
4.5. The CotangentOn the 
ontents of the le
ture. In this le
ture we perform what waspromised at the beginning: we sum up the Euler series and expand sinx intothe produ
t. We will see that sums of series of re
ipro
al powers are expressed viaBernoulli numbers. And we will see that the fun
tion responsible for the summationof the series is the 
otangent.An ingenious idea, whi
h led Euler to �nding the sumP1k=1 1k2 , is the follow-ing. One 
an 
onsider sinx as a polynomial of in�nite degree. This polynomial hasas roots all points of the type k�. Any ordinary polynomial 
an be expanded intoa produ
t Q(x � xk) where xk are its roots. By analogy, Euler 
onje
tured thatsinx 
an be expanded into the produ
tsinx = 1Yk=�1(x� k�):This produ
t diverges, but 
an be modi�ed to a 
onvergent one by division of then-th term by �n�. The division does not 
hange the roots. The modi�ed produ
tis(4.5.1) 1Yk=�1�1� xk�� = x 1Yk=1�1� x2k2�2� :Two polynomials with the same roots 
an di�er by a multipli
ative 
onstant. To�nd the 
onstant, 
onsider x = �2 . In this 
ase we get the inverse to the Wallisprodu
t in (4.5.1) multiplied by x = �2 . Hen
e the value of (4.5.1) is 1, whi
h
oin
ides with sin �2 . Thus it is natural to expe
t that sinx 
oin
ides with theprodu
t (4.5.1).There is another way to tame Q1k=�1(x � k�). Taking the logarithm, weget a divergent series P1k=�1 ln(x � k�), but a
hieve 
onvergen
e by termwisedi�erentiation. Sin
e the derivative of ln sinx is 
otx, it is natural to expe
t that
otx 
oin
ides with the following fun
tion(4.5.2) 
tg(x) = 1Xk=�1 1x� k� = 1x + 1Xk=1 2xx2 � k2�2 :Cotangent expansion. The expansion zez�1 =P1k=0 Bkk! zk allows us to get apower expansion for 
ot z. Indeed, representing 
ot z by Euler's formula one getsieiz + e�izeiz � e�iz = ie2iz + 1e2iz � 1 = i+ 2ie2iz � 1 = i+ 1z 2ize2iz � 1 = i+ 1z 1Xk=0 Bkk! (2iz)k:The term of the last series 
orresponding to k = 1 is 2izB1 = �iz. Multiplied by1z , it turns into �i, whi
h eliminates the �rst i. The summand 
orresponding tok = 0 is 1. Taking into a

ount that B2k+1 = 0 for k > 0, we get
ot z = 1z + 1Xk=1(�1)k 4kB2k(2k)! z2k�1:118
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otangent 119Power expansion of 
tg(z). Substituting1z2 � n2�2 = � 1n2�2 11� z2n2�2 = � 1Xk=0 z2k(n�)2k+2into (4.5.2) and 
hanging the order of summation, one gets:1Xn=1 1Xk=0 z2k(n�)2k+2 = 1Xk=0 z2k�2k+2 1Xn=1 1n2k+2 :The 
hange of summation order is legitimate in the disk jzj < 1, be
ause the seriesabsolutely 
onverges there. This proves the following:Lemma 4.5.1. 
tg(z)� 1z is an analyti
 fun
tion in the disk jzj < 1. The n-th
oeÆ
ient of the Taylor series of 
tg(z) � 1z at 0 is equal to 0 for even n and isequal to 1�n+1 P1k=1 1kn+1 for any odd n.Thus the equality 
ot z = 
tg(z) would imply the following remarkable equality:(�1)n 4nB2n2n! = � 1�2n 1Xk=1 1k2nIn parti
ular, for n = 1 it gives the sum of Euler series as �26 .Exploring the 
otangent.Lemma 4.5.2. j 
ot zj � 2 provided j Im zj � 1.Proof. Set z = x + iy. Then jeizj = jeix�yj = e�y. Therefore if y � 1, thenje2izj = e�2y � 1e2 < 13 . Hen
e je2iz + 1j � 1e2 + 1 < 43 and je2iz � 1j � 1� 1e2 > 23 .Thus the absolute value of
ot z = ieiz + e�izeiz � e�iz = ie2iz + 1e2iz � 1is less than 2. For y � 1 the same arguments work for the representation of 
ot zas i 1+e�2iz1�e�2iz . �Lemma 4.5.3. j 
ot(�=2 + iy)j � 4 for all y.Proof. 
ot(�=2 + iy) = 
os(�=2+iy)sin(�=2+iy) = � sin iy
os iy = et�e�tet+e�t . The module of thenumerator of this fra
tion does not ex
eed e� e�1 for t 2 [�1; 1℄ and the denomi-nator is greater than 1. This proves the inequality for y 2 [�1; 1℄. For other y thisis the previous lemma. �Let us denote by �Z the set fk� j k 2 Zg of �-integers.Lemma 4.5.4. The set of singular points of 
ot z is �Z. All these points aresimple poles with residue 1.Proof. The singular points of 
ot z 
oin
ide with the roots of sin z. The rootsof sin z are roots of the equation eiz = e�iz whi
h is equivalent to e2iz = 1. Sin
eje2izj = je�2 Im zj one gets Im z = 0. Hen
e sin z has no roots beyond the realline. And all its real roots as we know have the form fk�g. Sin
e limz!0 z 
ot z =limz!0 z 
os zsin z = limz!0 zsin z = 1sin0 0 = 1, we get that 0 is a simple pole of 
ot z



120 4.5 the 
otangentwith residue 1 and the other poles have the same residue be
ause of periodi
ity of
ot z. �Lemma 4.5.5. Let f(z) be an analyti
 fun
tion on a domain D. Suppose thatf has in D �nitely many singular points, they are not �-integers and D has no�-integer point on its boundary. ThenI�D f(�) 
ot �d� = 2�i 1Xk=�1 f(k�)[k� 2 D℄+ 2�iXz2D resz(f(z) 
ot z)[z =2 �Z℄:Proof. In our situation every singular point of f(z) 
ot z in D is either a�-integer or a singular point of f(z). Sin
e resz=k� 
ot z = 1, it follows thatresz=k� f(z) 
ot z = f(k�). Hen
e the 
on
lusion of the lemma is a dire
t 
on-sequen
e of Residue Theory. �Exploring 
tg(z).Lemma 4.5.6. 
tg(z + �) = 
tg(z) for any z.Proof.
tg(z + �) = limn!1 nXk=�n 1z + � � k�= limn!1 n�1Xk=�n�1 1z + k�= limn!1 1z � (n+ 1)� + limn!1 1z � n� + limn!1 (n�1)Xk=�(n�1) 1z + � � k�= 0+ 0+ 
tg(z): �Lemma 4.5.7. The series representing 
tg(z) 
onverges for any z whi
h is nota �-integer. j 
tg(z)j � 2 for all z su
h that j Im zj > �.Proof. For any z one has jz2 � k2�2j � k2 for k > jzj. This provides the
onvergen
e of the series. Sin
e 
tg(z) has period �, it is suÆ
ient to prove theinequality of the lemma in the 
ase x 2 [0; �℄, where z = x + iy. In this 
asejyj � jxj and Re z2 = x2 � y2 � 0. Then Re(z2 � k2�2) � �k2�2. It follows thatjz2�k2�2j � k2�2. Hen
e j 
tg(z)j is termwise majorized by 1�+P1k=1 1k2�2 < 2. �Lemma 4.5.8. j 
tg(z)j � 3 for any z with Re z = �2 .Proof. In this 
ase Re(z2 � k2�2) = �24 � y2 � k2�2 � �k2 for all k � 1.Hen
e jC(z)j � 2� +P1k=1 1k2 � 1 + 2 = 3. �Lemma 4.5.9. For any z 6= k� and domain D whi
h 
ontains z and whoseboundary does not 
ontain �-integers, one has(4.5.3) I�D 
tg(�)� � z d� = 2�i 
tg(z) + 2�i 1Xk=�1 1k� � z [k� 2 D℄:
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otangent 121Proof. As was proved in Le
ture 3.6, the series P1k=�1 1(��z)(��k�) admitstermwise integration. The residues of 1(��z)(��k�) are 1k��z at k� and 1z�k� at z.Hen
e I�D 1(� � z)(� � k�)d� = (2�i 1z�k� for k� =2 D,0 if k� 2 D.It follows that I�D 
tg(�)� � z d� = 2�i 1Xk=�1 1z � k� [k� =2 D℄= 2�i 
tg(z)� 1Xk=�1 1z � k� [k� 2 D℄: �Lemma 4.5.10. 
tg(z) is an analyti
 fun
tion de�ned on the whole plane, havingall �-integers as its singular points, where it has residues 1.Proof. Consider a point z =2 �Z. Consider a disk D, not 
ontaining �-integerswith 
enter at z. Then formula (4.5.3) transforms to the Cau
hy Integral Formula.And our assertion is proved by termwise integration of the power expansion of 1��zjust with the same arguments as was applied there. The same formula (4.5.3) allowsus to evaluate the residues. �Theorem 4.5.11. 
ot z = 1z +P1k=1 2zz2�k2�2 .Proof. Consider the di�eren
e R(z) = 
ot z � 
tg(z). This is an analyti
fun
tion whi
h has �-integers as singular points and has residues 0 in all of these.Hen
e R(z) = 12�i H�D R(�)��z d� for any z =2 �Z. We will prove that R(z) is 
onstant.Let z0 and � be a pair of di�erent points not belonging to �Z. Then for any D su
hthat �D \ �Z= ? one hasR(z)�R(z0) = 12�i I�D R(�)� 1� � z � 1� � z0� d�= 12�i I�D R(z)(z � z0)(� � z)(� � z0) :(4.5.4)Let us de�ne Dn for a natural n > 3 as the re
tangle bounded by the lines Re z =�(�=2 � n�), Im z = �n�. Sin
e jR(z)j � 7 by Lemmas 4.5.2, 4.5.3, 4.5.7, and4.5.8 the integrand of (4.5.4) eventually is bounded by 7jz�z0jn2 . The 
ontour ofintegration 
onsists of four monotone 
urves of diameter < 2n�. By the EstimationLemma 3.5.4, the integral 
an be estimated from above by 32�n7jz�z0jn2 . Hen
e thelimit of our integral as n tends to in�nity is 0. This implies R(z) = R(z0). Hen
eR(z) is 
onstant and the value of the 
onstant we �nd by putting z = �=2. As
ot�=2 = 0, the value of the 
onstant is
tg(�=2) = limn!1 nXk=�n 1�=2� k� = 2� limn!1 nXk=�n 11� 2k :
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otangentThis limit is zero be
ausenXk=�n 11� 2k = 0Xk=�n 11� 2k + nXk=1 11� 2k = nXk=0 12k + 1 + nXk=1� 12k � 1 = 12n+ 1 :�Summation of series by 
ot z.Theorem 4.5.12. For any rational fun
tion R(z), whi
h is not singular inintegers and has degree � �2, one has P1k=�1R(n) = �Pz res� 
ot(�z)R(z).Proof. In this 
ase the integral limn!1 H�Dn=pi R(z)� 
ot�z = 0. Hen
ethe sum of all residues of R(z)� 
ot�z is zero. The residues at �-integers givesP1k=�1R(k). The rest gives �Pz res� 
ot(�z)R(z). �Fa
torization of sinx. Theorem 4.5.11 with �z substituted for z gives the se-ries � 
ot�z =P1k=�1 1z�k . The half of the series on the right-hand side 
onsistingof terms with nonnegative indi
es represents a fun
tion, whi
h formally teles
opes� 1z . The negative half teles
opes 1z . Let us bise
t the series into nonnegative andnegative halves and add P1k=�1 1k [k 6= 0℄ to provide 
onvergen
e:�1Xk=�1� 1z � k + 1k�+ 1Xk=0� 1z � k + 1k + 1�= 1Xk=1��1k + 1z + k�+ 1Xk=1� 1z + 1� k + 1k� :The �rst of the series on the right-hand side represents �z(z) � 
, the se
ond isz(�z+1)+
. We get the following 
omplement formula for the digamma fun
tion:�z(z) +z(1� z) = � 
ot�z:Sin
e �00(z+1) = z0(z) = � (z) (Lemma 4.4.11) it follows that �0(1+z) = z(z)+
and �0(�z) = �(z(1�z)+
). Therefore �0(1+z)+�0(�z) = � 
ot�z. Integrationof the latter equality gives ��(1 + z)��(�z) = ln sin�z + 
. Changing z by �zwe get �(1 � z) + �(z) = � ln sin�z + 
. Exponentiating gives �(1 � z)�(�z) =1sin�z 
. One de�nes the 
onstant by putting z = 12 . On the left-hand side one gets�( 12 )2 = �, on the right-hand side, 
. Finally we get the 
omplement formula forthe Gamma-fun
tion:(4.5.5) �(1� z)�(z) = �sin�z :Now 
onsider the produ
t Q1k=1(1� x2k2 ). Its 
anoni
al form is(4.5.6) 1Yn=1n�1� xn� e xno�1 1Yn=1n�1 + xn� e� xno�1 :The �rst produ
t of (4.5.6) is equal to � e
xx�(�x) , and the se
ond one is e�
xx�(�x) .Therefore the whole produ
t is � 1x2�(x)�(�x) . Sin
e �(1 � x) = �x�(�x) we getthe following result 1�(x)�(1� x) = x 1Yk=1�1� x2k2� :



4.5 the 
otangent 123Comparing this to (4.5.5) and substituting �x for x we get the Euler formula:sinx = x 1Yk=1�1� x2�2k2� :Problems.1. Expand tan z into a power series.2. Evaluate P1k=1 11+k2 .3. Evaluate P1k=1 11+k4 .


