4.5. The Cotangent

On the contents of the lecture. In this lecture we perform what was
promised at the beginning: we sum up the Euler series and expand sinz into
the product. We will see that sums of series of reciprocal powers are expressed via
Bernoulli numbers. And we will see that the function responsible for the summation
of the series is the cotangent.

An ingenious idea, which led Euler to finding the sum Y .- 1%27 is the follow-
ing. One can consider sin z as a polynomial of infinite degree. This polynomial has
as roots all points of the type kw. Any ordinary polynomial can be expanded into
a product [[(z — zx) where xj are its roots. By analogy, Euler conjectured that
sinz can be expanded into the product

o0

sinz = H (x — k).

k=—00

This product diverges, but can be modified to a convergent one by division of the
n-th term by —nm. The division does not change the roots. The modified product
is

(4.5.1) ﬁ ( ——)-xH( kw).

Two polynomials with the same roots can differ by a multiplicative constant. To

find the constant, consider z = 7. In this case we get the inverse to the Wallis

product in (4.5.1) multiplied by » = 7. Hence the value of (4.5.1) is 1, which
coincides with sin §. Thus it is natural to expect that sinz coincides with the
product (4.5.1).

There is another way to tame [[,~ _ (z — kx). Taking the logarithm, we
get a divergent series >~ _ In(xz — km), but achieve convergence by termwise
differentiation. Since the derivative of Insin z is cot x, it is natural to expect that

cot  coincides with the following function

(oo} 1 (oo}
4.5.2 t =
(45.2) )= ¥ g = 2_) =
Cotangent expansion. The expansion = =30 }i:“ z" allows us to get a

power expansion for cot z. Indeed, representlng cot z by Euler’s formula one gets

eF e M4l 2 .1 2z 1 ok
Ve —eiz oy 'Tor_y 'tTrme_71 ‘T3 ﬂ(m'z)‘

The term of the last series corresponding to k = 1 is 2izB; = —iz. Multiplied by
%, it turns into —i, which eliminates the first i. The summand corresponding to
k =01is 1. Taking into account that Bag+1 = 0 for k > 0, we get

1 - k4 B2k 52k—1
cotz = — +
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Power expansion of ctg(z). Substituting

: : 2
22 _ n27r2 - n27r2 1 2 = ’nﬂ' 2k+2

into (4.5.2) and changing the order of summation, one gets:

oo 2k oo 1

ZZ >
— L mr 2k+2 - r2k+2 n2k+2”

k=0 n=1

The change of summation order is legitimate in the disk |z| < 1, because the series
absolutely converges there. This proves the following:

LEMMA 4.5.1. ctg(z) — L is an analytic function in the disk |z| < 1. The n-th
coefficient of the Taylor series of ctg(z) — % at 0 is equal to O for even n and is
1 co 1
equal to —51 > 0~ T for any odd n.

Thus the equality cot z = ctg(z) would imply the following remarkable equality:
4" By, 1 &1
(D)5 = D
k=1

In particular, for n = 1 it gives the sum of Euler series as %2

Exploring the cotangent.
LEMMA 4.5.2. |cot z| < 2 provided |Im z| > 1.

PROOF. Set z = i +iy. Then || = |e””_y| = e_y Therefore if y > 1, then
e =7 < & < L Hence [e?* + 1| < % +1< % and [e** — 1] >1—— > 2
Thus the absolute value of

eiz + efiz eZiz +1
cot z = i— — = —
etz _ e—iz etz _ 1
is less than 2. For y > 1 the same arguments work for the representation of cot z
14+e” 2iz
as ¢ . (|

1_e—2iz

LEMMA 4.5.3. |cot(m/2 4+ iy)| < 4 for all y.

PROOF. cot(m/2 + iy) = (;frfé:;;j_:z)) = _Czlsnl;y = zz;z: The module of the
numerator of this fraction does not exceed e — e~! for ¢t € [—1, 1] and the denomi-
nator is greater than 1. This proves the inequality for y € [—1, 1]. For other y this
is the previous lemma. O

Let us denote by 7Z the set {kr | k € Z} of m-integers.

LEMMA 4.5.4. The set of singular points of cot z is wZ. All these points are
simple poles with residue 1.

ProOOF. The singular points of cot z coincide with the roots of sin z. The roots

of sin z are roots of the equation e** = e~% which is equivalent to e?** = 1. Since
le?*#| = |e=21m#| one gets Imz = 0. Hence sinz has no roots beyond the real
line. And all its real roots as we know have the form {kn}. Since lim, ,ozcotz =
lim, 0 5057 = lim, 0 5oy = ﬁ = 1, we get that 0 is a simple pole of cot z
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with residue 1 and the other poles have the same residue because of periodicity of
cot z. d

LEMMA 4.5.5. Let f(z) be an analytic function on a domain D. Suppose that
f has in D finitely many singular points, they are not w-integers and D has no
w-integer point on its boundary. Then

ng f(Q)cot¢d¢ = 2mi Y f(km)[km € D]

k=—o0

+ 2mi Z res,(f(z) cot z)[z ¢ ©Z].

zeD

ProOF. In our situation every singular point of f(z)cotz in D is either a

w-integer or a singular point of f(z). Since res,—grcotz = 1, it follows that
res,—r f(z)cotz = f(km). Hence the conclusion of the lemma is a direct con-
sequence of Residue Theory. d

Exploring ctg(z).
LEMMA 4.5.6. ctg(z + 7) = ctg(z) for any z.

PRrRoOF.
” 1
t = li _—
ctg(z + ) Jim Z popp— -
k=—n
n—1 1

(n—1) 1

—_— lim E —_—
n—oo z — (n+ )& n%ooz—nﬂ'_'_n%ook 0 1)Z+7T—k7r
=—(n—

=0+ 0+ ctg(z).
a

LEMMA 4.5.7. The series representing ctg(z) converges for any z which is not
a w-integer. | ctg(z)| < 2 for all z such that |Imz| > .

ProoF. For any z one has |22 — k?72| > k? for k > |z|. This provides the
convergence of the series. Since ctg(z) has period =, it is sufficient to prove the
inequality of the lemma in the case x € [0,7], where z = z + iy. In this case
ly| > |z| and Rez? = 22 — y* < 0. Then Re(z? — k*n?) < —k*n?. It follows that
|2 —k?m?| > k*x%. Hence | ctg(z)| is termwise majorized by £ 4+31° | = < 2. O

LeEMMA 4.5.8. |ctg(z)| < 3 for any z with Rez = T
PRrOOF. In this case Re(z? — k?n?) = ”TZ —y? — k?r? < —k? for all k > 1.
Hence |C(z)| < 2 +307, H <1+2=3. O

LEMMA 4.5.9. For any z # km and domain D which contains z and whose
boundary does not contain w-integers, one has

(4.5.3) ?{i Ctg—(OdC = 2mi ctg(z) + 2mi i
k=—

1
p (—z _Oolmr—z

[km € D).
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PROOF. As was proved in Lecture 3.6, the series Zzozfoo m admits

termwise integration. The residues of (C—Z)(lC— ) are —— at kr and —— at z.

Hence

271'7/# for kr ¢ D,

1
- =
f{ap C—aC—Fm {0 if kr € D.
It follows that

7( &) g = 9 i lk lkr ¢ D)
) OOZ_ m

p(—2 [
oo

= 2mictg(z) — Z

=—00

D].
Z_lm[km'e ]

O

LeEMMA 4.5.10. ctg(z) is an analytic function defined on the whole plane, having
all w-integers as its singular points, where it has residues 1.

Proor. Counsider a point z ¢ wZ. Consider a disk D, not containing m-integers
with center at z. Then formula (4.5.3) transforms to the Cauchy Integral Formula.
And our assertion is proved by termwise integration of the power expansion of —:

¢(—=z
just with the same arguments as was applied there. The same formula (4.5.3) allows
us to evaluate the residues. O

THEOREM 4.5.11. cotz =1+ 377 2.

Proor. Consider the difference R(z) = cotz — ctg(z). This is an analytic
function which has m-integers as singular points and has residues 0 in all of these.
Hence R(z) = 5 $,, ?(fz) d( for any z ¢ nZ. We will prove that R(z) is constant.
Let zp and ¢ be a pair of different points not belonging to 7Z. Then for any D such
that 0D N 7Z = & one has

R(z) — R(z0) = % b R(¢) <<—iz o C—l,Zo) d¢
(4.5.4) 1 R(z)(z — z0)

" 20 Jop (C—2) (- 20)

Let us define D,, for a natural n > 3 as the rectangle bounded by the lines Rez =
+(m/2 — nw), Imz = £nxw. Since |R(z)| < 7 by Lemmas 4.5.2, 4.5.3, 4.5.7, and
4.5.8 the integrand of (4.5.4) eventually is bounded by % The contour of
integration consists of four monotone curves of diameter < 2n7. By the Estimation
Lemma 3.5.4, the integral can be estimated from above by %‘2’2_“‘ Hence the
limit of our integral as n tends to infinity is 0. This implies R(z) = R(z0). Hence
R(z) is constant and the value of the constant we find by putting z = 7/2. As
cot /2 = 0, the value of the constant is

I T SO
- m = — m A
i n—oo w[2—km  wn—ooo 1-2k

k=—n k=—n
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This limit is zero because

n 0 n n

1 1 1 1 1 1
Y TTHmT Tt T m T G it oI T T

k=—n k=—n = =0 =

Summation of series by cot z.

THEOREM 4.5.12. For any rational function R(z), which is not singular in
integers and has degree < —2, one has > . ___ R(n) = — Y resmcot(rz)R(z).

PRrROOF. In this case the integral lim, faD /m.R(z)w cotmz = 0. Hence

the sum of all residues of R(z)wcotwz is zero. The residues at m-integers gives
Yore o R(k). The rest gives — Y resw cot(rz)R(z). ad

Factorization of sinz. Theorem 4.5.11 with 7z substituted for z gives the se-
ries ot mz = Yo —%. The half of the series on the right-hand side consisting
of terms with nonnegative indices represents a function, which formally telescopes
—%. The negative half telescopes % Let us bisect the series into nonnegative and

negative halves and add -2 +[k # 0] to provide convergence:

-1 oS}
1 1 1 1
Z <z—k+E>+Z<z—k+k+1>
00 k=0

k=—
o0 o0
1 1 1 1
=2 (—z+z+—k>+,§(m+z>-
The first of the series on the right-hand side represents —F (z) — 7, the second is
F (—z+1)+~. We get the following complement formula for the digamma function:

—F(z)+ F(1—2) =ncotmz.

Since @"(z2+1) = F'(z) = I'(z) (Lemma 4.4.11) it follows that @'(1+2) = F (2) +¢
and ©'(—z) = —(F (1—z)+c). Therefore O'(1+2)+0'(—z) = 7 cot mz. Integration
of the latter equality gives —O(1 + z) — ©(—z) = Insinmz + ¢. Changing z by —z
we get O(1 — 2) + O(z) = —Insinwz + ¢. Exponentiating gives I'(1 — 2)['(—z) =
—L—c. One defines the constant by putting z = 1. On the left-hand side one gets

F(%)2 = 7, on the right-hand side, c¢. Finally we get the complement formula for
the Gamma-function:

(4.5.5) [(1 - 2)0(z) =

™

sinwz’

Now consider the product [T;~, (1 — 2"—2) Its canonical form is

(459) T{(- )} {0+ 2)e

The first product of (4.5.6) is equal to —%, and the second one is %

Therefore the whole product is —m. Since I'(1 — z) = —a'(—z) we get
the following result
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Comparing this to (4.5.5) and substituting 7z for x we get the Euler formula:

. o z?
smx:xkl:[l (1— 71'2]92)'

Problems.
1. Expand tan z into a power series.
. Evaluate )77 | 1=
3. Evaluate ) ;2| 1=

N
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