

12.X Connectedness on Line. A subset of a line is connected iff it is an
interval.

12.Y. Describe explicitly all nonempty connected subsets of the real line.

12.Z. Prove that the n-sphere Sn is connected. In particular, the circle S1

is connected.

12.33. Consider the union of the spiral

r = exp

„

1

1 + ϕ2

«

, with ϕ ≥ 0

(r,ϕ are the polar coordinates) and the circle S1. 1) Is this set connected? 2) Will
the answer change if we replace the entire circle by one of its subsets? (Cf. 12.15.)

12.34. Are the following subsets of the plane R2 connected:

(1) the set of points with both coordinates rational;
(2) the set of points with at least one rational coordinate;
(3) the set of points whose coordinates are either both irrational, or both

rational?
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12.35. Prove that for any ε > 0 the ε-neighborhood of a connected subset of the
Euclidean space is connected.

12.36. Prove that each neighborhood U of a connected subset A of the Euclidean
space contains a connected neighborhood of A.

12.37. Find a space X and two points belonging to distinct components of X
such that each subset A ⊂ X that is simultaneously open and closed contains
either both points, or neither of them. (Cf. 12.22.)

. . .
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13. Application of Connectedness

⌈13′1⌋ Intermediate Value Theorem and Its Generalizations

The following theorem is usually included in Calculus. You can easily
deduce it from the material of this section. In fact, in a sense it is equivalent
to connectedness of the segment.

13.A Intermediate Value Theorem. A continuous function

f : [a, b] → R

takes every value between f(a) and f(b).

Many problems that can be solved by using the Intermediate Value Theorem
can be found in Calculus textbooks. Here are few of them.

13.1. Prove that any polynomial of odd degree in one variable with real coefficients
has at least one real root.

13.B Generalization of 13.A. Let X be a connected space, f : X → R

a continuous function. Then f(X) is an interval of R.

13.C Corollary. Let J ⊂ R be an interval of the real line, f : J → R a
continuous function. Then f(J) is also an interval of R. (In other words,
continuous functions map intervals to intervals.)

⌈13′2⌋ Applications to Homeomorphism Problem

Connectedness is a topological property, and the number of connected
components is a topological invariant (see Section 11).

13.D. [0, 2] and [0, 1] ∪ [2, 3] are not homeomorphic.

Simple constructions assigning homeomorphic spaces to homeomorphic
ones (e.g., deleting one or several points), allow us to use connectedness for
proving that some connected spaces are not homeomorphic.

13.E. I, [0,∞), R1, and S1 are pairwise nonhomeomorphic.

13.2. Prove that a circle is not homeomorphic to a subspace of R1.

13.3. Give a topological classification of the letters of the alphabet: A, B, C, D,
. . . , regarded as subsets of the plane (the arcs comprising the letters are assumed
to have zero thickness).

13.4. Prove that square and segment are not homeomorphic.

Recall that there exist continuous surjections of the segment onto square,
which are called Peano curves, see Section 10.

13.F. R1 and Rn are not homeomorphic if n > 1.
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Information. Rp and Rq are not homeomorphic unless p = q. This
follows, for instance, from the Lebesgue–Brouwer Theorem on the invariance
of dimension (see, e.g., W. Hurewicz and H. Wallman, Dimension Theory ,
Princeton, NJ, 1941).

13.5. The statement “Rp is not homeomorphic to Rq unless p = q” implies that
Sp is not homeomorphic to Sq unless p = q.

⌈13′3x⌋ Induction on Connectedness

A map f : X → Y is locally constant if each point of X has a neighborhood
U such that the restriction of f to U is constant.

13.6x. Prove that any locally constant map is continuous.

13.7x. A locally constant map on a connected set is constant.

13.8x. Riddle. How are 12.26 and 13.7x related?

13.9x. Let G be a group equipped with a topology such that for each g ∈ G the
map G→ G : x 7→ xgx−1 is continuous, and let G with this topology be connected.
Prove that if the topology induced on a normal subgroup H of G is discrete, then
H is contained in the center of G (i.e., hg = gh for any h ∈ H and g ∈ G).

13.10x Induction on Connectedness. Let E be a property of subsets of a topo-
logical space X such that the union of sets with nonempty pairwise intersections
inherits this property from the sets involved. Prove that if X is connected and
each point in X has a neighborhood with property E , then X also has property E .

13.11x. Prove 13.7x and solve 13.9x using 13.10x.

For more applications of induction on connectedness, see 14.T, 14.22x, 14.24x,
and 14.26x.

⌈13′4x⌋ Dividing Pancakes

13.12x. Any irregularly shaped pancake can be cut in half by one stroke of the
knife made in any prescribed direction. In other words, if A is a bounded open set
in the plane and l is a line in the plane, then a certain line L parallel to l divides
A in half by area.

13.13x. If, under the assumptions of 13.12x, A is connected, then L is unique.

13.14x. Suppose two irregularly shaped pancakes lie on the same platter; show
that it is possible to cut both exactly in half by one stroke of the knife. In other
words: if A and B are two bounded regions in the plane, then there exists a line
in the plane that bisects the area of each of the regions.

13.15x. Prove that a plane pancake of any shape can be divided into four pieces
of equal area by two mutually perpendicular straight cuts. In other words, if A is
a bounded connected open set in the plane, then there are two perpendicular lines
that divide A into four parts having equal areas.

13.16x. Riddle. What if the knife is curved and makes cuts of a shape different
from the straight line? For what shapes of the cuts can you formulate and solve
problems similar to 13.12x–13.15x?
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13.17x. Riddle. Formulate and solve counterparts of Problems 13.12x–13.15x for
regions in three-space. Can you increase the number of regions in the counterparts
of 13.12x and 13.14x?

13.18x. Riddle. What about pancakes in Rn?
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14. Path Connectedness

⌈14′1⌋ Paths

A path in a topological space X is a continuous map of the segment
I = [0, 1] to X. The point s(0) is the initial point of a path s : I → X, while
s(1) is the final point of s. We say that the path s connects s(0) with s(1).
This terminology is inspired by an image of a moving point: at the moment
t ∈ [0, 1], the point is at s(t).

To tell the truth, this is more than what is usually called a path, since,
besides information on the trajectory of the point, it contains a complete
account of the movement: the schedule saying when the point goes through
each point.

14.1. If s : I → X is a path, then the image s(I) ⊂ X is connected.

14.2. Let s : I → X be a path connecting a point in a set A ⊂ X with a point in
X r A. Prove that s(I) ∩ Fr(A) 6= ∅.

s(1)
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14.3. Let A be a subset of a space X, and let inA : A → X be the inclusion.
Prove that u : I → A is a path in A iff the composition inA ◦u : I → X is a path
in X.

A constant map sa : I → X : x 7→ a is a stationary path. Each path s has
an inverse path s−1 : t 7→ s(1− t). Although, strictly speaking, this notation
is already used (for the inverse map), the ambiguity of notation usually leads
to no confusion: as a rule, inverse maps do not appear in contexts involving
paths.

Let u : I → X and v : I → X be two paths such that u(1) = v(0). We
define

uv : I → X : t 7→
{
u(2t) if t ∈ [0, 1/2],

v(2t− 1) if t ∈ [1/2, 1].
(22)

u(0)

v(1)

u(1)=v(0)

14.A. Prove that the above map uv : I → X is continuous (i.e., it is a
path). Cf. 10.T and 10.V.
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The path uv is the product of u and v. Recall that uv is defined only if
the final point u(1) of u is the initial point v(0) of v.

⌈14′2⌋ Path-Connected Spaces

A topological space X is path-connected (or arcwise connected) if any
two points are connected in X by a path.

14.B. Prove that the segment I is path-connected.

14.C. Prove that the Euclidean space of any dimension is path-connected.

14.D. Prove that the n-sphere Sn with n > 0 is path-connected.

14.E. Prove that the 0-sphere S0 is not path-connected.

14.4. Which of the following spaces are path-connected:
(1) a discrete space; (2) an indiscrete space;
(3) the arrow; (4) RT1

;
(5) ?

⌈14′3⌋ Path-Connected Sets

A path-connected set (or arcwise connected set) is a subset of a topological
space (which should be clear from the context) that is path-connected as a
subspace (the space with the relative topology).

14.5. Prove that a subset A of a space X is path-connected iff any two points in
A are connected by a path s : I → X with s(I) ⊂ A.

14.6. Prove that each convex subset of Euclidean space is path-connected.
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14.7. Every star-shaped set in Rn is path-connected.

14.8. The image of a path is a path-connected set.

14.9. Prove that the set of plane convex polygons with topology generated by the
Hausdorff metric is path-connected. (What can you say about the set of convex
n-gons with fixed n?)

14.10. Riddle. What can you say about the assertion of Problem 14.9 in the
case of arbitrary (not necessarily convex) polygons?
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⌈14′4⌋ Properties of Path-Connected Sets

Path connectedness is very similar to connectedness. Further, in some
important situations it is even equivalent to connectedness. However, some
properties of connectedness do not carry over to the case of path connect-
edness (see 14.Q and 14.R). For the properties that do carry over, proofs
are usually easier in the case of path connectedness.

14.F. The union of a family of pairwise intersecting path-connected sets is
path-connected.

14.11. Prove that if two sets A and B are both closed or both open and their
union and intersection are path-connected, then A and B are also path-connected.

14.12. 1) Prove that the interior and boundary of a path-connected set may be
not path-connected. 2) Connectedness shares this property.

14.13. Let A be a subset of the Euclidean space. Prove that if FrA is path-
connected, then so is ClA.

14.14. Prove that the same holds true for a subset of an arbitrary path-connected
space.

⌈14′5⌋ Path-Connected Components

A path-connected component or arcwise connected component of a space
X is a path-connected subset of X that is not contained in any other path-
connected subset of X.

14.G. Every point belongs to a path-connected component.

14.H. Two path-connected components either coincide or are disjoint.

Theorems 14.G and 14.H mean that path-connected components con-
stitute a partition of the entire space. The next theorem describes the
corresponding equivalence relation.

14.I. Prove that two points belong to the same path-connected component
iff they are connected by a path (cf. 12.I).

Unlike the case of connectedness, path-connected components are not
necessarily closed. (See 14.Q, cf. 14.P and 14.R.)

⌈14′6⌋ Path Connectedness and Continuous Maps

14.J. A continuous image of a path-connected space is path-connected.

14.K Corollary. Path connectedness is a topological property.

14.L Corollary. The number of path-connected components is a topological
invariant.
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⌈14′7⌋ Path Connectedness Versus Connectedness

14.M. Any path-connected space is connected.

Put

A = { (x, y) ∈ R2 | x > 0, y = sin(1/x) }, X = A ∪ (0, 0).

14.15. Sketch A.

14.N. Prove that A is path-connected and X is connected.

14.O. Prove that deleting any point from A makes A and X disconnected
(and, hence, not path-connected).

14.P. X is not path-connected.

14.Q. Find an example of a path-connected set whose closure is not path-
connected.

14.R. Find an example of a path-connected component that is not closed.

14.S. If each point of a space X has a path-connected neighborhood, then
each path-connected component of X is open. (Cf. 12.21.)

14.T. Assume that each point of a space X has a path-connected neighbor-
hood. Then X is path-connected iff X is connected.

14.U. For open subsets of the Euclidean space, connectedness is equivalent
to path connectedness.

14.16. For subsets of the real line, path connectedness and connectedness are
equivalent.

14.17. Prove that for each ε > 0 the ε-neighborhood of a connected subset of the
Euclidean space is path-connected.

14.18. Prove that each neighborhood U of a connected subset A of the Euclidean
space contains a path-connected neighborhood of A.

⌈14′8x⌋ Polyline-Connectedness

A subset A of Euclidean space is polyline-connected if any two points of A are
joined by a finite broken line (a polyline) contained in A.

14.19x. Each polyline-connected set in Rn is path-connected, and thus also con-
nected.

14.20x. Each convex set in Rn is polyline-connected.

14.21x. Each star-shaped set in Rn is polyline-connected.

14.22x. Prove that for open subsets of the Euclidean space connectedness is equiv-
alent to polyline-connectedness.

14.23x. Construct a non-one-point path-connected subset A of Euclidean space
such that no two distinct points of A are connected by a polyline in A.
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14.24x. Let X ⊂ R2 be a countable set. Prove that R2 rX is polyline-connected.

14.25x. Let X ⊂ Rn be the union of countably many affine subspaces with di-
mensions at most n− 2. Prove that Rn rX is polyline-connected.

14.26x. Let X ⊂ Cn be the union of countably many algebraic subsets (i.e.,
subsets defined by systems of algebraic equations in the standard coordinates of
Cn). Prove that Cn r X is polyline-connected.

⌈14′9x⌋ Connectedness of Some Sets of Matrices

Recall that real n×n matrices constitute a space, which differs from Rn
2

only
in the way of enumerating its natural coordinates (they are numbered by pairs

of indices). The same holds true for the set of complex n × n matrices and Cn
2

(which is homeomorphic to R2n2

).

14.27x. Find connected and path-connected components of the following sub-
spaces of the space of real n× n matrices:

(1) GL(n; R) = {A | detA 6= 0};
(2) O(n; R) = {A | A · (tA) = E};
(3) Symm(n; R) = {A | tA = A};
(4) Symm(n; R) ∩GL(n; R);
(5) {A | A2 = E}.

14.28x. Find connected and path-connected components of the following sub-
spaces of the space of complex n× n matrices:

(1) GL(n; C) = {A | detA 6= 0};
(2) U(n; C) = {A | A · (tĀ) = E};
(3) Herm(n;C) = {A | tA = Ā};
(4) Herm(n;C) ∩GL(n; C).
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15. Separation Axioms

Our purpose in this section is to consider natural restrictions on the topo-
logical structure making the structure closer to being metrizable. They are
called “Separation Axioms”. A lot of separation axioms are known. We
restrict ourselves to the five most important of them. They are numerated,
and denoted by T0, T1, T2, T3, and T4, respectively.1

⌈15′1⌋ Hausdorff Axiom

We start with the second axiom, which is the most important one. In
addition to the designation T2, it has a name: the Hausdorff axiom. A
topological space satisfying T2 is a Hausdorff space. This axiom is stated
as follows: any two distinct points possess disjoint neighborhoods. We can
state it more formally: ∀x, y ∈ X, x 6= y ∃Ux, Vy : Ux ∩ Vy = ∅.
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15.A. Any metric space is Hausdorff.

15.1. Which of the following spaces are Hausdorff:

(1) a discrete space;
(2) an indiscrete space;
(3) the arrow;
(4) RT1

;
(5) ?

If the next problem holds you up even for a minute, we advise you to
think over all definitions and solve all simple problems.

15.B. Is the segment [0, 1] with the topology induced from R a Hausdorff
space? Do the points 0 and 1 possess disjoint neighborhoods? Which, if
any?

15.C. A space X is Hausdorff iff for each x ∈ X we have {x} =
⋂

U∋x ClU .

1The letter T in these designations originates from the German word Trennungsaxiom, which
means separation axiom.
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⌈15′2⌋ Limits of Sequences

Let {an} be a sequence of points of a topological space X. A point
b ∈ X is the limit of the sequence if for any neighborhood U of b there exists
a number N such that an ∈ U for any n ≥ N .2 In this case, we say that the
sequence converges or tends to b as n tends to infinity.

15.2. Explain the meaning of the statement “b is not a limit of sequence an” by
using as few negations (i.e., the words no, not , none, etc.) as you can.

15.3. The limit of a sequence does not depend on the order of the terms. More
precisely, let an be a convergent sequence: an → b, and let φ : N → N be a
bijection. Then the sequence aφ(n) is also convergent and has the same limit:
aφ(n) → b. For example, if the terms in the sequence are pairwise distinct, then
the convergence and the limit depend only on the set of terms, which shows that
these notions actually belong to geometry.

15.D. Any sequence in a Hausdorff space has at most one limit.

15.E. Prove that each point in the space RT1 is a limit of the sequence
an = n.

⌈15′3⌋ Coincidence Set and Fixed Point Set

Let f, g : X → Y be two maps. Then the set C(f, g) = {x ∈ X | f(x) = g(x)}
is the coincidence set of f and g.

15.4. Prove that the coincidence set of two continuous maps from an arbitrary
space to a Hausdorff space is closed.

15.5. Construct an example proving that the Hausdorff condition in 15.4 is es-
sential.

A point x ∈ X is a fixed point of a map f : X → X if f(x) = x. The set of all
fixed points of a map f is the fixed point set of f .

15.6. Prove that the fixed-point set of a continuous map from a Hausdorff space
to itself is closed.

15.7. Construct an example showing that the Hausdorff condition in 15.6 is es-
sential.

15.8. Prove that if f, g : X → Y are two continuous maps, Y is Hausdorff, A is
everywhere dense in X, and f |A = g|A, then f = g.

15.9. Riddle. How are Problems 15.4, 15.6, and 15.8 related to each other?

⌈15′4⌋ Hereditary Properties

A topological property is hereditary if it carries over from a space to
its subspaces, which means that if a space X has this property, then each
subspace of X also has it.

2You can also rephrase this as follows: each (arbitrarily small) neighborhood of b contains
all members of the sequence that have sufficiently large indices.
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15.10. Which of the following topological properties are hereditary:

(1) finiteness of the set of points;
(2) finiteness of the topological structure;
(3) infiniteness of the set of points;
(4) connectedness;
(5) path connectedness?

15.F. The property of being a Hausdorff space is hereditary.

⌈15′5⌋ The First Separation Axiom

A topological space X satisfies the first separation axiom T1 if each one
of any two points of X has a neighborhood that does not contain the other
point.3 More formally: ∀x, y ∈ X, x 6= y ∃Uy : x /∈ Uy.
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15.G. For any topological space X, the following three assertions are equiv-
alent:

• the space X satisfies the first separation axiom,

• all one-point sets in X are closed,

• all finite sets in X are closed.

15.11. Prove that a space X satisfies the first separation axiom iff every point of
X is the intersection of all of its neighborhoods.

15.12. Any Hausdorff space satisfies the first separation axiom.

15.H. Any finite set in a Hausdorff space is closed.

15.I. A metric space satisfies the first separation axiom.

15.13. Find an example showing that the first separation axiom does not imply
the Hausdorff axiom.

15.J. Show that RT1 satisfies the first separation axiom, but is not a Haus-
dorff space (cf. 15.13).

15.K. The first separation axiom is hereditary.

15.14. Suppose that for any two distinct points a and b of a space X there exists
a continuous map f from X to a space with the first separation axiom such that
f(a) 6= f(b). Prove that X also satisfies the first separation axiom.

15.15. Prove that a continuous map of an indiscrete space to a space satisfying
axiom T1 is constant.

3Axiom T1 is also called the Tikhonov axiom.



84 III. Topological Properties

15.16. Prove that every set has the coarsest topological structure satisfying the
first separation axiom. Describe this structure.

⌈15′6⌋ The Kolmogorov Axiom

The first separation axiom emerges as a weakened Hausdorff axiom.

15.L. Riddle. How can the first separation axiom be weakened?

A topological space satisfies the Kolmogorov axiom or the zeroth separa-

tion axiom T0 if at least one of any two distinct points of this space has a
neighborhood that does not contain the other point.

15.M. An indiscrete space containing at least two points does not satisfy
axiom T0.

15.N. The following properties of a space X are equivalent:

(1) X satisfies the Kolmogorov axiom;

(2) any two different points of X have different closures;

(3) X contains no indiscrete subspace consisting of two points.

(4) X contains no indiscrete subspace consisting of more than one
point.

15.O. A topology is a poset topology iff it is a smallest neighborhood topology
satisfying the Kolmogorov axiom.

Thus, on the one hand, posets give rise to numerous examples of topo-
logical spaces, among which we see the most important spaces, like the line
with the standard topology. On the other hand, all posets are obtained from
topological spaces of a special kind, which are quite far away from the class
of metric spaces.

⌈15′7⌋ The Third Separation Axiom

A topological space X satisfies the third separation axiom if every closed
set in X and every point of its complement have disjoint neighborhoods, i.e.,
for every closed set F ⊂ X and every point b ∈ X r F there exist disjoint
open sets U, V ⊂ X such that F ⊂ U and b ∈ V .
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A space is regular if it satisfies the first and third separation axioms.
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15.P. A regular space is a Hausdorff space.

15.Q. A space is regular iff it satisfies the second and third separation
axioms.

15.17. Find a Hausdorff space which is not regular.

15.18. Find a space satisfying the third, but not the second separation axiom.

15.19. Prove that a space X satisfies the third separation axiom iff every neigh-
borhood of every point x ∈ X contains the closure of a neighborhood of x.

15.20. Prove that the third separation axiom is hereditary.

15.R. Any metric space is regular.

⌈15′8⌋ The Fourth Separation Axiom

A topological space X satisfies the fourth separation axiom if any two
disjoint closed sets in X have disjoint neighborhoods, i.e., for any two closed
sets A,B ⊂ X with A ∩ B = ∅ there exist open sets U, V ⊂ X such that
U ∩ V = ∅, A ⊂ U , and B ⊂ V .

U

V
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A space is normal if it satisfies the first and fourth separation axioms.

15.S. A normal space is regular (and hence Hausdorff).

15.T. A space is normal iff it satisfies the second and fourth separation
axioms.

15.21. Find a space which satisfies the fourth, but not second separation axiom.

15.22. Prove that a space X satisfies the fourth separation axiom iff every neigh-
borhood of every closed set F ⊂ X contains the closure of some neighborhood of
F .

15.23. Prove that each closed subspace of a normal space is normal.

15.24. Let X satisfy the fourth separation axiom, and let F1, F2, F3 ⊂ X be three
closed subsets with empty intersection: F1 ∩ F2 ∩ F3 = ∅. Prove that they have
neighborhoods U1, U2, U3 with empty intersection.

15.U. Any metric space is normal.

15.25. Find two closed disjoint subsets A and B of some metric space such that
inf{ρ(a, b) | a ∈ A, b ∈ B} = 0.

15.26. Let f : X → Y be a continuous surjection such that the image of each
closed set is closed. Prove that if X is normal, then so is Y .



86 III. Topological Properties

⌈15′9x⌋ Nemytskii’s Space

Denote by H the open upper half-plane {(x, y) ∈ R2 | y > 0} equipped with
the topology generated by the Euclidean metric. Denote by N the union of H and
the boundary line R1: N = H ∪ R1, but equip it with the topology obtained by
adjoining to the Euclidean topology the sets of the form x∪D, where x ∈ R1 and
D is an open disk in H touching R1 at the point x. This is the Nemytskii space.
It can be used to clarify properties of the fourth separation axiom.

15.27x. Prove that the Nemytskii space is Hausdorff.

15.28x. Prove that the Nemytskii space is regular.

15.29x. What topological structure is induced on R1 from N ?

15.30x. Prove that the Nemytskii space is not normal.

15.31x Corollary. There exists a regular space which is not normal.

15.32x. Embed the Nemytskii space in a normal space in such a way that the
complement of the image would be a single point.

15.33x Corollary. Theorem 15.23 does not extend to nonclosed subspaces, i.e.,
the property of being normal is not hereditary, is it?

⌈15′10x⌋ Urysohn Lemma and Tietze Theorem

15.34x. Let A and B be two disjoint closed subsets of a metric space X. Then
there exists a continuous function f : X → I such that f−1(0) = A and f−1(1) =
B.

15.35x. Let F be a closed subset of a metric space X. Then any continuous
function f : X → [−1, 1] extends over the whole X.

15.35x.1. Let F be a closed subset of a metric spaceX . For any continu-
ous function f : F → [−1, 1], there exists a function g : X →

[
−1/3, 1/3]

such that |f(x) − g(x)| ≤ 2/3 for each x ∈ F .

15.Vx Urysohn Lemma. Let A and B be two nonempty disjoint closed
subsets of a normal space X. Then there exists a continuous function f :
X → I such that f(A) = 0 and f(B) = 1.

15.Vx.1. Let A and B be two disjoint closed subsets of a normal space X .
Consider the set Λ =

{
k
2n | k, n ∈ Z+, k ≤ 2n

}
. There exists a collection

{Up}p∈Λ of open subsets of X such that for any p, q ∈ Λ we have: 1) A ⊂ U0

and B ⊂ X r U1, and 2) if p < q, then ClUp ⊂ Uq.

15.Wx Tietze Extension Theorem. Let A be a closed subset of a normal
space X. Let f : A → [−1, 1] be a continuous function. Prove that there
exists a continuous function F : X → [−1, 1] such that F A = f .

15.Xx Corollary. Let A be a closed subset of a normal space X. Then
any continuous function A→ R extends to a function on the whole X.

15.36x. Will the statement of the Tietze theorem remain true if we replace the
segment [−1, 1] in the hypothesis by R, Rn, S1, or S2?

15.37x. Derive the Urysohn Lemma from the Tietze Extension Theorem.
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16. Countability Axioms

In this section, we continue to study topological properties that are addi-
tionally imposed on a topological structure in order to make the abstract
situation under consideration closer to special situations and hence richer
in contents. The restrictions studied in this section bound a topological
structure “from above”: they require that something be countable.

⌈16′1⌋ Set-Theoretic Digression: Countability

Recall that two sets have equal cardinality if there exists a bijection of
one of them onto the other. A set of the same cardinality as a subset of the
set N of positive integers is countable.

16.1. A set X is countable iff there exists an injection X → N (or, more generally,
an injection of X into another countable set).

Sometimes this term is used only for infinite countable sets, i.e., for sets
of the cardinality of the whole set N of positive integers, while sets countable
in the above sense are said to be at most countable. This is less convenient.
In particular, if we adopted this terminology, this section would be called
“At Most Countability Axioms”. This would also lead to other more serious
inconveniences as well. Our terminology has the following advantageous
properties.

16.A. Any subset of a countable set is countable.

16.B. The image of a countable set under any map is countable.

16.C. The following sets are countable:

(1) Z,

(2) N2 = {(k, n) | k, n ∈ N},
(3) Q.

16.D. The union of a countable family of countable sets is countable.

16.E. R is not countable.

16.2. Prove that each set Σ of disjoint figure-eight curves in the plane is countable.
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⌈16′2⌋ Second Countability and Separability

In this section, we study three restrictions on the topological structure.
Two of them have numbers (one and two), the third one has no number. As
in the previous section, we start from the restriction having number two.

A topological space X satisfies the second axiom of countability or is
second countable if X has a countable base. A space is separable if it contains
a countable dense set. (This is the countability axiom without a number
that we mentioned above.)

16.F. The second axiom of countability implies separability.

16.G. The second axiom of countability is hereditary.

16.3. Are the arrow and RT1
second countable?

16.4. Are the arrow and RT1
separable?

16.5. Construct an example proving that separability is not hereditary.

16.H. A metric separable space is second countable.

16.I Corollary. For metrizable spaces, separability is equivalent to the sec-
ond axiom of countability.

16.J. (Cf. 16.5.) Prove that for metrizable spaces separability is hereditary.

16.K. Prove that Euclidean spaces and all their subspaces are separable
and second countable.

16.6. Construct a metric space which is not second countable.

16.7. Prove that each collection of pairwise disjoint open sets in a separable space
is countable.

16.8. Prove that the set of components of an open set A ⊂ Rn is countable.

16.L. A continuous image of a separable space is separable.

16.9. Construct an example proving that a continuous image of a second countable
space may be not second countable.

16.M Lindelöf Theorem. Any open cover of a second countable space
contains a countable part that also covers the space.

16.10. Prove that each base of a second countable space contains a countable
part which is also a base.

16.11 Brouwer Theorem*. Let {Kλ} be a family of closed sets of a second
countable space and assume that for every decreasing sequence K1 ⊃ K2 ⊃ . . .
of sets in this family the intersection

T

∞

n=1Kn also belongs to the family. Then
the family contains a minimal set A, i.e., a set such that no proper subset of A
belongs to the family.



16. Countability Axioms 89

⌈16′3⌋ Bases at a Point

Let X be a space, a a point of X. A neighborhood base at a or just
a base of X at a is a collection Σ of neighborhoods of a such that each
neighborhood of a contains a neighborhood from Σ.

16.N. If Σ is a base of a space X, then {U ∈ Σ | a ∈ U} is a base of X at
a.

16.12. In a metric space, the following collections of balls are neighborhood bases
at a point a:

• the set of all open balls with center a;
• the set of all open balls with center a and rational radii;
• the set of all open balls with center a and radii rn, where {rn} is any

sequence of positive numbers converging to zero.

16.13. What are the minimal bases at a point in the discrete and indiscrete
spaces?

⌈16′4⌋ First Countability

A topological space X satisfies the first axiom of countability or is a first

countable space if X has a countable neighborhood base at each point.

16.O. Any metric space is first countable.

16.P. The second axiom of countability implies the first one.

16.Q. Find a first countable space which is not second countable. (Cf. 16.6.)

16.14. Which of the following spaces are first countable:
(1) the arrow; (2) RT1

;
(3) a discrete space; (4) an indiscrete space?

16.15. Find a first countable separable space which is not second countable.

16.16. Prove that if X is a first countable space, then at each point it has a
decreasing countable neighborhood base: U1 ⊃ U2 ⊃ . . . .

⌈16′5⌋ Sequential Approach to Topology

Specialists in Mathematical Analysis love sequences and their limits.
Moreover, they like to talk about all topological notions by relying on the
notions of sequence and its limit. This tradition has little mathematical
justification, except for a long history descending from the XIXth century’s
studies on the foundations of analysis. In fact, almost always4 it is more con-
venient to avoid sequences, provided that you deal with topological notions,
except summation of series, where sequences are involved in the underlying
definitions. Paying a tribute to this tradition, here we explain how and in

4The exceptions which one may find in the standard curriculum of a mathematical depart-
ment can be counted on two hands.
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what situations topological notions can be described in terms of sequences
and their limits.

Let A be a subset of a space X. The set SClA of limits of all sequences
an with an ∈ A is the sequential closure of A.

16.R. Prove that SClA ⊂ ClA.

16.S. If a space X is first countable, then the opposite inclusion ClA ⊂
SClA also holds true for each A ⊂ X, whence SClA = ClA.

Therefore, in a first countable space (in particular, in any metric space)
we can recover (hence, define) the closure of a set provided that we know
which sequences are convergent and what their limits are. In turn, the
knowledge of closures allows one to determine which sets are closed. As a
consequence, knowledge of closed sets allows one to recover open sets and
all other topological notions.

16.17. Let X be the set of real numbers equipped with the topology consisting
of ∅ and complements of all countable subsets. (Check that this is actually a
topology.) Describe convergent sequences, sequential closure and closure in X.
Prove that X contains a set A with SClA 6= ClA.

⌈16′6⌋ Sequential Continuity

Now we consider the continuity of maps along the same lines. A map
f : X → Y is sequentially continuous if for each b ∈ X and each sequence
an ∈ X converging to b the sequence f(an) converges to f(b).

16.T. Any continuous map is sequentially continuous.

an b

a1

f(an) f(b)

V
f−1(V )

16.U. The preimage of a sequentially closed set under a sequentially con-
tinuous map is sequentially closed.

16.V. If X is a first countable space, then any sequentially continuous map
f : X → Y is continuous.

Thus, continuity and sequential continuity are equivalent for maps of a
first countable space.

16.18. Construct a discontinuous map which is sequentially continuous. (Cf.
Problem 16.17.)



16. Countability Axioms 91

⌈16′7x⌋ Embedding and Metrization Theorems

16.Wx. Prove that the space l2 is separable and second countable.

16.Xx. Prove that a regular second countable space is normal.

16.Yx. Prove that a normal second countable space can be embedded in l2.
(Use the Urysohn Lemma 15.Vx.)

16.Zx. Prove that a second countable space is metrizable iff it is regular.
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17. Compactness

⌈17′1⌋ Definition of Compactness

This section is devoted to a topological property playing a very special
role in topology and its applications. It is a sort of topological counterpart
for the property of being finite in the context of set theory. (It seems though
that this analogy has never been formalized.)

A topological space X is compact if each open cover of X contains a
finite part that also covers X.

If Γ is a cover of X and Σ ⊂ Γ is a cover of X, then Σ is a subcover

(or subcovering) of Γ. Thus, a space X is compact if every open cover of X
contains a finite subcovering.

17.A. Any finite space and indiscrete space are compact.

17.B. Which discrete spaces are compact?

17.1. Let Ω1 ⊂ Ω2 be two topological structures in X. 1) Does the compactness
of (X,Ω2) imply that of (X,Ω1)? 2) And vice versa?

17.C. The line R is not compact.

17.D. A space X is not compact iff it has an open cover containing no finite
subcovering.

17.2. Is the arrow compact? Is RT1
compact?

⌈17′2⌋ Terminology Remarks

Originally the word compactness was used for the following weaker prop-
erty: any countable open cover contains a finite subcovering.

17.E. For a second countable space, the original definition of compactness
is equivalent to the modern one.

The modern notion of compactness was introduced by P. S. Alexandrov
(1896–1982) and P. S. Urysohn (1898–1924). They suggested for it the term
bicompactness. This notion turned out to be fortunate; it has displaced
the original one and even took its name, i.e., “compactness”. The term
bicompactness is sometimes used (mainly by topologists of Alexandrov’s
school).

Another deviation from the terminology used here comes from Bourbaki:
we do not include the Hausdorff property in the definition of compactness,
while Bourbaki does. According to our definition, RT1 is compact, but
according to Bourbaki it is not.
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⌈17′3⌋ Compactness in Terms of Closed Sets

A collection of subsets of a set is said to have the finite intersection

property if each finite subcollection has a nonempty intersection.

17.F. A collection Σ of subsets of a setX has the finite intersection property
iff there exists no finite Σ1 ⊂ Σ such that the complements of sets in Σ1

cover X.

17.G. A space X is compact iff every collection of closed sets in X with the
finite intersection property has a nonempty intersection.

⌈17′4⌋ Compact Sets

A compact set is a subset A of a topological space X (the latter must
be clear from the context) provided that A is compact as a space with the
relative topology induced from X.

17.H. A subset A of a space X is compact iff each cover of A with sets open
in X contains a finite subcovering.

17.3. Is [1, 2) ⊂ R compact?

17.4. Is the same set [1, 2) compact in the arrow?

17.5. Find a necessary and sufficient condition (not formulated in topological
terms) for a subset of the arrow to be compact?

17.6. Prove that each subset of RT1
is compact.

17.7. Let A and B be two compact subsets of a space X. 1) Does it follow that
A ∪ B is compact? 2) Does it follow that A ∩B is compact?

17.8. Prove that the set A = 0 ∪
˘

1/n
¯

∞

n=1
in R is compact.

⌈17′5⌋ Compact Sets Versus Closed Sets

17.I. Is compactness hereditary?

17.J. Any closed subset of a compact space is compact.

Theorem 17.J can be considered a partial heredity of compactness.

In a Hausdorff space a theorem converse to 17.J holds true:

17.K. Any compact subset of a Hausdorff space is closed.

The arguments proving Theorem 17.K prove, in fact, a more detailed
statement presented below. This statement is more powerful. It has direct
consequences, which do not follow from the theorem.
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A

b

17.L Lemma to 17.K, but not only . . . . Let A be a compact subset of
a Hausdorff space X, and let b be a point of X not in A. Then there exist
open sets U, V ⊂ X such that b ∈ V , A ⊂ U , and U ∩ V = ∅.

17.9. Construct a nonclosed compact subset of some topological space. What is
the minimal number of points needed?

⌈17′6⌋ Compactness and Separation Axioms

17.M. A compact Hausdorff space is regular.

17.N. Prove that a compact Hausdorff space is normal.

17.O Lemma to 17.N. Any two disjoint compact sets in a Hausdorff space
possess disjoint neighborhoods.

17.10. Prove that the intersection of any family of compact subsets of a Hausdorff
space is compact. (Cf. 17.7.)

17.11. Let X be a Hausdorff space, let {Kλ}λ∈Λ be a family of its compact
subsets, and let U be an open set containing

T

λ∈ΛKλ. Prove that for some finite
A ⊂ Λ we have U ⊃ Tλ∈AKλ.

17.12. Let {Kn}∞1 be a decreasing sequence of nonempty compact connected
sets in a Hausdorff space. Prove that the intersection

T

∞

n=1Kn is nonempty and
connected. (Cf. 12.20.)

⌈17′7⌋ Compactness in Euclidean Space

17.P. The segment I is compact.

Recall that the unit n-dimensional cube (the n-cube) is the set

In = {x ∈ Rn | xi ∈ [0, 1] for i = 1, . . . , n}.
17.Q. The cube In is compact.

17.R. Any compact subset of a metric space is bounded.

Therefore, any compact subset of a metric space is closed and bounded
(see Theorems 15.A, 17.K, and 17.R).
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17.S. Construct a closed and bounded, but noncompact set in a metric
space.

17.13. Are the metric spaces of Problem 4.A compact?

17.T. A subset of a Euclidean space is compact iff it is closed and bounded.

17.14. Which of the following sets are compact:
(1) [0, 1); (2) ray R+ = {x ∈ R | x ≥ 0}; (3) S1;
(4) Sn; (5) one-sheeted hyperboloid; (6) ellipsoid;
(7) [0, 1] ∩ Q?

An n× k matrix (aij) with real entries can be regarded as a point in Rnk. To
do this, we only need to enumerate somehow (e.g., lexicographically) the entries of
(aij) by numbers from 1 to nk. This identifies the set L(n, k) of all such matrices
with Rnk and endows it with a topological structure. (Cf. Section 14.)

17.15. Which of the following subsets of L(n, n) are compact:

(1) GL(n) = {A ∈ L(n, n) | detA 6= 0};
(2) SL(n) = {A ∈ L(n, n) | detA = 1};
(3) O(n) = {A ∈ L(n, n) | A is an orthogonal matrix};
(4) {A ∈ L(n, n) | A2 = E}, where E is the unit matrix?

⌈17′8⌋ Compactness and Continuous Maps

17.U. A continuous image of a compact space is compact. (In other words,
if X is a compact space and f : X → Y is a continuous map, then the set
f(X) is compact.)

17.V. A continuous numerical function on a compact space is bounded and
attains its maximal and minimal values. (In other words, if X is a compact
space and f : X → R is a continuous function, then there exist a, b ∈ X
such that f(a) ≤ f(x) ≤ f(b) for every x ∈ X.) Cf. 17.U and 17.T.

17.16. Prove that if f : I → R is a continuous function, then f(I) is a segment.

17.17. Let A be a subset of Rn. Prove that A is compact iff each continuous
numerical function on A is bounded.

17.18. Prove that if F and G are disjoint subsets of a metric space, F is closed, and
G is compact, then the distance ρ(G,F ) = inf {ρ(x, y) | x ∈ F, y ∈ G} is positive.

17.19. Prove that any open set U containing a compact set A of a metric space
X contains an ε-neighborhood of A (i.e., the set {x ∈ X | ρ(x,A) < ε}) for some
ε > 0.

17.20. Let A be a closed connected subset of Rn, and let V be the closed ε-
neighborhood of A (i.e., V = {x ∈ Rn | ρ(x,A) ≤ ε}). Prove that V is path-
connected.

17.21. Prove that if the closure of each open ball in a compact metric space is
the closed ball with the same center and radius, then any ball in this space is
connected.
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17.22. Let X be a compact metric space, and let f : X → X be a map such
that ρ(f(x), f(y)) < ρ(x, y) for any x, y ∈ X with x 6= y. Prove that f has a
unique fixed point. (Recall that a fixed point of f is a point x such that f(x) = x,
see 15.6.)

17.23. Prove that for each open cover of a compact metric space there exists a
(sufficiently small) number r > 0 such that each open ball of radius r is contained
in an element of the cover.

17.W Lebesgue Lemma. Let f : X → Y be a continuous map from a
compact metric space X to a topological space Y , and let Γ be an open cover
of Y . Then there exists a number δ > 0 such that for any set A ⊂ X with
diameter diam(A) < δ the image f(A) is contained in an element of Γ.

⌈17′9⌋ Compactness and Closed Maps

A continuous map is closed if the image of each closed set under this
map is closed.

17.24. A continuous bijection is a homeomorphism iff it is closed.

17.X. A continuous map of a compact space to a Hausdorff space is closed.

Here are two important corollaries of this theorem.

17.Y. A continuous bijection of a compact space onto a Hausdorff space is
a homeomorphism.

17.Z. A continuous injection of a compact space into a Hausdorff space is
a topological embedding.

17.25. Show that none of the assumptions in 17.Y can be omitted without making
the statement false.

17.26. Does there exist a noncompact subspace A of the Euclidian space such that
each continuous map of A to a Hausdorff space is closed? (Cf. 17.V and 17.X.)

17.27. A restriction of a closed map to a closed subset is also a closed map.

17.28. Assume that f : X → Y is a continuous map, K ⊂ X is a compact set,
and Y is Hausdorff. Suppose that the restriction f |K is injective and each a ∈ K
has a neighborhood Ua such that the restriction f |Ua is injective. Then K has a
neighborhood U such that the restriction f |U is injective.

⌈17′10x⌋ Norms in Rn

17.29x. Prove that each norm Rn → R (see Section 4) is a continuous function
(with respect to the standard topology of Rn).

17.30x. Prove that any two norms in Rn are equivalent (i.e., determine the same
topological structure). See 4.27, cf. 4.31.

17.31x. Does the same hold true for metrics on Rn?
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⌈17′11x⌋ Induction on Compactness

A function f : X → R is locally bounded if for each point a ∈ X there exist a
neighborhood U and a number M > 0 such that |f(x)| ≤ M for x ∈ U (i.e., each
point has a neighborhood U such that the restriction of f to U is bounded).

17.32x. Prove that if a space X is compact and a function f : X → R is locally
bounded, then f is bounded.

This statement is a simple application of a general principle formulated below
in 17.33x. This principle can be called induction on compactness (cf. induction on
connectedness, which was discussed in Section 12).

Let X be a topological space, C a property of subsets of X. We say that C
is additive if the union of each finite family of sets having the property C also has
this property. The space X possesses the property C locally if each point of X has
a neighborhood with property C.

17.33x. Prove that a compact space which locally possesses an additive property
has this property itself.

17.34x. Using induction on compactness, deduce the statements of Problems 17.R,
18.M, and 18.N.
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18. Sequential Compactness

⌈18′1⌋ Sequential Compactness Versus Compactness

A topological space is sequentially compact if every sequence of its points
contains a convergent subsequence.

18.A. If a first countable space is compact, then it is sequentially compact.

A point b is an accumulation point of a set A if each neighborhood of b
contains infinitely many points of A.

18.A.1. Prove that a point b in a space satisfying the first separation axiom is
an accumulation point iff b is a limit point.

18.A.2. Any infinite set in a compact space has an accumulation point.

18.A.3. A space in which each infinite set has an accumulation point is se-
quentially compact.

18.B. A sequentially compact second countable space is compact.

18.B.1. A decreasing sequence of nonempty closed sets in a sequentially com-
pact space has a nonempty intersection.

18.B.2. Prove that each nested sequence of nonempty closed sets in a space
X has a nonempty intersection iff each countable collection of closed sets in X
with the finite intersection property has a nonempty intersection.

18.B.3. Derive Theorem 18.B from 18.B.1 and 18.B.2.

18.C. For second countable spaces, compactness and sequential compactness
are equivalent.

⌈18′2⌋ In Metric Space

A subset A of a metric space X is an ε-net (where ε is a positive number)
if ρ(x,A) < ε for each point x ∈ X.

18.D. Prove that each compact metric space contains a finite ε-net for each
ε > 0.

18.E. Prove that each sequentially compact metric space contains a finite
ε-net for each ε > 0.

18.F. Prove that a subset A of a metric space is everywhere dense iff A is
an ε-net for each ε > 0.

18.G. Any sequentially compact metric space is separable.

18.H. Any sequentially compact metric space is second countable.
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18.I. For metric spaces, compactness and sequential compactness are equiv-
alent.

18.1. Prove that a sequentially compact metric space is bounded. (Cf. 18.E

and 18.I.)

18.2. Prove that for each ε > 0 each metric space contains

(1) a discrete ε-net, and
(2) an ε-net such that the distance between any two of its points is greater

than ε.

⌈18′3⌋ Completeness and Compactness

A sequence {xn}n∈N of points of a metric space is a Cauchy sequence (or
a fundamental sequence) if for every ε > 0 there exists a number N such
that ρ(xn, xm) < ε for any n,m ≥ N . A metric space X is complete if every
Cauchy sequence in X converges.

18.J. A Cauchy sequence containing a convergent subsequence converges.

18.K. Prove that a metric space M is complete iff every nested sequence
of closed balls in M with radii tending to 0 has a nonempty intersection.

18.L. Prove that a compact metric space is complete.

18.M. Prove that a complete metric space is compact iff for each ε > 0 it
contains a finite ε-net.

18.N. Prove that a complete metric space is compact iff it contains a com-
pact ε-net for each ε > 0.

⌈18′4x⌋ Noncompact Balls in Infinite Dimension

We denote by l∞ the set of all bounded sequences of real numbers. This is
a vector space with respect to the component-wise operations. There is a natural
norm in it: ||x|| = sup{|xn| | n ∈ N}.
18.3x. Are closed balls of l∞ compact? What about spheres?

18.4x. Is the set {x ∈ l∞ | |xn| ≤ 2−n, n ∈ N} compact?

18.5x. Prove that the set {x ∈ l∞ | |xn| = 2−n, n ∈ N} is homeomorphic to the
Cantor set K introduced in Section 2.

18.6x*. Does there exist an infinitely dimensional normed space in which closed
balls are compact?

⌈18′5x⌋ p-Adic Numbers

Fix a prime integer p. Denote by Zp the set of series of the form a0 + a1p +
· · · + anp

n + . . . with 0 ≤ an < p, an ∈ N. For x, y ∈ Zp, put ρ(x, y) = 0 if x = y,
and ρ(x, y) = p−m if m is the smallest number such that the mth coefficients in
the series x and y are different.

18.7x. Prove that ρ is a metric on Zp.
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This metric space is the space of integer p-adic numbers. There is an injection
Z → Zp sending a0 + a1p+ · · · + anp

n ∈ Z with 0 ≤ ak < p to the series

a0 + a1p+ · · · + anp
n + 0pn+1 + 0pn+2 + · · · ∈ Zp

and −(a0 + a1p+ · · · + anp
n) ∈ Z with 0 ≤ ak < p to the series

b0 + b1p+ · · · + bnp
n + (p− 1)pn+1 + (p− 1)pn+2 + . . . ,

where

b0 + b1p+ · · · + bnp
n = pn+1 − (a0 + a1p+ · · · + anp

n).

Cf. 4.Ux.

18.8x. Prove that the image of the injection Z → Zp is dense in Zp.

18.9x. Is Zp a complete metric space?

18.10x. Is Zp compact?

⌈18′6x⌋ Spaces of Convex Figures

Let D ⊂ R2 be a closed disk of radius p. Consider the set Pn of all convex
polygons P with the following properties:

• the perimeter of P is at most p;
• P is contained in D;
• P has at most n vertices (the cases of one and two vertices are not

excluded; the perimeter of a segment is twice its length).

See 4.Mx, cf. 4.Ox.

18.11x. Equip Pn with a natural topological structure. For instance, define a
natural metric on Pn.
18.12x. Prove that Pn is compact.

18.13x. Prove that Pn contains a polygon having the maximal area.

18.14x. Prove that this polygon is a regular n-gon.

Consider now the set P∞ of all convex polygons that have perimeter at most
p and are contained in D. In other words, P∞ =

S

∞

n=1 Pn.
18.15x. Construct a topological structure in P∞ that induces on Pn the topolog-
ical structures discussed above.

18.16x. Prove that the space P∞ is not compact.

Consider now the set P of all convex closed subsets of the plane that have
perimeter at most p and are contained in D. (Observe that all sets in P are
compact.)

18.17x. Construct a topological structure in P that induces the structure intro-
duced above in the space P∞.

18.18x. Prove that the space P is compact.

18.19x. Prove that there exists a convex plane set with perimeter at most p having
a maximal area.

18.20x. Prove that this is a disk of radius p/(2π).
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19x. Local Compactness and
Paracompactness

⌈19′1x⌋ Local Compactness

A topological space X is locally compact if each point of X has a neigh-
borhood with compact closure.

19.1x. Compact spaces are locally compact.

19.2x. Which of the following spaces are locally compact:
(1) R; (2) Q; (3) Rn; (4) a discrete space?

19.3x. Find two locally compact sets on the line such that their union is not
locally compact.

19.Ax. Is the local compactness hereditary?

19.Bx. A closed subset of a locally compact space is locally compact.

19.Cx. Is it true that an open subset of a locally compact space is locally
compact?

19.Dx. A Hausdorff locally compact space is regular.

19.Ex. An open subset of a locally compact Hausdorff space is locally com-
pact.

19.Fx. Local compactness is a local property for a Hausdorff space, i.e., a
Hausdorff space is locally compact iff each of its points has a locally compact
neighborhood.

⌈19′2x⌋ One-Point Compactification

Let (X,Ω) be a Hausdorff topological space. Let X∗ be the set obtained
by adding a point x∗ to X (of course, x∗ does not belong to X). Let Ω∗ be
the collection of subsets of X∗ consisting of

• sets open in X and

• sets of the form X∗ r C, where C ⊂ X is a compact set:

Ω∗ = Ω ∪ {X∗ r C | C ⊂ X is a compact set}.

19.Gx. Prove that Ω∗ is a topological structure on X∗.

19.Hx. Prove that the space (X∗,Ω∗) is compact.

19.Ix. Prove that the inclusion (X,Ω) →֒ (X∗,Ω∗) is a topological embed-
ding.
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19.Jx. Prove that if X is locally compact, then the space (X∗,Ω∗) is Haus-
dorff. (Recall that in the definition of X∗ we assumed that X is Hausdorff.)

A topological embedding of a space X in a compact space Y is a com-

pactification of X if the image of X is dense in Y . In this situation, Y is
also called a compactification of X. (To simplify the notation, we identify X
with its image in Y .)

19.Kx. Prove that if X is a locally compact Hausdorff space and Y is a
compactification of X with one-point complement Y rX, then there exists
a homeomorphism Y → X∗ identical on X.

Any space Y of Problem 19.Kx is called a one-point compactification or
Alexandrov compactification of X. Problem 19.Kx says that Y is essentially
unique.

19.Lx. Prove that the one-point compactification of the plane is homeo-
morphic to S2.

19.4x. Prove that the one-point compactification of Rn is homeomorphic to Sn.

19.5x. Give explicit descriptions for one-point compactifications of the following
spaces:

(1) annulus {(x, y) ∈ R2 | 1 < x2 + y2 < 2};
(2) square without vertices {(x, y) ∈ R2 | x, y ∈ [−1, 1], |xy| < 1};
(3) strip {(x, y) ∈ R2 | x ∈ [0, 1]};
(4) a compact space.

19.Mx. Prove that a locally compact Hausdorff space is regular.

19.6x. Let X be a locally compact Hausdorff space, K a compact subset of X,
and U a neighborhood of K. Then K has a neighborhood V such that the closure
ClV is compact and contained in U .

⌈19′3x⌋ Proper Maps

A continuous map f : X → Y is proper if each compact subset of Y has
compact preimage.

Let X and Y be two Hausdorff spaces. Any map f : X → Y obviously
extends to the map

f∗ : X∗ → Y ∗ : x 7→
{
f(x) if x ∈ X,

y∗ if x = x∗.

19.Nx. Prove that f∗ is continuous iff f is a proper continuous map.

19.Ox. Prove that each proper map of a Hausdorff space to a Hausdorff
locally compact space is closed.

Problem 19.Ox is related to Theorem 17.X.
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19.Px. Extend this analogy: formulate and prove statements corresponding
to Theorems 17.Z and 17.Y.

⌈19′4x⌋ Locally Finite Collections of Subsets

A collection Γ of subsets of a space X is locally finite if each point b ∈ X
has a neighborhood U that meets only finitely many sets A ∈ Γ.

19.Qx. A locally finite cover of a compact space is finite.

19.7x. If a collection Γ of subsets of a space X is locally finite, then so is {ClA |
A ∈ Γ}.

19.8x. If a collection Γ of subsets of a space X is locally finite, then each compact
set A ⊂ X meets only a finite number of sets in Γ.

19.9x. If a collection Γ of subsets of a space X is locally finite and each A ∈ Γ
has compact closure, then each A ∈ Γ meets only a finite number of sets in Γ.

19.10x. Any locally finite cover of a sequentially compact space is finite.

19.Rx. Find an open cover of Rn that has no locally finite subcovering.

Let Γ and ∆ be two covers of a set X. The cover ∆ is a refinement of Γ
if for each A ∈ ∆ there exists B ∈ Γ such that A ⊂ B.

19.Sx. Prove that any open cover of Rn has a locally finite open refinement.

19.Tx. Let {Ui}i∈N be a (locally finite) open cover of Rn. Prove that there
exists an open cover {Vi}i∈N of Rn such that ClVi ⊂ Ui for each i ∈ N.

⌈19′5x⌋ Paracompact Spaces

A space X is paracompact if every open cover of X has a locally finite
open refinement.

19.Ux. Any compact space is paracompact.

19.Vx. Rn is paracompact.

19.Wx. Let X =
⋃∞

i=1Xi, where Xi are compact sets such that Xi ⊂
IntXi+1. Then X is paracompact.

19.Xx. Let X be a locally compact space. If X has a countable cover by
compact sets, then X is paracompact.

19.11x. Prove that if a locally compact space is second countable, then it is
paracompact.

19.12x. A closed subspace of a paracompact space is paracompact.

19.13x. A disjoint union of paracompact spaces is paracompact.



104 III. Topological Properties

⌈19′6x⌋ Paracompactness and Separation Axioms

19.14x. Let X be a paracompact topological space, and let F and M be two
disjoint subsets of X, where F is closed. Suppose that F is covered by open sets
Uα whose closures are disjoint with M : ClUα ∩M = ∅. Then F and M have
disjoint neighborhoods.

19.15x. A Hausdorff paracompact space is regular.

19.16x. A Hausdorff paracompact space is normal.

19.17x. Let X be a Hausdorff locally compact and paracompact space, Γ a locally
finite open cover of X. Then X has a locally finite open cover ∆ such that the
closures ClV , where V ∈ ∆, are compact sets and {Cl V | V ∈ ∆} is a refinement
of Γ.

Here is a more general (though formally weaker) fact.

19.18x. Let X be a normal space, Γ a locally finite open cover of X. Then X has
a locally finite open cover ∆ such that {Cl V | V ∈ ∆} is a refinement of Γ.

Information. Metrizable spaces are paracompact.

⌈19′7x⌋ Partitions of Unity

Let X be a topological space, f : X → R a function. Then the set
supp f = Cl{x ∈ X | f(x) 6= 0} is the support of f .

19.19x. Let X be a topological space, and let {fα : X → R}α∈Λ be a family of
continuous functions whose supports supp(fα) constitute a locally finite cover of
X. Prove that the formula

f(x) =
X

α∈Λ

fα(x)

determines a continuous function f : X → R.

A family of nonnegative functions fα : X → R+ is a partition of unity if
the supports supp(fα) constitute a locally finite cover of the space X and∑

α∈Λ fα(x) = 1.

A partition of unity {fα} is subordinate to a cover Γ if supp(fα) is con-
tained in an element of Γ for each α. We also say that Γ dominates {fα}.

19.Yx. Let X be a normal space. Then each locally finite open cover of X
dominates a certain partition of unity.

19.20x. Let X be a Hausdorff space. If each open cover of X dominates a certain
partition of unity, then X is paracompact.

Information. A Hausdorff space X is paracompact iff each open cover
of X dominates a certain partition of unity.
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⌈19′8x⌋ Application: Making Embeddings from Pieces

19.21x. Let X be a topological space, {Ui}ki=1 an open cover of X. If Ui can be

embedded in Rn for each i = 1, . . . , k, then X can be embedded in Rk(n+1).

19.21x.1. Let hi : Ui → Rn, i = 1, . . . , k, be embeddings, and let
fi : X → R form a partition of unity subordinate to the cover {Ui}ki=1.

We put ĥi(x) = (hi(x), 1) ∈ Rn+1. Show that the map X → Rk(n+1) :

x 7→ (fi(x)ĥi(x))
k
i=1 is an embedding.

19.22x. Riddle. How can you generalize 19.21x?





Chapter IV

Topological
Constructions

20. Multiplication

⌈20′1⌋ Set-Theoretic Digression: Product of Sets

Let X and Y be two sets. The set of ordered pairs (x, y) with x ∈ X and
y ∈ Y is called the direct product, Cartesian product, or just product of X
and Y and denoted by X × Y . If A ⊂ X and B ⊂ Y , then A×B ⊂ X × Y .
Sets X×b with b ∈ Y and a×Y with a ∈ X are fibers of the product X×Y .

20.A. Prove that for any A1, A2 ⊂ X and B1, B2 ⊂ Y we have

(A1 ∪A2) × (B1 ∪B2) = (A1 ×B1) ∪ (A1 ×B2) ∪ (A2 ×B1) ∪ (A2 ×B2),

(A1 ×B1) ∩ (A2 ×B2) = (A1 ∩A2) × (B1 ∩B2),

(A1 ×B1) r (A2 ×B2) =
(
(A1 rA2) ×B1

)
∪
(
A1 × (B1 rB2)

)
.

A1 A2

B1

B2

A1 A2

B1

B2

A1 A2

B1

B2

The natural maps

prX : X × Y → X : (x, y) 7→ x and prY : X × Y → Y : (x, y) 7→ y

107
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are (natural) projections.

20.B. Prove that pr−1
X (A) = A× Y for each A ⊂ X.

20.1. Find the corresponding formula for B ⊂ Y .

⌈20′2⌋ Graphs

A map f : X → Y determines a subset Γf of X × Y defined by Γf =
{(x, f(x)) | x ∈ X}, it is called the graph of f .

20.C. A set Γ ⊂ X × Y is the graph of a map X → Y iff for each a ∈ X
the intersection Γ ∩ (a× Y ) is a singleton.

20.2. Prove that for each map f : X → Y and each set A ⊂ X we have

f(A) = prY (Γf ∩ (A× Y )) = prY (Γf ∩ pr−1
X (A))

and f−1(B) = prX(Γ ∩ (X ×B)) for each B ⊂ Y .

The set ∆ = {(x, x) | x ∈ X} = {(x, y) ∈ X ×X | x = y} is the diagonal of
X ×X.

20.3. Let A and B be two subsets of X. Prove that (A×B)∩∆ = ∅ iff A∩B = ∅.

20.4. Prove that the map prX
˛

˛

Γf
is bijective.

20.5. Prove that f is injective iff prY
˛

˛

Γf
is injective.

20.6. Consider the map T : X × Y → Y × X : (x, y) 7→ (y, x). Prove that
Γf−1 = T (Γf ) for each invertible map f : X → Y .

⌈20′3⌋ Product of Topologies

Let X and Y be two topological spaces. If U is an open set of X and
B is an open set of Y , then we say that U × V is an elementary open set of
X × Y .

20.D. The set of elementary open sets of X × Y is a base of a topological
structure in X × Y .

The topological structure determined by the base of elementary open
sets is the product topology in X × Y . The product of two spaces X and Y
is the set X × Y with the product topology.

20.7. Prove that for any subspaces A and B of spaces X and Y the product
topology on A × B coincides with the topology induced from X × Y via the
natural inclusion A×B ⊂ X × Y .

20.E. Y ×X is canonically homeomorphic to X × Y .

The word canonically here means that the homeomorphism between X×
Y and Y × X, which exists according to the statement, can be chosen in
a nice special (or even obvious?) way, and so we may expect that it has
additional pleasant properties.
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20.F. The canonical bijection X × (Y ×Z) → (X ×Y )×Z is a homeomor-
phism.

20.8. Prove that if A is closed in X and B is closed in Y , then A×B is closed in
X × Y .

20.9. Prove that Cl(A×B) = ClA× ClB for any A ⊂ X and B ⊂ Y .

20.10. Is it true that Int(A×B) = IntA× IntB?

20.11. Is it true that Fr(A×B) = FrA× FrB?

20.12. Is it true that Fr(A×B) = (FrA×B) ∪ (A× FrB)?

20.13. Prove that Fr(A×B) = (FrA×B) ∪ (A× FrB) for closed A and B.

20.14. Find a formula for Fr(A×B) in terms of A, FrA, B, and FrB.

⌈20′4⌋ Topological Properties of Projections and Fibers

20.G. The natural projections prX : X × Y → X and prY : X × Y → Y
are continuous for any topological spaces X and Y .

20.H. The product topology is the coarsest topology with respect to which
prX and prY are continuous.

20.I. A fiber of a product is canonically homeomorphic to the corresponding
factor. The canonical homeomorphism is the restriction to the fiber of the
natural projection of the product onto the factor.

20.J. Prove that R1×R1 = R2, (R1)n = Rn, and (I)n = In. (We remind
the reader that In is the n-dimensional unit cube in Rn.)

20.15. Let ΣX and ΣY be bases of spaces X and Y . Prove that the sets U × V
with U ∈ ΣX and V ∈ ΣY constitute a base for X × Y .

20.16. Prove that a map f : X → Y is continuous iff prX |Γf
: Γf → X is a

homeomorphism.

20.17. Prove that if W is open in X × Y , then prX(W ) is open in X.

A map from a space X to a space Y is open (closed) if the image of each
open set under this map is open (respectively, closed). Therefore, 20.17 states
that prX : X × Y → X is an open map.

20.18. Is prX a closed map?

20.19. Prove that for each space X and each compact space Y the map prX :
X × Y → X is closed.

⌈20′5⌋ Cartesian Products of Maps

Let X, Y , and Z be three sets. A map f : Z → X × Y determines the
compositions f1 = prX ◦f : Z → X and f2 = prY ◦f : Z → Y , which are
called the factors (or components) of f . Indeed, f is determined by them as
a sort of product.
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20.K. Prove that for any maps f1 : Z → X and f2 : Z → Y there exists a
unique map f : Z → X × Y with prX ◦f = f1 and prY ◦f = f2.

20.20. Prove that f−1(A×B) = f−1
1 (A) ∩ f−1

2 (B) for any A ⊂ X and B ⊂ Y .

20.L. Let X, Y , and Z be three spaces. Prove that f : Z → X × Y is
continuous iff so are f1 and f2.

Any two maps g1 : X1 → Y1 and g2 : X2 → Y2 determine a map

g1 × g2 : X1 ×X2 → Y1 × Y2 : (x1, x2) 7→ (g1(x1), g2(x2)),

which is their (Cartesian) product.

20.21. Prove that (g1 × g2)(A1 × A2) = g1(A1) × g2(A2) for any A1 ⊂ X1 and
A2 ⊂ X2.

20.22. Prove that (g1 × g2)
−1(B1 × B2) = g−1

1 (B1) × g−1
2 (B2) for any B1 ⊂ Y1

and B2 ⊂ Y2.

20.M. Prove that the Cartesian product of continuous maps is continuous.

20.23. Prove that the Cartesian product of open maps is open.

20.24. Prove that a metric ρ : X × X → R is continuous with respect to the
metric topology.

20.25. Let f : X → Y be a map. Prove that the graph Γf is the preimage of the
diagonal ∆Y = {(y, y) | y ∈ Y } ⊂ Y ×Y under the map f× idY : X×Y → Y ×Y .

⌈20′6⌋ Properties of Diagonal and Other Graphs

20.26. Prove that a space X is Hausdorff iff the diagonal ∆ = {(x, x) | x ∈ X} is
closed in X ×X.

x

y

f(x)

20.27. Prove that if Y is a Hausdorff space and f : X → Y is a continuous map,
then the graph Γf is closed in X × Y .

20.28. Let Y be a compact space. Prove that if a map f : X → Y has closed
graph Γf , then f is continuous.

20.29. Prove that the hypothesis on compactness in 20.28 is necessary.

20.30. Let f : R → R be a continuous function. Prove that its graph is:

(1) closed;
(2) connected;
(3) path-connected;
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(4) locally connected;
(5) locally compact.

20.31. Consider the following functions

1) R → R : x 7→
(

0 if x = 0,

1/x, otherwise.
; 2) R → R : x 7→

(

0 if x = 0,

sin(1/x), otherwise.
Do

their graphs possess the properties listed in 20.30?

20.32. Does any of the properties of the graph of a function f that are mentioned
in 20.30 imply that f is continuous?

20.33. Let Γf be closed. Then the following assertions are equivalent:

(1) f is continuous;
(2) f is locally bounded;
(3) the graph Γf of f is connected;
(4) the graph Γf of f is path-connected.

20.34. Prove that if Γf is connected and locally connected, then f is continuous.

20.35. Prove that if Γf is connected and locally compact, then f is continuous.

20.36. Are some of the assertions in Problems 20.33–20.35 true for maps f :
R2 → R?

⌈20′7⌋ Topological Properties of Products

20.N. The product of Hausdorff spaces is Hausdorff.

20.37. Prove that the product of regular spaces is regular.

20.38. The product of normal spaces is not necessarily normal.

20.38.1*. Prove that the space R formed by real numbers with the
topology determined by the base consisting of all semi-open intervals
[a, b) is normal.

20.38.2. Prove that in the Cartesian square of the space introduced
in 20.38.1 the subspace {(x, y) | x = −y} is closed and discrete.

20.38.3. Find two disjoint subsets of {(x, y) | x = −y} that have no
disjoint neighborhoods in the Cartesian square of the space of 20.38.1.

20.O. The product of separable spaces is separable.

20.P. First countability of factors implies first countability of the product.

20.Q. The product of second countable spaces is second countable.

20.R. The product of metrizable spaces is metrizable.

20.S. The product of connected spaces is connected.

20.39. Prove that for connected spaces X and Y and any proper subsets A ⊂ X
and B ⊂ Y the set X × Y r A×B is connected.

20.T. The product of path-connected spaces is path-connected.

20.U. The product of compact spaces is compact.



112 IV. Topological Constructions

20.40. Prove that the product of locally compact spaces is locally compact.

20.41. IfX is a paracompact space and Y is compact, then X×Y is paracompact.

20.42. For which of the topological properties studied above is it true that if
X × Y possesses the property, then so does X?

⌈20′8⌋ Representation of Special Spaces as Products

20.V. Prove that R2 r 0 is homeomorphic to S1 × R.

20.43. Prove that Rn r Rk is homeomorphic to Sn−k−1 × Rk+1.

20.44. Prove that Sn ∩ {x ∈ Rn+1 | x2
1 + · · · + x2

k ≤ x2
k+1 + · · · + x2

n+1} is

homeomorphic to Sk−1 ×Dn−k+1.

20.45. Prove that O(n) is homeomorphic to SO(n) ×O(1).

20.46. Prove that GL(n) is homeomorphic to SL(n) ×GL(1).

20.47. Prove that GL+(n) is homeomorphic to SO(n) × Rn(n+1)/2, where

GL+(n) = {A ∈ L(n, n) | detA > 0}.
20.48. Prove that SO(4) is homeomorphic to S3 × SO(3).

The space S1 × S1 is a torus.

20.W. Construct a topological embedding of the torus in R3.

The product S1 × · · · × S1 of k factors is the k-dimensional torus.

20.X. Prove that the k-dimensional torus can be topologically embedded
in Rk+1.

20.Y. Find topological embeddings of S1 ×D2, S1 × S1 × I, and S2 × I in
R3.
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21. Quotient Spaces

⌈21′1⌋ Set-Theoretic Digression:
Partitions and Equivalence Relations

Recall that a partition of a set A is a cover of A consisting of pairwise
disjoint sets.

Each partition of a set X determines an equivalence relation (i.e., a rela-
tion, which is reflexive, symmetric, and transitive): two elements of X are
said to be equivalent if they belong to the same element of the partition.
Vice versa, each equivalence relation on X determines the partition of X
into classes of equivalent elements. Thus, partitions of a set into nonempty
subsets and equivalence relations on the set are essentially the same. More
precisely, they are two ways of describing the same phenomenon.

Let X be a set, S a partition of X. The set whose elements are members
of the partition S (which are subsets of X) is the quotient set or factor set

of X by S. It is denoted by X/S. 1

21.1. Riddle. How does this operation relate to division of numbers? Why is
there a similarity in terminology and notation?

The setX/S is also called the set of equivalence classes for the equivalence
relation corresponding to the partition S.

The map pr : X → X/S that sends x ∈ X to the element of S containing
x is the (canonical) projection or factorization map. A subset of X which is
a union of elements of a partition is saturated . The smallest saturated set
containing a subset A of X is the saturation of A.

21.2. Prove that A ⊂ X is an element of a partition S of X iff A = pr−1(point),
where pr : X → X/S is the natural projection.

21.A. Prove that the saturation of a set A equals pr−1
(
pr(A)

)
.

21.B. Prove that a set is saturated iff it is equal to its saturation.

1At first glance, the definition of a quotient set contradicts one of the very profound principles
of the set theory, which states that a set is determined by its elements. Indeed, according to this
principle, we have X/S = S since S and X/S have the same elements. Hence, there seems to be
no need to introduce X/S. The real sense of the notion of a quotient set lies not in its literal
set-theoretic meaning, but in our way of thinking about elements of partitions. If we remember
that they are subsets of the original set and want to keep track of their internal structure (or, at
least, of their elements), then we speak of a partition. If we think of them as atoms, getting rid
of their possible internal structure, then we speak about the quotient set.
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⌈21′2⌋ Quotient Topology

A quotient set X/S of a topological space X with respect to a partition S
into nonempty subsets is equipped with a natural topology: a set U ⊂
X/S is said to be open in X/S if its preimage pr−1(U) under the canonical
projection pr : X → X/S is open.

21.C. The collection of these sets is a topological structure in the quotient
set X/S.

This topological structure is the quotient topology . The set X/S with
this topology is the quotient space of X by partition S.

21.3. Give an explicit description of the quotient space of the segment [0, 1] by
the partition consisting of [0, 1/3], (1/3, 2/3], and (2/3, 1].

[ ]( ]( ]

a b c

21.4. What can you say about a partition S of a spaceX if the quotient space X/S
is known to be discrete?

21.D. A subset of a quotient space X/S is open iff it is the image of an
open saturated set under the canonical projection pr.

21.E. A subset of a quotient space X/S is closed, iff its preimage under pr
is closed in X, iff it is the image of a closed saturated set.

21.F. The canonical projection pr : X → X/S is continuous.

21.G. Prove that the quotient topology is the finest topology on X/S such
that the canonical projection pr is continuous with respect to it.

⌈21′3⌋ Topological Properties of Quotient Spaces

21.H. A quotient space of a connected space is connected.

21.I. A quotient space of a path-connected space is path-connected.

21.J. A quotient space of a separable space is separable.

21.K. A quotient space of a compact space is compact.

21.L. The quotient space of the real line by the partition R+, R r R+ is
not Hausdorff.

21.M. The quotient space of a space X by a partition S is Hausdorff iff
any two elements of S have disjoint saturated neighborhoods.
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21.5. Formulate similar necessary and sufficient conditions for a quotient space
to satisfy other separation axioms and countability axioms.

21.6. Give an example showing that the second countability can get lost when
we pass to a quotient space.

⌈21′4⌋ Set-Theoretic Digression: Quotients and Maps

Let S be a partition of a set X into nonempty subsets. Let f : X → Y
be a map which is constant on each element of S. Then there is a map
X/S → Y which sends each element A of S to the element f(a), where
a ∈ A. This map is denoted by f/S and called the quotient map or factor

map of f (by the partition S).

21.N. 1) Prove that a map f : X → Y is constant on each element of a
partition S of X iff there exists a map g : X/S → Y such that the following
diagram is commutative:

X
f−−−−→ Y

pr

y ր g

X/S
2) Prove that such a map g coincides with f/S.

More generally, let S and T be partitions of sets X and Y . Then every
map f : X → Y that maps each subset in S to a subset in T determines a
mapX/S → Y/T which sends an element A of the partition S to the element
of the partition T containing f(A). This map is denoted by f/(S, T ) and

called the quotient map or factor map of f (with respect to S and T ).

21.O. Formulate and prove for f/S, T a statement generalizing 21.N.

A map f : X → Y determines the partition of the set X into nonempty
preimages of the elements of Y . This partition is denoted by S(f).

21.P. The map f/S(f) : X/S(f) → Y is injective.

This map is the injective factor (or injective quotient) of f .

⌈21′5⌋ Continuity of Quotient Maps

21.Q. Let X and Y be two spaces, S a partition of X into nonempty sets,
and f : X → Y a continuous map constant on each element of S. Then the
factor f/S of f is continuous.

21.7. If the map f is open, then so is the quotient map f/S.

21.8. Let X and Y be two spaces, S a partition of X into nonempty sets. Prove
that the formula f 7→ f/S determines a bijection from the set of all continuous
maps X → Y that are constant on each element of S onto the set of all continuous
maps X/S → Y .
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21.R. Let X and Y be two spaces, let S and T be partitions of X and Y ,
respectively, and let f : X → Y be a continuous map that maps each set in
S to a set in T . Then the map f/S, T : X/S → Y/T is continuous.

⌈21′6x⌋ Closed Partitions

A partition S of a space X is closed if the saturation of each closed set
is closed.

21.9x. Prove that a partition is closed iff the canonical projection X → X/S is a
closed map.

21.10x. Prove that if a partition S contains only one element consisting of more
than one point, then S is closed if this element is a closed set.

21.Sx. Let X be a space satisfying the first separation axiom, S a closed
partition of X. Then the quotient space X/S also satisfies the first separa-
tion axiom.

21.Tx. The quotient space of a normal space with respect to a closed parti-
tion is normal.

⌈21′7x⌋ Open Partitions

A partition S of a space X is open if the saturation of each open set is
open.

21.11x. Prove that a partition S is open iff the canonical projection X → X/S
is an open map.

21.12x. Prove that if a set A is saturated with respect to an open partition, then
IntA and ClA are also saturated.

21.Ux. The quotient space of a second countable space with respect to an
open partition is second countable.

21.Vx. The quotient space of a first countable space with respect to an open
partition is first countable.

21.Wx. Let X and Y be two spaces, S and T their open partitions. Denote
by S × T the partition of X × Y consisting of A × B with A ∈ S and
B ∈ T . Then the injective factor X × Y/S × T → X/S×Y/T of prS × prT :
X × Y → X/S × Y/T is a homeomorphism.
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22. Zoo of Quotient Spaces

⌈22′1⌋ Tool for Identifying a Quotient Space with
a Known Space

22.A. If X is a compact space, Y is a Hausdorff space, and f : X → Y
is a continuous map, then the injective factor f/S(f) : X/S(f) → Y is a

homeomorphism.

22.B. The injective factor of a continuous map from a compact space to a
Hausdorff one is a topological embedding.

22.1. Describe explicitly partitions of a segment such that the corresponding
quotient spaces are all letters of the alphabet.

22.2. Prove that the segment I admits a partition with the quotient space home-
omorphic to square I × I .

⌈22′2⌋ Tools for Describing Partitions

An accurate literal description of a partition can often be somewhat
cumbersome, but usually it can be shortened and made more understand-
able. Certainly, this requires a more flexible vocabulary with lots of words
having almost the same meanings. For instance, such words as factorize and
pass to a quotient can be replaced by attach, glue together , identify , contract,
paste, and other words substituting or accompanying these in everyday life.

Some elements of this language are easy to formalize. For instance,
factorization of a space X with respect to a partition consisting of a set A
and singletons in the complement of A is the contraction (of the subset A to
a point), and the result is denoted by X/A.

22.3. Let A,B ⊂ X form a fundamental cover of a space X. Prove that the
quotient map A/A ∩B → X/B of the inclusion A →֒ X is a homeomorphism.

If A and B are two disjoint subspaces of a space X and f : A → B is
a homeomorphism, then passing to the quotient of X by the partition into
singletons in X r (A ∪B) and two-element sets {x, f(x)}, where x ∈ A, we
glue or identify the sets A and B via the homeomorphism f .

A rather convenient and flexible way for describing partitions is to de-
scribe the corresponding equivalence relations. The main advantage of this
approach is that, by transitivity, it suffices to specify only some pairs of
equivalent elements: if one states that x ∼ y and y ∼ z, then it is not
necessary to state that x ∼ z since this is automatically true.

Hence, a partition is represented by a list of statements of the form
x ∼ y that are sufficient for recovering the equivalence relation. We denote
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the corresponding partition by such a list enclosed into square brackets. For
example, the quotient of a space X obtained by identifying subsets A and B
by a homeomorphism f : A → B is denoted by X/[a ∼ f(a) for any a ∈ A]
or just X/[a ∼ f(a)].

Some partitions are easily described by a picture, especially if the original
space can be embedded in the plane. In such a case, as in the pictures below,
we draw arrows on the segments to be identified to show the directions to
be identified.

Below we introduce all kinds of descriptions for partitions and give ex-
amples of their usage, simultaneously providing literal descriptions. The
latter are not that nice, but they may help the reader to remain confident
about the meaning of the new words. On the other hand, the reader will
appreciate the improvement the new words bring in.

⌈22′3⌋ Welcome to the Zoo

22.C. Prove that I/[0 ∼ 1] is homeomorphic to S1.

∼=

In other words, the quotient space of segment I by the partition consist-
ing of {0, 1} and {a} with a ∈ (0, 1) is homeomorphic to a circle.

22.C.1. Find a surjective continuous map I → S1 such that the corresponding
partition into preimages of points consists of singletons in the interior of the
segment and the pair of boundary points of the segment.

22.D. Prove that Dn/Sn−1 is homeomorphic to Sn.

In 22.D, we deal with the quotient space of the n-diskDn by the partition
{Sn−1} ∪ {{x} | x ∈ Bn}.

Here is a reformulation of 22.D: Contracting the boundary of an n-
dimensional ball to a point, we obtain an n-dimensional sphere.

22.D.1. Find a continuous map of the n-disk Dn to the n-sphere Sn that maps
the boundary of the disk to a single point and bijectively maps the interior of
the disk onto the complement of this point.

22.E. Prove that I2/[(0, t) ∼ (1, t) for t ∈I] is homeomorphic to S1 × I.

Here the partition consists of pairs of points {(0, t), (1, t)} where t ∈ I,
and singletons in (0, 1) × I.
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Reformulation of 22.E: If we glue the side edges of a square by identifying
points on the same hight, then we obtain a cylinder.

22.F. S1 × I/[(z, 0) ∼ (z, 1) for z ∈ S1] is homeomorphic to S1 × S1.

Here the partition consists of singletons in S1× (0, 1) and pairs of points
of the basis circles lying on the same element of the cylinder.

Here is a reformulation of 22.F: If we glue the base circles of a cylinder
by identifying pairs of points on the same element, then we obtain a torus.

22.G. I2/[(0, t) ∼ (1, t), (t, 0) ∼ (t, 1)] is homeomorphic to S1 × S1.

In 22.G, the partition consists of

• singletons in the interior (0, 1) × (0, 1) of the square,

• pairs of points on the vertical sides that are the same distance from
the bottom side (i.e., pairs {(0, t), (1, t)} with t ∈ (0, 1)),

• pairs of points on the horizontal sides that lie on the same vertical
line (i.e., pairs {(t, 0), (t, 1)} with t ∈ (0, 1)),

• the four vertices of the square.

Reformulation of 22.G: Identifying the sides of a square according to
the picture, we obtain a torus.

⌈22′4⌋ Transitivity of Factorization

A solution of Problem 22.G can be based on Problems 22.E and 22.F
and the following general theorem.

22.H Transitivity of Factorization. Let S be a partition of a space
X, and let S′ be a partition of the space X/S. Then the quotient space
(X/S)/S′ is canonically homeomorphic to X/T , where T is the partition of
X into preimages of elements of S′ under the projection X → X/S.
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⌈22′5⌋ Möbius Strip

The Möbius strip or Möbius band is defined as I2/[(0, t) ∼ (1, 1 − t)]. In

other words, this is the quotient space of the square I2 by the partition into
centrally symmetric pairs of points on the vertical edges of I2, and singletons
that do not lie on the vertical edges. The Möbius strip is obtained, so to
speak, by identifying the vertical sides of a square in such a way that the
directions shown on them by arrows are superimposed, as shown below.

22.I. Prove that the Möbius strip is homeomorphic to the surface that is
swept in R3 by a segment rotating in a half-plane around the midpoint, while
the half-plane rotates around its boundary line. The ratio of the angular
velocities of these rotations is such that the rotation of the half-plane through
360◦ takes the same time as the rotation of the segment through 180◦. See
below.

⌈22′6⌋ Contracting Subsets

22.4. Prove that [0, 1]/[1/3, 2/3] is homeomorphic to [0, 1], and [0, 1]/{1/3, 1} is

homeomorphic to letter P.

22.5. Prove that the following spaces are homeomorphic:
(1) R2; (2) R2/I ; (3) R2/D2; (4) R2/I2;

(5) R2/A, where A is the union of several segments with a common end point;
(6) R2/B, where B is a simple polyline, i.e., the union of a finite sequence of

segments I1, . . . , In such that the initial point of Ii+1 is the final point
of Ii.

22.6. Prove that if f : X → Y is a homeomorphism, then the quotient spaces
X/A and Y/f(A) are homeomorphic.

22.7. Let A ⊂ R2 be the ray {(x, y) | x ≥ 0, y = 0}. Is R2/A homeomorphic to
IntD2 ∪ {(0, 1)}?
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⌈22′7⌋ Further Examples

22.8. Prove that S1/[z ∼ e2πi/3z] is homeomorphic to S1.

The partition in 22.8 consists of triples of points that are vertices of equilateral
inscribed triangles.

22.9. Prove that the following quotient spaces of the disk D2 are homeomorphic
to D2:

(1) D2/[(x, y) ∼ (−x,−y)],
(2) D2/[(x, y) ∼ (x,−y)],
(3) D2/[(x, y) ∼ (−y, x)].

22.10. Find a generalization of 22.9 with Dn substituted for D2.

22.11. Describe explicitly the quotient space of the line R1 by the equivalence
relation x ∼ y ⇔ x− y ∈ Z.

22.12. Represent the Möbius strip as a quotient space of cylinder S1 × I .

⌈22′8⌋ Klein Bottle

The Klein bottle is I2/[(t, 0) ∼ (t, 1), (0, t) ∼ (1, 1 − t)]. In other words,

this is the quotient space of square I2 by the partition into

• singletons in its interior,

• pairs of points (t, 0), (t, 1) on horizontal edges that lie on the same
vertical line,

• pairs of points (0, t), (1, 1− t) symmetric with respect to the center
of the square that lie on the vertical edges, and

• the quadruple of vertices.

22.13. Present the Klein bottle as a quotient space of

(1) a cylinder;
(2) the Möbius strip.

22.14. Prove that S1 × S1/[(z, w) ∼ (−z, w̄)] is homeomorphic to the Klein bot-

tle. (Here w̄ denotes the complex number conjugate to w.)

22.15. Embed the Klein bottle in R4 (cf. 22.I and 20.W).

22.16. Embed the Klein bottle in R4 so that the image of this embedding under
the orthogonal projection R4 → R3 would look as follows:
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⌈22′9⌋ Projective Plane

Let us identify each boundary point of the disk D2 with the antipodal
point, i.e., we factorize the disk by the partition consisting of singletons in
the interior of the disk and pairs of points on the boundary circle symmetric
with respect to the center of the disk. The result is the projective plane.
This space cannot be embedded in R3, too. Thus, we are not able to draw
it. Instead, we present it differently.

22.J. A projective plane is a result of gluing together a disk and a Möbius
strip via a homeomorphism between their boundary circles.

⌈22′10⌋ You May Have Been Provoked to Perform
an Illegal Operation

Solving the previous problem, you did something that did not fit into the
theory presented above. Indeed, the operation with two spaces called gluing

in 22.J has not appeared yet. It is a combination of two operations: first, we
make a single space consisting of disjoint copies of the original spaces, and
then we factorize this space by identifying points of one copy with points of
another. Let us consider the first operation in detail.

⌈22′11⌋ Set-Theoretic Digression: Sums of Sets

The (disjoint) sum of a family of sets {Xα}α∈A is the set of pairs (xα, α)
such that xα ∈ Xα. The sum is denoted by

⊔
α∈AXα. So, we can write

⊔

α∈A

Xα =
⋃

α∈A

(Xα × {α}).

For each β ∈ A, we have a natural injection

inβ : Xβ →
⊔

α∈A

Xα : x 7→ (x, β).

If only two sets X and Y are involved and they are distinct, then we can
avoid indices and define the sum by setting

X ⊔ Y = {(x,X) | x ∈ X} ∪ {(y, Y ) | y ∈ Y }.

⌈22′12⌋ Sums of Spaces

22.K. Let {Xα}α∈A be a collection of topological spaces. Then the collec-
tion of subsets of

⊔
α∈AXα whose preimages under all inclusions inα, α ∈ A,

are open is a topological structure.

The sum
⊔

α∈AXα with this topology is the (disjoint) sum of the topo-

logical spaces Xα (α ∈ A).

22.L. The topology described in 22.K is the finest topology with respect to
which all inclusions inα are continuous.
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22.17. The maps inβ : Xβ → F

α∈AXα are topological embeddings, and their
images are both open and closed in

F

α∈AXα.

22.18. Which of the standard topological properties are inherited from summands
Xα by the sum

F

α∈AXα? Which are not?

⌈22′13⌋ Attaching Space

LetX and Y be two spaces, A a subset of Y , and f : A→ X a continuous
map. The quotient space X ∪f Y = (X ⊔ Y )/[a ∼ f(a) for a ∈ A] is called

the result of attaching or gluing the space Y to the space X via f . The map
f is the attaching map.

Here the partition of X ⊔ Y consists of singletons in in2(Y r A) and
in1(X r f(A)), and sets in1(x) ∪ in2

(
f−1(x)

)
with x ∈ f(A).

22.19. Prove that the composition of the inclusion X → X⊔Y and the projection
X ⊔ Y → X ∪f Y is a topological embedding.

22.20. Prove that if X is a point, then X ∪f Y is Y/A.

22.M. Prove that attaching the n-disk Dn to its copy via the identity map
of the boundary sphere Sn−1 we obtain a space homeomorphic to Sn.

22.21. Prove that the Klein bottle is a result of gluing together two copies of the
Möbius strip via the identity map of the boundary circle.

a1 b1

a2 b2

a b

22.22. Prove that the result of gluing together two copies of a cylinder via the
identity map of the boundary circles (of one copy to the boundary circles of the
other) is homeomorphic to S1 × S1.

22.23. Prove that the result of gluing together two copies of the solid torus S1×D2

via the identity map of the boundary torus S1 × S1 is homeomorphic to S1 × S2.

22.24. Obtain the Klein bottle by gluing two copies of the cylinder S1×I to each
other.

22.25. Prove that the result of gluing together two copies of the solid torus S1×D2

via the map
S1 × S1 → S1 × S1 : (x, y) 7→ (y, x)

of the boundary torus to its copy is homeomorphic to S3.

22.N. Let X and Y be two spaces, A a subset of Y , and f, g : A→ X two
continuous maps. Prove that if there exists a homeomorphism h : X → X
such that h ◦ f = g, then X ∪f Y and X ∪g Y are homeomorphic.
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22.O. Prove thatDn∪hD
n is homeomorphic to Sn for each homeomorphism

h : Sn−1 → Sn−1.

22.26. Classify up to homeomorphism the spaces that can be obtained from a
square by identifying a pair of opposite sides by a homeomorphism.

22.27. Classify up to homeomorphism the spaces that can be obtained from two
copies of S1 × I by identifying the copies of S1 × {0, 1} via a homeomorphism.

22.28. Prove that the topological type of the space resulting from gluing together
two copies of the Möbius strip via a homeomorphism of the boundary circle does
not depend on the homeomorphism.

22.29. Classify up to homeomorphism the spaces that can be obtained from S1×I
by identifying S1 × 0 and S1 × 1 via a homeomorphism.

⌈22′14⌋ Basic Surfaces

Deleting from the torus S1 × S1 the interior of an embedded disk, we
obtain a handle. Similarly, deleting from the two-sphere the interior of n
disjoint embedded disks, we obtain a sphere with n holes.

22.P. A sphere with a hole is homeomorphic to the disk D2.

22.Q. A sphere with two holes is homeomorphic to the cylinder S1 × I.

∼= ∼=

A sphere with three holes has a special name. It is called pantaloons or
just pants .

∼=

The result of attaching p copies of a handle to a sphere with p holes via
embeddings homeomorphically mapping the boundary circles of the handles
onto those of the holes is a sphere with p handles, or, in a more ceremonial
way (and less understandable, for a while), an orientable connected closed

surface of genus p.
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22.30. Prove that a sphere with p handles is well defined up to homeomorphism
(i.e., the topological type of the result of gluing does not depend on the attaching
embeddings).

22.R. A sphere with one handle is homeomorphic to the torus S1 × S1.

∼=

22.S. A sphere with two handles is homeomorphic to the result of gluing
together two copies of a handle via the identity map of the boundary circle.

∼=

A sphere with two handles is a pretzel . Sometimes, this word also denotes
a sphere with more handles.

The space obtained from a sphere with q holes by attaching q copies
of the Möbius strip via embeddings of the boundary circles of the Möbius
strips onto the boundary circles of the holes (the boundaries of the holes)
is a sphere with q cross-caps, or a nonorientable connected closed surface of

genus q.

22.31. Prove that a sphere with q cross-caps is well defined up to homeomorphism
(i.e., the topological type of the result of gluing does not depend on the attaching
embeddings).

22.T. A sphere with a cross-cap is homeomorphic to the projective plane.

22.U. A sphere with two cross-caps is homeomorphic to the Klein bottle.

A sphere, spheres with handles, and spheres with cross-caps are basic

surfaces.

22.V. Prove that a sphere with p handles and q cross-caps is homeomorphic
to a sphere with 2p + q cross-caps (here q > 0).
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22.32. Classify up to homeomorphism those spaces which are obtained by attach-
ing p copies of S1 × I to a sphere with 2p holes via embeddings of the boundary
circles of the cylinders onto the boundary circles of the sphere with holes.
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23. Projective Spaces

This section can be considered as a continuation of the previous one. The
quotient spaces described here are of too great importance to regard them
just as examples of quotient spaces.

⌈23′1⌋ Real Projective Space of Dimension n

This space is defined as the quotient space of the sphere Sn by the
partition into pairs of antipodal points, and denoted by RPn.

23.A. The space RPn is homeomorphic to the quotient space of the n-
disk Dn by the partition into singletons in the interior of Dn, and pairs
of antipodal point of the boundary sphere Sn−1.

23.B. RP 0 is a point.

23.C. The space RP 1 is homeomorphic to the circle S1.

23.D. The space RP 2 is homeomorphic to the projective plane defined in
the previous section.

23.E. The space RPn is canonically homeomorphic to the quotient space
of Rn+1 r 0 by the partition into one-dimensional vector subspaces of Rn+1

punctured at 0.

A point of the space Rn+1 r 0 is a sequence of real numbers, which are
not all zeros. These numbers are the homogeneous coordinates of the cor-
responding point of RPn. The point with homogeneous coordinates x0, x1,
. . . , xn is denoted by (x0 : x1 : · · · : xn). Homogeneous coordinates deter-
mine a point of RPn, but are not determined by this point: proportional
vectors of coordinates (x0, x1, . . . , xn) and (λx0, λx1, . . . , λxn) determine the
same point of RPn.

23.F. The space RPn is canonically homeomorphic to the metric space
whose points are lines of Rn+1 through the origin 0 = (0, . . . , 0) and the
metric is defined as the angle between lines (which takes values in [0, π/2]).
Prove that this is really a metric.

23.G. Prove that the map

i : Rn → RPn : (x1, . . . , xn) 7→ (1 : x1 : · · · : xn)

is a topological embedding. What is its image? What is the inverse map of
its image onto Rn?

23.H. Construct a topological embedding RPn−1 → RPn with image
RPn r i(Rn), where i is the embedding from Problem 23.G.
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Therefore, the projective space RPn can be regarded as the result of
extending Rn by adjoining “improper” or “infinite” points, which constitute
a projective space RPn−1.

23.1. Introduce a natural topological structure in the set of all lines on the plane
and prove that the resulting space is homeomorphic to a) RP 2 r {pt}; b) open
Möbius strip (i.e., a Möbius strip with the boundary circle removed).

23.2. Prove that the set of all rotations of the space R3 around lines passing
through the origin equipped with the natural topology is homeomorphic to RP 3.

⌈23′2x⌋ Complex Projective Space of Dimension n

This space is defined as the quotient space of the unit sphere S2n+1 in
Cn+1 by the partition into circles cut by (complex) lines of Cn+1 passing
through the point 0. It is denoted by CPn.

23.Ix. CPn is homeomorphic to the quotient space of the unit 2n-disk D2n

of the space Cn by the partition whose elements are singletons in the interior
of D2n and circles cut on the boundary sphere S2n−1 by (complex) lines of
Cn passing through the origin 0 ∈ Cn.

23.Jx. CP 0 is a point.

The space CP 1 is a complex projective line.

23.Kx. The complex projective line CP 1 is homeomorphic to S2.

23.Lx. The space CPn is canonically homeomorphic to the quotient space
of the space Cn+1 r0 by the partition into complex lines of Cn+1 punctured
at 0.

Hence, CPn can be regarded as the space of complex-proportional non-
zero complex sequences (x0, x1, . . . , xn). The notation (x0 : x1 : · · · : xn)
and the term homogeneous coordinates introduced in the real case are used
in the same way for the complex case.

23.Mx. The space CPn is canonically homeomorphic to the metric space,
whose points are the (complex) lines of Cn+1 passing through the origin 0,
and the metric is defined as the angle between lines (which takes values in
[0, π/2]).

⌈23′3x⌋ Quaternionic Projective Spaces

Recall that R4 bears a remarkable multiplication, which was discovered
by R. W. Hamilton in 1843. It can be defined by the formula

(x1, x1, x3, x4) × (y1, y2, y3, y4) =

(x1y1 − x2y2 − x3y3 − x4y4, x1y2 + x2y1 + x3y4 − x4y3,

x1y3 − x2y4 + x3y1 + x4y2, x1y4 + x2y3 − x3y2 + x4y1).
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It is bilinear, and to describe it in a shorter way it suffices to specify the
products of the basis vectors. Following Hamilton, the latter are tradition-
ally denoted (in this case) as follows:

1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), and k = (0, 0, 0, 1).

In this notation, 1 is really a unity: (1, 0, 0, 0)× x = x for each x ∈ R4. The
rest of the multiplication table looks as follows:

ij = k, jk = i, ki = j, ji = −k, kj = −i, and ik = −j.
Together with coordinate-wise addition, this multiplication determines a
structure of algebra in R4. Its elements are quaternions.

23.Nx. Check that the quaternion multiplication is associative.

It is not commutative (e.g., ij = k 6= −k = ji). Otherwise, quaternions
are very similar to complex numbers. As in C, there is a transformation
called conjugation acting in the set of quaternions. As well as the conjugation
of complex numbers, it is also denoted by a bar: x 7→ x. It is defined by
the formula (x1, x2, x3, x4) 7→ (x1,−x2,−x3,−x4) and has two remarkable
properties:

23.Ox. We have ab = ba for any two quaternions a and b.

23.Px. We have aa = |a|2, i.e., the product of any quaternion a by the
conjugate quaternion a equals (|a|2, 0, 0, 0).

The latter property allows us to define, for any a ∈ R4, the inverse
quaternion

a−1 = |a|−2a

such that aa−1 = 1.

Hence, the quaternion algebra is a division algebra or a skew field . It is
denoted by H after Hamilton, who discovered it.

In the space Hn = R4n, there are right quaternionic lines, i.e., subsets
{(a1ξ, . . . , anξ) | ξ ∈ H}, and similar left quaternionic lines {(ξa1, . . . , ξan) |
ξ ∈ H}. Each of them is a real 4-dimensional subspace of Hn = R4n.

23.Qx. Find a right quaternionic line that is not a left quaternionic line.

23.Rx. Prove that two right quaternionic lines in Hn either meet only at 0,
or coincide.

The quotient space of the unit sphere S4n+3 of the space Hn+1 = R4n+4

by the partition into its intersections with right quaternionic lines is the
(right) quaternionic projective space of dimension n. Similarly, but with left
quaternionic lines, we define the (left) quaternionic projective space of dimen-

sion n.
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23.Sx. Are the right and left quaternionic projective space of the same
dimension homeomorphic?

The left quaternionic projective space of dimension n is denoted by HPn.

23.Tx. HP 0 is a singleton.

23.Ux. HPn is homeomorphic to the quotient space of the closed unit disk
D4n in Hn by the partition into points of the interior ofD4n and the 3-spheres
that are intersections of the boundary sphere S4n−1 with (left quaternionic)
lines of Hn.

The space HP 1 is the quaternionic projective line.

23.Vx. Quaternionic projective line HP 1 is homeomorphic to S4.

23.Wx. HPn is canonically homeomorphic to the quotient space of Hn+1r0
by the partition to left quaternionic lines of Hn+1 passing through the origin
and punctured at it.

Hence, HPn can be presented as the space of classes of left proportional
(in the quaternionic sense) nonzero sequences (x0, . . . , xn) of quaternions.
The notation (x0 : x1 : · · · : xn) and the term homogeneous coordinates in-
troduced above in the real case are used in the same way in the quaternionic
situation.

23.Xx. HPn is canonically homeomorphic to the set of (left quaternionic)
lines of Hn+1 equipped with the topology generated by the angular metric
(which takes values in

[
0, π/2

]
).
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24x. Finite Topological Spaces

⌈24′1x⌋ Set-Theoretic Digression:
Splitting a Transitive Relation
Into Equivalence and Partial Order

In the definitions of equivalence and partial order relations, the condition
of transitivity seems to be the most important. Below, we supply a formal
justification of this feeling by showing that the other conditions are natural
companions of transitivity, although they are not its consequences.

24.Ax. Let ≺ be a transitive relation on a set X. Then the relation -

defined by
a - b if a ≺ b or a = b

is also transitive (and, furthermore, it is certainly reflexive, i.e., a - a for
each a ∈ X).

A binary relation - on a set X is a preorder if it is transitive and reflec-
tive, i.e., satisfies the following conditions:

• Transitivity . If a - b and b - c, then a - c.

• Reflexivity . We have a - a for any a.

A set X equipped with a preorder is preordered .

If a preorder is antisymmetric, then this is a nonstrict order.

24.1x. Is the relation a | b a preorder on the set Z of integers?

24.Bx. If (X,-) is a preordered set, then the relation ∼ defined by

a ∼ b if a - b and b - a

is an equivalence relation (i.e., it is symmetric, reflexive, and transitive) on
X.

24.2x. What equivalence relation is defined on Z by the preorder a | b?

24.Cx. Let (X,-) be a preordered set, and let ∼ be an equivalence relation
defined on X by - according to 24.Bx. Then a′ ∼ a, a - b, and b ∼ b′ imply
a′ - b′ and in this way - determines a relation on the set of equivalence
classes X/∼. This relation is a nonstrict partial order.

Thus, any transitive relation generates an equivalence relation and a
partial order on the set of equivalence classes.

24.Dx. How this chain of constructions would degenerate if the original
relation was

(1) an equivalence relation, or
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(2) nonstrict partial order?

24.Ex. In any topological space, the relation - defined by

a - b if a ∈ Cl{b}
is a preorder.

24.3x. In the set of all subsets of an arbitrary topological space, the relation

A - B if A ⊂ ClB

is a preorder. This preorder determines the following equivalence relation: two
sets are equivalent iff they have the same closure.

24.Fx. The equivalence relation determined by the preorder which is defined
in Theorem 24.Ex determines the partition of the space into maximal (with
respect to inclusion) indiscrete subspaces. The quotient space satisfies the
Kolmogorov separation axiom T0.

The quotient space of Theorem 24.Fx is the maximal T0-quotient of X.

24.Gx. A continuous image of an indiscrete space is indiscrete.

24.Hx. Prove that any continuous map X → Y induces a continuous map
of the maximal T0-quotient of X to the maximal T0-quotient of Y .

⌈24′2x⌋ The Structure of Finite Topological Spaces

The results of the preceding subsection provide a key to understanding
the structure of finite topological spaces. Let X be a finite space. By
Theorem 24.Fx, X is partitioned to indiscrete clusters of points. By 24.Gx,
continuous maps between finite spaces respect these clusters and, by 24.Hx,
induce continuous maps between the maximal T0-quotient spaces.

This means that we can consider a finite topological space as its maximal
T0-quotient whose points are equipped with multiplicities, which are positive
integers: the numbers of points in the corresponding clusters of the original
space.

The maximal T0-quotient of a finite space is a smallest neighborhood
space (as a finite space). By Theorem 15.O, its topology is determined by
a partial order. By Theorem 10.Xx, homeomorphisms between spaces with
poset topologies are monotone bijections.

Thus, a finite topological space is characterized up to homeomorphism
by a finite poset whose elements are equipped with multiplicities (positive
integers). Two such spaces are homeomorphic iff there exists a monotone
bijection between the corresponding posets that preserves the multiplicities.
To recover the topological space from a poset with multiplicities, we must
equip the poset with the poset topology and then replace each of its ele-
ments by an indiscrete cluster of points, the number points in which is the
multiplicity of the element.
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⌈24′3x⌋ Simplicial Schemes

Let V be a set, Σ a certain set of subsets of V . A pair (V,Σ) is a simplicial

scheme with the set of vertices V and the set of simplices Σ if

• each subset of each set in Σ belongs to Σ,

• the intersection of any collection of sets in Σ belongs to Σ,

• each singleton in V belongs to Σ.

The set Σ is partially ordered by inclusion. When equipped with the poset
topology of this partial order, it is called the space of simplices of the sim-
plicial scheme (X,Σ).

A simplicial scheme also yields another topological space. Namely, for
a simplicial scheme (V,Σ), consider the set S(V,Σ) of all functions c : V →
[0, 1] such that

Supp(c) = {v ∈ V | c(v) 6= 0} ∈ Σ

and
∑

v∈V c(v) = 1. Equip S(V,Σ) with the topology generated by metric

ρ(c1, c2) = sup
v∈V

|c1(v) − c2(v)|.

The space S(V,Σ) is a simplicial or triangulated space. It is covered by
the sets {c ∈ S | Supp(c) = σ}, where σ ∈ Σ, which are called its (open)
simplices.

24.4x. Which open simplices of a simplicial space are open sets, which are closed,
and which are neither closed nor open?

24.Ix. For each σ ∈ Σ, find a homeomorphism of the space

{c ∈ S | Supp(c) = σ} ⊂ S(V,Σ)

onto an open simplex whose dimension is one less than the number of vertices
belonging to σ. (Recall that the open n-simplex is the set {(x1, . . . , xn+1) ∈
Rn+1 | xj > 0 for j = 1, . . . , n+ 1 and

∑n+1
i=1 xi = 1}.)

24.Jx. Prove that for each simplicial scheme (V,Σ) the quotient space of the
simplicial space S(V,Σ) by its partition into open simplices is homeomorphic
to the space Σ of simplices of the simplicial scheme (V,Σ).

⌈24′4x⌋ Barycentric Subdivision of a Poset

24.Kx. Find a poset which is not isomorphic to the set of simplices (ordered
by inclusion) of whatever simplicial scheme.

Let (X,≺) be a poset. Consider the set X ′ of all nonempty finite strictly
increasing sequences a1 ≺ a2 ≺ · · · ≺ an of elements of X. It can also be
described as the set of all nonempty finite subsets of X in each of which ≺
determines a linear order. It is naturally ordered by inclusion.
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The poset (X ′,⊂) is the barycentric subdivision of (X,≺).

24.Lx. For any poset (X,≺), the pair (X,X ′) is a simplicial scheme.

There is a natural map X ′ → X that sends an element of X ′ (i.e., a
nonempty finite linearly ordered subset of X) to its greatest element.

24.Mx. Is this map monotone? Strictly monotone? The same questions
concerning a similar map that sends a nonempty finite linearly ordered sub-
set of X to its smallest element.

Let (V,Σ) be a simplicial scheme, and let Σ′ be the barycentric sub-
division of Σ (ordered by inclusion). The simplicial scheme (Σ,Σ′) is the
barycentric subdivision of the simplicial scheme (V,Σ).

There is a natural mapping Σ → S(V,Σ) that sends a simplex σ ∈ Σ
(i.e., a subset {v0, v1, . . . , vn} of V ) to the function bσ : V → R with bσ(vi) =
1/(n + 1) and bσ(v) = 0 for any v 6∈ σ.

Define a map β : S(Σ,Σ′) → S(V,Σ) that sends a function ϕ : Σ → R

to the function
V → R : v 7→

∑

σ∈Σ

ϕ(σ)bσ(v).

24.Nx. Prove that the map β : S(Σ,Σ′) → S(V,Σ) is a homeomorphism and
constitutes, together with the projections S(V,Σ) → Σ and S(Σ,Σ′) → Σ′

and the natural map Σ′ → Σ, a commutative diagram

S(Σ,Σ′)
β−−−−→ S(V,Σ)

y
y

Σ′ −−−−→ Σ
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25x. Spaces of Continuous Maps

⌈25′1x⌋ Sets of Continuous Mappings

We denote by C(X,Y ) the set of all continuous maps of a space X to a
space Y .

25.1x. Let X be nonempty. Prove that C(X,Y ) is a singleton iff so is Y .

25.2x. Let X be nonempty. Prove that there exists an injection Y → C(X,Y ).
In other words, the cardinality card C(X,Y ) of C(X,Y ) is greater than or equal to
cardY .

25.3x. Riddle. Find natural conditions implying that C(X,Y ) = Y .

25.4x. Let Y = {0, 1} be equipped with the topology {∅, {0}, {0, 1}}. Prove that
there exists a bijection between C(X,Y ) and the topological structure of X.

25.5x. Let X be an n-element discrete space. Prove that C(X,Y ) can be identified
with Y × · · · × Y (n factors).

25.6x. Let Y be a k-element discrete space. Find a necessary and sufficient
condition for the set C(X,Y ) to contain k2 elements.

⌈25′2x⌋ Topologies on a Set of Continuous Mappings

Let X and Y be two topological spaces, A ⊂ X, and B ⊂ Y . We define
W (A,B) = {f ∈ C(X,Y ) | f(A) ⊂ B},

∆(pw) = {W (a,U) | a ∈ X, U is open in Y },
and

∆(co) = {W (C,U) | C ⊂ X is compact, U is open in Y }.

25.Ax. ∆(pw) is a subbase of a topological structure on C(X,Y ).

The topological structure generated by ∆(pw) is the topology of pointwise

convergence. The set C(X,Y ) equipped with this structure is denoted by
C(pw)(X,Y ).

25.Bx. ∆(co) is a subbase of a topological structures on C(X,Y ).

The topological structure determined by ∆(co) is the compact-open topol-

ogy . Hereafter we denote by C(X,Y ) the space of all continuous maps
X → Y with the compact-open topology, unless the contrary is specified
explicitly.

25.Cx Compact-Open Versus Pointwise. The compact-open topology
is finer than the topology of pointwise convergence.

25.7x. Prove that C(I, I) is not homeomorphic to C(pw)(I, I).

Denote by Const(X,Y ) the set of all constant maps f : X → Y .
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25.8x. Prove that the topology of pointwise convergence and the compact-open
topology of C(X,Y ) induce the same topological structure on Const(X,Y ), which,
with this topology, is homeomorphic Y .

25.9x. Let X be an n-element discrete space. Prove that C(pw)(X,Y ) is homeo-
morphic Y × · · · × Y (n times). Is this true for C(X,Y )?

⌈25′3x⌋ Topological Properties of Mapping Spaces

25.Dx. If Y is Hausdorff, then C(pw)(X,Y ) is Hausdorff for any space X.
Is this true for C(X,Y )?

25.10x. Prove that C(I,X) is path-connected iff so is X.

25.11x. Prove that C(pw)(I, I) is not compact. Is the space C(I, I) compact?

⌈25′4x⌋ Metric Case

25.Ex. If Y is metrizable and X is compact, then C(X,Y ) is metrizable.

Let (Y, ρ) be a metric space, X a compact space. For continuous maps
f, g : X → Y , let

d(f, g) = max{ρ(f(x), g(x)) | x ∈ X}.

25.Fx This is a Metric. If X is a compact space and Y a metric space,
then d is a metric on the set C(X,Y ).

LetX be a topological space, Y a metric space with metric ρ. A sequence
fn of maps X → Y uniformly converges to f : X → Y if for each ε > 0 there
exists a positive integer N such that ρ(fn(x), f(x)) < ε for any n > N and
x ∈ X. This is a straightforward generalization of the notion of uniform
convergence which is known from Calculus.

25.Gx Metric of Uniform Convergence. Let X be a compact space,
(Y, d) a metric space. A sequence fn of mapsX → Y converges to f : X → Y
in the topology generated by d iff fn uniformly converges to f .

25.Hx Completeness of C(X,Y ). Let X be a compact space, (Y, ρ) a
complete metric space. Then

(
C(X,Y ), d

)
is a complete metric space.

25.Ix Uniform Convergence Versus Compact-Open. Let X be a com-
pact space, Y a metric space. Then the topology generated by d on C(X,Y )
is the compact-open topology.

25.12x. Prove that the space C(R, I) is metrizable.

25.13x. Let Y be a bounded metric space, and let X be a topological space
admitting a presentation X =

S

∞

i=1Xi, where Xi is compact and Xi ⊂ IntXi+1

for each i = 1, 2, . . . . Prove that C(X,Y ) is metrizable.
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Denote by Cb(X,Y ) the set of all continuous bounded maps from a topo-
logical space X to a metric space Y . For maps f, g ∈ Cb(X,Y ), put

d∞(f, g) = sup{ρ(f(x), g(x)) | x ∈ X}.
25.Jx Metric on Bounded Maps. This is a metric on Cb(X,Y ).

25.Kx d∞ and Uniform Convergence. Let X be a topological space,
Y a metric space. A sequence fn of bounded maps X → Y converges to
f : X → Y in the topology generated by d∞ iff fn uniformly converge to f .

25.Lx When Uniform Is not Compact-Open. Find X and Y such that
the topology generated by d∞ on Cb(X,Y ) is not the compact-open topology.

⌈25′5x⌋ Interactions with Other Constructions

25.Mx. For any continuous maps ϕ : X ′ → X and ψ : Y → Y ′, the map
C(X,Y ) → C(X ′, Y ′) : f 7→ ψ ◦ f ◦ ϕ is continuous.

25.Nx Continuity of Restricting. Let X and Y be two spaces, A ⊂ X
a subset. Prove that the map C(X,Y ) → C(A,Y ) : f 7→ f |A is continuous.

25.Ox Extending Target. For any spaces X and Y and any B ⊂ Y , the
map C(X,B) → C(X,Y ) : f 7→ iB ◦ f is a topological embedding.

25.Px Maps to Product. For any three spaces X, Y , and Z, the space
C(X,Y × Z) is canonically homeomorphic to C(X,Y ) × C(X,Z).

25.Qx Restricting to Sets Covering Source. Let {X1, . . . ,Xn} be a
closed cover of X. Prove that for each space Y the map

φ : C(X,Y ) →
n∏

i=1

C(Xi, Y ) : f 7→ (f |X1 , . . . , f |Xn)

is a topological embedding. What if the cover is not fundamental?

25.Rx. Riddle. Can you generalize assertion 25.Qx?

25.Sx Continuity of Composing. Let X be a space, Y a locally compact
Hausdorff space. Prove that the map

C(X,Y ) × C(Y,Z) → C(X,Z) : (f, g) 7→ g ◦ f
is continuous.

25.14x. Is local compactness of Y necessary in 25.Sx?

25.Tx Factorizing Source. Let S be a closed partition2 of a Hausdorff
compact space X. Prove that for any space Y the map

φ : C(X/S, Y ) → C(X,Y )

is a topological embedding.

2Recall that a partition is closed if the saturation of each closed set is closed.
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25.15x. Are the conditions imposed on S and X in 25.Tx necessary?

25.Ux The Evaluation Map. Let X and Y be two spaces. Prove that if
X is locally compact and Hausdorff, then the map

φ : C(X,Y ) ×X → Y : (f, x) 7→ f(x)

is continuous.

25.16x. Are the conditions imposed on X in 25.Ux necessary?

⌈25′6x⌋ Mappings X × Y → Z and X → C(Y, Z)

25.Vx. Let X, Y , and Z be three topological spaces, f : X × Y → Z a
continuous map. Then the map

F : X → C(Y,Z) : F (x) : y 7→ f(x, y),

is continuous.

The converse assertion is also true under certain additional assumptions.

25.Wx. Let X and Z be two spaces, Y a Hausdorff locally compact space,
F : X → C(Y,Z) a continuous map. Then the map f : X × Y → Z :
(x, y) 7→ F (x)(y) is continuous.

25.Xx. If X is a Hausdorff space and the collection ΣY = {Uα} is a subbase
of the topological structure of Y , then the collection {W (K,U) | U ∈ Σ} is
a subbase of the compact-open topology on C(X,Y ).

25.Yx. Let X, Y , and Z be three spaces. Let

Φ : C(X × Y,Z) → C(X, C(Y,Z))

be defined by the relation

Φ(f)(x) : y 7→ f(x, y).

Then

(1) if X is a Hausdorff space, then Φ is continuous;

(2) if X is a Hausdorff space, while Y is locally compact and Hausdorff,
then Φ is a homeomorphism.

25.Zx. Let S be a partition of a space X, and let pr : X → X/S be the
projection. The space X × Y bears a natural partition S′ = {A × y | A ∈
S, y ∈ Y }. If the space Y is Hausdorff and locally compact, then the natural
quotient map f : (X × Y )/S′ → X/S × Y of the projection pr× idY is a
homeomorphism.

25.17x. Try to prove Theorem 25.Zx directly.



Chapter V

Topological Algebra

In this chapter, we study topological spaces strongly related to groups: either
the space itself is a group in a nice way (so that all the maps coming from
group theory are continuous), or a group acts on a topological space and
can be thought of as consisting of homeomorphisms.

This material has interdisciplinary character. Although it plays impor-
tant roles in many areas of Mathematics, it is not so important in the frame-
work of general topology. Quite often, this material can be postponed till
the introductory chapters of the mathematical courses that really require it
(functional analysis, Lie groups, etc.). In the framework of general topology,
this material provides a great collection of exercises.

In the second part of the book, which is devoted to algebraic topology,
groups appear in a more profound way. So, the reader will meet groups no
later than the next chapter, when studying fundamental groups.

Groups are attributed to algebra. In the mathematics built on sets,
main objects are sets with additional structure. Above, we met a few of the
most fundamental of these structures: topology, metric, and (partial) order.
Topology and metric evolved from geometric considerations. Algebra stud-
ied algebraic operations with numbers and similar objects and introduced
into the set-theoretic Mathematics various structures based on operations.
One of the simplest (and most versatile) of these structures is the structure
of a group. It emerges in an overwhelming majority of mathematical envi-
ronments. It often appears together with topology and in a nice interaction
with it. This interaction is a subject of topological algebra.

The second part of this book is called Algebraic Topology. It also treats
the interaction of topology and algebra, spaces and groups. But this is a

139



140 V. Topological Algebra

completely different interaction. There the structures of topological space
and group do not live on the same set, but the group encodes topological
properties of the space.
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26x. Generalities on Groups

This section is included mainly to recall the most elementary definitions and
statements concerning groups. We do not mean to present a self-contained
outline of the group theory. The reader is actually assumed to be familiar
with groups, homomorphisms, subgroups, quotient groups, etc.

If this is not yet so, we recommend reading one of the numerous algebraic
textbooks covering the elementary group theory. The mathematical culture,
which must be acquired for mastering the material presented previously in
this book, would make this an easy and pleasant exercise.

As a temporary solution, the reader can read a few definitions and prove
a few theorems gathered in this section. They provide a sufficient basis for
most of what follows.

⌈26′1x⌋ The Notion of Group

Recall that a group is a set G equipped with a group operation. A group

operation on a set G is a map ω : G×G → G satisfying the following three
conditions (known as group axioms):

• Associativity. ω(a, ω(b, c)) = ω(ω(a, b), c) for any a, b, c ∈ G.

• Existence of Neutral Element. There exists e ∈ G such that
ω(e, a) = ω(a, e) = a for every a ∈ G.

• Existence of Inverse Element. For any a ∈ G, there exists
b ∈ G such that ω(a, b) = ω(b, a) = e.

26.Ax Uniqueness of Neutral Element. A group contains a unique
neutral element.

26.Bx Uniqueness of Inverse Element. Each element of a group has a
unique inverse element.

26.Cx First Examples of Groups. In each of the following situations,
check if we have a group. What is its neutral element? How to calculate the
element inverse to a given one?

• The set G is the set Z of integers, and the group operation is
addition: ω(a, b) = a+ b.

• The set G is the set Q>0 of positive rational numbers, and the
group operation is multiplication: ω(a, b) = ab.

• G = R, and ω(a, b) = a+ b.

• G = C, and ω(a, b) = a+ b.

• G = R r 0, and ω(a, b) = ab.



142 V. Topological Algebra

• G is the set of all bijections of a set A onto itself, and the group
operation is composition: ω(a, b) = a ◦ b.

26.1x Simplest Group. 1) Can a group be empty? 2) Can it consist of one
element?

A group consisting of one element is trivial .

26.2x Solving Equations. Let G be a set with an associative operation ω :
G×G→ G. Prove that G is a group iff for any a, b ∈ G the set G contains a unique
element x such that ω(a, x) = b and a unique element y such that ω(y, a) = b.

⌈26′2x⌋ Additive Versus Multiplicative

The above notation is never used! (The only exception may happen,
as here, when the definition of group is discussed.) Instead, one uses either
multiplicative or additive notation.

Under the multiplicative notation, the group operation is called multipli-

cation and also denoted as multiplication: (a, b) 7→ ab. The neutral element
is called unity and denoted by 1 or 1G (or e). The element inverse to a is
denoted by a−1. This notation is borrowed, say, from the case of nonzero
rational numbers with the usual multiplication.

Under the additive notation, the group operation is called addition and
also denoted as addition: (a, b) 7→ a+ b. The neutral element is called zero

and denoted by 0. The element inverse to a is denoted by −a. This notation
is borrowed, say, from the case of integers with the usual addition.

An operation ω : G × G → G is commutative if ω(a, b) = ω(b, a) for
any a, b ∈ G. A group with commutative group operation is commutative

or Abelian. Traditionally, the additive notation is used only in the case
of commutative groups, while the multiplicative notation is used both in
the commutative and noncommutative cases. Below, we mostly use the
multiplicative notation.

26.3x. In each of the following situations, check if we have a group:

(1) a singleton {a} with multiplication aa = a,
(2) the set Sn of bijections of the set {1, 2, . . . , n} of the first n positive

integers onto itself with multiplication determined by composition (the
symmetric group of degree n),

(3) the sets Rn, Cn, and Hn with coordinate-wise addition,
(4) the set Homeo(X) of all homeomorphisms of a topological space X with

multiplication determined by composition,
(5) the set GL(n,R) of invertible real n×n matrices equipped with matrix

multiplication,
(6) the set Mn(R) of all real n × n matrices with addition determined by

addition of matrices,
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(7) the set of all subsets of a set X with multiplication determined by the
symmetric difference:

(A,B) 7→ A△B = (A ∪B) r (A ∩ B),

(8) the set Zn of classes of positive integers congruent modulo n with ad-
dition determined by addition of positive integers,

(9) the set of complex roots of unity of degree n equipped with usual mul-
tiplication of complex numbers,

(10) the set R>0 of positive reals with usual multiplication,
(11) S1 ⊂ C with standard multiplication of complex numbers,
(12) the set of translations of a plane with multiplication determined by

composition.

Associativity implies that every finite sequence of elements in a group
has a well-defined product, which can be calculated by a sequence of pairwise
multiplications determined by any placement of parentheses, say, abcde =
(ab)(c(de)). The distribution of the parentheses is immaterial. In the case of
a three-element sequence, this is precisely the associativity: (ab)c = a(bc).

26.Dx. Derive from the associativity that the product of any length does
not depend on the position of the parentheses.

For an element a of a group G, the powers an with n ∈ Z are defined by
the following formulas: a0 = 1, an+1 = ana, and a−n = (a−1)n.

26.Ex. Prove that raising to a power has the following properties: apaq =
ap+q and (ap)q = apq.

⌈26′3x⌋ Homomorphisms

Recall that a map f : G → H of a group to another one is a homomor-

phism if f(xy) = f(x)f(y) for any x, y ∈ G.

26.4x. In the above definition of a homomorphism, the multiplicative notation is
used. How does this definition look in the additive notation? What if one of the
groups is multiplicative, while the other is additive?

26.5x. Let a be an element of a multiplicative group G. Is the map Z → G : n 7→
an a homomorphism?

26.Fx. Let G and H be two groups. Is the constant map G→ H mapping
the entire G to the neutral element of H a homomorphism? Is any other
constant map G→ H a homomorphism?

26.Gx. A homomorphism maps the neutral element to the neutral element,
and it maps mutually inverse elements to mutually inverse elements.

26.Hx. The identity map of a group is a homomorphism. The composition
of homomorphisms is a homomorphism.
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Recall that a homomorphism f is an epimorphism if f is surjective, f is
a monomorphism if f is injective, and f is an isomorphism if f is bijective.

26.Ix. The map inverse to an isomorphism is also an isomorphism.

Two groups are isomorphic if there exists an isomorphism of one of them
onto another one.

26.Jx. Isomorphism is an equivalence relation.

26.6x. Show that the additive group R is isomorphic to the multiplicative group
R>0.

⌈26′4x⌋ Subgroups

A subset A of a group G is a subgroup of G if A is invariant under the
group operation of G (i.e., for any a, b ∈ A we have ab ∈ A) and A equipped
with the group operation induced by that on G is a group.

For two subsets A and B of a multiplicative group G, we put AB = {ab |
a ∈ A, b ∈ B} and A−1 = {a−1 | a ∈ A}.
26.Kx. A subsetA of a multiplicative groupG is a subgroup ofG iff AA ⊂ A
and A−1 ⊂ A.

26.7x. The singleton consisting of the neutral element is a subgroup.

26.8x. Prove that a subset A of a finite group is a subgroup if AA ⊂ A. (The
condition A−1 ⊂ A is superfluous in this case.)

26.9x. List all subgroups of the additive group Z.

26.10x. Is GL(n,R) a subgroup of Mn(R)? (See 26.3x for notation.)

26.Lx. The image of a group homomorphism f : G → H is a subgroup of
H.

26.Mx. Let f : G → H be a group homomorphism, K a subgroup of H.
Then f−1(K) is a subgroup of G.

In short: The preimage of a subgroup under a group homomorphism is
a subgroup.

The preimage of the neutral element under a group homomorphism f :
G→ H is called the kernel of f and denoted by Ker f .

26.Nx Corollary of 26.Mx. The kernel of a group homomorphism is a
subgroup.

26.Ox. A group homomorphism is a monomorphism iff its kernel is trivial.

26.Px. The intersection of any collection of subgroups of a group is also a
subgroup.

A subgroup H of a group G is generated by a subset S ⊂ G if H is the
smallest subgroup of G containing S.
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26.Qx. The subgroup H generated by S is the intersection of all subgroups
of G that contain S. On the other hand, H is the set of all elements that
are products of elements in S and elements inverse to elements in S.

The elements of a set that generates G are generators of G. A group
generated by one element is cyclic .

26.Rx. A cyclic (multiplicative) group consists of powers of its generator
(i.e., if G is a cyclic group and a generates G, then G = {an | n ∈ Z}). Any
cyclic group is commutative.

26.11x. A group G is cyclic iff there exists an epimorphism f : Z → G.

26.Sx. A subgroup of a cyclic group is cyclic.

The number of elements in a group G is the order of G. It is denoted by
|G|.
26.Tx. Let G be a finite cyclic group, d a positive divisor of |G|. Then G
contains a unique subgroup H with |H| = d.

Each element of a group generates a cyclic subgroup, which consists
of all powers of this element. The order of the subgroup generated by a
(nontrivial) element a ∈ G is the order of a. It can be a positive integer or
the infinity.

For each subgroup H of a group G, the right cosets of H are the sets
Ha = {xa | x ∈ H}, a ∈ G. Similarly, the sets aH are the left cosets of H.
The number of distinct right (or left) cosets of H is the index of H.

26.Ux Lagrange theorem. If H is a subgroup of a finite group G, then
the order of H divides that of G.

A subgroupH of a group G is normal if for any h ∈ H and a ∈ G we have
aha−1 ∈ H. Normal subgroups are also called normal divisors or invariant

subgroups.

If the subgroup is normal, then left cosets coincide with right cosets,
and the set of cosets is a group with multiplication defined by the formula
(aH)(bH) = abH. The group of cosets of H in G is called the quotient group

or factor group of G by H and denoted by G/H.

26.Vx. The kernel Ker f of a homomorphism f : G → H is a normal
subgroup of G.

26.Wx. The image f(G) of a homomorphism f : G → H is isomorphic to
the quotient group G/Ker f of G by the kernel of f .

26.Xx. The quotient group R/Z is canonically isomorphic to the group S1.
Describe the image of the group Q ⊂ R under this isomorphism.
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26.Yx. Let G be a group, A a normal subgroup of G, and B an arbitrary
subgroup of G. Then AB is also a normal subgroup of G, while A ∩B is a
normal subgroup of B. Furthermore, we have AB/A ∼= B/A ∩B.
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27x. Topological Groups

⌈27′1x⌋ Notion of Topological Group

A topological group is a set G equipped with both a topological structure
and a group structure such that the maps G × G → G : (x, y) 7→ xy and
G→ G : x 7→ x−1 are continuous.

27.1x. Let G be a group and a topological space simultaneously. Prove that the
maps ω : G×G→ G : (x, y) 7→ xy and α : G→ G : x 7→ x−1 are continuous iff so
is the map β : G×G→ G : (x, y) 7→ xy−1.

27.2x. Prove that if G is a topological group, then the inversion G→ G : x 7→ x−1

is a homeomorphism.

27.3x. Let G be a topological group, X a topological space, f, g : X → G two
maps continuous at a point x0 ∈ X. Prove that the maps X → G : x 7→ f(x)g(x)
and X → G : x 7→ (f(x))−1 are continuous at x0.

27.Ax. A group equipped with the discrete topology is a topological group.

27.4x. Is a group equipped with the indiscrete topology a topological group?

⌈27′2x⌋ Examples of Topological Groups

27.Bx. The groups listed in 26.Cx equipped with standard topologies are
topological groups.

27.5x. The unit circle S1 = {|z| = 1} ⊂ C with the standard multiplication is a
topological group.

27.6x. In each of the following situations, check if we have a topological group.

(1) The spaces Rn, Cn, and Hn with coordinate-wise addition. (Cn is iso-
morphic to R2n, while Hn is isomorphic to C2n.)

(2) The sets Mn(R), Mn(C), and Mn(H) of all n × n matrices with real,
complex, and, respectively, quaternion entries, equipped with the prod-

uct topology and entry-wise addition. (We identify Mn(R) with Rn
2

,

Mn(C) with Cn
2

, and Mn(H) with Hn2

.)
(3) The sets GL(n,R), GL(n,C), and GL(n,H) of invertible n×n matrices

with real, complex, and quaternionic entries, respectively, under the
matrix multiplication.

(4) SL(n,R), SL(n,C), O(n), O(n,C), U(n), SO(n), SO(n,C), SU(n), and
other subgroups of GL(n,K) with K = R, C, or H.

27.7x. Introduce a topological group structure on the additive group R that would
be distinct from the usual, discrete, and indiscrete topological structures.

27.8x. Find two nonisomorphic connected topological groups that are homeomor-
phic as topological spaces.

27.9x. On the set G = [0, 1) (equipped with the standard topology), we define
addition as follows: ω(x, y) = x+ y (mod 1). Is (G,ω) a topological group?
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⌈27′3x⌋ Translations and Conjugations

Let G be a group. Recall that the maps La : G → G : x 7→ ax and
Ra : G → G : x 7→ xa are left and right translations through a, respectively.
Note that La ◦Lb = Lab, while Ra ◦Rb = Rba. (To “repair” the last relation,
some authors define right translations by x 7→ xa−1.)

27.Cx. A translation of a topological group is a homeomorphism.

Recall that the conjugation of a group G by an element a ∈ G is the map
G→ G : x 7→ axa−1.

27.Dx. The conjugation of a topological group by any of its elements is a
homeomorphism.

The following simple observation allows a certain “uniform” treatment of
the topology on a group: neighborhoods of distinct points can be compared.

27.Ex. If U is an open set in a topological group G, then for each x ∈ G
the sets xU , Ux, and U−1 are open.

27.10x. Does the same hold true for closed sets?

27.11x. Prove that if U and V are subsets of a topological group G and U is
open, then UV and V U are open.

27.12x. Will the same hold true if we replace everywhere the word open by the
word closed?

27.13x. Are the following subgroups of the additive group R closed?

(1) Z,

(2)
√

2 Z,

(3) Z +
√

2 Z?

27.14x. Let G be a topological group, U ⊂ G a compact subset, V ⊂ G a closed
subset. Prove that UV and V U are closed.

27.14x.1. Let F and C be two disjoint subsets of a topological group
G. If F is closed and C is compact, then 1G has a neighborhood V such
that CV ∪ V C does not meet F . If G is locally compact, then V can be
chosen so that Cl(CV ∪ V C) is compact.

⌈27′4x⌋ Neighborhoods

27.Fx. Let Γ be a neighborhood base of a topological group G at 1G. Then
Σ = {aU | a ∈ G, U ∈ Γ} is a base for topology of G.

A subset A of a group G is symmetric if A−1 = A.

27.Gx. Any neighborhood of 1 in a topological group contains a symmetric
neighborhood of 1.

27.Hx. For any neighborhood U of 1 in a topological group, 1 has a neigh-
borhood V such that V V ⊂ U .
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27.15x. Let G be a topological group, U a neighborhood of 1G, and n a positive
integer. Then 1G has a symmetric neighborhood V such that V n ⊂ U .

27.16x. Let V be a symmetric neighborhood of 1G in a topological group G. Then
S

∞

n=1 V
n is an open-closed subgroup.

27.17x. Let G be a group, Σ be a collection of subsets of G. Prove that G carries
a unique topology Ω such that Σ is a neighborhood base for Ω at 1G and (G,Ω)
is a topological group, iff Σ satisfies the following five conditions:

(1) each U ∈ Σ contains 1G,
(2) for every x ∈ U ∈ Σ, there exists V ∈ Σ such that xV ⊂ U ,
(3) for each U ∈ Σ, there exists V ∈ Σ such that V −1 ⊂ U ,
(4) for each U ∈ Σ, there exists V ∈ Σ such that V V ⊂ U ,
(5) for any x ∈ G and U ∈ Σ, there exists V ∈ Σ such that V ⊂ x−1Ux.

27.Ix. Riddle. In what sense is 27.Hx similar to the triangle inequality?

27.Jx. Let C be a compact subset of G. Prove that for every neighborhood
U of 1G the unity 1G has a neighborhood V such that V ⊂ xUx−1 for every
x ∈ C.

⌈27′5x⌋ Separation Axioms

27.Kx. A topological groupG is Hausdorff, iff G satisfies the first separation
axiom, iff the unity 1G (or, more precisely, the singleton {1G}) is closed.

27.Lx. A topological group G is Hausdorff iff the unity 1G is the intersection
of its neighborhoods.

27.Mx. If the unity of a topological group G is closed, then G is regular
(as a topological space).

Use the following fact.

27.Mx.1. Let G be a topological group, U ⊂ G a neighborhood of 1G. Then
1G has a neighborhood V with closure contained in U : ClV ⊂ U .

27.Nx Corollary. For topological groups, the first three separation axioms
are equivalent.

27.18x. Prove that a finite group carries as many topological group structures as
there are normal subgroups. Namely, each finite topological group G contains a
normal subgroup N such that the sets gN with g ∈ G form a base for the topology
of G.

⌈27′6x⌋ Countability Axioms

27.Ox. If Γ is a neighborhood base at 1G in a topological group G and
S ⊂ G is a dense set, then Σ = {aU | a ∈ S,U ∈ Γ} is a base for the
topology of G. (Cf. 27.Fx and 16.H.)

27.Px. A first countable separable topological group is second countable.
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27.19x*. (Cf. 16.Zx) A first countable Hausdorff topological group G is metriz-
able. Furthermore, G can be equipped with a right (left) invariant metric.
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28x. Constructions

⌈28′1x⌋ Subgroups

28.Ax. Let H be a subgroup of a topological group G. Then the topological
and group structures induced from G make H a topological group.

28.1x. Let H be a subgroup of an Abelian group G. Prove that, given a structure
of topological group in H and a neighborhood base at 1, G carries a structure of
topological group with the same neighborhood base at 1.

28.2x. Prove that a subgroup of a topological group is open iff it contains an
interior point.

28.3x. Prove that every open subgroup of a topological group is also closed.

28.4x. Prove that every closed subgroup of finite index is also open.

28.5x. Find an example of a subgroup of a topological group that

(1) is closed, but not open;
(2) is neither closed, nor open.

28.6x. Prove that a subgroup H of a topological group is a discrete subspace iff
H contains an isolated point.

28.7x. Prove that a subgroup H of a topological group G is closed, iff there exists
an open set U ⊂ G such that U ∩ H = U ∩ ClH 6= ∅, i.e., iff H ⊂ G is locally
closed at one of its points.

28.8x. Prove that if H is a non-closed subgroup of a topological group G, then
ClH r H is dense in ClH .

28.9x. The closure of a subgroup of a topological group is a subgroup.

28.10x. Is it true that the interior of a subgroup of a topological group is a
subgroup?

28.Bx. A connected topological group is generated by any neighborhood of
1.

28.Cx. Let H be a subgroup of a group G. Define a relation: a ∼ b if
ab−1 ∈ H. Prove that this is an equivalence relation, and the right cosets of
H in G are the equivalence classes.

28.11x. What is the counterpart of 28.Cx for left cosets?

Let G be a topological group, H ⊂ G a subgroup. The set of left (re-
spectively, right) cosets of H in G is denoted by G/H (respectively, H\G).
The sets G/H and H\G carry the quotient topology. Equipped with these
topologies, they are called spaces of cosets.

28.Dx. For any topological group G and its subgroup H, the natural pro-
jections G → G/H and G → H\G are open (i.e., the image of every open
set is open).
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28.Ex. The space of left (or right) cosets of a closed subgroup in a topolog-
ical group is regular.

28.Fx. The group G is compact (respectively, connected) if so are H and
G/H.

28.12x. If H is a connected subgroup of a group G, then the preimage of each
connected component of G/H is a connected component of G.

28.13x. We regard the group SO(n− 1) as a subgroup of SO(n). If n ≥ 2, then
the space SO(n)/SO(n − 1) is homeomorphic to Sn−1.

28.14x. The groups SO(n), U(n), SU(n), and Sp(n) are 1) compact and 2)
connected for any n ≥ 1. 3) How many connected components do the groups O(n)
and O(p, q) have? (Here, O(p, q) is the group of linear transformations in Rp+q

preserving the quadratic form x2
1 + · · · + x2

p − y2
1 − · · · − y2

q .)

⌈28′2x⌋ Normal Subgroups

28.Gx. Prove that the closure of a normal subgroup of a topological group
is a normal subgroup.

28.Hx. The connected component of 1 in a topological group is a closed
normal subgroup.

28.15x. The path-connected component of 1 in a topological group is a normal
subgroup.

28.Ix. The quotient group of a topological group is a topological group
(provided that it is equipped with the quotient topology).

28.Jx. The natural projection of a topological group onto its quotient group
is open.

28.Kx. If a topological group G is first (respectively, second) countable,
then so is any quotient group of G.

28.Lx. Let H be a normal subgroup of a topological group G. Then the
quotient group G/H is regular iff H is closed.

28.Mx. Prove that a normal subgroup H of a topological group G is open
iff the quotient group G/H is discrete.

The center of a group G is the set C(G) = {x ∈ G | xg = gx for each g ∈
G}.

28.16x. Each discrete normal subgroup H of a connected group G is contained
in the center of G.
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⌈28′3x⌋ Homomorphisms

In the case of topological groups, a homomorphism is a continuous group
homomorphism.

28.Nx. Let G and H be two topological groups. A group homomorphism
f : G→ H is continuous iff f is continuous at 1G.

Not counting similar modifications, which can be summarized by the fol-
lowing principle: everything is assumed to respect the topological structures,
the terminology of group theory carries over without changes. In particular,
an isomorphism in group theory is an invertible homomorphism. Its inverse is
a homomorphism (and hence an isomorphism) automatically. In the theory
of topological groups, this must be included in the definition: an isomor-

phism of topological groups is an invertible homomorphism whose inverse
is also a homomorphism. In other words, an isomorphism of topological
groups is a map that is both a group isomorphism and a homeomorphism.
Cf. Section 11.

28.17x. Prove that the map [0, 1) → S1 : x 7→ e2πix is a topological group
homomorphism.

28.Ox. An epimorphism f : G → H is an open map iff the injective factor
f/S(f) : G/Ker f → H of f is an isomorphism.

28.Px. An epimorphism of a compact topological group onto a topological
group with closed unity is open.

28.Qx. Prove that the quotient group R/Z of the additive group R by the
subgroup Z is isomorphic to the multiplicative group S1 = {z ∈ C : |z| = 1}
of complex numbers with absolute value 1.

⌈28′4x⌋ Local Isomorphisms

Let G andH be two topological groups. A local isomorphism fromG toH
is a homeomorphism f of a neighborhood U of 1G in G onto a neighborhood
V of 1H in H such that

• f(xy) = f(x)f(y) for any x, y ∈ U such that xy ∈ U ,

• f−1(zt) = f−1(z)f−1(t) for any z, t ∈ V such that zt ∈ V .

Two topological groups G and H are locally isomorphic if there exists a
local isomorphism from G to H.

28.Rx. Isomorphic topological groups are locally isomorphic.

28.Sx. The additive group R and the multiplicative group S1 ⊂ C are
locally isomorphic, but not isomorphic.
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28.18x. Prove that local isomorphism of topological groups is an equivalence
relation.

28.19x. Find neighborhoods of unities in R and S1 and a homeomorphism between
them that satisfies the first condition in the definition of local isomorphism, but
does not satisfy the second one.

28.20x. Prove that if a homeomorphism between neighborhoods of unities in
two topological groups satisfies only the first condition in the definition of local
isomorphism, then it has a submap that is a local isomorphism between these
topological groups.

⌈28′5x⌋ Direct Products

Let G and H be two topological groups. In group theory, the product
G × H is given a group structure.1 In topology, it is given a topological
structure (see Section 20).

28.Tx. These two structures are compatible: the group operations in G×H
are continuous with respect to the product topology.

Thus, G×H is a topological group. It is called the direct product of the
topological groups G and H. There are canonical homomorphisms related
to this: the inclusions iG : G → G×H : x 7→ (x, 1) and iH : H → G×H :
x 7→ (1, x), which are monomorphisms, and the projections prG : G×H →
G : (x, y) 7→ x and prH : G×H → H : (x, y) 7→ y, which are epimorphisms.

28.21x. Prove that the topological groups (G×H)/iH(H) and G are isomorphic.

28.22x. The product operation is both commutative and associative: G × H is
(canonically) isomorphic to H ×G, while G× (H ×K) is canonically isomorphic
to (G×H) ×K.

A topological group G decomposes into a direct product of two subgroups

A and B if the map A × B → G : (x, y) 7→ xy is a topological group
isomorphism. If this is the case, then the groups G and A × B are usually
identified via this isomorphism.

Recall that a similar definition exists in ordinary group theory. The
only difference is that in ordinary group theory an isomorphism is just an
algebraic isomorphism. Furthermore, in that theory, G decomposes into a
direct product of its subgroups A and B iff A and B generate G, A and B
are normal subgroups, and A ∩B = {1}. Therefore, if these conditions are
fulfilled in the case of topological groups, then A× B → G : (x, y) 7→ xy is
a group isomorphism.

28.23x. Prove that in this situation the map A×B → G : (x, y) 7→ xy is contin-
uous. Find an example where the inverse group isomorphism is not continuous.

1Recall that the multiplication in G × H is defined by the formula (x, u)(y, v) = (xy, uv).
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28.Ux. Prove that if a compact Hausdorff groupG decomposes algebraically
into a direct product of two closed subgroups, then G also decomposes into
a direct product of these subgroups as a topological group.

28.24x. Prove that the multiplicative group Rr0 of nonzero reals is isomorphic (as
a topological group) to the direct product of the multiplicative groups S0 = {1,−1}
and R>0 = {x ∈ R | x > 0}.
28.25x. Prove that the multiplicative group C r 0 of nonzero complex numbers
is isomorphic (as a topological group) to the direct product of the multiplicative
groups S1 = {z ∈ C : |z| = 1} and R>0.

28.26x. Prove that the multiplicative group H r 0 of nonzero quaternions is iso-
morphic (as a topological group) to the direct product of the multiplicative groups
S3 = {z ∈ H : |z| = 1} and R>0.

28.27x. Prove that the subgroup S0 = {1,−1} of S3 = {z ∈ H : |z| = 1} is not
a direct factor.

28.28x. Find a topological group homeomorphic to RP 3 (the three-dimensional
real projective space).

Let a group G contain a normal subgroup A and a subgroup B such
that AB = G and A ∩ B = {1G}. If B is also normal, then G is the direct
product A×B. Otherwise, G is a semidirect product of A and B.

28.Vx. Let a topological group G be a semidirect product of its subgroups
A and B. If for any neighborhoods of unity, U ⊂ A and V ⊂ B, their
product UV contains a neighborhood of 1G, then G is homeomorphic to
A×B.

⌈28′6x⌋ Groups of Homeomorphisms

For any topological space X, the autohomeomorphisms of X form a
group under composition as the group operation. We denote this group by
TopX. To make this group topological, we slightly enlarge the topological
structure induced on TopX by the compact-open topology of C(X,X).

28.Wx. The collection of the sets W (C,U) and (W (C,U))−1 taken over all
compact C ⊂ X and open U ⊂ X is a subbase for the topological structure
on TopX.

In what follows, we equip TopX with this topological structure.

28.Xx. If X is Hausdorff and locally compact, then TopX is a topological
group.

28.Xx.1. IfX is Hausdorff and locally compact, then the map TopX×TopX →
TopX : (g, h) 7→ g ◦ h is continuous.
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29x. Actions of Topological Groups

⌈29′1x⌋ Action of a Group on a Set

A left action of a group G on a set X is a map G×X → X : (g, x) 7→ gx
such that 1x = x for each x ∈ X and (gh)x = g(hx) for each x ∈ X and
any g, h ∈ G. A set X equipped with such an action is a left G-set. Right
G-sets are defined in a similar way.

29.Ax. If X is a left G-set, then G × X → X : (x, g) 7→ g−1x is a right
action of G on X.

29.Bx. If X is a left G-set, then the map X → X : x 7→ gx is a bijection
for each g ∈ G.

A left action of G on X is effective (or faithful) if for each g ∈ Gr 1 the
map G→ G : x 7→ gx is not equal to idG. Let X1 and X2 be two left G-sets.
A map f : X1 → X2 is G-equivariant if f(gx) = gf(x) for any x ∈ X and
g ∈ G.

We say that X is a homogeneous left G-set, or, rather, that G acts on X
transitively if there exists g ∈ G such that y = gx for any x, y ∈ X.

The same terminology applies to right actions with obvious modifica-
tions.

29.Cx. The natural actions of G on G/H and H\G transform G/H and

H\G into homogeneous left and, respectively, right G-sets.

Let X be a homogeneous left G-set. Consider a point x ∈ X and the
set Gx = {g ∈ G | gx = x}. We easily see that Gx is a subgroup of G. It is
called the isotropy subgroup of x.

29.Dx. Each homogeneous left (respectively, right) G-set X is isomorphic
to G/H (respectively, H\G), where H is the isotropy group of a certain
point in X.

29.Dx.1. All isotropy subgroups Gx, x ∈ X , are pairwise conjugate.

Recall that the normalizer Nr(H) of a subgroup H of a group G consists
of all elements g ∈ G such that gHg−1 = H. This is the largest subgroup
of G containing H as a normal subgroup.

29.Ex. The group of all automorphisms of a homogeneous G-set X is iso-
morphic to N(H)/H , where H is the isotropy group of a certain point in
X.

29.Ex.1. If two points x, y ∈ X have the same isotropy group, then X has an
automorphism sending x to y.



29x. Actions of Topological Groups 157

⌈29′2x⌋ Continuous Action

We speak about a left G-space X if X is a topological space, G is a
topological group acting on X, and the action G × X → X is continuous
(as a map). All terminology (and definitions) concerning G-sets extends to
G-spaces literally.

Note that if G is a discrete group, then each action of G by homeomor-
phisms is continuous and thus provides a G-space.

29.Fx. Let X be a left G-space. Then the natural map φ : G → TopX
induced by this action is a group homomorphism.

29.Gx. If in the assumptions of Problem 29.Fx the G-space X is Hausdorff
and locally compact, then the induced homomorphism φ : G → TopX is
continuous.

29.1x. In each of the following situations, check if we have a continuous action
and a continuous homomorphism G→ TopX:

(1) G is a topological group, X = G, and G acts on X by left (or right)
translations, or by conjugation;

(2) G is a topological group, H ⊂ G is a subgroup, X = G/H , and G acts
on X via g(aH) = (ga)H ;

(3) G = GL(n,K) (where K = R, C, or H)), and G acts on Kn via matrix
multiplication;

(4) G = GL(n,K) (where K = R, C, or H), and G acts on KPn−1 via
matrix multiplication;

(5) G = O(n,R), and G acts on Sn−1 via matrix multiplication;
(6) the (additive) group R acts on the torus S1 × · · · × S1 according to

formula (t, (w1, . . . , wr)) 7→ (e2πia1tw1, . . . , e
2πiartwr); this action is an

irrational flow if a1, . . . , ar are linearly independent over Q.

If the action of G on X is not effective, then we can consider its kernel

GKer = {g ∈ G | gx = x for all x ∈ X}.
This kernel is a closed normal subgroup of G, and the topological group
G/GKer acts naturally and effectively on X.

29.Hx. The formula gGKer(x) = gx determines an effective continuous ac-
tion of G/GKer on X.

A group G acts properly discontinuously on X if for each compact set
C ⊂ X the set {g ∈ G | (gC) ∩ C 6= ∅} is finite.

29.Ix. If G acts properly discontinuously and effectively on a Hausdorff
locally compact space X, then φ(G) is a discrete subset of TopX. (Here, as
before, φ : G → TopX is the monomorphism induced by the G-action.) In
particular, G is a discrete group.

29.2x. List, up to similarity, all triangles T ⊂ R2 such that the reflections in the
sides of T generate a group acting on R2 properly discontinuously.
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⌈29′3x⌋ Orbit Spaces

Let X be a left G-space. For x ∈ X, the set G(x) = {gx | g ∈ G} is the
orbit of x. In terms of orbits, the action of G on X is transitive iff it has only
one orbit. For A ⊂ X and E ⊂ G, we put E(A) = {ga | g ∈ E, a ∈ A}. We
denote the set of all orbits by X/G and equip it with the quotient topology.

29.Jx. Let G be a compact topological group acting on a Hausdorff space
X. Then the canonical map G/Gx → G(x) is a homeomorphism for each
x ∈ X.

29.3x. Give an example where X is Hausdorff, but G/Gx is not homeomorphic
to G(x).

29.Kx. If a compact topological group G acts on a compact Hausdorff space
X, then X/G is a compact Hausdorff space.

29.4x. Let G be a compact group, X a Hausdorff G-space, A ⊂ X. If A is closed
(respectively, compact), then so is G(A).

29.5x. Consider the canonical action of G = R r 0 on X = R (by multiplication).
Find all orbits and all isotropy subgroups of this action. Recognize X/G as a
topological space.

29.6x. Let G be the group generated by reflections in the sides of a rectangle
in R2. Recognize the quotient space R2/G as a topological space. Recognize the
group G.

29.7x. Let G be the group from Problem 29.6x, and let H ⊂ G be the subgroup
of index 2 constituted by the orientation-preserving elements in G. Recognize the
quotient space R2/H as a topological space. Recognize the groups G and H .

29.8x. Consider the following (diagonal) action of the torus G = (S1)n+1 on
X = CPn: (z0:z1: . . . :zn) 7→ (θ0z0:θ1z1: . . . :θnzn). Find all orbits and isotropy
subgroups. Recognize X/G as a topological space.

29.9x. Consider the canonical action (by permutations of coordinates) of the
symmetric group G = Sn on X = Rn and X = Cn, respectively. Recognize X/G
as a topological space.

29.10x. Let G = SO(3) act on the space X of symmetric 3× 3 real matrices with
trace 0 by conjugations x 7→ gxg−1. Recognize X/G as a topological space. Find
all orbits and isotropy groups.

⌈29′4x⌋ Homogeneous Spaces

A G-space is homogeneous if the action of G is transitive.

29.Lx. Let G be a topological group, H ⊂ G a subgroup. Then G is
a homogeneous H-space under the translation action of H. The quotient
space G/H is a homogeneous G-space under the induced action of G.

29.Mx. Let X be a Hausdorff homogeneous G-space. If X and G are locally
compact and G is second countable, then X is homeomorphic to G/Gx for
each x ∈ X.
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29.Nx. LetX be a homogeneousG-space. Then the canonical mapG/Gx →
X, x ∈ X, is a homeomorphism iff it is open.

29.11x. Show that O(n+ 1)/O(n) = Sn and U(n)/U(n − 1) = S2n−1.

29.12x. Show that O(n+ 1)/O(n) ×O(1) = RPn and U(n)/U(n − 1) × U(1) =

CPn.

29.13x. Show that Sp(n)/Sp(n− 1) = S4n−1, where

Sp(n) = {A ∈ GL(H) | AA∗ = I}.
29.14x. Represent the torus S1×S1 and the Klein bottle as homogeneous spaces.

29.15x. Give a geometric interpretation of the following homogeneous spaces:
1) O(n)/O(1)n, 2) O(n)/O(k) ×O(n− k), 3) O(n)/SO(k) ×O(n− k), and 4)

O(n)/O(k).

29.16x. Represent S2 × S2 as a homogeneous space.

29.17x. Recognize SO(n, 1)/SO(n) as a topological space.





Part 2

Elements of Algebraic
Topology



This part of the book can be considered an introduction to algebraic
topology, which is a part of topology that relates topological and algebraic
problems. The relationship is used in both directions, but the reduction of
topological problems to algebra is more useful at first stages because algebra
is usually easier.

The relation is established according to the following scheme. One in-
vents a construction that assigns to each topological space X under consid-
eration an algebraic object A(X). The latter may be a group, a ring, a space
with a quadratic form, an algebra, etc. Another construction assigns to a
continuous map f : X → Y a homomorphism A(f) : A(X) → A(Y ). The
constructions satisfy natural conditions (in particular, they form a functor),
which make it possible to relate topological phenomena with their algebraic
images obtained via the constructions.

There is an immense number of useful constructions of this kind. In
this part, we deal mostly with one of them which, historically, was the first
one: the fundamental group of a topological space. It was invented by Henri
Poincaré in the end of the XIXth century.



Chapter VI

Fundamental Group

30. Homotopy

⌈30′1⌋ Continuous Deformations of Maps

30.A. Is it possible to deform continuously:

(1) the identity map id : R2 → R2 into the constant map R2 → R2 :
x 7→ 0,

(2) the identity map id : S1 → S1 into the symmetry S1 → S1 : x 7→
−x (here x is considered a complex number because the circle S1

is {x ∈ C : |x| = 1}),

(3) the identity map id : S1 → S1 into the constant map S1 → S1 :
x 7→ 1,

(4) the identity map id : S1 → S1 into the two-fold wrapping S1 →
S1 : x 7→ x2,

(5) the inclusion S1 → R2 into a constant map,

(6) the inclusion S1 → R2 r 0 into a constant map?

30.B. Riddle. When you (tried to) solve the previous problem, what did
you mean by “deform continuously”?
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The present section is devoted to the notion of homotopy formalizing the
naive idea of continuous deformation of a map.

⌈30′2⌋ Homotopy as a Map and a Family of Maps

Let f and g be two continuous maps of a topological space X to a
topological space Y , and let H : X × I → Y be a continuous map such
that H(x, 0) = f(x) and H(x, 1) = g(x) for each x ∈ X. Then f and g are
homotopic , and H is a homotopy between f and g.

For x ∈ X and t ∈ I, we denote H(x, t) by ht(x). This change of
notation results in a change of the point of view of H. Indeed, for a fixed
t the formula x 7→ ht(x) determines a map ht : X → Y , and H becomes a
family of maps ht enumerated by t ∈ I.

30.C. Each ht is continuous.

30.D. Does continuity of all ht imply continuity of H?

The conditions H(x, 0) = f(x) and H(x, 1) = g(x) in the above defi-
nition of a homotopy can be reformulated as follows: h0 = f and h1 = g.
Thus, a homotopy between f and g can be regarded as a family of continu-
ous maps that connects f and g. Continuity of a homotopy allows us to say
that it is a continuous family of continuous maps (see 30′10).

⌈30′3⌋ Homotopy as a Relation

30.E. Homotopy of maps is an equivalence relation.

30.E.1. If f : X → Y is a continuous map, then H : X×I → Y : (x, t) 7→ f(x)
is a homotopy between f and f .

30.E.2. If H is a homotopy between f and g, then H ′ defined by H ′(x, t) =
H(x, 1 − t) is a homotopy between g and f .

30.E.3. If H is a homotopy between f and f ′ and H ′ is a homotopy between
f ′ and f ′′, then H ′′ defined by

H ′′(x, t) =

{
H(x, 2t) if t ∈

[
0, 1/2

]
,

H ′(x, 2t− 1) if t ∈
[
1/2, 1

]
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is a homotopy between f and f ′′.

Homotopy, being an equivalence relation by 30.E, splits the set C(X,Y )
of all continuous maps from a space X to a space Y into equivalence classes.
The latter are homotopy classes. The set of homotopy classes of all contin-
uous maps X → Y is denoted by π(X,Y ). Maps homotopic to a constant
map are also said to be null-homotopic .

30.1. Prove that the set π(X, I) is a singleton for each X.

30.2. Prove that two constant maps X → Y are homotopic iff their images lie
in one path-connected component of Y .

30.3. Prove that the number of elements of π(I, Y ) is equal to the number of
path-connected components of Y .

⌈30′4⌋ Rectilinear Homotopy

30.F. Any two continuous maps of the same space to Rn are homotopic.

30.G. Solve the preceding problem by proving that for continuous maps
f, g : X → Rn, the formula H(x, t) = (1 − t)f(x) + tg(x) determines a
homotopy between f and g.

The homotopy defined in 30.G is a rectilinear homotopy.

30.H. Any two continuous maps of an arbitrary space to a convex subspace
of Rn are homotopic.

⌈30′5⌋ Maps to Star-Shaped Sets

A set A ⊂ Rn is star-shaped if A contains a point a such that for any x ∈ A
the whole segment [a, x] connecting x to a is contained in A. The point a is the
center of the star. (Certainly, the center of the star is not uniquely determined.)

30.4. Prove that any two continuous maps of a space to a star-shaped subspace
of Rn are homotopic.

⌈30′6⌋ Maps of Star-Shaped Sets

30.5. Prove that any continuous map of a star-shaped set C ⊂ Rn to any space
is null-homotopic.

30.6. Under what conditions (formulated in terms of known topological properties
of a space X) are any two continuous maps of any star-shaped set to X homotopic?
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⌈30′7⌋ Easy Homotopies

30.7. Prove that each non-surjective map of any topological space to Sn is null-
homotopic.

30.8. Prove that any two maps of a one-point space to Rn r 0 with n > 1 are
homotopic.

30.9. Find two nonhomotopic maps from a one-point space to R r 0.

30.10. For various m, n, and k, calculate the number of homotopy classes of
maps {1, 2, . . . ,m} → Rn r {x1, x2, . . . , xk}, where {1, 2, . . . ,m} is equipped with
discrete topology.

30.11. Let f and g be two maps from a topological space X to C r 0. Prove that
if |f(x) − g(x)| < |f(x)| for any x ∈ X, then f and g are homotopic.

30.12. Prove that for any polynomials p and q over C of the same degree in one
variable there exists r > 0 such that for any R > r the formulas z 7→ p(z) and
z 7→ q(z) determine maps of the circle {z ∈ C : |z| = R} to C r 0 and these maps
are homotopic.

30.13. Let f and g be two maps of an arbitrary topological space X to Sn. Prove
that if |f(a) − g(a)| < 2 for each a ∈ X, then f is homotopic to g.

30.14. Let f : Sn → Sn be a continuous map. Prove that if it is fixed-point-free,
i.e., f(x) 6= x for every x ∈ Sn, then f is homotopic to the symmetry x 7→ −x.

⌈30′8⌋ Two Natural Properties of Homotopies

30.I. Let f, f ′ : X → Y , g : Y → B, and h : A → X be continuous maps,
and let F : X × I → Y be a homotopy between f and f ′. Prove that then
g ◦ F ◦ (h× idI) is a homotopy between g ◦ f ◦ h and g ◦ f ′ ◦ h.
30.J. Riddle. In the assumptions of 30.I, define a natural map

π(X,Y ) → π(A,B).

How does it depend on g and h? Write down all nice properties of this
construction.

30.K. Prove that two maps f0, f1 : X → Y × Z are homotopic iff prY ◦f0

is homotopic to prY ◦f1 and prZ ◦f0 is homotopic to prZ ◦f1.

⌈30′9⌋ Stationary Homotopy

Let A be a subset of X. A homotopy H : X×I → Y is fixed or stationary

on A, or, briefly, an A-homotopy if H(x, t) = H(x, 0) for all x ∈ A, t ∈ I.
Two maps connected by an A-homotopy are A-homotopic .

Certainly, any two A-homotopic maps coincide on A. If we want to
emphasize that a homotopy is not assumed to be fixed, then we say that it
is free. If we want to emphasize the opposite (that the homotopy is fixed),
then we say that it is relative.1

1Warning: there is a similar, but different kind of homotopy, which is also called relative.
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30.L. Prove that, like free homotopy, A-homotopy is an equivalence rela-
tion.

The classes into which the A-homotopy splits the set of continuous maps
X → Y that agree on A with a map f : A → Y are A-homotopy classes of

continuous extensions of f to X.

30.M. For what A is a rectilinear homotopy fixed on A?

⌈30′10⌋ Homotopies and Paths

Recall that a path in a space X is a continuous map from the segment
I to X. (See Section 14.)

30.N. Riddle. In what sense is any path a homotopy?

30.O. Riddle. In what sense does any homotopy consist of paths?

30.P. Riddle. In what sense is any homotopy a path?

Recall that the compact-open topology in C(X,Y ) is the topology generated
by the sets {ϕ ∈ C(X,Y ) | ϕ(A) ⊂ B} for compact A ⊂ X and open B ⊂ Y .

30.15. Prove that any homotopy ht : X → Y determines (see 30′2) a path in
C(X,Y ) with compact-open topology.

30.16. Prove that if X is locally compact and regular, then any path in C(X,Y )
with compact-open topology determines a homotopy.

⌈30′11⌋ Homotopy of Paths

30.Q. Prove that two paths in a space X are freely homotopic iff their
images belong to the same path-connected component of X.

This shows that the notion of free homotopy in the case of paths is not
interesting. On the other hand, there is a sort of relative homotopy playing
a very important role. This is (0 ∪ 1)-homotopy. This causes the following
commonly accepted deviation from the terminology introduced above: ho-
motopy of paths always means not a free homotopy, but a homotopy fixed
on the endpoints of I (i.e., on 0 ∪ 1).

Notation: a homotopy class of a path s is denoted by [s].
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31. Homotopy Properties of Path
Multiplication

⌈31′1⌋ Multiplication of Homotopy Classes of Paths

Recall (see Section 14) that two paths u and v in a space X can be
multiplied, provided that the initial point v(0) of v is the final point u(1) of
u. The product uv is defined by

uv(t) =

{
u(2t) if t ∈

[
0, 1/2

]
,

v(2t − 1) if t ∈
[
1/2, 1

]
.

u(0)

v(1)

u(1)=v(0)

31.A. If a path u is homotopic to u′, a path v is homotopic to v′, and the
product uv exists, then u′v′ exists and is homotopic to uv.

Define the product of homotopy classes of paths u and v as the homotopy
class of uv. So, [u][v] is defined as [uv], provided that uv is defined. This is
a definition requiring a proof.

31.B. The product of homotopy classes of paths is well defined.2

⌈31′2⌋ Associativity

31.C. Is multiplication of paths associative?

Certainly, this question might be formulated in more detail as follows.

31.D. Let u, v, and w be paths in a certain space such that products uv
and vw are defined (i.e., u(1) = v(0) and v(1) = w(0)). Is it true that
(uv)w = u(vw)?

31.1. Prove that for paths in a metric space (uv)w = u(vw) implies that u, v,
and w are constant maps.

31.2. Riddle. Find nonconstant paths u, v, and w in an indiscrete space such
that (uv)w = u(vw).

31.E. Multiplication of homotopy classes of paths is associative.

2Of course, when the initial point of paths in the first class is the final point of paths in the
second class.
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31.E.1. Reformulate Theorem 31.E in terms of paths and their homotopies.

31.E.2. Find a map ϕ : I → I such that if u, v, and w are paths with u(1) =
v(0) and v(1) = w(0), then ((uv)w) ◦ ϕ = u(vw).

1

31.E.3. Any path in I starting at 0 and ending at 1 is homotopic to id : I → I.

31.E.4. Let u, v, and w be paths in a space such that products uv and vw
are defined (thus, u(1) = v(0) and v(1) = w(0)). Then (uv)w is homotopic to
u(vw).

If you want to understand the essence of 31.E, then observe that the
paths (uv)w and u(vw) have the same trajectories and differ only by the
time spent in different fragments of the path. Therefore, in order to find
a homotopy between them, we must find a continuous way to change one
schedule to the other. The lemmas above suggest a formal way of such a
change, but the same effect can be achieved in many other ways.

31.3. Present explicit formulas for the homotopy H between the paths (uv)w and
u(vw).

⌈31′3⌋ Unit

Let a be a point of a space X. Denote by ea the path I → X : t 7→ a.

31.F. Is ea a unit for multiplication of paths?

The same question in more detailed form:

31.G. Is eau = u for paths u with u(0) = a? Is vea = v for paths v with
v(1) = a?

31.4. Prove that if eau = u and the space satisfies the first separation axiom,
then u = ea.

31.H. The homotopy class of ea is a unit for multiplication of homotopy
classes of paths.
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⌈31′4⌋ Inverse

Recall that a path u has the inverse path u−1 : t 7→ u(1 − t) (see Sec-
tion 14).

31.I. Is the inverse path inverse with respect to multiplication of paths?

In other words:

31.J. For a path u beginning in a and finishing in b, is it true that uu−1 = ea
and u−1u = eb?

31.5. Prove that for a path u with u(0) = a equality uu−1 = ea implies u = ea.

31.K. For any path u, the homotopy class of the path u−1 is inverse to the
homotopy class of u.

31.K.1. Find a map ϕ : I → I such that uu−1 = u ◦ ϕ for any path u.

31.K.2. Any path in I that starts and finishes at 0 is homotopic to the constant
path e0 : I → I.

We see that from the algebraic point of view multiplication of paths
is terrible, but it determines multiplication of homotopy classes of paths,
which has nice algebraic properties. The only unfortunate property is that
the multiplication of homotopy classes of paths is defined not for any two
classes.

31.L. Riddle. How to select a subset of the set of homotopy classes of
paths to obtain a group?
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32. Fundamental Group

⌈32′1⌋ Definition of Fundamental Group

Let X be a topological space, x0 a point of X. A path in X which starts
and ends at x0 is a loop in X at x0. Denote by Ω1(X,x0) the set of loops
in X at x0. Denote by π1(X,x0) the set of homotopy classes of loops in X
at x0.

Both Ω1(X,x0) and π1(X,x0) are equipped with a multiplication.

32.A. For any topological space X and a point x0 ∈ X, the set π1(X,x0)
of homotopy classes of loops at x0 with multiplication defined above in Sec-
tion 31 is a group.

π1(X,x0) is the fundamental group of the space X with base point x0.
It was introduced by Poincaré, and this is why it is also called the Poincaré

group. The letter π in this notation is also due to Poincaré.

⌈32′2⌋ Why Index 1?

The index 1 in the designation π1(X,x0) appeared later than the letter
π. It is related to one more name of the fundamental group: the first (or
one-dimensional) homotopy group. There is an infinite sequence of groups
πr(X,x0) with r = 1, 2, 3, . . . , the fundamental group being one of them.
The higher-dimensional homotopy groups were defined by Witold Hurewicz
in 1935, thirty years after the fundamental group was defined. Roughly
speaking, the general definition of πr(X,x0) is obtained from the definition
of π1(X,x0) by replacing I with the cube Ir.

32.B. Riddle. How to generalize problems of this section in such a way
that in each of them I would be replaced by Ir?

There is even a “zero-dimensional homotopy group” π0(X,x0), but it
is not a group, as a rule. It is the set of path-connected components of
X. Although there is no natural multiplication in π0(X,x0), unless X is
equipped with some special additional structures, π0(X,x0) has a natural
unit. This is the component containing x0.

⌈32′3⌋ Circular loops

Let X be a topological space, x0 ∈ X. A continuous map l : S1 → X
such that3 l(1) = x0 is a (circular) loop at x0. Assign to each circular loop l
the composition of l with the exponential map I → S1 : t 7→ e2πit. This is a
usual loop at the same point.

3Recall that S1 is regarded as a subset of the plane R2, and the latter is identified with C in
a canonical way. Hence, 1 ∈ S1 = {z ∈ C : |z| = 1}.
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32.C. Prove that any loop is obtained in this way from a circular loop.

Two circular loops l1 and l2 are homotopic if they are 1-homotopic. A
homotopy of a circular loop not fixed at x0 is a free homotopy.

32.D. Prove that two circular loops are homotopic iff the corresponding
ordinary loops are homotopic.

32.1. What kind of homotopy of loops corresponds to free homotopy of circular
loops?

32.2. Describe the operation with circular loops corresponding to the multiplica-
tion of paths.

32.3. Let U and V be the circular loops with common base point U(1) = V (1)
corresponding to the loops u and v. Prove that the circular loop

z 7→
(

U(z2) if Im(z) ≥ 0,

V (z2) if Im(z) ≤ 0

corresponds to the product of u and v.

32.4. Outline a construction of fundamental group using circular loops.

⌈32′4⌋ The Very First Calculations

32.E. Prove that π1(R
n, 0) is a trivial group (i.e., consists of one element).

32.F. Generalize 32.E to the situations suggested by 30.H and 30.4.

32.5. Calculate the fundamental group of an indiscrete space.

32.6. Calculate the fundamental group of the quotient space of disk D2 obtained
by identifying of each x ∈ D2 with −x.
32.7. Prove that if a two-element space X is path-connected, then X is simply
connected.

32.G. Prove that π1(S
n, (1, 0, . . . , 0)) with n ≥ 2 is a trivial group.

Whether you have solved Problem 32.G or not, we recommend you consid-
ering Problems 32.G.1, 32.G.2, 32.G.4, 32.G.5, and 32.G.6. They are designed
to give an approach to 32.G, warn about a natural mistake, and prepare an
important tool for further calculations of fundamental groups.

32.G.1. Prove that any loop s : I → Sn that does not fill the entire Sn (i.e.,
s(I) 6= Sn) is null-homotopic, provided that n ≥ 2. (Cf. Problem 30.7.)

Warning: for any n, there exists a loop filling Sn. See Problem 10.49x.

32.G.2. Can a loop filling S2 be null-homotopic?

32.G.3 Corollary of Lebesgue Lemma 17.W. Let s : I → X be a path,
Γ an open cover of a topological space X. There exists a sequence of points
a1, . . . , aN ∈ I with 0 = a1 < a2 < · · · < aN−1 < aN = 1 such that s([ai, ai+1])
is contained in an element of Γ for each i.
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32.G.4. Prove that if n ≥ 2, then for any path s : I → Sn the segment I has a
subdivision into a finite number of subintervals such that the restriction of s to
each of the subintervals is homotopic to a map with nowhere-dense image via a
homotopy fixed on the endpoints of the subinterval.

32.G.5. Prove that if n ≥ 2, then any loop in Sn is homotopic to a non-
surjective loop.

32.G.6. 1) Deduce 32.G from 32.G.1 and 32.G.5. 2) Find all points of the
proof of 32.G obtained in this way, where the condition n ≥ 2 is used.

⌈32′5⌋ Fundamental Group of a Product

32.H. The fundamental group of the product of topological spaces is canon-
ically isomorphic to the product of the fundamental groups of the factors:

π1(X × Y, (x0, y0)) = π1(X,x0) × π1(Y, y0).

32.8. Consider a loop u : I → X at x0, a loop v : I → Y at y0, and the loop
w = u× v : I → X × Y . We introduce the loops u′ : I → X × Y : t 7→ (u(t), y0))
and v′ : I → X × Y : t 7→ (x0, v(t)). Prove that u′v′ ∼ w ∼ v′u′.

32.9. Prove that π1(R
n r 0, (1, 0, . . . , 0)) is trivial if n ≥ 3.

⌈32′6⌋ Simply-Connectedness

A nonempty topological space X is simply connected (or one-connected)
if X is path-connected and every loop in X is null-homotopic.

32.I. For a path-connected topological space X, the following statements are
equivalent:

(1) X is simply connected,

(2) each continuous map f : S1 → X is (freely) null-homotopic,

(3) each continuous map f : S1 → X extends to a continuous map
D2 → X,

(4) any two paths s1, s2 : I → X connecting the same points x0 and x1

are homotopic.

Theorem 32.I is closely related to Theorem 32.J below. Notice that since
Theorem 32.J concerns not all loops, but an individual loop, it is applicable
in a broader range of situations.

32.J. Let X be a topological space, s : S1 → X a circular loop. Then the
following statements are equivalent:

(1) s is null-homotopic,

(2) s is freely null-homotopic,

(3) s extends to a continuous map D2 → X,
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(4) the paths s+, s− : I → X defined by the formula s±(t) = s(e±πit)
are homotopic.

32.J.1. Riddle. To prove that 4 statements are equivalent, we must prove at
least 4 implications. What implications would you choose for the easiest proof
of Theorem 32.J?

32.J.2. Does homotopy of circular loops imply that these circular loops are
free homotopic?

32.J.3. A homotopy between a map of the circle and a constant map possesses
a quotient map whose source space is homeomorphic to the disk D2.

32.J.4. Represent the problem of constructing a homotopy between the paths
s+ and s− as a problem of extending a certain continuous map of the boundary
of a square to the whole square.

32.J.5. When we solve the extension problem obtained as a result of Prob-
lem 32.J.4, does it help to know that the circular loop S1 → X : t 7→ s(e2πit)
extends to a continuous map of a disk?

32.10. Which of the following spaces are simply connected:
(a) a discrete

space;
(b) an indiscrete

space;
(c) Rn;

(d) a convex set; (e) a star-shaped set; (f) Sn;
(g) Rn r 0?

32.11. Prove that if a topological space X is the union of two open simply con-
nected sets U and V with path-connected intersection U ∩ V , then X is simply
connected.

32.12. Show that the assumption in 32.11 that U and V are open is necessary.

32.13*. Let X be a topological space, U, V ⊂ X two open subsets. Prove that if
U ∪ V and U ∩ V are simply connected, then so are U and V .

⌈32′7x⌋ Fundamental Group of a Topological Group

Let G be a topological group. Given loops u, v : I → G starting at the
unity 1 ∈ G, we define a loop u ⊙ v : I → G by the formula u ⊙ v(t) =
u(t) · v(t), where · denotes the group operation in G.

32.Kx. Prove that the set Ω(G, 1) of all loops in G starting at 1 equipped
with the operation ⊙ is a group.

32.Lx. Prove that the operation ⊙ on Ω(G, 1) determines a group operation
on π1(G, 1), which coincides with the standard group operation (determined
by multiplication of paths).

32.Lx.1. For loops u, v → G starting at 1, find (ue1) ⊙ (e1v).

32.Mx. The fundamental group of a topological group is Abelian.
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⌈32′8x⌋ High Homotopy Groups

Let X be a topological space, x0 ∈ X. A continuous map Ir → X
mapping the boundary ∂Ir of Ir to x0 is a spheroid of dimension r of X
at x0, or just an r-spheroid . Two r-spheroids are homotopic if they are
∂Ir-homotopic. For two r-spheroids u and v of X at x0, r ≥ 1, define the
product uv by the formula

uv(t1, t2, . . . , tr) =

{
u(2t1, t2, . . . , tr) if t1 ∈

[
0, 1/2

]
,

v(2t1 − 1, t2, . . . , tr) if t1 ∈
[
1/2, 1

]
.

The set of homotopy classes of r-spheroids of a space X at x0 is the rth
(or r-dimensional) homotopy group πr(X,x0) of X at x0. Thus,

πr(X,x0) = π(Ir, ∂Ir; X,x0).

Multiplication of spheroids induces multiplication in πr(X,x0), which makes
πr(X,x0) a group.

32.Nx. Find πr(R
n, 0).

32.Ox. For any X and x0, the group πr(X,x0) with r ≥ 2 is Abelian.

Similar to 32′3, higher-dimensional homotopy groups can be built up not
out of homotopy classes of maps (Ir, ∂Ir) → (X,x0), but as

π(Sr, (1, 0, . . . , 0); X,x0).

Another way, also quite popular, is to define πr(X,x0) as

π(Dr, ∂Dr; X,x0).

32.Px. Construct natural bijections

π(Ir, ∂Ir; X,x0) → π(Dr, ∂Dr; X,x0) → π(Sr, (1, 0, . . . , 0); X,x0).

32.Qx. Riddle. For any X,x0 and r ≥ 2, present group πr(X,x0) as the
fundamental group of some space.

32.Rx. Prove the following generalization of 32.H:

πr(X × Y, (x0, y0)) = πr(X,x0) × πr(Y, y0).

32.Sx. Formulate and prove analogs of Problems 32.Kx and 32.Lx for higher
homotopy groups and π0(G, 1).
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33. The Role of Base Point

⌈33′1⌋ Overview of the Role of Base Point

Sometimes the choice of the base point does not matter, sometimes it is
obviously crucial, and sometimes this is a delicate question. In this section,
we have to clarify all subtleties related to the base point. We start with
preliminary formulations describing the subject in its entirety, but without
some necessary details.

The role of the base point may be roughly described as follows:

• When the base point changes within the same path-connected com-
ponent, the fundamental group remains in the same class of isomor-
phic groups.

• However, if the group is non-Abelian, it is impossible to find a
natural isomorphism between the fundamental groups at different
base points even in the same path-connected component.

• Fundamental groups of a space at base points belonging to different
path-connected components have nothing to do with each other.

In this section, these will be demonstrated. The proof involves useful con-
structions, whose importance extends far outside the frameworks of our
initial question on the role of the base point.

⌈33′2⌋ Definition of Translation Maps

Let x0 and x1 be two points of a topological space X, and let s be a path
connecting x0 with x1. Denote by σ the homotopy class [s] of s. Define a
map Ts : π1(X,x0) → π1(X,x1) by the formula Ts(α) = σ−1ασ.

x0

x1

33.1. Prove that for any loop a : I → X representing α ∈ π1(X,x0) and any path
s : I → X with s(0) = x0 the loop a is connected with a loop representing Ts(α)
by a free homotopy H : I × I → X such that H(0, t) = H(1, t) = s(t) for t ∈ I .

33.2. Let a, b : I → X be two loops homotopic via a homotopy H : I × I → X
such that H(0, t) = H(1, t) (i.e., H is a free homotopy of loops: at each moment
t ∈ I , it keeps the endpoints of the path coinciding). Set s(t) = H(0, t) (hence,
s is the path run through by the initial point of the loop under the homotopy).
Prove that the homotopy class of b is the image of the homotopy class of a under
Ts : π1(X, s(0)) → π1(X, s(1)).
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⌈33′3⌋ Properties of Ts

33.A. Ts is a (group) homomorphism.4

33.B. If u is a path connecting x0 to x1 and v is a path connecting x1 with
x2, then Tuv = Tv ◦ Tu. In other words, the diagram

π1(X,x0)
Tu−−−−→ π1(X,x1)

ցTuv

yTv

π1(X,x2)

is commutative.

33.C. If paths u and v are homotopic, then Tu = Tv.

33.D. Tea = id : π1(X,a) → π1(X,a).

33.E. Ts−1 = T−1
s .

33.F. Ts is an isomorphism for any path s.

33.G. For any points x0 and x1 lying in the same path-connected component
of X, the groups π1(X,x0) and π1(X,x1) are isomorphic.

Despite the result of Theorem 33.G, we cannot write π1(X) even if the
topological space X is path-connected. The reason is that although the
groups π1(X,x0) and π1(X,x1) are isomorphic, there may be no canonical
isomorphism between them (see 33.J below).

33.H. The space X is simply connected iff X is path-connected and the
group π1(X,x0) is trivial for a certain point x0 ∈ X.

⌈33′4⌋ Role of Path

33.I. If a loop s represents an element σ of the fundamental group π1(X,x0),
then Ts is the inner automorphism of π1(X,x0) defined by α 7→ σ−1ασ.

33.J. Let x0 and x1 be points of a topological space X belonging to the same
path-connected component. The isomorphisms Ts : π1(X,x0) → π1(X,x1)
do not depend on s iff π1(X,x0) is an Abelian group.

Theorem 33.J implies that if the fundamental group of a topological
space X is Abelian, then we may simply write π1(X).

4Recall that this means that Ts(αβ) = Ts(α)Ts(β).
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⌈33′5x⌋ In Topological Group

In a topological group G, there is another way to relate π1(G,x0) with
π1(G,x1): there are homeomorphisms Lg : G → G : x 7→ xg and Rg :
G → G : x 7→ gx, so that there are two induced isomorphisms (Lx−1

0 x1
)∗ :

π1(G,x0) → π1(G,x1) and (Rx1x−1
0

)∗ : π1(G,x0) → π1(G,x1).

33.Kx. Let G be a topological group, s : I → G a path. Prove that

Ts = (Ls(0)−1s(1))∗ = (Rs(1)s(0)−1) : π1(G, s(0)) → π1(G, s(1)).

33.Lx. Deduce from 33.Kx that the fundamental group of a topological
group is Abelian (cf. 32.Mx).

33.3x. Prove that the following spaces have Abelian fundamental groups:

(1) the space of nondegenerate real n×n matrices GL(n,R) = {A | detA 6=
0};

(2) the space of orthogonal real n×n matrices O(n,R) = {A | A·(tA) = E};
(3) the space of special unitary complex n × n matrices SU(n) = {A |

A · (tĀ) = 1,detA = 1}.

⌈33′6x⌋ In High Homotopy Groups

33.Mx. Riddle. Guess how Ts is generalized to πr(X,x0) with any r.

Here is another form of the same question. We include it because its
statement contains a greater piece of an answer.

33.Nx. Riddle. Given a path s : I → X with s(0) = x0 and a spheroid
f : Ir → X at x0, how does one make up a spheroid at x1 = s(1) out of
these?

33.Ox. Let s : I → X be a path, f : Ir → X a spheroid with f(Fr Ir) =
s(0). Prove that there exists a homotopy H : Ir × I → X of f such that
H(Fr Ir × t) = s(t) for any t ∈ I. Furthermore, the spheroid obtained by
such a homotopy is unique up to homotopy and determines an element of
πr(X, s(1)), which is uniquely determined by the homotopy class of s and
the element of πr(X, s(0)) represented by f .

Certainly, a solution of 33.Ox gives an answer to 33.Nx and 33.Mx. The
map πr(X, s(0)) → πr(X, s(1)) defined by 33.Ox is denoted by Ts. By 33.2,
this Ts generalizes Ts defined in the beginning of the section for the case
r = 1.

33.Px. Prove that the properties of Ts formulated in Problems 33.A–33.F
hold true in all dimensions.

33.Qx. Riddle. What are the counterparts of 33.Kx and 33.Lx for higher
homotopy groups?



Chapter VII

Covering Spaces and
Calculation of
Fundamental Groups

34. Covering Spaces

⌈34′1⌋ Definition of Covering

Let X and B be topological spaces, p : X → B a continuous map.
Assume that p is surjective and each point of B possesses a neighborhood U
such that the preimage p−1(U) of U is a disjoint union of open sets Vα and
p homeomorphically maps each Vα onto U . Then p : X → B is a covering

(of B), the space B is the base of this covering, X is the covering space for
B and the total space of the covering. Neighborhoods like U are said to be
trivially covered . The map p is a covering map or covering projection.

34.A. Let B be a topological space, F a discrete space. Prove that the
projection prB : B × F → B is a covering.

34.1. If U ′ ⊂ U ⊂ B and the neighborhood U is trivially covered, then the
neighborhood U ′ is also trivially covered.

The following statement shows that in a certain sense any covering lo-
cally is organized as the covering of 34.A.

34.B. A continuous surjective map p : X → B is a covering iff for each point
a of B the preimage p−1(a) is discrete and there exist a neighborhood U of a

179



180 VII. Covering Spaces

and a homeomorphism h : p−1(U) → U×p−1(a) such that p|p−1(U) = prU ◦h.
Here, as usual, prU : U × p−1(a) → U .

However, the coverings of 34.A are not interesting. They are trivial .
Here is the first really interesting example.

34.C. Prove that the map R → S1 : x 7→ e2πix is a covering.

To distinguish the most interesting examples, a covering with a con-
nected total space is called a covering in the narrow sense. Of course, the
covering of 34.C is a covering in the narrow sense.

⌈34′2⌋ More Examples

34.D. The map R2 → S1 × R : (x, y) 7→ (e2πix, y) is a covering.

34.E. Prove that if p : X → B and p′ : X ′ → B′ are coverings, then so is
p× p′ : X ×X ′ → B ×B′.

If p : X → B and p′ : X ′ → B′ are two coverings, then p×p′ : X×X ′ →
B × B′ is the product of the coverings p and p′. The first example of the
product of coverings is presented in 34.D.

34.F. The map C → C r 0 : z 7→ ez is a covering.

34.2. Riddle. In what sense are the coverings of 34.D and 34.F the same? Define
an appropriate equivalence relation for coverings.

34.G. The map R2 → S1 × S1 : (x, y) 7→ (e2πix, e2πiy) is a covering.

34.H. For any positive integer n, the map S1 → S1 : z 7→ zn is a covering.

34.3. Prove that for each positive integer n the map C r 0 → C r 0 : z 7→ zn is a
covering.

34.I. For any positive integers p and q, the map S1 × S1 → S1 × S1 :
(z,w) 7→ (zp, wq) is a covering.

34.J. The natural projection Sn → RPn is a covering.
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34.K. Is (0, 3) → S1 : x 7→ e2πix a covering? (Cf. 34.14.)

34.L. Is the projection R2 → R : (x, y) 7→ x a covering? Indeed, why isn’t
an open interval (a, b) ⊂ R a trivially covered neighborhood: its preimage
(a, b) × R is the union of open intervals (a, b) × {y}, which are homeomor-
phically projected onto (a, b) by the projection (x, y) 7→ x?

34.4. Find coverings of the Möbius strip by a cylinder.

34.5. Find nontrivial coverings of the Möbius strip by itself.

34.6. Find a covering of the Klein bottle by a torus. Cf. Problem 22.14.

34.7. Find coverings of the Klein bottle by the plane R2 and the cylinder S1 ×R,
and a nontrivial covering of the Klein bottle by itself.

34.8. Describe explicitly the partition of R2 into preimages of points under this
covering.

34.9*. Find a covering of a sphere with any number of cross-caps by a sphere
with handles.

⌈34′3⌋ Local Homeomorphisms versus Coverings

34.10. Any covering is an open map.1

A map f : X → Y is a local homeomorphism if each point of X has a neighbor-
hood U such that the image f(U) is open in Y and the submap ab(f) : U → f(U)
is a homeomorphism.

34.11. Any covering is a local homeomorphism.

34.12. Find a local homeomorphism which is not a covering.

34.13. Prove that the restriction of a local homeomorphism to an open set is a
local homeomorphism.

34.14. For which subsets of R is the restriction of the map of Problem 34.C a
covering?

34.15. Find a nontrivial covering X → B with X homeomorphic to B and prove
that it satisfies the definition of a covering.

⌈34′4⌋ Number of Sheets

Let p : X → B be a covering. The cardinality (i.e., the number of points)
of the preimage p−1(a) of a point a ∈ B is the multiplicity of the covering at
a or the number of sheets of the covering over a.

34.M. If the base of a covering is connected, then the multiplicity of the
covering at a point does not depend on the point.

1We remind the reader that a map is open if the image of any open set is open.
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In the case of a covering with connected base, the multiplicity is called
the number of sheets of the covering. If the number of sheets is n, then the
covering is n-sheeted , and we speak about an n-fold covering. Of course,
if the covering is nontrivial, it is impossible to distinguish the sheets of it,
but this does not prevent us from speaking about the number of sheets.
On the other hand, we adopt the following agreement. By definition, the
preimage p−1(U) of any trivially covered neighborhood U ⊂ B splits into
open subsets: p−1(U) = ∪Vα, such that the restriction p|Vα : Vα → U is a
homeomorphism. Each of the subsets Vα is a sheet over U .

34.16. What are the numbers of sheets for the coverings from Section 34′2?

In Problems 34.17–34.19, we did not assume that you would rigorously justify
your answers. This is done below, see Problems 40.3–40.6.

34.17. What numbers can you realize as the number of sheets of a covering of
the Möbius strip by the cylinder S1 × I?

34.18. What numbers can you realize as the number of sheets of a covering of
the Möbius strip by itself?

34.19. What numbers can you realize as the number of sheets of a covering of
the Klein bottle by a torus?

34.20. What numbers can you realize as the number of sheets of a covering of
the Klein bottle by itself?

34.21. Construct a d-fold covering of a sphere with p handles by a sphere with
1 + d(p− 1) handles.

34.22. Let p : X → Y and q : Y → Z be coverings. Prove that if q has finitely
many sheets, then q ◦ p : x→ Y is a covering.

34.23*. Is the hypothesis of finiteness of the number of sheets in Problem 34.22

necessary?

34.24. Let p : X → B be a covering with compact base B. 1) Prove that if X is
compact, then the covering is finite-sheeted. 2) If B is Hausdorff and the covering
is finite-sheeted, then X is compact.

34.25. Let X be a topological space presentable as the union of two open con-
nected sets U and V . Prove that if the intersection U ∩ V is disconnected, then
X has a connected infinite-sheeted covering.

⌈34′5⌋ Universal Coverings

A covering p : X → B is universal if X is simply connected. The appear-
ance of the word universal in this context is explained below in Section 40.

34.N. Which coverings of the problems stated above in this section are
universal?
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35. Theorems on Path Lifting

⌈35′1⌋ Lifting

Let p : X → B and f : A → B be arbitrary maps. A map g : A → X
such that p ◦ g = f is said to cover f or be a lift of f . Various topolog-
ical problems can be phrased in terms of finding a continuous lift of some
continuous map. Problems of this sort are called lifting problems. They
may involve additional requirements. For example, the required lift must
coincide with a lift already given on some subspace.

35.A. The identity map S1 → S1 does not admit a continuous lifting with
respect to the covering R → S1 : x 7→ e2πix. (In other words, there is no

continuous map g : S1 → R such that e2πig(x) = x for x ∈ S1.)

⌈35′2⌋ Path Lifting

35.B Path Lifting Theorem. Let p : X → B be a covering, and let
x0 ∈ X and b0 ∈ B be points such that p(x0) = b0. Then for any path
s : I → B starting at b0 there is a unique path s̃ : I → X that starts at x0

and is a lift of s. (In other words, there exists a unique path s̃ : I → X with
s̃(0) = x0 and p ◦ s̃ = s.)

We can also prove a more general assertion than Theorem 35.B: see Prob-
lems 35.1–35.3.

35.1. Let p : X → B be a trivial covering. Then any continuous map f of any
space A to B has a continuous lift f̃ : A→ X.

35.2. Let p : X → B be a trivial covering, and let x0 ∈ X and b0 ∈ B be two
points such that p(x0) = b0. Then any continuous map f : A→ B sending a point

a0 to b0 has a unique continuous lift f̃ : A→ X with f̃(a0) = x0.

35.3. Let p : X → B be a covering, and let A be a connected and locally connected
space. If f, g : A → X are two continuous maps coinciding at some point and
p ◦ f = p ◦ g, then f = g.

35.4. If we replace x0, b0, and a0 in Problem 35.2 by pairs of points, then the
lifting problem may happen to have no solution f̃ with f̃(a0) = x0. Formulate a
condition necessary and sufficient for existence of such a solution.

35.5. What goes wrong with the Path Lifting Theorem 35.B for the local home-
omorphism of Problem 34.K?

35.6. Consider the covering C → Cr0 : z 7→ ez. Find lifts of the paths u(t) = 2−t
and v(t) = (1 + t)e2πit and their products uv and vu.

⌈35′3⌋ Homotopy Lifting

35.C Path Homotopy Lifting Theorem. Let p : X → B be a covering,
and let x0 ∈ X and b0 ∈ B be points such that p(x0) = b0. Let u, v : I → B
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be paths starting at b0, and let ũ, ṽ : I → X be the lifting paths for u and v
starting at x0. If the paths u and v are homotopic, then the covering paths
ũ and ṽ are homotopic.

35.D Important Corollary. Under the assumptions of Theorem 35.C,
the covering paths ũ and ṽ have the same final point (i.e., ũ(1) = ṽ(1)).

Notice that the paths in 35.C and 35.D are assumed to share the initial
point x0. In the statement of 35.D, we emphasize that they also share the
final point.

35.E Corollary of 35.D. Let p : X → B be a covering, s : I → B a loop.
If s has a lift s̃ : I → X with s̃(0) 6= s̃(1) (i.e., there exists a covering path
which is not a loop), then s is not null-homotopic.

35.F. If a path-connected space B has a nontrivial path-connected covering
space, then the fundamental group of B is nontrivial.

35.7. Prove that any covering p : X → B with simply connected B and path-
connected X is a homeomorphism.

35.8. What corollaries can you deduce from 35.F and the examples of coverings
presented above in Section 34?

35.9. Riddle. Is it really important in the hypothesis of Theorem 35.C that u
and v are paths? To what class of maps can you generalize this theorem?
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36. Calculation of Fundamental Groups
by Using Universal Coverings

⌈36′1⌋ Fundamental Group of Circle

For an integer n, denote by sn the loop in S1 defined by the formula
sn(t) = e2πint. The initial point of this loop is 1. Denote the homotopy class
of s1 by α. Thus, α ∈ π1(S

1, 1).

36.A. The loop sn represents αn ∈ π1(S
1, 1).

36.B. Find the paths in R starting at 0 ∈ R and covering the loops sn with
respect to the universal covering R → S1.

36.C. The homomorphism Z → π1(S
1, 1) : n 7→ αn is an isomorphism.

36.C.1. The formula n 7→ αn determines a homomorphism Z → π1(S
1, 1).

36.C.2. Prove that a loop s : I → S1 starting at 1 is homotopic to sn if the
path s̃ : I → R covering s and starting at 0 ∈ R ends at n ∈ R (i.e., s̃(1) = n).

36.C.3. Prove that if the loop sn is null-homotopic, then n = 0.

36.1. Find the image of the homotopy class of the loop t 7→ e2πit
2

under the
isomorphism of Theorem 36.C.

Denote by deg the isomorphism inverse to the isomorphism of Theorem 36.C.

36.2. For any loop s : I → S1 starting at 1 ∈ S1, the integer deg([s]) is the final
point of the path starting at 0 ∈ R and covering s.

36.D Corollary of Theorem 36.C. The fundamental group of (S1)n is
a free Abelian group of rank n (i.e., isomorphic to Zn).

36.E. On the torus S1×S1, find two loops whose homotopy classes generate
the fundamental group of the torus.

36.F Corollary of Theorem 36.C. The fundamental group of the punc-
tured plane R2 r 0 is an infinite cyclic group.

36.3. Solve Problems 36.D–36.F without reference to Theorems 36.C and 32.H,
but using explicit constructions of the corresponding universal coverings.

⌈36′2⌋ Fundamental Group of Projective Space

The fundamental group of the projective line is an infinite cyclic group.
It is calculated in the previous subsection since the projective line is a circle.
The zero-dimensional projective space is a point, and hence its fundamental
group is trivial. Now we calculate the fundamental groups of projective
spaces of all other dimensions.
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Let n ≥ 2, and let l : I → RPn be a loop covered by a path l̃ : I → Sn

which connects two antipodal points of Sn, say, the poles P+ = (1, 0, . . . , 0)
and P− = (−1, 0, . . . , 0). Denote by λ the homotopy class of l. It is an
element of π1(RP

n, (1 : 0 : · · · : 0)).

36.G. For any n ≥ 2, the group π1(RP
n, (1 : 0 : · · · : 0)) is a cyclic group

of order 2. It has two elements: λ and 1.

36.G.1 Lemma. Any loop in RPn at (1 : 0 : · · · : 0) is homotopic either to l
or constant. This depends on whether the covering path of the loop connects the
poles P+ and P−, or is a loop.

36.4. Where did we use the assumption n ≥ 2 in the proofs of Theorem 36.G and
Lemma 36.G.1?

⌈36′3⌋ Fundamental Group of Bouquet of Circles

Consider a family of topological spaces {Xα}. In each of the spaces,
we mark a point xα. Take the disjoint sum

⊔
αXα and identify all marked

points. The resulting quotient space
∨

αXα is the bouquet of {Xα}. Hence,
a bouquet of q circles is a space which is the union of q copies of a circle. The
copies meet at a single common point, and this is the only common point
for any two of them. The common point is the center of the bouquet.

Denote the bouquet of q circles by Bq and its center by c. Let u1, . . . ,
uq be loops in Bq starting at c and parameterizing the q copies of the circle
that constitute Bq. Denote by αi the homotopy class of ui.

36.H. π1(Bq, c) is a free group freely generated by α1, . . . , αq.

⌈36′4⌋ Algebraic Digression: Free Groups

Recall that a group G is a free group freely generated by its elements a1,
. . . , aq if:

• each element x ∈ G is a product of powers (with positive or negative
integer exponents) of a1, . . . , aq, i.e.,

x = ae1
i1
ae2

i2
. . . aen

in

and

• this expression is unique up to the following trivial ambiguity: we
can insert or delete factors aia

−1
i and a−1

i ai or replace am
i by ar

ia
s
i

with r + s = m.

36.I. A free group is determined up to isomorphism by the number of its
free generators.
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The number of free generators is the rank of the free group. For a
standard representative of the isomorphism class of free groups of rank q,
we can take the group of words in an alphabet of q letters a1, . . . , aq and their

inverses a−1
1 , . . . , a−1

q . Two words represent the same element of the group
iff they are obtained from each other by a sequence of insertions or deletions
of fragments aia

−1
i and a−1

i ai. This group is denoted by F(a1, . . . , aq), or
just Fq if the notation for the generators is not to be emphasized.

36.J. Each element of F(a1, . . . , aq) has a unique shortest representative.
This is a word without fragments that could have been deleted.

The number l(x) of letters in the shortest representative of an element
x ∈ F(a1, . . . , aq) is the length of x. Certainly, this number is not well
defined, unless the generators are fixed.

36.5. Show that an automorphism of Fq can map x ∈ Fq to an element with
different length. For what value of q does such an example not exist? Is it possible
to change the length in this way arbitrarily?

36.K. A group G is a free group freely generated by its elements a1, . . . ,
aq iff every map of the set {a1, . . . , aq} to any group X extends to a unique
homomorphism G→ X.

Theorem 36.K is sometimes taken as a definition of a free group. (Defi-
nitions of this sort emphasize relations among different groups, rather than
the internal structure of a single group. Of course, relations among groups
can tell everything about the “internal affairs” of each group.)

Now we can reformulate Theorem 36.H as follows:

36.L. The homomorphism

F(a1, . . . , aq) → π1(Bq, c)

taking ai to αi for i = 1, . . . , q is an isomorphism.

First, for the sake of simplicity we restrict ourselves to the case where q =
2. This allows us to avoid superfluous complications in notation and pictures.
This is the simplest case that really represents the general situation. The
case q = 1 is too special.

To take advantages of this, we change the notation and put B = B2,
u = u1, v = u2, α = α1, and β = α2.

Now Theorem 36.L looks as follows:

The homomorphism F(a, b) → π(B, c) taking a to α and b to β is an
isomorphism.

This theorem can be proved like Theorems 36.C and 36.G, provided that
we know the universal covering of B.
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⌈36′5⌋ Universal Covering for Bouquet of Circles

Denote by U and V the points antipodal to c on the circles of B. Cut
B at these points, removing U and V and replacing each of them with two
new points. Whatever this operation is, its result is a cross K, which is the
union of four closed segments with a common endpoint c. There appears a
natural map P : K → B that sends the center c of the cross to the center
c of B and homeomorphically maps the rays of the cross onto half-circles of
B. Since the circles of B are parameterized by loops u and v, the halves
of each of the circles are ordered: the corresponding loop passes first one
of the halves and then the other one. Denote by U+ the point of P−1(U)
belonging to the ray mapped by P onto the second half of the circle, and
by U− the other point of P−1(U). We similarly denote points of P−1(V ) by
V + and V −.

U V
U+

U−

U+

U−

∼=

U+

U−

V +

V −

The restriction of P to K r {U+, U−, V +, V −} homeomorphically maps
this set onto B r {U, V }. Therefore, P provides a covering of B r {U, V }.
However, it fails to be a covering at U and V : none of these points has a
trivially covered neighborhood. Furthermore, the preimage of each of these
points consists of 2 points (the endpoints of the cross), where P is not even
a local homeomorphism. To eliminate this defect, we attach a copy of K
at each of the 4 endpoints of K and extend P in a natural way to the
result. But then 12 new endpoints appear at which the map is not a local
homeomorphism. Well, we repeat the trick and restore the property of being
a local homeomorphism at each of the 12 new endpoints. Then we do this
at each of the 36 new points, etc. However, if we repeat this infinitely many
times, all bad points become nice ones.2

36.M. Formalize the construction of a covering for B described above.

2This sounds like a story about a battle with Hydra, but the happy ending demonstrates
that modern mathematicians have a magic power of the sort that the heroes of myths and tales
could not even dream of. Indeed, we meet a Hydra K with 4 heads, chop off all the heads, but,
according to the old tradition of the genre, 3 new heads appear in place of each of the original
heads. We chop them off, and the story repeats. We do not even try to prevent this multiplication
of heads. We just chop them off. But contrary to the real heroes of tales, we act outside Time
and hence have no time limitations. Thus, after infinitely many repetitions of the exercise with
an exponentially growing number of heads, we succeed! No heads left!

This is a typical success story about an infinite construction in mathematics. Sometimes,
as in our case, such a construction can be replaced by a finite one, which, however, deals with
infinite objects. Nevertheless, there are important constructions where an infinite fragment is
unavoidable.
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Consider F(a, b) as a discrete topological space. Take K × F(a, b). The
latter space can be thought of as a collection of copies of K enumerated by
elements of F(a, b). Topologically, this is a disjoint sum of the copies because
F(a, b) is equipped with discrete topology. In K×F(a, b), we identify points
(U−, g) with (U+, ga) and (V −, g) with (V +, gb) for each g ∈ F(a, b). Denote
the resulting quotient space by X.

36.N. The composition of the projection K ×F(a, b) → K and P : K → B
determines a continuous quotient map p : X → B.

36.O. p : X → B is a covering.

36.P. X is path-connected. For any g ∈ F(a, b), there is a path connecting
(c, 1) with (c, g) and covering the loop obtained from g by replacing a with
u and b with v.

36.Q. X is simply connected.

36.R*. Let a topological space X be the union of two open path-connected
sets U and V . Prove that if U ∩V has at least three connected components,
then the fundamental group of X is non-Abelian and, moreover, admits an
epimorphism onto a free group of rank 2.

⌈36′6⌋ Fundamental Groups of Finite Topological Spaces

36.6. Prove that if a three-element space X is path-connected, then X is simply
connected (cf. 32.7).

36.7. Consider a topological space X = {a, b, c, d} with topology determined by
the base {{a}, {c}, {a, b, c}, {c, d, a}}. Prove that X is path-connected, but not
simply connected.

36.8. Calculate π1(X).

36.9. Let X be a finite topological space with nontrivial fundamental group. Let
n0 be the least possible cardinality of X. 1) Find n0. 2) What nontrivial groups
arise as fundamental groups of n0-element spaces?

36.10. 1) Find a finite topological space with non-Abelian fundamental group.
2) What is the least possible cardinality of such a space?

36.11*. Find a finite topological space with fundamental group isomorphic to Z2.





Chapter VIII

Fundamental Group
and Maps

37. Induced Homomorphisms
and Their First Applications

⌈37′1⌋ Homomorphisms Induced by a Continuous Map

Let f : X → Y be a continuous map of a topological space X to a
topological space Y . Let x0 ∈ X and y0 ∈ Y be points such that f(x0) = y0.
The latter property of f is expressed by saying that f maps the pair (X,x0)
to the pair (Y, y0), and writing f : (X,x0) → (Y, y0).

Consider the map f# : Ω(X,x0) → Ω(Y, y0) : s 7→ f ◦ s. This map
assigns to a loop its composition with f .

37.A. The map f# sends homotopic loops to homotopic loops.

Therefore, f# induces a map f∗ : π1(X,x0) → π1(Y, y0).

37.B. f∗ : π(X,x0) → π1(Y, y0) is a homomorphism for any continuous
map f : (X,x0) → (Y, y0).

f∗ : π(X,x0) → π1(Y, y0) is the homomorphism induced by f .

37.C. Let f : (X,x0) → (Y, y0) and g : (Y, y0) → (Z, z0) be (continuous)
maps. Then we have

(g ◦ f)∗ = g∗ ◦ f∗ : π1(X,x0) → π1(Z, z0).

191
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37.D. Let f, g : (X,x0) → (Y, y0) be two continuous maps homotopic via a
homotopy fixed at x0. Then f∗ = g∗.

37.E. Riddle. How can we generalize Theorem 37.D to the case of freely
homotopic f and g?

37.F. Let f : X → Y be a continuous map, and let x0 and x1 be two points
of X connected by a path s : I → X. Denote f(x0) by y0 and f(x1) by y1.
Then the diagram

π1(X,x0)
f∗−−−−→ π1(Y, y0)

Ts

y
yTf◦s

π1(X,x1)
f∗−−−−→ π1(Y, y1)

is commutative, i.e., Tf◦s ◦ f∗ = f∗ ◦ Ts.

37.1. Prove that the map Cr 0 → Cr 0 : z 7→ z3 is not homotopic to the identity
map C r 0 → C r 0 : z 7→ z.

37.2. Let X be a subset of Rn. Prove that if a continuous map f : X → Y
extends to a continuous map Rn → Y , then f∗ : π1(X,x0) → π1(Y, f(x0)) is a
trivial homomorphism (i.e., sends everything to the unit) for each x0 ∈ X.

37.3. Prove that if a Hausdorff space X contains an open set homeomorphic to
S1 × S1 r (1, 1), then X has infinite noncyclic fundamental group.

37.3.1. Prove that a space X satisfying the conditions of 37.3 can
be continuously mapped to a space with infinite noncyclic fundamen-
tal group in such a way that the map would induce an epimorphism of
π1(X) onto this infinite group.

37.4. Prove that the space GL(n,C) of complex n × n matrices with nonzero
determinant has infinite fundamental group.

⌈37′2⌋ Fundamental Theorem of Algebra

Our goal here is to prove the following theorem, which, at first glance,
has no relation to fundamental group.

37.G Fundamental Theorem of Algebra. Every polynomial of positive
degree in one variable with complex coefficients has a complex root.

In more detail:

Let p(z) = zn + a1z
n−1 + · · · + an be a polynomial of degree n > 0 in z

with complex coefficients. Then there exists a complex number w such that
p(w) = 0.

Although it is formulated in an algebraic way and called “The Funda-
mental Theorem of Algebra,” it has no simple algebraic proof. Its proofs
usually involve topological arguments or use complex analysis. This is so
because the field C of complex numbers as well as the field R of reals
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is extremely difficult to describe in purely algebraic terms: all customary
constructive descriptions involve a sort of completion construction, cf. Sec-
tion 18.

37.G.1 Reduction to Problem on a Map. Deduce Theorem 37.G from the
following statement:

For any complex polynomial p(z) of a positive degree, the image of the map
C → C : z 7→ p(z) contains the zero. In other words, the formula z 7→ p(z) does
not determine a map C → C r 0.

37.G.2 Estimate of Remainder. Let p(z) = zn + a1z
n−1 + · · · + an be a

complex polynomial, q(z) = zn, and r(z) = p(z) − q(z). Then there exists a
positive real R such that |r(z)| < |q(z)| = Rn for any z with |z| = R.

37.G.3 Lemma on Lady with Dog. (Cf. 30.11.) A lady q(z) and her dog
p(z) walk on the punctured plane C r 0 periodically (i.e., say, with z ∈ S1).
Prove that if the lady does not let the dog run further than |q(z)| from her,
then the doggy’s loop S1 → C r 0 : z 7→ p(z) is homotopic to the lady’s loop
S1 → C r 0 : z 7→ q(z).

37.G.4 Lemma for Dummies. (Cf. 30.12.) If f : X → Y is a continuous
map and s : S1 → X is a null-homotopic loop, then f ◦ s : S1 → Y is also
null-homotopic.

⌈37′3x⌋ Generalization of Intermediate Value Theorem

37.Hx. Riddle. How to generalize Intermediate Value Theorem 13.A to
the case of maps f : Dn → Rn?

37.Ix. Find out whether Intermediate Value Theorem 13.A is equivalent to
the following statement:
Let f : D1 → R1 be a continuous map. If 0 6∈ f(S0) and the submap
f |S0 : S0 → R1 r 0 of f induces a nonconstant map π0(S

0) → π0(R
1 r 0),

then there exists a point x ∈ D1 such that f(x) = 0.

37.Jx. Riddle. Suggest a generalization of Intermediate Value Theorem
to maps Dn → Rn which would generalize its reformulation 37.Ix. To do it,
you must define the induced homomorphism for homotopy groups.

37.Kx. Let f : Dn → Rn be a continuous map. If f(Sn−1) does not contain
0 ∈ Rn and the submap f |Sn−1 : Sn−1 → Rn r 0 of f induces a nonconstant
map

πn−1(S
n−1) → πn−1(R

n r 0),

then there exists a point x ∈ D1 such that f(x) = 0.

Usability of Theorem 37.Kx is impeded by a condition which is difficult
to check if n > 0. For n = 1, this is still possible in the framework of the
theory developed above.
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37.5x. Let f : D2 → R2 be a continuous map. If f(S1) does not contain a ∈ R2

and the circular loop f |S1 : S1 → R2 r a determines a nontrivial element of
π1(R

2 r a), then there exists x ∈ D2 such that f(x) = a.

37.6x. Let f : D2 → R2 be a continuous map that leaves fixed each point of the
boundary circle S1. Then f(D2) ⊃ D2.

37.7x. Assume that f : R2 → R2 is a continuous map and there exists a real
number m such that |f(x) − x| ≤ m for any x ∈ R2. Prove that f is a surjection.

37.8x. Let u, v : I → I × I be two paths such that u(0) = (0, 0), u(1) = (1, 1),
v(0) = (0, 1), and v(1) = (1, 0). Prove that u(I) ∩ v(I) 6= ∅.

37.8x.1. Let u and v be as in 37.8x. Prove that 0 ∈ R2 is a value of the
map w : I2 → R2 : (x, y) 7→ u(x) − v(y).

37.9x. Prove that there exist disjoint connected sets F,G ⊂ I2 such that the
corner points (0, 0) and (1, 1) of the square I2 belong to F , while (0, 1), (1, 0) ∈ G.

37.10x. In addition, can we require that the sets F and G satisfying the assump-
tions of Problem 37.9x be closed?

37.11x. Let C be a smooth simple closed curve on the plane with two inflection
points having the form shown in the figure. Prove that there is a line intersecting
C at four points a, b, c, and d with segments [a, b], [b, c], and [c, d] of the same
length.

⌈37′4x⌋ Winding Number

As we know (see 36.F), the fundamental group of the punctured plane
R2 r 0 is isomorphic to Z. There are two isomorphisms, which differ by
multiplication by −1. Choose one of them that sends the homotopy class
of the loop t 7→ (cos 2πt, sin 2πt) to 1 ∈ Z. In terms of circular loops, the
isomorphism means that each loop f : S1 → R2 r 0 is assigned an integer.
Roughly speaking, it is the number of times the loop goes around 0 (with
account of direction).
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Now we change the viewpoint in this consideration: we fix the loop, but
vary the point. Let f : S1 → R2 be a circular loop and let x ∈ R2 r f(S1).
Then f determines an element in π1(R

2 rx) = Z. (Here we choose basically
the same identification of π1(R

2 r x) with Z that sends 1 to the homotopy
class of t 7→ x+ (cos 2πt, sin 2πt).) This number is denoted by ind(f, x) and
called the winding number or index of x with respect to f .

ind=1

ind=2

ind=0

It is also convenient to characterize the number ind(u, x) as follows.
Along with the circular loop u : S1 → R2 rx, consider the map ϕu,x : S1 →
S1 : z 7→ (u(z) − x)/|u(z) − x|. The homomorphism

(
ϕu,x

)
∗

: π1(S
1) →

π1(S
1) sends the generator α of the fundamental group of the circle to the

element kα, where k = ind(u, x).

37.Lx. The formula x 7→ ind(u, x) determines a locally constant function
on R2 r u(S1).

37.12x. Let f : S1 → R2 be a loop and let x, y ∈ R2 r f(S1). Prove that if
ind(f, x) 6= ind(f, y), then any path connecting x and y in R2 meets f(S1).

37.13x. Prove that if u(S1) is contained in a disk, while a point x is not, then
ind(u, x) = 0.

37.14x. Find the set of values of function ind : R2 r u(S1) → Z for the following
loops u:
a) u(z) = z; b) u(z) = z̄; c) u(z) = z2; d) u(z) = z + z−1 + z2 − z−2

(here z ∈ S1 ⊂ C).

37.15x. Choose several loops u : S1 → R2 such that u(S1) is a bouquet of two
circles (a “lemniscate”). Find the winding number with respect to these loops for
various points.

37.16x. Find a loop f : S1 → R2 such that there exist points x, y ∈ R2 r f(S1)
with ind(f, x) = ind(f, y), but belonging to different connected components of
R2 r f(S1).

37.17x. Prove that any ray R radiating from x meets f(S1) at least at | ind(f, x)|
points (i.e., the number of points in f−1(R) is at least | ind(f, x)|).

37.Mx. If u : S1 → R2 is a restriction of a continuous map F : D2 → R2

and ind(u, x) 6= 0, then x ∈ F (D2).

37.Nx. If u and v are two circular loops in R2 with common base point (i. e.,
u(1) = v(1)) and uv is their product, then ind(uv, x) = ind(u, x) + ind(v, x)
for each x ∈ R2 r uv(S1).
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37.Ox. Let u and v be circular loops in R2, and let x ∈ R2r(u(S1)∪v(S1)).
If u and v are connected by a (free) homotopy ut, t ∈ I such that x ∈
R2 r ut(S

1) for each t ∈ I, then ind(u, x) = ind(v, x).

37.Px. Let u : S1 → C be a circular loop, a ∈ C2 r u(S1). Then we have

ind(u, a) =
1

2πi

∫

S1

|u(z) − a|
u(z) − a

dz.

37.Qx. Let p(z) be a polynomial with complex coefficients, let R > 0, and
let z0 ∈ C. Consider the circular loop u : S1 → C : z 7→ p(Rz). If
z0 ∈ Cru(S1), then the polynomial p(z)−z0 has (counting the multiplicities)
precisely ind(u, z0) roots in the open disk B2

R = {z : |z| < R}.
37.Rx. Riddle. By what can we replace the circular loop u, the domain
BR, and the polynomial p(z) so that the assertion remains valid?

⌈37′5x⌋ Borsuk–Ulam Theorem

37.Sx One-Dimensional Borsuk–Ulam. For each continuous map f :
S1 → R1, there exists x ∈ S1 such that f(x) = f(−x).
37.Tx Two-Dimensional Borsuk–Ulam. For each continuous map f :
S2 → R2, there exists x ∈ S2 such that f(x) = f(−x).

37.Tx.1 Lemma. If there exists a continuous map f : S2 → R2 such that
f(x) 6= f(−x) for each x ∈ S2, then there exists a continuous map ϕ : RP 2 →
RP 1 inducing a nonzero homomorphism π1(RP

2) → π1(RP
1).

37.18x. Prove that at each instant of time, there is a pair of antipodal points on
the earth’s surface where the pressures and also the temperatures are equal.

Theorems 37.Sx and 37.Tx are special cases of the following general
theorem. We do not assume the reader is ready to prove Theorem 37.Ux in
the full generality, but is there another easy special case?

37.Ux Borsuk–Ulam Theorem. For each continuous map f : Sn → Rn,
there exists x ∈ Sn such that f(x) = f(−x).
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38. Retractions and Fixed Points

⌈38′1⌋ Retractions and Retracts

A continuous map of a topological space onto a subspace is a retraction

if the restriction of the map to the subspace is the identity map. In other
words, if X is a topological space and A ⊂ X, then ρ : X → A is a retraction
if ρ is continuous and ρ|A = idA.

38.A. Let ρ be a continuous map of a space X onto its subspace A. Then
the following statements are equivalent:

(1) ρ is a retraction,

(2) ρ(a) = a for any a ∈ A,

(3) ρ ◦ in = idA,

(4) ρ : X → A is an extension of the identity map A→ A.

A subspace A of a space X is a retract of X if there exists a retraction
X → A.

38.B. Any one-point subset is a retract.

A two-element set may be not a retract.

38.C. Any subset of R consisting of two points is not a retract of R.

38.1. If A is a retract of X and B is a retract of A, then B is a retract of X.

38.2. If A is a retract of X and B is a retract of Y , then A × B is a retract of
X × Y .

38.3. A closed interval [a, b] is a retract of R.

38.4. An open interval (a, b) is not a retract of R.

38.5. What topological properties of ambient space are inherited by a retract?

38.6. Prove that a retract of a Hausdorff space is closed.

38.7. Prove that the union of the Y axis and the set {(x, y) ∈ R2 | x > 0, y =
sin(1/x)} is not a retract of R2 and, moreover, is not a retract of any of its
neighborhoods.

38.D. S0 is not a retract of D1.

The role of the notion of retract is clarified by the following theorem.

38.E. A subset A of a topological space X is a retract of X iff for each space
Y each continuous map A→ Y extends to a continuous map X → Y .
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⌈38′2⌋ Fundamental Group and Retractions

38.F. If ρ : X → A is a retraction, i : A→ X is the inclusion, and x0 ∈ A,
then ρ∗ : π1(X,x0) → π1(A,x0) is an epimorphism and i∗ : π1(A,x0) →
π1(X,x0) is a monomorphism.

38.G. Riddle. Which of the two statements of Theorem 38.F (about ρ∗ or
i∗) is easier to use for proving that a set A ⊂ X is not a retract of X?

38.H Borsuk Theorem in Dimension 2. S1 is not a retract of D2.

38.8. Is the projective line a retract of the projective plane?

The following problem is more difficult than 38.H in the sense that its solution
is not a straightforward consequence of Theorem 38.F, but rather demands to
reexamine the arguments used in proof of 38.F.

38.9. Prove that the boundary circle of the Möbius band is not a retract of the
Möbius band.

38.10. Prove that the boundary circle of a handle is not a retract of the handle.

The Borsuk Theorem in its whole generality cannot be deduced like
Theorem 38.H from Theorem 38.F. However, we can prove it by using a
generalization of 38.F to higher homotopy groups. Although we do not
assume that you can successfully prove it now relying only on the tools
provided above, we formulate it here.

38.I Borsuk Theorem. The (n − 1)-sphere Sn−1 is not a retract of the
n-disk Dn.

At first glance this theorem seems to be useless. Why could it be inter-
esting to know that a map with a very special property of being a retraction
does not exist in this situation? However, in mathematics nonexistence
theorems are often closely related to theorems that may seem to be more
attractive. For instance, the Borsuk Theorem implies the Brouwer Theorem
discussed below. But prior to this we must introduce an important notion
related to the Brouwer Theorem.

⌈38′3⌋ Fixed-Point Property

Let f : X → X be a continuous map. A point a ∈ X is a fixed point

of f if f(a) = a. A space X has the fixed-point property if every continuous
map X → X has a fixed point. The fixed point property implies solvability
of a wide class of equations.

38.11. Prove that the fixed point property is a topological property.

38.12. A closed interval [a, b] has the fixed point property.

38.13. Prove that if a topological space has the fixed point property, then so does
each of its retracts.
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38.14. Let X and Y be two topological spaces, x0 ∈ X, and y0 ∈ Y . Prove
that X and Y have the fixed point property iff so does their bouquet X ∨ Y =
X ⊔ Y/[x0 ∼ y0].

38.15. Prove that any finite tree has the fixed-point property. (We recall that a
tree is a connected space obtained from a finite collection of closed intervals by
somehow identifying their endpoints so that deleting an internal point from any
of the segments makes the space disconnected, see 45′4x.) Is this statement true
for infinite trees?

38.16. Prove that Rn with n > 0 does not have the fixed point property.

38.17. Prove that Sn does not have the fixed point property.

38.18. Prove that RPn with odd n does not have the fixed point property.

38.19*. Prove that CPn with odd n does not have the fixed point property.

Information. RPn and CPn with any even n have the fixed point
property.

38.J Brouwer Theorem. Dn has the fixed point property.

38.J.1. Show that the Borsuk Theorem in dimension n (i.e., the statement
that Sn−1 is not a retract of Dn) implies the Brouwer Theorem in dimension n
(i.e., the statement that any continuous map Dn → Dn has a fixed point).

38.K. Derive the Borsuk Theorem from the Brouwer Theorem.

The existence of fixed points can follow not only from topological argu-
ments.

38.20. Prove that if f : Rn → Rn is a periodic affine transformation (i.e.,
f ◦ · · · ◦ f
| {z }

p times

= idRn for a certain p), then f has a fixed point.
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39. Homotopy Equivalences

⌈39′1⌋ Homotopy Equivalence as Map

Let X and Y be two topological spaces, and let f : X → Y and g :
Y → X be continuous maps. Consider the compositions f ◦ g : Y → Y and
g ◦ f : X → X. They would be equal to the corresponding identity maps if
f and g were mutually inverse homeomorphisms. If f ◦ g and g ◦ f are only
homotopic to the identity maps, then f and g are homotopy inverse to each
other. If a continuous map f possesses a homotopy inverse map, then f is
a homotopy invertible map or a homotopy equivalence.

39.A. Prove the following properties of homotopy equivalences:

(1) any homeomorphism is a homotopy equivalence,

(2) a map homotopy inverse to a homotopy equivalence is a homotopy
equivalence,

(3) the composition of two homotopy equivalences is a homotopy equiv-
alence.

39.1. Find a homotopy equivalence that is not a homeomorphism.

⌈39′2⌋ Homotopy Equivalence as Relation

Two topological spaces X and Y are homotopy equivalent if there exists
a homotopy equivalence X → Y .

39.B. Homotopy equivalence of topological spaces is an equivalence rela-
tion.

The classes of homotopy equivalent spaces are homotopy types, and we
say that homotopy equivalent spaces have the same homotopy type.

39.2. Prove that homotopy equivalent spaces have the same number of path-
connected components.

39.3. Prove that homotopy equivalent spaces have the same number of connected
components.

39.4. Find an infinite set of topological spaces that belong to the same homotopy
type, but are pairwise non-homeomorphic.

⌈39′3⌋ Deformation Retraction

A retraction ρ : X → A is a deformation retraction if its composition
in ◦ ρ with the inclusion in : A → X is homotopic to the identity idX . If
in ◦ ρ is A-homotopic to idX , then ρ is a strong deformation retraction. If
X admits a (strong) deformation retraction onto A, then A is a (strong)
deformation retract of X.
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39.C. Each deformation retraction is a homotopy equivalence.

39.D. If A is a deformation retract of X, then A and X are homotopy
equivalent.

39.E. Any two deformation retracts of one and the same space are homo-
topy equivalent.

39.F. If A is a deformation retract of X and B is a deformation retract of
Y , then A×B is a deformation retract of X × Y .

⌈39′4⌋ Examples

39.G. Circle S1 is a deformation retract of R2 r 0.

39.5. Prove that the Möbius strip is homotopy equivalent to a circle.

39.6. Classify letters of the Latin alphabet up to homotopy equivalence.

39.H. Prove that a plane with s punctures is homotopy equivalent to the
union of s circles intersecting at a single point.

39.I. Prove that the union of a diagonal of a square and the contour of the
same square is homotopy equivalent to the union of two circles intersecting
at a single point.
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39.7. Prove that a handle is homotopy equivalent to a bouquet of two circles.
(E.g., construct a deformation retraction of the handle to the union of two circles
intersecting at a single point.)

39.8. Prove that a handle is homotopy equivalent to the union of three arcs with
common endpoints (i.e., the letter θ).

39.9. Prove that the space obtained from S2 by identifying two (distinct) points
is homotopy equivalent to the union of a two-sphere and a circle intersecting at a
single point.

39.10. Prove that the space {(p, q) ∈ C : z2 + pz + q has two distinct roots} of
quadratic complex polynomials with distinct roots is homotopy equivalent to the
circle.

39.11. Prove that the space GL(n,R) of invertible n×n real matrices is homotopy
equivalent to the subspace O(n) consisting of orthogonal matrices.

39.12. Riddle. Is there any relation between a solution of the preceding problem
and the Gram–Schmidt orthogonalization? Can the Gram–Schmidt orthogonal-
ization algorithm be regarded as a deformation retraction?

39.13. Construct the following deformation retractions: (a) R3 r R1 → S1; (b)
RnrRm → Sn−m−1; (c) S3rS1 → S1; (d) SnrSm → Sn−m−1 (e) RPnrRPm →
RPn−m−1.

⌈39′5⌋ Deformation Retraction versus Homotopy Equivalence

39.J. Spaces of Problem 39.I cannot be embedded in one another. On the
other hand, they can be embedded as deformation retracts in the plane with
two punctures.

Deformation retractions constitute a very special class of homotopy
equivalences. For example, they are often easier to visualize. However,
as follows from 39.J, it may happen that two spaces are homotopy equiva-
lent, but none of them can be embedded in the other one, and so none of
them is homeomorphic to a deformation retract of the other one. Therefore,
deformation retractions seem to be insufficient for establishing homotopy
equivalences.

However, this is not the case:

39.14*. Prove that any two homotopy equivalent spaces can be embedded as
deformation retracts in the same topological space.

⌈39′6⌋ Contractible Spaces

A topological space X is contractible if the identity map id : X → X is
null-homotopic.

39.15. Show that R and I are contractible.

39.16. Prove that any contractible space is path-connected.

39.17. Prove that the following statements about a topological space X are equiv-
alent:
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(1) X is contractible,
(2) X is homotopy equivalent to a point,
(3) there exists a deformation retraction of X onto a point,
(4) each point a of X is a deformation retract of X,
(5) each continuous map of any topological space Y to X is null-homotopic,
(6) each continuous map of X to any topological space Y is null-homotopic.

39.18. Is it true that if X is a contractible space, then for any topological space
Y

(1) any two continuous maps X → Y are homotopic?
(2) any two continuous maps Y → X are homotopic?

39.19. Find out if the spaces on the following list are contractible:

(1) Rn,
(2) a convex subset of Rn,
(3) a star-shaped subset of Rn,
(4) {(x, y) ∈ R2 : x2 − y2 ≤ 1},
(5) a finite tree (i.e., a connected space obtained from a finite collection of

closed intervals by somehow identifying their endpoints so that deleting
an internal point of each of the segments makes the space disconnected,
see 45′4x.)

39.20. Prove that X × Y is contractible iff both X and Y are contractible.

⌈39′7⌋ Fundamental Group and Homotopy Equivalences

39.K. Let f : X → Y and g : Y → X be two homotopy inverse maps, and
let x0 ∈ X and y0 ∈ Y be two points such that f(x0) = y0 and g(y0) = x0

and, moreover, the homotopies connecting f ◦ g with idY and g ◦ f with idX

are fixed at y0 and x0, respectively. Then f∗ and g∗ are mutually inverse
isomorphisms between the groups π1(X,x0) and π1(Y, y0).

39.L Corollary. If ρ : X → A is a strong deformation retraction, x0 ∈
A, then ρ∗ : π1(X,x0) → π1(A,x0) and in∗ : π1(A,x0) → π1(X,x0) are
mutually inverse isomorphisms.

39.21. Calculate the fundamental group of the following spaces:
(a) R3 r R1, (b) RN r Rn, (c) R3 r S1, (d) RN r Sn,

(e) S3 r S1, (f) SN r Sk, (g) RP 3 r RP 1, (h) handle,
(i) Möbius band, (j) sphere with s holes,
(k) Klein bottle with a point re-

moved,
(l) Möbius band with s holes.

39.22. Prove that the boundary circle of the Möbius band standardly embedded
in R3 (see 22.18) cannot be the boundary of a disk embedded in R3 in such a way
that its interior does not meet the band.

39.23. 1) Calculate the fundamental group of the space Q of all complex polyno-
mials ax2 + bx+ c with distinct roots. 2) Calculate the fundamental group of the
subspace Q1 of Q consisting of polynomials with a = 1 (unitary polynomials).

39.24. Riddle. Can you solve 39.23 along the lines of deriving the customary
formula for the roots of a quadratic trinomial?
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39.M. Suppose that the assumptions of Theorem 39.K are weakened as
follows: g(y0) 6= x0 and/or the homotopies connecting f ◦ g with idY and
g ◦ f with idX are not fixed at y0 and x0, respectively. How would f∗ and
g∗ be related? Would π1(X,x0) and π1(Y, y0) be isomorphic?
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40. Covering Spaces via Fundamental
Groups

⌈40′1⌋ Homomorphisms Induced by Covering Projections

40.A. Let p : X → B be a covering, x0 ∈ X, and b0 = p(x0). Then
p∗ : π1(X,x0) → π1(B, b0) is a monomorphism. Cf. 35.C.

The image of the monomorphism p∗ : π1(X,x0) → π1(B, b0) induced by
the covering projection p : X → B is the group of the covering p with base

point x0.

40.B. Riddle. Is the group of the covering determined by the covering?

40.C Group of Covering versus Lifting of Loops. Let p : X → B be
a covering. Describe the loops in B whose homotopy classes belong to the
group of the covering in terms provided by Path Lifting Theorem 35.B.

40.D. Let p : X → B be a covering, let x0, x1 ∈ X belong to the same
path-component of X, and let b0 = p(x0) = p(x1). Then p∗(π1(X,x0))
and p∗(π1(X,x1)) are conjugate subgroups of π1(B, b0) (i.e., there is α ∈
π1(B, b0) such that p∗(π1(X,x1)) = α−1p∗(π1(X,x0))α).

40.E. Let p : X → B be a covering, x0 ∈ X, and b0 = p(x0). For
each α ∈ π1(B, b0), there exists an x1 ∈ p−1(b0) such that p∗(π1(X,x1)) =
α−1p∗(π1(X,x0))α.

40.F. Let p : X → B be a covering in the narrow sense, and let G ⊂
π1(B, b0) be the group of this covering with a base point x0. A subgroup
H ⊂ π1(B, b0) is a group of the same covering iff H is conjugate to G.

⌈40′2⌋ Number of Sheets

40.G Number of Sheets and Index of Subgroup. Let p : X → B be
a finite-sheeted covering in the narrow sense. Then the number of sheets is
equal to the index of the group of this covering.

40.H Sheets and Right Cosets. Let p : X → B be a covering in the
narrow sense, b0 ∈ B, and x0 ∈ p−1(b0). Construct a natural bijection
between p−1(b0) and the set p∗(π1(X,x0))\π1(B, b0) of right cosets of the
group of the covering in the fundamental group of the base space.

40.1 Number of Sheets in Universal Covering. The number of sheets of a
universal covering equals the order of the fundamental group of the base space.

40.2 Nontrivial Covering Means Nontrivial π1. Any topological space that
has a nontrivial path-connected covering space has a nontrivial fundamental group.
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40.3. What numbers can appear as the number of sheets of a covering of the
Möbius strip by the cylinder S1 × I?

40.4. What numbers can appear as the number of sheets of a covering of the
Möbius strip by itself?

40.5. What numbers can appear as the number of sheets of a covering of the
Klein bottle by a torus?

40.6. What numbers can appear as the number of sheets of a covering of the
Klein bottle by itself?

40.7. What numbers can appear as the numbers of sheets for a covering of the
Klein bottle by the plane R2?

40.8. What numbers can appear as the numbers of sheets for a covering of the
Klein bottle by S1 × R?

⌈40′3⌋ Hierarchy of Coverings

Let p : X → B and q : Y → B be two coverings, let x0 ∈ X, y0 ∈ Y ,
and p(x0) = q(y0) = b0. The covering q with base point y0 is subordinate to
p with base point x0 if there exists a map ϕ : X → Y such that q ◦ ϕ = p
and ϕ(x0) = y0. In this case, the map ϕ is a subordination.

40.I. A subordination is a covering map.

40.J. If a subordination exists, then it is unique. Cf. 35.B.

Two coverings p : X → B and q : Y → B are equivalent if there exists a
homeomorphism h : X → Y such that p = q ◦h. In this case, h and h−1 are
equivalences.

40.K. If two coverings are subordinated to each other, then the correspond-
ing subordinations are equivalences.

40.L. The equivalence of coverings is, indeed, an equivalence relation on
the set of coverings with a given base space.

40.M. Subordination determines a nonstrict partial order on the set of
equivalence classes of coverings with a given base.

40.9. What equivalence class of coverings is minimal (i.e., subordinated to all
other classes)?

40.N. Let p : X → B and q : Y → B be two coverings, and let x0 ∈ X,
y0 ∈ Y , and p(x0) = q(y0) = b0. If q with base point y0 is subordinated to
p with base point x0, then the group of the covering p is contained in the
group of the covering q, i.e., p∗(π1(X,x0)) ⊂ q∗(π1(Y, y0)).
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41x. Classification of Covering Spaces

⌈41′1x⌋ Existence of Subordinations

A topological space X is locally path-connected if for each point a ∈ X
and each neighborhood U of a the point a has a path-connected neighbor-
hood V ⊂ U .

41.1x. Find a topological space which is path-connected, but not locally path-
connected.

41.Ax. Let B be a locally path-connected space, let p : X → B and q :
Y → B be two coverings in the narrow sense, and let x0 ∈ X, y0 ∈ Y , and
p(x0) = q(y0) = b0. If p∗(π1(X,x0)) ⊂ q∗(π1(Y, y0)), then q is subordinated
to p.

41.Ax.1. Under the conditions of 41.Ax, if two paths u, v : I → X have the
same initial point x0 and a common final point, then the paths that cover p ◦ u
and p ◦ v and have the same initial point y0 also have the same final point.

41.Ax.2. Under the conditions of 41.Ax, the map X → Y defined by 41.Ax.1
(guess what this map is!) is continuous.

41.2x. Construct an example proving that the hypothesis of local path connect-
edness in 41.Ax.2 and 41.Ax is necessary.

41.Bx. Two coverings p : X → B and q : Y → B with a common locally
path-connected base are equivalent iff for some x0 ∈ X and y0 ∈ Y with
p(x0) = q(y0) = b0 the groups p∗(π1(X,x0)) and q∗(π1(Y, y0)) are conjugate
in π1(B, b0).

41.3x. Construct an example proving that the assumption of local path connect-
edness of the base in 41.Bx is necessary.

⌈41′2x⌋ Micro Simply Connected Spaces

A topological space X is micro simply connected if each point a ∈ X has a
neighborhood U such that the inclusion homomorphism π1(U, a) → π1(X,a)
is trivial.

41.4x. Any simply connected space is micro simply connected.

41.5x. Find a micro simply connected, but not simply connected space.

A topological space is locally contractible at point a if each neighborhood
U of a contains a neighborhood V of a such that the inclusion V → U
is null-homotopic. A topological space is locally contractible if it is locally
contractible at each of its points.
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41.6x. Any finite topological space is locally contractible.

41.7x. Any locally contractible space is micro simply connected.

41.8x. Find a space which is not micro simply connected.

In the literature, the micro simply connectedness is also called weak local

simply connectedness, while a strong local simply connectedness is the follow-
ing property: any neighborhood U of any point x contains a neighborhood
V such that any loop at x in V is null-homotopic in U .

41.9x. Find a micro simply connected space which is not strong locally simply
connected.

⌈41′3x⌋ Existence of Coverings

41.Cx. A space having a universal covering space is micro simply connected.

41.Dx Existence of a Covering with a Given Group. If a topological
space B is path-connected, locally path-connected, and micro simply con-
nected, then for any b0 ∈ B and any subgroup π of π1(B, b0) there exists
a covering p : X → B and a point x0 ∈ X such that p(x0) = b0 and
p∗(π1(X,x0)) = π.

41.Dx.1. Suppose that in the assumptions of Theorem 41.Dx there exists a
covering p : X → B satisfying all requirements of this theorem. For each
x ∈ X , describe all paths in B that are p-images of paths connecting x0 to x in
X .

41.Dx.2. Does the solution of Problem 41.Dx.1 determine an equivalence re-
lation on the set of all paths in B starting at b0, so that we obtain a one-to-one
correspondence between the set X and the set of equivalence classes?

41.Dx.3. Describe a topology on the set of equivalence classes from 41.Dx.2
such that the natural bijection between X and this set is a homeomorphism.

41.Dx.4. Prove that the reconstruction of X and p : X → B provided by
Problems 41.Dx.1–41.Dx.4 under the assumptions of Theorem 41.Dx determine
a covering whose existence is claimed by Theorem 41.Dx.

Essentially, assertions 41.Dx.1 - 41.Dx.3 imply the uniqueness of the
covering with a given group. More precisely, the following assertion holds
true.

41.Ex Uniqueness of the Covering with a Given Group. Assume
that B is path-connected, locally path-connected, and micro simply connected.
Let p : X → B and q : Y → B be two coverings, and let p∗(π1(X,x0)) =
q∗(π1(Y, y0)). Then the coverings p and q are equivalent, i.e., there exists a
homeomorphism f : X → Y such that f(x0) = y0 and p ◦ f = q.
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41.Fx Classification of Coverings over a Good Space. Let B be a
path-connected, locally path-connected, and micro simply connected space
with base point b0. Then there is a one-to-one correspondence between
classes of equivalent coverings (in the narrow sense) over B and conjugacy
classes of subgroups of π1(B, b0). This correspondence identifies the hierar-
chy of coverings (ordered by subordination) with the hierarchy of subgroups
(ordered by inclusion).

Under the correspondence of Theorem 41.Fx, the trivial subgroup cor-
responds to a covering with simply connected covering space. Since this
covering subordinates any other covering with the same base space, it is
said to be universal .

41.10x. Describe all coverings of the following spaces up to equivalence and sub-
ordination:

(1) circle S1;
(2) punctured plane R2 r 0;
(3) Möbius strip;
(4) four-point digital circle (the space formed by 4 points, a, b, c, d; with the

base of open sets formed by {a}, {c}, {a, b, c}, and {c, d, a})
(5) torus S1 × S1;

⌈41′4x⌋ Action of Fundamental Group on Fiber

41.Gx Action of π1 on Fiber. Let p : X → B be a covering, b0 ∈ B.
Construct a natural right action of π1(B, b0) on p−1(b0).

41.Hx. When the action in 41.Gx is transitive?

⌈41′5x⌋ Automorphisms of Covering

A homeomorphism ϕ : X → X is an automorphism of a covering p : X →
B if p ◦ ϕ = p.

41.Ix. Automorphisms of a covering form a group.

We denote the group of automorphisms of a covering p : X → B by
Aut(p).

41.Jx. An automorphism ϕ : X → X of the covering p : X → B is deter-
mined by the image ϕ(x0) of any x0 ∈ X. Cf. 40.J.

41.Kx. Any two-fold covering has a nontrivial automorphism.

41.11x. Find a three-fold covering without nontrivial automorphisms.

Let G be a group and H its subgroup. Recall that the normalizer N(H)
of H is the subset of G consisting of g ∈ G such that g−1Hg = H. This is
a subgroup of G, which contains H as a normal subgroup. So, N(H)/H is
a group.
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41.Lx. Let p : X → B be a covering, x0 ∈ X and b0 = p(x0). Con-
struct a map π1(B, b0) → p−1(b0) which induces a bijection of the set
p∗(π1(X,x0))\π1(B, b0) of right cosets onto p−1(b0).

41.Mx. Show that the bijection p∗(π1(X,x0))\π1(B, b0) → p−1(b0) con-
structed in 41.Lx maps the set of images of x0 under all automorphisms of
a covering p : X → B to the group N(p∗(π1(X,x0)))/p∗(π1(X,x0)).

41.Nx. For any covering p : X → B in the narrow sense, there is a natural
injective map Aut(p) to the group N(p∗(π1(X,x0)))/p∗(π1(X,x0)). This

map is an antihomomorphism.1

41.Ox. Under assumptions of Theorem 41.Nx, if B is locally path-connected,
then the antihomomorphism Aut(p) → N(p∗(π1(X,x0)))/p∗(π1(X,x0)) is
bijective.

⌈41′6x⌋ Regular Coverings

41.Px Regularity of Covering. Let p : X → B be a covering in the
narrow sense, b0 ∈ B, and x0 ∈ p−1(b0). The following conditions are
equivalent:

(1) p∗
(
π1(X,x0)

)
is a normal subgroup of π1(B, b0);

(2) p∗
(
π1(X,x)

)
is a normal subgroup of π1(B, p(x)) for each x ∈ X;

(3) all groups p∗π1(X,x) for x ∈ p−1(b) are the same;

(4) for each loop s : I → B, either every path in X covering s is a loop
(independently of the initial point), or none of them is a loop;

(5) the automorphism group acts transitively on p−1(b0).

A covering satisfying to (any of) the equivalent conditions of Theo-
rem 41.Px is said to be regular . Otherwise, the covering is irregular .

41.12x. The coverings R → S1 : x 7→ e2πix and S1 → S1 : z 7→ zn for integer
n > 0 are regular.

41.Qx. The automorphism group of a regular covering p : X → B is nat-
urally anti-isomorphic to the quotient group π1(B, b0)/p∗π1(X,x0) of the

group π1(B, b0) by the group of the covering for any x0 ∈ p−1(b0).

41.Rx Classification of Regular Coverings over a Good Base. There
is a one-to-one correspondence between classes of equivalent coverings (in
the narrow sense) over a path-connected, locally path-connected, and mi-
cro simply connected space B with a base point b0, on one hand, and anti-
epimorphisms π1(B, b0) → G, on the other hand.

1Recall that a map ϕ : G → H from a group G to a group H is an antihomomorphism if
ϕ(ab) = ϕ(b)ϕ(a) for any a, b ∈ G.
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Algebraic properties of the automorphism group of a regular covering
are often referred to as if they were properties of the covering itself. For
instance, a cyclic covering is a regular covering with cyclic automorphism
group, an Abelian covering is a regular covering with Abelian automorphism
group, etc.

41.13x. Any two-fold covering is regular.

41.14x. Which coverings considered in the problems of Section 34 are regular?
Are there any irregular coverings?

41.15x. Find a three-fold irregular covering of a bouquet of two circles.

41.16x. Let p : X → B be a regular covering, Y ⊂ X, and C ⊂ B, and let
q : Y → C be a submap of p. Prove that if q is a covering, then this covering is
regular.

⌈41′7x⌋ Lifting and Covering Maps

41.Sx. Riddle. Let p : X → B and f : Y → B be continuous maps.
Let x0 ∈ X and y0 ∈ Y be points such that p(x0) = f(y0). In terms of
the homomorphisms p∗ : π1(X,x0) → π1(B, p(x0)) and f∗ : π1(Y, y0) →
π1(B, f(y0)), formulate a necessary condition for f to have a lift f̃ : Y → X

such that f̃(y0) = x0. Find an example in which this condition is not
sufficient. What additional assumptions can make it sufficient?

41.Tx Theorem on Lifting a Map. Let p : X → B be a covering in
the narrow sense and f : Y → B be a continuous map. Let x0 ∈ X and
y0 ∈ Y be points such that p(x0) = f(y0). If Y is a locally path-connected
space and f∗π(Y, y0) ⊂ p∗π(X,x0), then there exists a unique continuous

map f̃ : Y → X such that p ◦ f̃ = f and f̃(y0) = x0.

41.Ux. Let p : X → B and q : Y → C be two coverings in the narrow sense,
and let f : B → C be a continuous map. Let x0 ∈ X and y0 ∈ Y be points
such that fp(x0) = q(y0). If there exists a continuous map F : X → Y such
that fp = qF and F (x0) = y0, then we have f∗p∗π1(X,x0) ⊂ q∗π1(Y, y0).

41.Vx Theorem on Covering of a Map. Let p : X → B and q : Y → C
be two coverings in the narrow sense, f : B → C a continuous map. Let
x0 ∈ X and y0 ∈ Y be points such that fp(x0) = q(y0). If Y is locally
path-connected and f∗p∗π1(X,x0) ⊂ q∗π1(Y, y0), then there exists a unique
continuous map F : X → Y such that fp = qF and F (x0) = y0.

⌈41′8x⌋ Induced Coverings

41.Wx. Let p : X → B be a covering, f : A → B a continuous map.
Denote by W the subspace of A × X consisting of points (a, x) such that
f(a) = p(x). Let q : W → A be the restriction of the projection A×X → A.
Then q : W → A is a covering with the same number of sheets as p.
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A covering q : W → A obtained as in Theorem 41.Wx is said to be
induced from p : X → B by f : A→ B.

41.17x. Represent coverings from Problems 34.D and 34.F as coverings induced
from R → S1 : x 7→ e2πix.

41.18x. Which of the coverings considered above is induced from the covering of
Problem 36.7?

⌈41′9x⌋ High-Dimensional Homotopy Groups of Covering Space

41.Xx. Let p : X → B be a covering. Then for any continuous map s :
In → B and any lift u : In−1 → X of the restriction s|In−1 the map s has a
unique lift extending u.

41.Yx. For any covering p : X → B and points x0 ∈ X and b0 ∈ B such
that p(x0) = b0, the homotopy groups πr(X,x0) and πr(B, b0) with r > 1 are
canonically isomorphic.

41.Zx. Prove that homotopy groups of dimensions greater than 1 of circle,
torus, Klein bottle and Möbius strip are trivial.



Chapter IX

Cellular Techniques

42. Cellular Spaces

⌈42′1⌋ Definition of Cellular Spaces

In this section, we study a class of topological spaces that play a very
important role in algebraic topology. Their role in the context of this book
is more restricted: this is the class of spaces for which we learn how to
calculate the fundamental group.1

A zero-dimensional cellular space is just a discrete space. Points of a 0-
dimensional cellular space are also called (zero-dimensional) cells, or 0-cells.

A one-dimensional cellular space is a space that can be obtained as follows.
Take any 0-dimensional cellular space X0. Take a family of maps ϕα : S0 →
X0. Attach the sum of a family of copies of D1 to X0 via ϕα (the copies are
indexed by the same indices α as the maps ϕα):

X0 ∪⊔ϕα

(⊔

α

D1
)
.

The images of copies of the interior parts IntD1 of D1 are called (open) 1-
dimensional cells, 1-cells, one-cells, or edges. The subsets obtained from D1

are closed 1-cells. The cells of X0 (i.e., points of X0) are also called vertices.

1This class of spaces was introduced by J. H. C. Whitehead. He called these spaces CW -

complexes, and they are known under this name. However, it is not a good name for plenty
of reasons. With very rare exceptions (one of which is CW -complex, the other is simplicial
complex), the word complex is used nowadays for various algebraic notions, but not for spaces.
We have decided to use the term cellular space instead of CW -complex following D. B. Fuchs and
V. A. Rokhlin [2].
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Open 1-cells and 0-cells constitute a partition of a one-dimensional cellular
space. This partition is included in the notion of cellular space. In other
words, a one-dimensional cellular space is a topological space equipped with
a partition that can be obtained in this way.2

A two-dimensional cellular space is a space that can be obtained as follows.
Take any cellular space X1 of dimension 0 or 1. Take a family of continuous3

maps ϕα : S1 → X1. Attach the sum of a family of copies of D2 to X1 via
ϕα:

X1 ∪⊔ϕα

(⊔

α

D2
)
.

The images of the interior parts of copies of D2 are (open) 2-dimensional

cells, 2-cells, two-cells, or faces. The cells of X1 are also regarded as cells
of the 2-dimensional cellular space. Open cells of both kinds constitute a
partition of a 2-dimensional cellular space. This partition is included in the
notion of cellular space, i.e., a two-dimensional cellular space is a topological
space equipped with a partition that can be obtained in the way described
above. The set obtained out of a copy of the whole D2 is a closed 2-cell .

A cellular space of dimension n is defined in a similar way: This is a
space equipped with a partition. It is obtained from a cellular space Xn−1

of dimension less than n by attaching a family of copies of the n-disk Dn

via a family of continuous maps of their boundary spheres:

Xn−1 ∪⊔ϕα

(⊔

α

Dn
)
.

The images of the interiors of the attached n-disks are (open) n-dimensional

cells or simply n-cells. The images of the entire n-disks are closed n-cells.
Cells of Xn−1 are also regarded as cells of the n-dimensional cellular space.

2One-dimensional cellular spaces are also associated with the word graph. However, rather
often, this word is used for objects of other classes. For example, one can call in this way one-
dimensional cellular spaces in which attaching maps of different one-cells cannot coincide, or the
boundaries of one-cells cannot consist of a single vertex. When one-dimensional cellular spaces
are to be considered anyway, inspite of this terminological disregard, they are called multigraphs

or pseudographs. Furthermore, sometimes one includes an additional structure into the notion
of graph—say, a choice of orientation on each edge. Certainly, all of these variations contradict
a general tendency in mathematical terminology to give simple names to decent objects of a
more general nature, passing to more complicated terms while adding structures and imposing

restrictions. However, in this specific situation there is no hope to implement that tendency. Any
attempt to fix a meaning for the word graph apparently only contributes to this chaos, and we just
keep this word away from important formulations, using it as a short informal synonym for the
more formal term of one-dimensional cellular space. (Other overused common words, like curve

and surface, also deserve this sort of caution.)
3In the above definition of a 1-dimensional cellular space, the attaching maps ϕα were also

continuous, although their continuity was not required since any map of S0 to any space is
continuous.



42. Cellular Spaces 215

Each of the mappings ϕα is an attaching map, and the restriction of the
corresponding factorization map to the n-disk Dn is the characteristic map.

A cellular space is obtained as the union of an increasing sequence of
cellular spaces X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ . . . obtained in this way from
each other. The sequence may be finite or infinite. In the latter case, the
topological structure is introduced by saying that the cover of the union by
the setsXn is fundamental, i.e., a set U ⊂ ⋃∞

n=0Xn is open iff its intersection
U ∩Xn with each Xn is open in Xn.

The partition of a cellular space into its open cells is a cellular decompo-

sition. The union of all cells of dimension less than or equal to n of a cellular
space X is the n-dimensional skeleton of X. This term may be misleading
since the n-dimensional skeleton may contain no n-cells, and so it may coin-
cide with the (n−1)-dimensional skeleton. Thus, the n-dimensional skeleton
may have dimension less than n. For this reason, it is better to speak about
the nth skeleton or n-skeleton.

42.1. In a cellular space, skeletons are closed.

A cellular space is finite if it contains a finite number of cells. A cellular
space is countable if it contains a countable number of cells. A cellular space
is locally finite if each of its points has a neighborhood that meets finitely
many cells.

Let X be a cellular space. A subspace A ⊂ X is a cellular subspace of
X if A is a union of open cells and together with each cell e contains the
closed cell ē. This definition admits various equivalent reformulations. For
instance, A ⊂ X is a cellular subspace of X iff A is both a union of closed cells
and a union of open cells. Another option: together with each point x ∈ A
the subspace A contains the closed cell e ∈ x. Certainly, A is equipped
with a partition into the open cells of X contained in A. Obviously, the
k-skeleton of a cellular space X is a cellular subspace of X.

42.2. Prove that the union and intersection of any collection of cellular subspaces
are cellular subspaces.

42.A. Prove that a cellular subspace of a cellular space is a cellular space.
(Probably, your proof will involve assertion 43.Fx.)

42.A.1. Let X be a topological space, and let X1 ⊂ X2 ⊂ . . . be an increasing
sequence of subsets constituting a fundamental cover of X . Let A ⊂ X be a
subspace; denote A ∩Xi by Ai. Let one of the following conditions be fulfilled:
1) Xi is open in X for each i;
2) Ai is open in X for each i;
3) Ai is closed in X for each i.
Then {Ai} is a fundamental cover of A.
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⌈42′2⌋ First Examples

42.B. A cellular space consisting of two cells, where one is a 0-cell and the
other one is an n-cell, is homeomorphic to Sn.

42.C. Represent Dn with n > 0 as a cellular space made of three cells.

42.D. A cellular space consisting of a single 0-cell and q one-cells is a bou-
quet of q circles.

42.E. Represent torus S1×S1 as a cellular space with one 0-cell, two 1-cells,
and one 2-cell.

42.F. How would you obtain a presentation of torus S1 × S1 as a cellular
space with 4 cells from a presentation of S1 as a cellular space with 2 cells?

42.3. Prove that if X and Y are finite cellular spaces, then X × Y has a natural
structure of a finite cellular space.

42.4*. Does the statement of Problem 42.3 remain true if we skip the finiteness
condition in it? If yes, prove this; if no, find an example in which the product is
not a cellular space.

42.G. Represent the sphere Sn as a cellular space such that the spheres
S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn−1 are its skeletons.

42.H. Represent RPn as a cellular space with n + 1 cells. Describe the
attaching maps of the cells.

42.5. Represent CPn as a cellular space with n+ 1 cells. Describe the attaching
maps of its cells.

42.6. Represent the following topological spaces as cellular ones
(a) handle; (b) Möbius strip; (c) S1 × I ,
(d) sphere with p

handles;
(e) sphere with p

cross-caps.

42.7. What is the minimal number of cells in a cellular space homeomorphic to
(a) Möbius strip; (b) sphere with p

handles;
(c) sphere with p

cross-caps?

42.8. Find a cellular space where the closure of a cell is not equal to a union of
other cells. What is the minimal number of cells in a space containing a cell of
this sort?
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42.9. Consider the disjoint sum of countably many copies of the closed interval
I and identify the copies of 0 in all of them. Represent the result (which is the
bouquet of the countable family of intervals) as a countable cellular space. Prove
that this space is not first countable.

42.I. Represent R1 as a cellular space.

42.10. Prove that for any two cellular spaces homeomorphic to R1 there exists a
homeomorphism between them which homeomorphically maps each cell of one of
them onto a cell of the other one.

42.J. Represent Rn as a cellular space.

Denote by R∞ the union of the sequence of Euclidean spaces R0 ⊂
R1 ⊂ · · · ⊂ Rn ⊂ canonically included to each other: Rn = {x ∈ Rn+1 :
xn+1 = 0}. Equip R∞ with the topological structure for which the spaces
Rn constitute a fundamental cover.

42.K. Represent R∞ as a cellular space.

42.11. Show that R∞ is not metrizable.

⌈42′3⌋ Further Two-Dimensional Examples

We consider a class of 2-dimensional cellular spaces that admit a simple
combinatorial description. Each space in this class is a quotient space of a
finite family of convex polygons by identification of sides via affine homeo-
morphisms. The identification of vertices is determined by the identification
of the sides. The quotient space has a natural decomposition into 0-cells,
which are the images of vertices; 1-cells, which are the images of sides; and
faces, which are the images of the interior parts of the polygons.

To describe such a space, we first need to show what sides are identi-
fied. Usually this is indicated by writing the same letters at the sides to be
identified. There are only two affine homeomorphisms between two closed
intervals. To specify one of them, it suffices to show the orientations of the
intervals that are identified by the homeomorphism. Usually this is done
by drawing arrows on the sides. Here is a description of this sort for the
standard presentation of torus S1 × S1 as the quotient space of square:

b

a

b

a

We can replace a picture by a combinatorial description. To do this, put
letters on all sides of the polygon, go around the polygons counterclockwise
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and write down the letters that stay at the sides of polygon along the con-
tour. The letters corresponding to the sides whose orientation is opposite
to the counterclockwise direction are put with exponent −1. This yields a
collection of words, which contains sufficient information about the family
of polygons and the partition. For instance, the presentation of the torus
shown above is encoded by the word ab−1a−1b.

42.12. Prove that:

(1) the word a−1a describes a cellular space homeomorphic to S2,
(2) the word aa describes a cellular space homeomorphic to RP 2,
(3) the word aba−1b−1c describes a handle,
(4) the word abcb−1 describes cylinder S1 × I ,
(5) each of the words aab and abac describe Möbius strip,
(6) the word abab describes a cellular space homeomorphic to RP 2,
(7) each of the words aabb and ab−1ab describe Klein bottle,
(8) the word

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g

describes sphere with g handles,
(9) the word a1a1a2a2 . . . agag describes sphere with g cross-caps.

⌈42′4⌋ Embedding in Euclidean Space

42.L. Any countable 0-dimensional cellular space can be embedded in R.

42.M. Any countable locally finite 1-dimensional cellular space can be em-
bedded in R3.

42.13. Find a 1-dimensional cellular space which you cannot embed in R2. (We
do not ask you to prove rigorously that no embedding is possible.)

42.N. Any finite dimensional countable locally finite cellular space can be
embedded in a Euclidean space of sufficiently high dimension.

42.N.1. LetX and Y be topological spaces such thatX can be embedded in Rp,
Y can be embedded in Rq, and both embeddings are proper maps. (See 19′3x;
in particular, their images are closed in Rp and Rq, respectively.) Let A be a
closed subset of Y . Assume that A has a neighborhood U in Y such that there
exists a homeomorphism h : ClU → A× I mapping A to A× 0. Let ϕ : A→ X
be a proper continuous map. Then the initial embedding X → Rp extends to
an embedding X ∪ϕ Y → Rp+q+1.

42.N.2. Let X be a locally finite countable k-dimensional cellular space, A the
(k − 1)-skeleton of X . Prove that if A can be embedded in Rp, then X can be
embedded in Rp+k+1.

42.O. Any countable locally finite cellular space can be embedded in R∞.

42.P. Any finite cellular space is metrizable.

42.Q. Any finite cellular space is normal.
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42.R. Any countable cellular space can be embedded in R∞.

42.S. Any cellular space is normal.

42.T. Any locally finite cellular space is metrizable.

⌈42′5x⌋ Simplicial Spaces

Recall that in 24′3x we introduced a class of topological spaces: simpli-
cial spaces. Each simplicial space is equipped with a partition into subsets,
called open simplices, which are indeed homeomorphic to open simplices of
Euclidean space.

42.Ux. Any simplicial space is cellular, and its partition into open simplices
is the corresponding partition into open cells.
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43x. Topological Properties of Cellular
Spaces

The present section contains assertions of mixed character. For example,
we study conditions ensuring that a cellular space is compact (43.Jx) or
separable (43.Nx). We also prove that a cellular space X is connected, iff X
is path-connected (43.Rx), iff the 1-skeleton of X is path-connected (43.Ux).
On the other hand, we study the cellular topological structure as such. For
example, any cellular space is Hausdorff (43.Ax). Further, it is not clear
at all from the definition of a cellular space that a closed cell is the closure
of the corresponding open cell (or that closed cells are closed sets). In this
connection, the present section includes assertions of technical character.
(We do not formulate them as lemmas to individual theorems because often
they are lemmas for several assertions.) For example: closed cells constitute
a fundamental cover of a cellular space (43.Cx).

We notice that in textbooks (say, in the textbook [2] by Fuchs and
Rokhlin) a cellular space is defined as a Hausdorff topological space equipped
by a cellular partition with two properties:
(C ) each closed cell meets only a finite number of (open) cells;
(W ) closed cells constitute a fundamental cover of the space.

The results of assertions 43.Ax, 43.Bx, and 43.Ex imply that cellular
spaces in the sense of the above definition are cellular spaces in the sense
of Fuchs - Rokhlin’ textbook (i.e., in the standard sense), the possibility of
inductive construction for which is proved in [2]. Thus, both definitions of
a cellular space are equivalent.

An advice to the reader: first try to prove the above assertions for finite
cellular spaces.

43.Ax. Each cellular space is a Hausdorff topological space.

43.Bx. In a cellular space, the closure of any cell e is the closed cell e.

43.Cx. Closed cells constitute a fundamental cover of a cellular space.

43.Dx. Each cover of a cellular space by cellular subspaces is fundamental.

43.Ex. In a cellular space, any closed cell meets only a finite number of
open cells.

43.Fx. If A is cellular subspace of a cellular space X, then A is closed in
X.

43.Gx. The space obtained as a result of pasting two cellular subspaces
together along their common subspace, is cellular.
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43.Hx. If a subset A of a cellular space X intersects each open cell along
a finite set, then A is closed. Furthermore, the induced topology on A is
discrete.

43.Ix. Prove that each compact subset of a cellular space meets a finite
number of cells.

43.Jx Corollary. A cellular space is compact iff it is finite.

43.Kx. Any cell of a cellular space is contained in a finite cellular subspace
of this space.

43.Lx. Any compact subset of a cellular space is contained in a finite cellular
subspace.

43.Mx. A subset of a cellular space is compact iff it is closed and meets
only a finite number of open cells.

43.Nx. A cellular space is separable iff it is countable.

43.Ox. Any path-connected component of a cellular space is a cellular sub-
space.

43.Px. A cellular space is locally path-connected.

43.Qx. Any path-connected component of a cellular space is both open and
closed. It is a connected component.

43.Rx. A cellular space is connected iff it is path-connected.

43.Sx. A locally finite cellular space is countable iff it has countable 0-
skeleton.

43.Tx. Any connected locally finite cellular space is countable.

43.Ux. A cellular space is connected iff its 1-skeleton is connected.
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44. Cellular Constructions

⌈44′1⌋ Euler Characteristic

Let X be a finite cellular space. Let ci(X) denote the number of its cells
of dimension i. The Euler characteristic of X is the alternating sum of ci(X):

χ(X) = c0(X) − c1(X) + c2(X) − · · · + (−1)ici(X) + . . . .

44.A. Prove that the Euler characteristic is additive in the following sense:
for any cellular space X and its finite cellular subspaces A and B we have

χ(A ∪B) = χ(A) + χ(B) − χ(A ∩B).

44.B. Prove that the Euler characteristic is multiplicative in the following
sense: for any finite cellular spaces X and Y , the Euler characteristic of
their product X × Y is χ(X)χ(Y ).

⌈44′2⌋ Collapse and Generalized Collapse

Let X be a cellular space, e and f its open cells of dimensions n and
n− 1, respectively. Suppose:

• the attaching map ϕe : Sn−1 → Xn−1 of e determines a homeomor-
phism of the open upper hemisphere Sn−1

+ onto f ,

• f does not meet the images of attaching maps of cells distinct from
e,

• the cell e is disjoint from the image of the attaching map of any
cell.

f

e

44.C. X r (e ∪ f) is a cellular subspace of X.

44.D. X r (e ∪ f) is a deformation retract of X.

We say that X r (e ∪ f) is obtained from X by an elementary collapse,
and we write X ց X r (e ∪ f).

If a cellular subspace A of a cellular space X is obtained from X by a
sequence of elementary collapses, then we say that X is collapsed onto A
and also write X ց A.

44.E. Collapsing does not change the Euler characteristic: if X is a finite
cellular space and X ց A, then χ(A) = χ(X).
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As above, let X be a cellular space, let e and f be its open cells of dimen-
sions n and n − 1, respectively, and let the attaching map ϕe : Sn → Xn−1

of e determine a homeomorphism of Sn−1
+ onto f . Unlike the preceding

situation, here we assume neither that f is disjoint from the images of at-
taching maps of cells different from e, nor that e is disjoint from the images
of attaching maps of whatever cells. Let χe : Dn → X be a characteristic
map of e. Furthermore, let ψ : Dn → Sn−1 r ϕ−1

e (f) = Sn−1 r Sn−1
+ be a

deformation retraction.

44.F. Under these conditions, the quotient space X/[χe(x) ∼ ϕe(ψ(x))] of
X is a cellular space where the cells are the images under the natural pro-
jections of all cells of X except e and f .

We say that the cellular space X/[χe(x) ∼ ϕe(ψ(x))] is obtained by can-

cellation of cells e and f .

44.G. The projection X → X/[χe(x) ∼ ϕe(ψ(x))] is a homotopy equiva-

lence.

44.G.1. Find a cellular subspace Y of a cellular space X such that the pro-
jection Y → Y/[χe(x) ∼ ϕe(ψ(x))] would be a homotopy equivalence by Theo-
rem 44.D.

44.G.2. Extend the map Y → Y r (e ∪ f) to a map X → X ′, which is a
homotopy equivalence by 44.6x.

⌈44′3x⌋ Homotopy Equivalences of Cellular Spaces

44.1x. Let X = A∪ϕDn be the space obtained by attaching an n-disk to a topo-
logical space A via a continuous map ϕ : Sn−1 → A. Prove that the complement
X r x of any point x ∈ X r A admits a (strong) deformation retraction to A.

44.2x. Let X be an n-dimensional cellular space, and let K be a set intersecting
each of the open n-cells of X at a single point. Prove that the (n − 1)-skeleton
Xn−1 of X is a deformation retract of X r K.

44.3x. Prove that the complement RPnrpoint is homotopy equivalent to RPn−1;
the complement CPn r point is homotopy equivalent to CPn−1.

44.4x. Prove that the punctured solid torus D2 × S1 r point, where point is an
arbitrary interior point, is homotopy equivalent to a torus with a disk attached
along the meridian S1 × 1.

44.5x. Let A be cellular space of dimension n, and let ϕ : Sn → A and ψ : Sn → A
be two continuous maps. Prove that if ϕ and ψ are homotopic, then the spaces
Xϕ = A ∪ϕ Dn+1 and Xψ = A ∪ψ Dn+1 are homotopy equivalent.

Below we need a more general fact.

44.6x. Let f : X → Y be a homotopy equivalence, and let ϕ : Sn−1 → X and ϕ′ :
Sn−1 → Y continuous maps. Prove that if f ◦ϕ ∼ ϕ′, then X ∪ϕDn ≃ Y ∪ϕ′ Dn.
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44.7x. Let X be a space obtained from a circle by attaching two copies of a disk
by the maps S1 → S1 : z 7→ z2 and S1 → S1 : z 7→ z3, respectively. Find a cellular
space homotopy equivalent to X with the smallest possible number of cells.

44.8x. Riddle. Generalize the result of Problem 44.7x.

44.9x. Prove that the space K obtained by attaching a disk to the torus S1 ×S1

along the fibre S1 × 1 is homotopy equivalent to the bouquet S2 ∨ S1.

44.10x. Prove that the torus S1 ×S1 with two disks attached along the meridian
{1} × S1 and parallel S1 × 1, respectively, is homotopy equivalent to S2.

44.11x. Consider three circles in R3: S1 = {x2 +y2 = 1, z = 0}, S2 = {x2 +y2 =
1, z = 1}, and S3 = {z2 + (y − 1)2 = 1, x = 0}. Since R3 ∼= S3 r point, we can
assume that S1, S2, and S3 lie in S3. Prove that the space X = S3 r (S1 ∪S2) is
not homotopy equivalent to the space Y = S3 r (S1 ∪ S3).

44.Hx. Let X be a cellular space, A ⊂ X a cellular subspace. Then the
union (X × 0) ∪ (A× I) is a retract of the cylinder X × I.

44.Ix. Let X be a cellular space, A ⊂ X a cellular subspace. Assume
that we are given a map F : X → Y and a homotopy h : A × I → Y
of the restriction f = F |A. Then the homotopy h extends to a homotopy
H : X × I → Y of F .

44.Jx. Let X be a cellular space, A ⊂ X a contractible cellular subspace.
Then the projection pr : X → X/A is a homotopy equivalence.

Problem 44.Jx implies the following assertions.

44.Kx. If a cellular space X contains a closed 1-cell e homeomorphic to
I, then X is homotopy equivalent to the cellular space X/e obtained by
contraction of e.

44.Lx. Any connected cellular space is homotopy equivalent to a cellular
space with one-point 0-skeleton.

44.Mx. A simply connected finite 2-dimensional cellular space is homotopy
equivalent to a cellular space with one-point 1-skeleton.

44.12x. Solve Problem 44.9x with the help of Theorem 44.Jx.

44.13x. Prove that the quotient space

CP 2/[(z0 : z1 : z2) ∼ (z0 : z1 : z2)]

of the complex projective plane CP 2 is homotopy equivalent to S4.

Information. We have CP 2/[z ∼ τ (z)] ∼= S4.

44.Nx. Let X be a cellular space, and let A be a cellular subspace of X
such that the inclusion in : A→ X is a homotopy equivalence. Then A is a
deformation retract of X.
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45. One-Dimensional Cellular Spaces

⌈45′1⌋ Homotopy Classification

45.A. Any connected finite 1-dimensional cellular space is homotopy equiv-
alent to a bouquet of circles.

45.A.1 Lemma. Let X be a 1-dimensional cellular space, and let e be a 1-cell
of X attached by an injective map S0 → X0 (i.e., e has two distinct endpoints).
Prove that the projection X → X/e is a homotopy equivalence. Describe the
homotopy inverse map explicitly.

45.B. A finite connected cellular space X of dimension one is homotopy
equivalent to the bouquet of 1−χ(X) circles, and its fundamental group is
a free group of rank 1 − χ(X).

45.C Corollary. The Euler characteristic of a finite connected one-dimen-
sional cellular space is invariant under homotopy equivalence. It is not
greater than one. It equals one iff the space is homotopy equivalent to point.

45.D Corollary. The Euler characteristic of a finite one-dimensional cel-
lular space is not greater than the number of its connected components. It
is equal to this number iff each of its connected components is homotopy
equivalent to a point.

45.E Homotopy Classification of Finite 1-Dimensional Cellular

Spaces. Finite connected one-dimensional cellular spaces are homotopy
equivalent, iff their fundamental groups are isomorphic, iff their Euler char-
acteristics are equal.

45.1. The fundamental group of a 2-sphere punctured at n points is a free group
of rank n− 1.

45.2. Prove that the Euler characteristic of a cellular space homeomorphic to S2

is equal to 2.

45.3 The Euler Theorem. For any convex polyhedron in R3, the sum of the
number of its vertices and the number of its faces equals the number of its edges
plus two.

45.4. Prove the Euler Theorem without using fundamental groups.

45.5. Prove that the Euler characteristic of any cellular space homeomorphic to
the torus is equal to 0.

Information. The Euler characteristic is homotopy invariant, but the
usual proof of this fact involves the machinery of singular homology theory,
which lies far beyond the scope of our book.
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⌈45′2⌋ Spanning Trees

A one-dimensional cellular space is a tree if it is connected, while the
complement of each of its (open) 1-cells is disconnected. A cellular subspace
A of a cellular space X is a spanning tree of X if A is a tree and is not
contained in any other cellular subspace B ⊂ X which is a tree.

45.F. Any finite connected one-dimensional cellular space contains a span-
ning tree.

45.G. Prove that a cellular subspace A of a cellular space X is a spanning
tree iff A is a tree and contains all vertices of X.

Theorem 45.G explains the term spanning tree.

45.H. Prove that a cellular subspace A of a cellular space X is a spanning
tree iff it is a tree and the quotient space X/A is a bouquet of circles.

45.I. Let X be a one-dimensional cellular space, A its cellular subspace.
Prove that if A is a tree, then the projection X → X/A is a homotopy
equivalence.

Problems 45.F, 45.I, and 45.H provide one more proof of Theorem 45.A.

⌈45′3x⌋ Dividing Cells

45.Jx. In a one-dimensional connected cellular space, each connected com-
ponent of the complement of an edge meets the closure of the edge. The
complement has at most two connected components.

A complete local characterization of a vertex in a one-dimensional cel-
lular space is its degree. This is the total number of points in the preimages
of the vertex under attaching maps of all one-cells of the space. It is more
traditional to define the degree of a vertex v as the number of edges incident
to v, counting with multiplicity 2 the edges that are incident only to v.

45.Kx. 1) Each connected component of the complement of a vertex in a
connected one-dimensional cellular space contains an edge with boundary
containing the vertex. 2) The complement of a vertex of degree m has at
most m connected components.

⌈45′4x⌋ Trees and Forests

A one-dimensional cellular space is a tree if it is connected, while the
complement of each of its (open) 1-cells is disconnected. A one-dimensional
cellular space is a forest if each of its connected components is a tree.

45.Lx. Any cellular subspace of a forest is a forest. In particular, any
connected cellular subspace of a tree is a tree.
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45.Mx. In a tree, the complement of an edge has two connected compo-
nents.

45.Nx. In a tree, the complement of a vertex of degree m has m connected
components.

45.Ox. A finite tree has a vertex of degree one.

45.Px. Any finite tree collapses to a point and has Euler characteristic one.

45.Qx. Prove that any point of a tree is its deformation retract.

45.Rx. Any finite one-dimensional cellular space that can be collapsed to
a point is a tree.

45.Sx. In any finite one-dimensional cellular space, the sum of degrees of
all vertices is twice the number of edges.

45.Tx. A finite connected one-dimensional cellular space with Euler char-
acteristic one has a vertex of degree one.

45.Ux. A finite connected one-dimensional cellular space with Euler char-
acteristic one collapses to a point.

⌈45′5x⌋ Simple Paths

Let X be a one-dimensional cellular space. A simple path of length n in
X is a finite sequence (v1, e1, v2, e2, . . . , en, vn+1) formed by vertices vi and
edges ei of X such that each term appears in it only once and the boundary
of every edge ei consists of the preceding and subsequent vertices vi and vi+1.
The vertex v1 is the initial vertex, and vn+1 is the final one. The simple path
connects these vertices. They are connected by a path I → X, which is a
topological embedding with image contained in the union of all cells involved
in the simple path. The union of these cells is a cellular subspace of X. It
is called a simple broken line.

45.Vx. In a connected one-dimensional cellular space, any two vertices are
connected by a simple path.

45.Wx Corollary. In a connected one-dimensional cellular space X, any
two points are connected by a path I → X which is a topological embedding.

45.6x. Can a path-connected space contain two distinct points that cannot be
connected by a path which is a topological embedding?

45.7x. Can you find a Hausdorff space with this property?

45.Xx. A connected one-dimensional cellular space X is a tree iff there
exists no topological embedding S1 → X.
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45.Yx. In a one-dimensional cellular space X, there exists a non-null-
homotopic loop S1 → X iff there exists a topological embedding S1 → X.

45.Zx. A one-dimensional cellular space is a tree iff any two distinct vertices
are connected in it by a unique simple path.

45.8x. Prove that any finite tree has fixed point property.

Cf. 38.12, 38.13, and 38.14.

45.9x. Is this true for each tree? For each finite connected one-dimensional cellular
space?
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46. Fundamental Group of a Cellular
Space

⌈46′1⌋ One-Dimensional Cellular Spaces

46.A. The fundamental group of a connected finite one-dimensional cellular
space X is a free group of rank 1 − χ(X).

46.B. Let X be a finite connected one-dimensional cellular space, T a span-
ning tree of X, and x0 ∈ T . For each 1-cell e ⊂ XrT , choose a loop se that
starts at x0, goes inside T to e, then goes once along e, and then returns to
x0 in T . Prove that π1(X,x0) is freely generated by the homotopy classes
of se.

⌈46′2⌋ Generators

46.C. Let A be a topological space, x0 ∈ A. Let ϕ : Sk−1 → A be a
continuous map, X = A∪ϕD

k. If k > 1, then the inclusion homomorphism
π1(A,x0) → π1(X,x0) is surjective. Cf. 46.G.4 and 46.G.5.

46.D. Let X be a cellular space, let x0 be its 0-cell, and let X1 be the 1-
skeleton of X. Then the inclusion homomorphism

π1(X1, x0) → π1(X,x0)

is surjective.

46.E. Let X be a finite cellular space, T a spanning tree of X1, and x0 ∈ T .
For each cell e ⊂ X1 r T , choose a loop se that starts at x0, goes inside
T to e, then goes once along e, and finally returns to x0 in T . Prove that
π1(X,x0) is generated by the homotopy classes of se.

46.1. Deduce Theorem 32.G from Theorem 46.D.

46.2. Find π1(CP
n).

⌈46′3⌋ Relations

Let X be a cellular space, x0 its 0-cell. Denote by Xn the n-skeleton
of X. Recall that X2 is obtained from X1 by attaching copies of the disk
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D2 via continuous maps ϕα : S1 → X1. The attaching maps are circular
loops in X1. For each α, choose a path sα : I → X1 connecting ϕα(1) with
x0. Denote by N the normal subgroup of π1(X,x0) generated (as a normal
subgroup4) by the elements

Tsα [ϕα] ∈ π1(X1, x0).

46.F. N does not depend on the choice of the paths sα.

46.G. The normal subgroup N is the kernel of the inclusion homomorphism
in∗ : π1(X1, x0) → π1(X,x0).

Theorem 46.G can be proved in various ways. For example, we can de-
rive it from the Seifert–van Kampen Theorem (see 46.7x). Here we prove
Theorem 46.G by constructing a “rightful” covering space. The inclusion
N ⊂ Ker in∗ is rather obvious (see 46.G.1). The proof of the converse in-
clusion involves the existence of a covering p : Y → X whose submap over
the 1-skeleton of X is a covering p1 : Y1 → X1 with group N , and the fact
that Ker in∗ is contained in the group of each covering over X1 that extends
to a covering over the entire X. The scheme of the argument suggested in
Lemmas 1–7 can also be modified. The thing is that the inclusion X2 → X
induces an isomorphism of fundamental groups. It is not difficult to prove
this, but the techniques involved, though quite general and natural, never-
theless lie beyond the scope of our book. Here we just want to emphasize
that this result replaces Lemmas 4 and 5.

46.G.1 Lemma 1. N ⊂ Ker i∗, cf. 32.J (3).

46.G.2 Lemma 2. Let p1 : Y1 → X1 be a covering with covering group N .
Then for any α and any point y ∈ p−1

1 (ϕα(1)) the loop ϕα has a lift ϕ̃α : S1 → Y1

with ϕ̃α(1) = y.

46.G.3 Lemma 3. Let Y2 be a cellular space obtained by attaching copies
of a disk to Y1 along all lifts of attaching maps ϕα. Then there exists a map
p2 : Y2 → X2 that extends p1 and is a covering.

46.G.4 Lemma 4. Attaching maps of n-cells with n ≥ 3 lift to any covering
space. Cf. 41.Xx and 41.Yx.

46.G.5 Lemma 5. Covering p2 : Y2 → X2 extends to a covering of the whole
X .

46.G.6 Lemma 6. Any loop s : I → X1 realizing an element of Ker i∗ (i.e.,
null-homotopic in X) is covered by a loop of Y . The covering loop is contained
in Y1.

46.G.7 Lemma 7. N = Ker in∗.

4Recall that a subgroup N is normal if N coincides with all conjugate subgroups of N . The
normal subgroup N generated by a set A is the minimal normal subgroup containing A. As a
subgroup, N is generated by elements of A and elements conjugate to them. This means that
each element of N is a product of elements conjugate to elements of A.
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46.H. The inclusion in2 : X2 → X induces an isomorphism between the
fundamental groups of a cellular space and its 2-skeleton.

46.3. Check that the covering over the cellular space X constructed in the proof
of Theorem 46.G is universal.

⌈46′4⌋ Writing Down Generators and Relations

Theorems 46.E and 46.G imply the following recipe for writing down a
presentation for the fundamental group of a finite dimensional cellular space
by generators and relations:

Let X be a finite cellular space, x0 a 0-cell of X. Let T be a spanning
tree of the 1-skeleton of X. For each 1-cell e 6⊂ T of X, choose a loop se

that starts at x0, goes inside T to e, goes once along e, and then returns
to x0 in T . Let g1, . . . , gm be the homotopy classes of these loops. Let
ϕ1, . . . , ϕn : S1 → X1 be the attaching maps of 2-cells of X. For each ϕi,
choose a path si connecting ϕi(1) with x0 in the 1-skeleton of X. Express
the homotopy class of the loop s−1

i ϕisi as a product of powers of generators
gj. Let r1, . . . , rn be the words in letters g1, . . . , gm obtained in this way.
The fundamental group of X is generated by g1, . . . , gm, which satisfy the
defining relations r1 = 1, . . . , rn = 1.

46.I. Check that this rule gives correct answers in the cases of RPn and S1×
S1 for the cellular presentations of these spaces provided in Problems 42.H
and 42.E.

In assertion 44.Mx proved above, we assumed that the cellular space is
2-dimensional. The reason for this was that at that moment we did not
know that the inclusion X2 → X induces an isomorphism of fundamental
groups.

46.J. Each finite simply connected cellular space is homotopy equivalent to
a cellular space with one-point 1-skeleton.

⌈46′5⌋ Fundamental Groups of Basic Surfaces

46.K. The fundamental group of a sphere with g handles admits the follow-
ing presentation:

〈a1, b1, a2, b2, . . . ag, bg | a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g = 1〉.
46.L. The fundamental group of a sphere with g cross-caps admits the fol-
lowing presentation:

〈a1, a2, . . . ag | a2
1a

2
2 . . . a

2
g = 1〉.

46.M. Spheres with different numbers of handles have non-isomorphic fun-
damental groups.
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When we want to prove that two finitely presented groups are not iso-
morphic, one of the first natural moves is to abelianize the groups. (Recall
that to abelianize a group G means to quotient G out by the commutator
subgroup. The commutator subgroup [G,G] is the normal subgroup gener-
ated by the commutators a−1b−1ab for all a, b ∈ G. Abelianization means
adding relations ab = ba for any a, b ∈ G.)

Abelian finitely generated groups are well known. Any finitely generated
Abelian group is isomorphic to a product of a finite number of cyclic groups.
If the abelianized groups are not isomorphic, then the original groups are
not isomorphic as well.

46.M.1. The abelianized fundamental group of a sphere with g handles is a free
Abelian group of rank 2g (i.e., is isomorphic to Z2g).

46.N. Fundamental groups of spheres with different numbers of cross-caps
are not isomorphic.

46.N.1. The abelianized fundamental group of a sphere with g cross-caps is
isomorphic to Zg−1 × Z2.

46.O. Spheres with different numbers of handles are not homotopy equiva-
lent.

46.P. Spheres with different numbers of cross-caps are not homotopy equiv-
alent.

46.Q. A sphere with handles is not homotopy equivalent to a sphere with
cross-caps.

If X is a path-connected space, then the abelianized fundamental group
of X is the 1-dimensional (or first) homology group of X and denoted by
H1(X). If X is not path-connected, then H1(X) is the direct sum of the first
homology groups of all path-connected components of X. Thus 46.M.1 can
be rephrased as follows: if Fg is a sphere with g handles, then H1(Fg) = Z2g.

⌈46′6x⌋ Seifert–van Kampen Theorem

To calculate fundamental group, one often uses the Seifert–van Kampen
Theorem, instead of the cellular techniques presented above.

46.Rx Seifert–van Kampen Theorem. Let X be a path-connected topo-
logical space, let A and B be its open path-connected subspaces covering X,
and let C = A ∩B be also path-connected. Then π1(X) can be presented as
the amalgamated product of π1(A) and π1(B) with identified subgroup π1(C).
In other words, if x0 ∈ C,

π1(A,x0) = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,
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π1(B,x0) = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,
π1(C, x0) is generated by its elements γ1, . . . , γt, and inA : C → A and
inB : C → B are inclusions, then π1(X,x0) can be presented as

〈α1, . . . , αp, β1, . . . , βq |
ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

inA∗(γ1) = inB∗(γ1), . . . , inA∗(γt) = inB∗(γt)〉.

Now we consider the situation where the space X and its subsets A and
B are cellular.

46.Sx. Assume that X is a connected finite cellular space, and A and B
are two cellular subspaces of X covering X. Denote A ∩ B by C. How are
the fundamental groups of X, A, B, and C related to each other?

46.Tx Seifert–van Kampen Theorem. Let X be a connected finite cel-
lular space, let A and B be two connected cellular subspaces covering X, and
let C = A ∩B. Assume that C is also connected. Let x0 ∈ C be a 0-cell,

π1(A,x0) = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,
π1(B,x0) = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,

and let the group π1(C, x0) be generated by the elements γ1, . . . , γt. Denote
by ξi(α1, . . . , αp) and ηi(β1, . . . , βq) the images of the elements γi (more pre-
cisely, their expression via the generators) under the inclusion homomor-
phisms

π1(C, x0) → π1(A,x0) and, respectively, π1(C, x0) → π1(B,x0).

Then

π1(X,x0) = 〈α1, . . . , αp, β1, . . . , βq |
ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

ξ1 = η1, . . . , ξt = ηt〉.
46.4x. Let X, A, B, and C be as above. Assume that A and B are simply
connected and C has two connected components. Prove that π1(X) is isomorphic
to Z.

46.5x. Is Theorem 46.Tx a special case of Theorem 46.Rx?

46.6x. May the assumption of openness of A and B in 46.Rx be omitted?

46.7x. Deduce Theorem 46.G from the Seifert–van Kampen Theorem 46.Rx.

46.8x. Compute the fundamental group of the lens space, which is obtained by
pasting together two solid tori via the homeomorphism S1 × S1 → S1 × S1 :
(u, v) 7→ (ukvl, umvn), where kn− lm = 1.

46.9x. Determine the homotopy and the topological type of the lens space for
m = 0, 1.
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46.10x. Find a presentation for the fundamental group of the complement in
R3 of a torus knot K of type (p, q), where p and q are relatively prime positive
integers. This knot lies on the revolution torus T , which is described by parametric
equations

8

>

<

>

:

x = (2 + cos 2πu) cos 2πv

y = (2 + cos 2πu) sin 2πv

z = sin 2πu,

and K is described on T by equation pu = qv.

46.11x. Let (X,x0) and (Y, y0) be two simply connected topological spaces with
marked points, and let Z = X ∨ Y be their bouquet.

(1) Prove that if X and Y are cellular spaces, then Z is simply connected.
(2) Prove that if x0 and y0 have neighborhoods Ux0

⊂ X and Vy0 ⊂ Y that
admit strong deformation retractions to x0 and y0, respectively, then Z
is simply connected.

(3) Construct two simply connected topological spaces X and Y with a
non-simply connected bouquet.

⌈46′7x⌋ Group-Theoretic Digression:
Amalgamated Product of Groups

At first glance, description of the fundamental group of X given above
in the statement of the Seifert–van Kampen Theorem is far from being
invariant: it depends on the choice of generators and relations of other
groups involved. However, this is actually a detailed description of a group-
theoretic construction in terms of generators and relations. After solving
the next problem, you will get a more complete picture of the subject.

46.Ux. Let A and B be two groups:

A = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,

B = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,

and let C be a group generated by γ1, . . . γt. Let ξ : C → A and η : C → B
be arbitrary homomorphisms. Then

X = 〈α1, . . . , αp, β1, . . . , βq |
ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

ξ(γ1) = η(γ1), . . . , ξ(γt) = η(γt)〉,

and homomorphisms φ : A → X : αi 7→ αi, i = 1, . . . , p and ψ : B → X :
βj 7→ βj , j = 1, . . . , q take part in commutative diagram
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A
ξ

  A
AA

AA

C

φ >>~~~~~

ψ   @
@@

@@
X

B
r

>>}}}}}

and for each group X ′ and homomorphisms ϕ′ : A → X ′ and ψ′ : B → X ′

involved in commutative diagram

A
ξ′

  B
BB

BB

C

φ ??~~~~~

ψ ��@
@@

@@
X ′

B
r′

>>|||||

there exists a unique homomorphism ζ : X → X ′ such that diagram

A

ξ   @
@@

@@
@@

ξ′

((PPPPPPPPPPPPP

C

φ
??~~~~~~~

ψ ��@
@@

@@
@@

X
ζ

//___ X ′

B

r
>>~~~~~~~ r′

77nnnnnnnnnnnnn

is commutative. The latter determines the group X up to isomorphism.

The group X described in 46.Ux is a free product of A and B with amal-

gamated subgroup C. It is denoted by A ∗C B. Notice that the name is not
quite precise, since it ignores the role of the homomorphisms φ and ψ and
the possibility that they may be not injective.

If the group C is trivial, then A ∗C B is denoted by A ∗B and called the
free product of A and B.

46.12x. Is a free group of rank n a free product of n copies of Z?

46.13x. Represent the fundamental group of Klein bottle as Z ∗Z Z. Does this
decomposition correspond to a decomposition of Klein bottle?

46.14x. Riddle. Define a free product as a set of equivalence classes of words in
which the letters are elements of the factors.

46.15x. Investigate algebraic properties of free multiplication of groups: is it
associative, commutative and, if it is, then in what sense? Do homomorphisms of
the factors determine a homomorphism of the product?
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46.16x*. Find decomposition of the modular group

Mod = SL(2,Z)/
„

−1 0
0 −1

«

as a free product Z2 ∗ Z3.

⌈46′8x⌋ Addendum to Seifert–van Kampen Theorem

The Seifert–van Kampen Theorem appeared and is used mostly as a
tool for calculation of fundamental groups. However, it does not help in
many situations. For example, it does not work under the assumptions of
the following theorem.

46.Vx. Let X be a topological space, A and B open sets covering X, and
C = A ∩ B. Assume that A and B are simply connected and C has two
connected components. Then π1(X) is isomorphic to Z.

Theorem 46.Vx also holds true if we assume that C has two path-
connected components. The difference seems to be immaterial, but the
proof becomes incomparably more technical.

Seifert and van Kampen needed a more universal tool for calculation of
fundamental groups, and theorems they published were much more general
than Theorem 46.Rx. Theorem 46.Rx is all that could find its way from
the original papers to textbooks. Theorem 46.4x is another special case
of their results. The most general formulation is rather cumbersome, and
we restrict ourselves to one more special case that was distinguished by
van Kampen. Together with 46.Rx, it allows one to calculate fundamental
groups in all situations that are available with the most general formulations
by van Kampen, although not that fast. We formulate the original version
of this theorem, but first we recommend starting with a cellular version,
in which the results presented in the beginning of this section allow one to
obtain a complete answer about calculation of fundamental groups. After
that is done consider the general situation.

First, let us describe the situation common for both formulations. Let
A be a topological space, B its closed subset, and U a neighborhood of B in
A such that U rB is the union of two disjoint sets, M1 and M2, open in A.
Put Ni = B ∪Mi. Let C be a topological space that can be represented as
(ArU)∪ (N1 ⊔N2) and such that the sets (ArU)∪N1 and (ArU)∪N2

with the topology induced from A form a fundamental cover of C. There
are two copies of B in C, which come from N1 and N2. The space A can be
identified with the quotient space of C obtained by identifying the two copies
of B via the natural homeomorphism. However, our description begins with
A, since this is the space whose fundamental group we want to calculate,
while the space B is auxiliary constructed out of A (see Figure 1).
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B1 B2
M1 M2

A

B

M1 M2

Figure 1

In the cellular version of the statement formulated below, it is supposed
that the space A is cellular and B is its cellular subspace. Then C is also
equipped with a natural cellular structure such that the natural map C → A
is cellular.

46.Wx. In the situation described above, assume that C is path-connected
and x0 ∈ Cr (B1∪B2). Let π1(C, x0) be presented by generators α1, . . . , αn

and relations ψ1 = 1, . . . , ψm = 1. Assume that base points yi ∈ Bi are
mapped to the same point y under the map C → A, and σi is a homotopy
class of a path connecting x0 with yi in C. Let β1, . . . , βp be generators of
π1(B, y), and let β1i, . . . , βpi be the corresponding elements of π1(Bi, yi).

Denote by ϕli a word representing σiβliσ
−1
i in terms of α1, . . . , αn. Then

π1(A,x0) has the following presentation:

〈α1, . . . , αn, γ | ψ1 = · · · = ψm = 1, γϕ11 = ϕ12γ, . . . , γϕp1 = ϕp2γ〉.
46.17x. Using 46.Wx, calculate the fundamental groups of the torus and the Klein
bottle.

46.18x. Using 46.Wx, calculate the fundamental groups of basic surfaces.

46.19x. Deduce Theorem 46.4x from 46.Rx and 46.Wx.

46.20x. Riddle. Develop an algebraic theory of the group-theoretic construction
contained in Theorem 46.Wx.
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∅ 5

14

Br(a) 19

C 5

CPn 128

Cl 30

Dn 20

Fr 30

H 129

HPn 130

Int 29

N 5

Q 5

R 5

Rn 18

RPn 127

RT1
14

Sn 20

Z 5

abbreviation of a map 48

accumulation point 98

action

properly discontinuous 157

group in a set 156

transitive 156

effective 156

faithful 156

continuous 157

of a fundamental group in a fiber 209

adherent point 30

Alexandrov compactification 102

arrow 11

asymmetric 25

attaching map 123, 215

attaching of a space 123

automorphism of covering 209

axioms of countability 87

first 89

second 88

separability 88

axioms of group 141

axioms of topological structure 11

ball

open 19

closed 19

baricentric subdivision 134

of a poset 134

base for a topological structure 16

base at a point 89

base of a covering 179

basic surfaces 125, 218

bicompactness 92

bijection 45

Borsuk Theorem 198

Borsuk-Ulam Theorem 196

bouquet 199, 186

boundary

of a set 30, 70

point of a set 29

bounded set 21

Brower Theorem 199

Cantor set 15

cardinality 87

Cartesian product 107, see product

Cauchy sequence 99

cell 213

closed 213

dividing 226

n-cell 213

cellular

decomposition 215

space 213
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0-dimensional 213
1-dimensional 225

subspace 215
center of a group 152
circular loop 172
closed

set 13
in a subspace 27

map 96
closure

of a set 30
in a metric space 30
operation of 31, 32
sequential of a set 90

coincidence set of maps 82
collapse 222
compact

cellular space 221
set 93
space 92

compactification 102
Alexandrov 102
one-point 102

complement of a set 10
complete metric space 99
complex projective line 128
component 69

connected 69
path connected 78

composition of maps 47
cone 37
conjugation 148
connected

cellular space 221
component 69
set 68
space 67

contraction of a set 117, 118
coset 145
countability axiom 87

the first 89
the second 88
in a topological group 149

cover 53
closed 54
dominates a partion of unity 104
fundamental 53, 220
inscribed 54, 103
locally finite 54, 103
open 54
refinement of other one 54

covering 179, 53
base of 179
n-fold 182
induced 211
in narrow sense 180
of a bouquet of circles 188

projection 179
regular 210
space 179
trivial 179
universal 182

coverings
equivalent 206
multiplicity of 181
number of sheets of 181, 205
of Klein bottle 181
of basic surfaces 181
of a projective space 180
of a torus 180
of Möbius strip 181

cube 94
de Morgan formulas 13
degree of a point with respect to a loop 195
diagonal 108, 110
diameter of a set 21
difference of sets 10
direct product 107, see product
discrete space 11
disjoint sets 8
disjoint sum 122
distance 18, 4′1

Gromov–Hausdorff 55
between sets 24

asymmetric 25
between a point and a set 23

edge 213
embedding

topological 64, 105
isometric 55

element 3
maximal 38
minimal 38
greatest 38
smallest 38

elementary set 108
epimorphism 144
equivalence class 113
equivalence relation 113
equivalent

embeddings 65
metrics 22
coverings 206

Euler characteristic 222
exterior of a set 29
exterior point 29
factor

group 145
set 113
map 115

fiber
of a product 107

finite intersection property 93
fixed point 82, 198
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set 82
property 198

forest 226
function 45
fundamental group 171

of a bouquet of circles 186
of a cellular space 229, 232
of a finite space 172, 189
of a lens space 233
of circle 185
of a product 173
of a projective space 186
of Rn 172
of Sn with n > 1 172
of a sphere with crosscaps and handles

231
of a topological group 174
of a torus 185
of a knot complement 234

fundamental theorem of algebra 192
G-set

left (right) 156
homogeneous 156 158

generators of a group 145
gluing 117, 120, 123
graph of a map 108
group 74, 141

Abelian 142
axioms 141

of homeomorphisms 155
fundamental 171
homology 1-dimensional 232
of a covering 205
operation 141
free 186
topological 147
trivial 142
cyclic 145

handle 62, 124
Hasse diagram 40
Hausdorff axiom 81
heriditary property 83, 93, 86
hierarchy of coverings 206
Hölder

inequality 19
map 52

homeomorphic 57
homeomorphism 57
homeomorphism problem 63
homogeneous G-set 156
homogeneous coordinates 127
homomorphism

group 143
topological group 153
induced by a continuous map 191
induced by a covering projection 205

A-homotopy 167

homotopy 164
free 167, 172
stationary 167
rectilinear 165
of paths 167

homotopy
class of a map 165
equivalence 200

of cellular spaces 223
equivalent spaces 200
groups 171, 175

of a covering space 212
type of a space 200, 203

identity map 47
image

continuous 70
of a point 45
of a set 46

inclusion (map) 47
index

of a subgroup 145, 205
of a point with respect to a loop 195

indiscrete space 11
induction

on compactness 97
on connectedness 74

inequality
triangle 18

ultrametric 25

Hölder 19
injection 45
injective factor

of a continuous map 115
of a homomorphism of topological groups

153
interior

of a set 29
operation of 31, 32
point 29

intermediate value theorem 73, 193
intersection of sets 8
Inverse Function Theorem 64
inverse map 47
irrational flow 157
isolated point 34
isometry 52
isomorphism 144

of topological groups 153
local 153

kernel of a homomorphism 144
Klein bottle 63, 121
knot 65
Kolmogorov axiom 84
Kuratowski problem 31
Lagrange Theorem 145
Lebesgue Lemma 96
lifting problem 183, 205
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limit
of a sequence 82
point of a set 33

Lindelöf Theorem 88
line

real 12, 71
digital 41
with T1-topology 12

list of a covering 182
local

homeomorphism 181
isomorphism 153

loop 171
map 45

antimonotone 54
bijective 45
characteristic of a cell 215
closed 96, 109
continuous 49

at a point 51
contractive 52
equivariant 156
factorization 113
graph of 108
homotopy inverse 200
homotopy invertible 200
identity 47
image of 46
inclusion 47

injective 45
inverse 47
invertible 47
locally bounded 97
locally constant 74
monotone 54
null-homotopic 165
one-to-one 45
open 109
proper 102
surjective 45

mapping 45
maximal T0-quotient of a space 132
metric 18

ρ(p) 18
p-adic 25
equivalent 22
Euclidean 18
Hausdorff 24
of uniform convergence 136
space 18

complete 99
Möbius band 120
Möbius strip 120
monomorphism 144
multiplicity of a covering 181
naive set theory 3
neighborhood

base at a point 89
of a point 14
trivially covered 179
symmetric 148

ε-neighborhood of a set 95
ε-net 98
norm 21, 96
normalizer 156
notation

additive 142
multiplicative 142

one-point compactification 102
open

set 11, 13
in a subspace 27

orbit 158
order

cyclic 42, 42
linear 38
nonstrict partial 35
strict partial 35
of a group 145
of a group element 145

p-adic numbers 99
pantaloons 125
partition 67,113

closed 116
of unity 104

to a cover 104

of a set 67
open 116

path 76, 167
inverse 76
lifting homotopy theorem 183
lifting theorem 183
simple 227
stationary 76

path-connected
cellular space 221
component 78
set 77
space 77

Peano curve 56
plane

with holes 62
with punctures 62

Poincaré group 171
point 11
polygon-connectedness 79
poset 36
preimage of a set 46
preorder 131
pretzel 125
product

free 235
with amalgamated subgroup 235

cellular spaces 216
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fiber of 107
of coverings 180
of homotopy classes of paths 168
of maps 110, 110
of paths 76, 168
of sets 107
of topological groups 154
of topological spaces 108, 111
semidirect 155

projection
of a product to a factor 108
onto a quotient space 113

projective plane 122
projective space

real 127
complex 128
quaternionic 130

quaternion 129
quaternionic projective line 130
quotient

group 145
set 113
space 114
map 115
topology 114

relation
equivalence 113
linear order 38
nonstrict partial order 35

reflexive 35
strict partial order 35
transitive 35, 131

restriction of a map 48
retract 197

deformation 201
strong 201

retraction 197
deformation 201

strong 201
saturation of a set 113
skeleton of a cellular space 215
Seifert-van Kampen Theorem 232, 237
separation axiom

T0 (Kolmogorov axiom) 84
T1 (Tikhonov axiom) 83
T2 (Hausdorff axiom) 81
T3 85
T4 85
in a topological group 149

sequentially
compact 98
continuous 90

sequential closure 90
set 3

algebraic 80
cardinality of 87
connected 68

countable 87
compact 93
dense in a set 32
empty 5
everywhere dense 32
bounded 21
closed 13
coincidence of maps 82
convex 21, 60
countable 87
cyclicly ordered 42
fixed point 82
linearly ordered 38
locally closed 34
locally finite 103
nowhere dense 33
open 11
partially ordered 36
path-connected 77
saturated 113
star-shaped 165

sets
disjoint 8
of matrices 80, 95

simple path 227
simply connected space 173
simplicial

scheme 133
space 133

singleton 5
skeleton 215
space

arcwise connected 77
asymmetric 26
cellular 213

countable 215
finite 215
locally finite 215

compact 92
connected 67
contractible 202
covering 179
disconnected 67
discrete 11
finite 132
first countable 89
Hausdorff 81
indiscrete 11
locally compact 101
locally contractible 208
locally path-connected 207
metric 18

complete 99
metrizable 22, 91
micro simply connected 207
Niemyski 86
normal 85



246 Index

normed 21
of continuous maps 135
of convex figures 100
of cosets 151
of simplices 133
paracompact 103
path-connected 77
regular 85
second countable 88
separable 88
sequentially compact 98
Sierpinski 12
simplicial 133
simply connected 173
smallest neighborhood 39
topological 11
totally disconnected 70
triangulated 133
ultrametric 25

spaces
homeomorphic 57
homotopy equivalent 200

sphere 19
with crosscups 125
with handles 125
with holes 124

spheroid 175
subbase 17
subcover, subcovering 92

subgroup 144
isotropy 156
normal 145

of a topological group 152
of a topological group 151

submap 48
subordination of coverings 206
subset 6

proper 6
subspace

cellular 215
of a metric space 20
of a topological space 27

sum
of sets 122
of spaces 122

support of a function 104
surjection 45
symmetric difference of sets 10
Tietze Theorem 86
Tikhonov axiom 83
topological space 11, see space
topological structure 11

coarser than another one 17
induced by a metric 22
interval 39
cellular 215
compact-open 135

finer than another one 17
left (right) ray 39
metric 22
of cyclic order 44
of pointwise convergence 135
particular point 12
relative 27
subspace 27
poset 39

topological invariant 63
topological property 63

hereditary 83
topology 11, see topological structure
torus 112
translation (left or right) 148
translation along a path 176

for homotopy groups 178
in a topological group 178

tree 226, 226
spanning 226

ultrametric 25
union of sets 8
Urysohn Lemma 86
Venn diagram 9
vertex 213
winding number 195


