Contents

Introduction	iii
The subject of the book, Elementary Topology	iii
Organization of the text	iv
For whom is this book?	v
The basic theme	V
Where are the proofs?	vi
Structure of the book	vi
Variations	vii
Additional themes	vii
Advices to the reader	viii
How this book was created	viii
Acknowledgments	xi

Part 1. General Topology

Chapter I.	Structures and Spaces	3
1. Dig	ression on Sets	3
$1^{\circ}1$	Sets and Elements	3
$1^{\circ}2$	Equality of Sets	4
$1^{\circ}3$	The Empty Set	5
1°4	Basic Sets of Numbers	5
$1^{\circ}5$	Describing a Set by Listing Its Elements	5
$1^{\circ}6$	Subsets	6
$1^{\circ}7$	Properties of Inclusion	6
1°8	To Prove Equality of Sets, Prove Two Inclusions	6
1°9	Inclusion Versus Belonging	7
$1^{\circ}10$	Defining a Set by a Condition	7

	1°11	Intersection and Union	7
	$1^{\circ}12$	Different Differences	9
2 .	2. Topology in a Set		
	2°1	Definition of Topological Space	11
	$2^{\circ}2$	Simplest Examples	11
	$2^{\circ}3$	The Most Important Example: Real Line	12
	$2^{\circ}4$	Additional Examples	12
	$2^{\circ}5$	Using New Words: Points, Open Sets, Closed Sets	12
	$2^{\circ}6$	Set-Theoretic Digression: De Morgan Formulas	13
	$2^{\circ}7$	Properties of Closed Sets	13
	$2^{\circ}8$	Being Open or Closed	13
	$2^{\circ}9$	Characterization of Topology in Terms of Closed Sets	14
	$2^{\circ}10$	Neighborhoods	14
	$2^{\circ}11x$	Open Sets on Line	14
	$2^{\circ}12x$	Cantor Set	14
	$2^{\circ}13x$	Topology and Arithmetic Progressions	15
3.	Bases	5	16
	$3^{\circ}1$	Definition of Base	16
	$3^{\circ}2$	When a Collection of Sets is a Base	16
	$3^{\circ}3$	Bases for Plane	16
	$3^{\circ}4$	Subbases	17
	$3^{\circ}5$	Infiniteness of the Set of Prime Numbers	17
	$3^{\circ}6$	Hierarchy of Topologies	17
4.	Metr	ic Spaces	18
	4°1	Definition and First Examples	18
	$4^{\circ}2$	Further Examples	18
	$4^{\circ}3$	Balls and Spheres	19
	$4^{\circ}4$	Subspaces of a Metric Space	19
	$4^{\circ}5$	Surprising Balls	20
	$4^{\circ}6$	Segments (What Is Between)	20
	$4^{\circ}7$	Bounded Sets and Balls	21
	4°8	Norms and Normed Spaces	21
	$4^{\circ}9$	Metric Topology	21
	$4^{\circ}10$	Openness and Closedness of Balls and Spheres	22
	4°11	Metrizable Topological Spaces	22
	$4^{\circ}12$	Equivalent Metrics	22
	4°13	Operations With Metrics	23
	4°14	Distances Between Points and Sets	23
	4°15x	Distance Between Sets	24
	4°16x	Ultrametrics and <i>p</i> -Adic Numbers	24
	$4^{\circ}17x$	Asymmetrics	25

5. Sul	ospaces	27
$5^{\circ}1$	Topology for a Subset of a Space	27
$5^{\circ}2$	Relativity of Openness and Closedness	27
$5^{\circ}3$	Agreement on Notation of Topological Spaces	28
6. Pos	sition of a Point with Respect to a Set	29
$6^{\circ}1$	Interior, Exterior, and Boundary Points	29
$6^{\circ}2$	Interior and Exterior	29
$6^{\circ}3$	Closure	30
6°4	Closure in Metric Space	30
$6^{\circ}5$	Boundary	30
6°6	Closure and Interior with Respect to a Finer Topology	31
$6^{\circ}7$	Properties of Interior and Closure	31
$6^{\circ}8$	Compositions of Closure and Interior	31
$6^{\circ}9$	Sets with Common Boundary	32
$6^{\circ}10$	Convexity and Int, Cl, Fr	32
$6^{\circ}11$	Characterization of Topology by Closure and Interior	
	Operations	32
6°12	Dense Sets	32
6°13	Nowhere Dense Sets	33
6°14	Limit Points and Isolated Points	33
6°15	Locally Closed Sets	34
7. Ore	lered Sets	35
$7^{\circ}1$	Strict Orders	35
$7^{\circ}2$	Nonstrict Orders	35
7°3	Relation between Strict and Nonstrict Orders $\tilde{\alpha}$	36
7°4	Cones	36
7°5	Position of an Element with Respect to a Set	37
7°6	Linear Orders	38
707	Topologies Determined by Linear Order	38
7°8	Poset Topology	39
7°9 7°10	How to Draw a Poset	40
7°10 7°11	Cyclic Orders in Finite Sets	41
(°11x 7°10	Tan alarma of Crastia Onder	42
(12x	Topology of Cyclic Order	43
Proofs	and Comments	44
Chapter II	. Continuity	53
8. Set	-Theoretic Digression: Maps	53
8°1	Maps and Main Classes of Maps	53
$8^{\circ}2$	Image and Preimage	54
$8^{\circ}3$	Identity and Inclusion	55
8°4	Composition	55

84

$8^{\circ}5$	Inverse and Invertible	55
8°6	Submaps	56
9. Conti	inuous Maps	57
9°1	Definition and Main Properties of Continuous Maps	57
$9^{\circ}2$	Reformulations of Definition	58
$9^{\circ}3$	More Examples	58
$9^{\circ}4$	Behavior of Dense Sets	58
$9^{\circ}5$	Local Continuity	59
9°6	Properties of Continuous Functions	59
$9^{\circ}7$	Continuity of Distances	60
9°8	Isometry	60
$9^{\circ}9$	Contractive Maps	60
$9^{\circ}10$	Sets Defined by Systems of Equations and Inequalities	60
$9^{\circ}11$	Set-Theoretic Digression: Covers	61
$9^{\circ}12$	Fundamental Covers	61
$9^{\circ}13x$	Monotone Maps	62
$9^{\circ}14x$	Gromov–Hausdorff Distance	63
$9^{\circ}15x$	Functions on the Cantor Set and Square-Filling Curves	63
10. Hon	neomorphisms	65
$10^{\circ}1$	Definition and Main Properties of Homeomorphisms	65
$10^{\circ}2$	Homeomorphic Spaces	65
$10^{\circ}3$	Role of Homeomorphisms	65
$10^{\circ}4$	More Examples of Homeomorphisms	66
$10^{\circ}5$	Examples of Homeomorphic Spaces	67
$10^{\circ}6$	Examples of Nonhomeomorphic Spaces	71
$10^{\circ}7$	Homeomorphism Problem and Topological Properties	71
$10^{\circ}8$	Information: Nonhomeomorphic Spaces	72
$10^{\circ}9$	Embeddings	72
$10^{\circ}10$	Equivalence of Embeddings	73
Proofs an	id Comments	74
Chapter III.	Topological Properties	81
11. Con	nectedness	81
11°1	Definitions of Connectedness and First Examples	81
$11^{\circ}2$	Connected Sets	81
11°3	Properties of Connected Sets	82
11°4	Connected Components	83
11°5	Totally Disconnected Spaces	83
11°6	Boundary and Connectedness	84
$11^{\circ}7$	Connectedness and Continuous Maps	84

11°8 Connectedness on Line

12.	Application of Connectedness	87
12°	1 Intermediate Value Theorem and Its Generalizations	87
12°	2 Applications to Homeomorphism Problem	87
12°	3x Induction on Connectedness	88
12°	4x Dividing Pancakes	88
13.	Path-Connectedness	90
13°	1 Paths	90
13°	2 Path-Connected Spaces	91
13°	3 Path-Connected Sets	91
13°	4 Properties of Path-Connected Sets	91
13°	5 Path-Connected Components	92
13°	6 Path-Connectedness and Continuous Maps	92
13°	7 Path-Connectedness Versus Connectedness	92
13°	8x Polygon-Connectedness	93
13°	9x Connectedness of Some Sets of Matrices	94
14.	Separation Axioms	95
14°	1 The Hausdorff Axiom	95
14°	2 Limits of Sequence	96
14°	3 Coincidence Set and Fixed Point Set	96
14°	4 Hereditary Properties	96
14°	5 The First Separation Axiom	97
14°	6 The Kolmogorov Axiom	98
14°	7 The Third Separation Axiom	98
14°	8 The Fourth Separation Axiom	99
14°	9x Niemytski's Space	100
14°	10x Urysohn Lemma and Tietze Theorem	100
15.	Countability Axioms	102
15°	1 Set-Theoretic Digression: Countability	102
15°	2 Second Countability and Separability	103
15°	3 Bases at a Point	104
15°	4 First Countability	104
15°	5 Sequential Approach to Topology	104
15°	6 Sequential Continuity	105
15°	7x Embedding and Metrization Theorems	106
16.	Compactness	107
16°	1 Definition of Compactness	107
16°	2 Terminology Remarks	107
16°	3 Compactness in Terms of Closed Sets	108
16°	4 Compact Sets	108
16°	5 Compact Sets Versus Closed Sets	108
16°	6 Compactness and Separation Axioms	109

10 /	Compactness in Euclidean Space	109
16°8	Compactness and Continuous Maps	110
$16^{\circ}9$	Closed Maps	111
$16^{\circ}10x$	Norms in \mathbb{R}^n	111
$16^{\circ}11x$	Induction on Compactness	111
17. Sequ	iential Compactness	112
$17^{\circ}1$	Sequential Compactness Versus Compactness	112
$17^{\circ}2$	In Metric Space	112
$17^{\circ}3$	Completeness and Compactness	113
$17^{\circ}4x$	Noncompact Balls in Infinite Dimension	113
$17^{\circ}5x$	<i>p</i> -Adic Numbers	114
$17^{\circ}6x$	Spaces of Convex Figures	114
18x. Lo	cal Compactness and Paracompactness	116
$18^{\circ}1x$	Local Compactness	116
$18^{\circ}2x$	One-Point Compactification	116
$18^{\circ}3x$	Proper Maps	117
$18^{\circ}4x$	Locally Finite Collections of Subsets	118
$18^{\circ}5x$	Paracompact Spaces	118
$18^{\circ}6x$	Paracompactness and Separation Axioms	119
$18^{\circ}7x$	Partitions of Unity	119
$18^{\circ}8x$	Application: Making Embeddings From Pieces	120
Proofs an	d Comments	121
Chapter IV.	Topological Constructions	135
Chapter IV. 19. Mul	Topological Constructions tiplication	$135\\135$
Chapter IV. 19. Mul 19°1	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets	$135 \\ 135 \\ 135 \\ 135$
Chapter IV. 19. Mul 19°1 19°2	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs	135 135 135 136
Chapter IV. 19. Mul 19°1 19°2 19°3	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies	135 135 135 136 136
Chapter IV. 19. Mul $19^{\circ}1$ $19^{\circ}2$ $19^{\circ}3$ $19^{\circ}4$	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers	$135 \\ 135 \\ 135 \\ 136 \\ 136 \\ 137 $
Chapter IV. 19. Mul $19^{\circ}1$ $19^{\circ}2$ $19^{\circ}3$ $19^{\circ}4$ $19^{\circ}5$	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers Cartesian Products of Maps	135 135 135 136 136 137 137
Chapter IV. 19. Mul $19^{\circ}1$ $19^{\circ}2$ $19^{\circ}3$ $19^{\circ}4$ $19^{\circ}5$ $19^{\circ}6$	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers Cartesian Products of Maps Properties of Diagonal and Other Graphs	135 135 136 136 136 137 137 138
Chapter IV. 19. Mul $19^{\circ}1$ $19^{\circ}2$ $19^{\circ}3$ $19^{\circ}4$ $19^{\circ}5$ $19^{\circ}6$ $19^{\circ}7$	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers Cartesian Products of Maps Properties of Diagonal and Other Graphs Topological Properties of Products	135 135 136 136 136 137 137 138 139
Chapter IV. 19. Mul $19^{\circ}1$ $19^{\circ}2$ $19^{\circ}3$ $19^{\circ}4$ $19^{\circ}5$ $19^{\circ}6$ $19^{\circ}7$ $19^{\circ}8$	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers Cartesian Products of Maps Properties of Diagonal and Other Graphs Topological Properties of Products Representation of Special Spaces as Products	135 135 135 136 136 137 137 138 139 140
Chapter IV. 19. Mul 19°1 19°2 19°3 19°4 19°5 19°6 19°7 19°8 20. Quo	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers Cartesian Products of Maps Properties of Diagonal and Other Graphs Topological Properties of Products Representation of Special Spaces as Products tient Spaces	135 135 136 136 137 137 138 139 140 141
Chapter IV. 19. Mul $19^{\circ}1$ $19^{\circ}2$ $19^{\circ}3$ $19^{\circ}4$ $19^{\circ}5$ $19^{\circ}6$ $19^{\circ}7$ $19^{\circ}8$ 20. Quo $20^{\circ}1$	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers Cartesian Products of Maps Properties of Diagonal and Other Graphs Topological Properties of Products Representation of Special Spaces as Products tient Spaces Set-Theoretic Digression:	135 135 135 136 136 137 137 138 139 140 141
Chapter IV. 19. Mul $19^{\circ}1$ $19^{\circ}2$ $19^{\circ}3$ $19^{\circ}4$ $19^{\circ}5$ $19^{\circ}6$ $19^{\circ}7$ $19^{\circ}8$ 20. Quo $20^{\circ}1$	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers Cartesian Products of Maps Properties of Diagonal and Other Graphs Topological Properties of Products Representation of Special Spaces as Products tient Spaces Set-Theoretic Digression: Partitions and Equivalence Relations	135 135 136 136 136 137 137 138 139 140 141
Chapter IV. 19. Mul $19^{\circ}1$ $19^{\circ}2$ $19^{\circ}3$ $19^{\circ}4$ $19^{\circ}5$ $19^{\circ}6$ $19^{\circ}7$ $19^{\circ}8$ 20. Quo $20^{\circ}1$ $20^{\circ}2$	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers Cartesian Products of Maps Properties of Diagonal and Other Graphs Topological Properties of Products Representation of Special Spaces as Products tient Spaces Set-Theoretic Digression: Partitions and Equivalence Relations Quotient Topology	135 135 135 136 136 137 137 138 139 140 141 141 142
Chapter IV. 19. Mul $19^{\circ}1$ $19^{\circ}2$ $19^{\circ}3$ $19^{\circ}4$ $19^{\circ}5$ $19^{\circ}6$ $19^{\circ}7$ $19^{\circ}8$ 20. Quo $20^{\circ}1$ $20^{\circ}2$ $20^{\circ}3$	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers Cartesian Products of Maps Properties of Diagonal and Other Graphs Topological Properties of Products Representation of Special Spaces as Products tient Spaces Set-Theoretic Digression: Partitions and Equivalence Relations Quotient Topology Topological Properties of Quotient Spaces	$ \begin{array}{r} 135 \\ 135 \\ 136 \\ 136 \\ 137 \\ 137 \\ 138 \\ 139 \\ 140 \\ 141 \\ 142 \\ 142 \\ 142 \end{array} $
Chapter IV. 19. Mul $19^{\circ}1$ $19^{\circ}2$ $19^{\circ}3$ $19^{\circ}4$ $19^{\circ}5$ $19^{\circ}6$ $19^{\circ}7$ $19^{\circ}8$ 20. Quo $20^{\circ}1$ $20^{\circ}2$ $20^{\circ}3$ $20^{\circ}4$	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers Cartesian Products of Maps Properties of Diagonal and Other Graphs Topological Properties of Products Representation of Special Spaces as Products tient Spaces Set-Theoretic Digression: Partitions and Equivalence Relations Quotient Topology Topological Properties of Quotient Spaces Set-Theoretic Digression: Quotient Spaces	$ \begin{array}{r} 135 \\ 135 \\ 136 \\ 136 \\ 137 \\ 137 \\ 138 \\ 139 \\ 140 \\ 141 \\ 142 \\ 142 \\ 142 \\ 143 \\ \end{array} $
Chapter IV. 19. Mul $19^{\circ}1$ $19^{\circ}2$ $19^{\circ}3$ $19^{\circ}4$ $19^{\circ}5$ $19^{\circ}6$ $19^{\circ}7$ $19^{\circ}8$ 20. Quo $20^{\circ}1$ $20^{\circ}2$ $20^{\circ}3$ $20^{\circ}4$ $20^{\circ}5$	Topological Constructions tiplication Set-Theoretic Digression: Product of Sets Graphs Product of Topologies Topological Properties of Projections and Fibers Cartesian Products of Maps Properties of Diagonal and Other Graphs Topological Properties of Products Representation of Special Spaces as Products tient Spaces Set-Theoretic Digression: Partitions and Equivalence Relations Quotient Topology Topological Properties of Quotient Spaces Set-Theoretic Digression: Quotient Spaces Set-Theoretic Digression: Quotient Spaces Set-Theoretic Digression: Quotient Spaces Set-Theoretic Digression: Quotient Spaces	$135 \\ 135 \\ 135 \\ 136 \\ 136 \\ 137 \\ 137 \\ 138 \\ 139 \\ 140 \\ 141 \\ 141 \\ 142 \\ 142 \\ 142 \\ 143 \\ 143 \\ 143 \\ 143 \\ 143 \\ 143 \\ 143 \\ 145 $

$20^{\circ}7x$	Open Partitions	144
21. Zoo	of Quotient Spaces	145
$21^{\circ}1$	Tool for Identifying a Quotient Space with	
	a Known Space	145
$21^{\circ}2$	Tools for Describing Partitions	145
$21^{\circ}3$	Welcome to the Zoo	146
$21^{\circ}4$	Transitivity of Factorization	147
$21^{\circ}5$	Möbius Strip	148
$21^{\circ}6$	Contracting Subsets	148
$21^{\circ}7$	Further Examples	149
$21^{\circ}8$	Klein Bottle	149
$21^{\circ}9$	Projective Plane	150
$21^{\circ}10$	You May Have Been Provoked to Perform	
	an Illegal Operation	150
$21^{\circ}11$	Set-Theoretic Digression: Sums of Sets	150
$21^{\circ}12$	Sums of Spaces	151
$21^{\circ}13$	Attaching Space	151
$21^{\circ}14$	Basic Surfaces	152
22. Pro	jective Spaces	155
$22^{\circ}1$	Real Projective Space of Dimension n	155
$22^{\circ}2x$	Complex Projective Space of Dimension n	156
$22^{\circ}3x$	Quaternionic Projective Spaces	157
23x. Fi	nite Topological Spaces	159
$23^{\circ}1x$	Set-Theoretic Digression:	
	Splitting a Transitive Relation	
	Into Equivalence and Partial Order	159
$23^{\circ}2x$	The Structure of Finite Topological Spaces	160
$23^{\circ}3x$	Simplicial schemes	161
$23^{\circ}4x$	Barycentric Subdivision of a Poset	161
24x. Sp	aces of Continuous Maps	163
$24^{\circ}1x$	Sets of Continuous Mappings	163
$24^{\circ}2x$	Topologies on Set of Continuous Mappings	163
$24^{\circ}3x$	Topological Properties of Mapping Spaces	164
$24^{\circ}4x$	Metric Case	164
$24^{\circ}5x$	Interactions With Other Constructions	165
$24^{\circ}6x$	Mappings $X \times Y \to Z$ and $X \to \mathcal{C}(Y, Z)$	166
Proofs an	nd Comments	168
Chapter V.	Topological Algebra	179
25x. Di	gression. Generalities on Groups	181
$25^{\circ}1x$	The Notion of Group	181

$25^{\circ}2x$	Additive Versus Multiplicative	182
$25^{\circ}3x$	Homomorphisms	183
$25^{\circ}4x$	Subgroups	184
26x. To	pological Groups	186
$26^{\circ}1x$	Notion of Topological Group	186
$26^{\circ}2x$	Examples of Topological Groups	186
$26^{\circ}3x$	Translations and Conjugations	187
$26^{\circ}4x$	Neighborhoods	187
$26^{\circ}5x$	Separation Axioms	188
$26^{\circ}6x$	Countability Axioms	188
27x. Co	onstructions	190
$27^{\circ}1x$	Subgroups	190
$27^{\circ}2x$	Normal Subgroups	191
$27^{\circ}3x$	Homomorphisms	192
$27^{\circ}4x$	Local Isomorphisms	192
$27^{\circ}5x$	Direct Products	193
$27^{\circ}6x$	Groups of Homeomorphisms	194
28x. Ac	ctions of Topological Groups	195
$28^{\circ}1x$	Action of a Group on a Set	195
$28^{\circ}2x$	Continuous Action	196
$28^{\circ}3x$	Orbit Spaces	197
$28^{\circ}4x$	Homogeneous Spaces	197
Proofs an	nd Comments	199

Part 2. Elements of Algebraic Topology

Chapter VI.	Fundamental Group	207
29. Hon	notopy	207
$29^{\circ}1$	Continuous Deformations of Maps	207
$29^{\circ}2$	Homotopy as Map and Family of Maps	208
$29^{\circ}3$	Homotopy as Relation	208
$29^{\circ}4$	Rectilinear Homotopy	209
$29^{\circ}5$	Maps to Star-Shaped Sets	209
$29^{\circ}6$	Maps of Star-Shaped Sets	209
$29^{\circ}7$	Easy Homotopies	210
$29^{\circ}8$	Two Natural Properties of Homotopies	210
$29^{\circ}9$	Stationary Homotopy	210
$29^{\circ}10$	Homotopies and Paths	211
$29^{\circ}11$	Homotopy of Paths	211
30. Hon	notopy Properties of Path Multiplication	212
$30^{\circ}1$	Multiplication of Homotopy Classes of Paths	212

$30^{\circ}2$	Associativity	212
$30^{\circ}3$	Unit	213
$30^{\circ}4$	Inverse	214
31. Fur	idamental Group	215
$31^{\circ}1$	Definition of Fundamental Group	215
$31^{\circ}2$	Why Index 1?	215
$31^{\circ}3$	Circular loops	215
$31^{\circ}4$	The Very First Calculations	216
$31^{\circ}5$	Fundamental Group of Product	217
$31^{\circ}6$	Simply-Connectedness	217
$31^{\circ}7x$	Fundamental Group of a Topological Group	218
$31^{\circ}8x$	High Homotopy Groups	219
32. The	e Role of Base Point	220
$32^{\circ}1$	Overview of the Role of Base Point	220
$32^{\circ}2$	Definition of Translation Maps	220
$32^{\circ}3$	Properties of T_s	221
$32^{\circ}4$	Role of Path	221
$32^{\circ}5x$	In Topological Group	222
$32^{\circ}6x$	In High Homotopy Groups	222
Proofs a	nd Comments	223
Chapter VII	. Covering Spaces and Calculation of Fundamental G	roups231
33. Cov	vering Spaces	231
$33^{\circ}1$	Definition of Covering	231
$33^{\circ}2$	More Examples	232
$33^{\circ}3$	Local Homeomorphisms versus Coverings	233
$33^{\circ}4$	Number of Sheets	233
$33^{\circ}5$	Universal Coverings	234
34. The	eorems on Path Lifting	235
$34^{\circ}1$	Lifting	235
$34^{\circ}2$	Path Lifting	235
$34^{\circ}3$	Homotopy Lifting	236
35. Cal	culation of Fundamental Groups Using Univer	sal
С	overings	237
$35^{\circ}1$	Fundamental Group of Circle	237
$35^{\circ}2$	Fundamental Group of Projective Space	237
$35^{\circ}3$	Fundamental Group of Bouquet of Circles	238
$35^{\circ}4$	Algebraic Digression: Free Groups	238
$35^{\circ}5$	Universal Covering for Bouquet of Circles	240
$35^{\circ}6$	Fundamental Groups of Finite Topological Spaces	241
Proofs a	nd Comments	242

Chapter VIII	. Fundamental Group and Maps	247
36. Indu	iced Homomorphisms	
and	d Their First Applications	247
$36^{\circ}1$	Homomorphisms Induced by a Continuous Map	247
$36^{\circ}2$	Fundamental Theorem of Algebra	248
$36^{\circ}3x$	Generalization of Intermediate Value Theorem	249
$36^{\circ}4x$	Winding Number	250
$36^{\circ}5x$	Borsuk–Ulam Theorem	252
37. Reti	cactions and Fixed Points	253
$37^{\circ}1$	Retractions and Retracts	253
$37^{\circ}2$	Fundamental Group and Retractions	254
$37^{\circ}3$	Fixed-Point Property	254
38. Hon	notopy Equivalences	256
$38^{\circ}1$	Homotopy Equivalence as Map	256
$38^{\circ}2$	Homotopy Equivalence as Relation	256
$38^{\circ}3$	Deformation Retraction	256
$38^{\circ}4$	Examples	257
$38^{\circ}5$	Deformation Retraction versus Homotopy Equivalence	258
$38^{\circ}6$	Contractible Spaces	258
$38^{\circ}7$	Fundamental Group and Homotopy Equivalences	259
39. Cov	ering Spaces via Fundamental Groups	261
$39^{\circ}1$	Homomorphisms Induced by Covering Projections	261
$39^{\circ}2$	Number of Sheets	261
39°3	Hierarchy of Coverings	262
$39^{\circ}4x$	Existence of Subordinations	263
$39^{\circ}5x$	Micro Simply Connected Spaces	263
$39^{\circ}6x$	Existence of Coverings	264
$39^{\circ}7x$	Action of Fundamental Group on Fiber	265
$39^{\circ}8x$	Automorphisms of Covering	265
$39^{\circ}9x$	Regular Coverings	266
$39^{\circ}10x$	Lifting and Covering Maps	267
$39^{\circ}11x$	Induced Coverings	267
$39^{\circ}12x$	High-Dimensional Homotopy Groups of Covering Space	268
Proofs an	d Comments	269
Chapter IX.	Cellular Techniques	279
40. Cell	ular Spaces	279
40°1	Definition of Cellular Spaces	279
$40^{\circ}2$	First Examples	282
$40^{\circ}3$	Further Two-Dimensional Examples	283
$40^{\circ}4$	Embedding to Euclidean Space	284

	٠	٠	٠
XX	1	1	1
		-	_

$40^{\circ}5x$	Simplicial Spaces	285
$40^{\circ}6x$	Topological Properties of Cellular Spaces	285
41. Cell	ular Constructions	287
41°1	Euler Characteristic	287
$41^{\circ}2$	Collapse and Generalized Collapse	287
$41^{\circ}3x$	Homotopy Equivalences of Cellular Spaces	288
42. One	-Dimensional Cellular Spaces	290
$42^{\circ}1$	Homotopy Classification	290
$42^{\circ}2$	Spanning Trees	291
$42^{\circ}3x$	Dividing Cells	291
$42^{\circ}4x$	Trees and Forests	291
$42^{\circ}5x$	Simple Paths	292
43. Fundamental Group of a Cellular Space		294
$43^{\circ}1$	One-Dimensional Cellular Spaces	294
$43^{\circ}2$	Generators	294
$43^{\circ}3$	Relations	294
$43^{\circ}4$	Writing Down Generators and Relations	296
$43^{\circ}5$	Fundamental Groups of Basic Surfaces	296
$43^{\circ}6x$	Seifert–van Kampen Theorem	297
$43^{\circ}7x$	Group-Theoretic Digression:	
	Amalgamated Product of Groups	299
$43^{\circ}8x$	Addendum to Seifert–van Kampen Theorem	301
Proofs an	d Comments	303

Part 3. Topological Manifolds

Chapter X.	Manifolds	319
44. Loc	ally Euclidean Spaces	319
44°1	Definition of Locally Euclidean Space	319
$44^{\circ}2$	Dimension	320
$44^{\circ}3$	Interior and Boundary	321
45. Ma	nifolds	323
$45^{\circ}1$	Definition of Manifold	323
$45^{\circ}2$	Components of Manifold	323
$45^{\circ}3$	Making New Manifolds out of Old Ones	324
$45^{\circ}4$	Double	324
$45^{\circ}5x$	Collars and Bites	325
46. Isotopy		326
$46^{\circ}1$	Isotopy of Homeomorphisms	326
$46^{\circ}2$	Isotopy of Embeddings and Sets	326
$46^{\circ}3$	Isotopies and Attaching	328

$46^{\circ}4$	Connected Sums	328
Proofs an	d Comments	329
Chapter XI.	Classifications in Low Dimensions	331
47. One-	-Dimensional Manifolds	331
$47^{\circ}1$	Zero-Dimensional Manifolds	331
$47^{\circ}2$	Reduction to Connected Manifolds	332
$47^{\circ}3$	Examples	332
$47^{\circ}4$	How to Distinguish Them From Each Other?	332
$47^{\circ}5$	Statements of Main Theorems	332
$47^{\circ}6$	Lemma on 1-Manifold Covered with Two Lines	333
$47^{\circ}7$	Without Boundary	333
$47^{\circ}8$	With Boundary	334
$47^{\circ}9$	Corollaries of Classification	334
$47^{\circ}10$	Orientations of 1-manifolds	334
$47^{\circ}11$	Mapping Class Groups	335
48. Two	-Dimensional Manifolds: General Picture	336
$48^{\circ}1$	Examples	336
$48^{\circ}2x$	Ends and Odds	336
$48^{\circ}3$	Closed Surfaces	338
$48^{\circ}4$	Compact Surfaces with Boundary	338
49. Tria	ngulations	340
$49^{\circ}1$	Triangulations of Surfaces	340
$49^{\circ}2$	Triangulation as cellular decomposition	340
$49^{\circ}3$	Two Properties of Triangulations of Surfaces	340
$49^{\circ}4x$	Scheme of Triangulation	341
$49^{\circ}5$	Examples	342
$49^{\circ}6$	Subdivision of a Triangulation	342
$49^{\circ}7$	Homotopy Type of Compact Surface with Non-Empty	
	Boundary	344
$49^{\circ}8$	Triangulations in dimension one	345
$49^{\circ}9$	Triangualtions in higher dimensions	345
50. Han	dle Decomposition	346
$50^{\circ}1$	Handles and Their Anatomy	346
$50^{\circ}2$	Handle Decomposition of Manifold	346
$50^{\circ}3$	Handle Decomposition and Triangulation	347
$50^{\circ}4$	Regular Neighborhoods	348
$50^{\circ}5$	Cutting 2-Manifold Along a Curve	348
$50^{\circ}6$	Orientations	350
51. Tope	ological Classification of Compact Triangulated	
2-N	A anifolds	352

$51^{\circ}1$	Spines and Their Regular Neighborhoods	352
$51^{\circ}2$	Simply connected compact 2-manifolds	352
$51^{\circ}3$	Splitting off crosscaps and handles	352
$51^{\circ}4$	Splitting of a Handle on a Non-Orientable 2-Manifold	353
$51^{\circ}5$	Final Formulations	353
52. Cell	ular Approach to Topological	
Cla	ssification of Compact surfaces	355
$52^{\circ}1$	Families of Polygons	355
$52^{\circ}2$	Operations on Family of Polygons	356
$52^{\circ}3$	Topological and Homotopy Classification of Closed	
	Surfaces	357
53. Reco	ognizing Closed Surfaces	358
$53^{\circ}1$	Orientations	358
$53^{\circ}2$	More About Recognizing Closed Surfaces	359
$53^{\circ}3$	Recognizing Compact Surfaces with Boundary	359
$53^{\circ}4x$	Simply Connected Surfaces	359
Proofs an	d Comments	360
Chapter XII.	Surfaces Beyond Classification	361
54. Cury	ves and Graphs on Surfaces	362
54°1	Genus of Surface	362
$54^{\circ}2x$	Polygonal Jordan, Schönflies and Annulus Theorems	363
$54^{\circ}3x$	Planarity of Graphs	363
55x. Co	verings and Branched Coverings	365
$55^{\circ}1x$	Finite Coverings of Closed Surfaces	365
$55^{\circ}2x$	Branched Coverings	367
Proofs an	d Comments	368
Chapter XIII	One-Dimensional Homology	369
56v On	-Dimensional Homology and Cohomology	360
$56^{\circ}1$ x	Why and What for	369
$56^{\circ}2x$	One-Dimensional Integer Homology	370
$56^{\circ}3x$	Null-Homologous Loops and Disks with Handles	370
$56^{\circ}4x$	Description of $H_1(X)$ in Terms of Free Circular Loops	371
$56^{\circ}5x$	Homology and Continuous Maps	372
56°6x	One-Dimensional Cohomology	373
$56^{\circ}7x$	Integer Cohomology and Maps to S^1	373
$56^{\circ}8x$	One-Dimensional Homology Modulo 2	374
57. One-	Dimensional mod2-Homology of Surfaces	376
$57^{\circ}1$	Polygonal Paths on Surface	376
$57^{\circ}2$	Bringing Loops to General Position	376

$57^{\circ}3$	Curves on Surfaces and Two-Fold Coverings	378
$57^{\circ}4$	One-Dimensional \mathbb{Z}_2 -Cohomology of Surface	378
$57^{\circ}5$	One-Dimensional \mathbb{Z}_2 -Homology of Surface	379
$57^{\circ}6$	Poincaré Duality	379
$57^{\circ}7$	One-Sided and Two-Sided Simple Closed Curves on	
	Surfaces	379
$57^{\circ}8$	Orientation Covering and First Stiefel-Whitney Class	379
$57^{\circ}9$	Relative Homology	379
Hints, Comments, Advises, Solutions, and Answers		381
Bibliography		457
Index		459