4.4. Gamma Function

On the contents of the lecture. Euler’s Gamma-function is the function
responsible for infinite products. An infinite product whose terms are values of
a rational function at integers is expressed in terms of the Gamma-function. In
particular it will help us prove Euler’s factorization of sin.

Telescoping problem. Given a function f(x), find a function F(z) such that
0F = f. This is the telescoping problem for functions. In particular, for f = 0
any periodic function of period 1 is a solution. In the general case, to any solution
of the problem we can add a l-periodic function and get another solution. The
general solution has the form F(z) + k(t) where F'(z) is a particular solution and
k(t) is a 1-periodic function, called the periodic constant.

The Euler-Maclaurin formula gives a formal solution of the problem, but the
Euler-Maclaurin series rarely converges. Another formal solution is

(4.4.1) F(z) ==Y flz+k).

Trigamma. Now let us try to telescope the Euler series. The series (4.4.1)
converges for f(x) = —& provided m > 2 and & # —n for natural n > 1. In
particular, the function

(4.4.2) Iz)=>Y m

k=1
is analytic; it is called the trigamma function and it telescopes —m. Its value
I'(0) is just the sum of the Euler series.
This function is distinguished among others functions telescoping —m by
its finite variation.
THEOREM 4.4.1. There is a unique function I'(x) such that 0I'(z) = —m,

varp[0,00] < 0o and I'(0) = 377 75.

PROOF. Since I" is monotone, one has varp[0,00] = 307 [61'] = > 77, % <

00. Suppose f(zx) is another function of finite variation telescoping m Then
f(z) — I'(z) is a periodic function of finite variation. It is obvious that such a
function is constant, and this constant is 0 if f(1) = I'(1). O

Digamma. The series — Y2 | =, which formally telescopes £, is divergent.

However the series — > .2 (xlﬂ —zlk # 0]) is convergent and it telescopes 1,

because adding a constant does not affect the differences. Indeed,

_Z(z+1+k__[k7é0]) Z( ,1616750]) Z%MZE_

k=0

The function

(4.4.3) F(m):_7+§:<%_azik>
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is called thedigamma function. Here «y is the Euler constant. The digamma func-
tion is an analytic function, whose derivative is the trigamma function, and whose
difference is F

Monotonicity distinguishes F among others function telescoping H—Lz

THEOREM 4.4.2. There is a unique monotone function F (z) such that 0F (z) =
and F(0) = —v.

1+z

PRrOOF. Suppose f(z) is a monotone function telescoping Hﬁ Denote by v the
variation of f—F on [0, 1]. Then the variation of f—F over [1,n] is nv. On the other
hand, vary[1,n] =3 _, + < Inn+~. Hence the variation of f(z) — F (z) on [1,n]
is less than 2(y + Inn). Hence v for any n satisfies the inequality nv < 2(y + lnn).

Inn

Since lim, o =% = 0, we get v = 0. Hence f — F is constant, and it is zero if
f)=rQ). O

LEMMA 4.4.3. ' =1T.

Proor. To prove that F'(z) = I'(z), consider F(z) = [," I'(t)dt. This func-
tion is monotone, because F'(z) = I'(z) > 0. Further (0F) = 6F’ = 0l(z) =
(1+I) It follows that 0F = liaz + ¢, where c is a constant. By Theorem 4.4.2 it
follows that F(z + 1) — cx — v = F (z). Hence F (z)) = F'(z + 1) + ¢ = I'(z). This
proves that F' is differentiable and has finite variation. As 0F (z) = H% it follows

that 0F'(z) = — 7552 We get that F'(z) = I'(z) by Theorem 4.4.1. O

Telescoping the logarithm. To telescope the logarithm, we start with the
formal solution — Y7, In(z + k). To decrease the divergence, add ) .-, Ink term-
wise. We get —Inz—) " (In(z+k)—Ink) = —lnz—)_ 7, In(1+%). We know that
In(1+z) is close to z, but the series still diverges. Now convergence can be reached
by the subtraction of £ from the k-th term of the series. This substraction changes
the difference. Let us evaluate the difference of F(z) = —Inz—)_ ;7 (In(1+%£)—%£).
The difference of the n-th term of the series is

(i (1+ 5£1) ~ 2£1) — (14 ) - )
= (n(@+k+1)—Ink—22) — (ln(z + k) — Ink — £)
=dln(z+k)— 1.
Hence
6F(z) = —0lnz— Y7, (0ln(z+k) — 1)
= limy 500 (_(an - 2;11 (51H(:U + k) N %))
= lim, 00 (lnx —In(n+a)+ 35 %)

=1Inz + lim, oo (In(n) —In(n + x)) + lim, 0 ( R n)
=lnx+7.
As a result, we get the following formula for a function, which telescopes the

logarithm:

o0

(4.4.4) O(z) = —yz —Inz — Z (ln (1 + %) - %) .

k=1
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THEOREM 4.4.4. The series (4.4.4) converges absolutely for all x except nega-
tive integers. It presents a function ©(x) such that ©(1) =0 and 60(z) = lnzx.

PrOOF. The inequality {7 < In(1 + z) < z implies

T
— =
14+

2

(4.4.5) |In(1+2z) —z| < ‘

x
1+
Denote by e the distance from 2 to the closest negative integer. Then due to
(4.4.5), the series 37 In ((1 4 %) — %) is termwise majorized by the convergent

k) Tk
series oo, % This proves the absolute convergence of (4.4.4).
Since im0 S p—y (In(1+ 2) — 1) = lim, oo (lnn — Y37} L) = —7, one gets
O(1) =0. O

Convexity. There are a lot of functions that telescope the logarithm. The
property which distinguishes © among others is convexity.

Throughout the lecture # and @ are nonnegative and complementary to each
other, that is § + 8 = 1. The function f is called convez if, for any z, y, it satisfies
the inequality:

(4.4.6) f0z +0y) <Of(x)+0f(y) VO e€[0,1].
Immediately from the definition it follows that
LEMMA 4.4.5. Any linear function ax + b is convex.

LEMMA 4.4.6. Any sum (even infinite) of convex functions is a convez function.
The product of a convex function by a positive constant is a conver function.

LemMA 4.4.7. If f(p) = f(¢) = 0 and f is convex, then f(x) > 0 for all
z ¢ [pq]-

PrROOF. If 2 > ¢ then ¢ = x6 + pf for § = %. Hence f(q) < f(z)0 + f(p)f =

f(z), and it follows that f(z) > f(q) = 0. For z < p one has p = z6 + qf for
6= 12, Hence 0 = f(p) < f(2)0 + f(0)F = f(z). 0

q—

LEMMA 4.4.8. If f" is nonnegative then f is conver.

ProOF. Consider the function F(t) = f(I(t)), where [(t) = 28 + yf. Newton’s
formula for F(t) with nodes 0, 1 gives F/(t) = F(0) + 6F(0)t + LF"(£)t* Since
F'(€) = (y—x)2f"(€) > 0, and t* = t(t — 1) < 0 we get the inequality F(t) <
F(0)+tF(1). Since F(8) = f(xf + y6) this is just the inequality of convexity. [

LEMMA 4.4.9. If f is convex, then 0 < f(a) +05f(a) — f(a+6) <5’ f(a—1)
for any a and any 6 € [0, 1]

PROOF. Since a + 6 = fa +0(a + 1) we get f(a+6) < f(a)f + f(a+ 1)8 =
f(a)+6df(a). On the other hand, the convex function f(a+x) — f(a) —zdf(a—1)
has roots —1 and 0. By Lemma 4.4.7 it is nonnegative for > 0. Hence f(a +6) >
fla)+66f(a—1). It follows that f(a)+80df(a) — f(a+6) > f(a) +00f(a) — f(a) —
05f(a—1)=662f(a—1). O

THEOREM 4.4.10. O(x) is the unique convex function that telescopes Inz and
satisfies ©(1) = 1.
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Proor. Convexity of © follows from the convexity of the summands of its
series. The summands are convex because their second derivatives are nonnegative.

Suppose there is another convex function f(z) which telescopes the logarithm
too. Then ¢(x) = f(z) — O(z) is a periodic function, d¢ = 0. Let us prove that
#(z) is convex. Consider a pair ¢, d, such that |c—d| < 1. Since f(cf+df)—0f(c)—
Af(d) <0, as f is convex, one has

¢(ct + df) — 0(c) — 06(d) = (f(ct + db) — 0f(c) — 0f(d))
— (O(cf + df) — 00(c) — 80(d))
< 60(c) + 00(d) — O(ch + db).
First, prove that ¢ satisfies the following e-relaxed inequality of convexity:
(4.4.7) d(ch + df) < 0¢(c) + 0¢(d) + e.

Increasing ¢ and d by 1, we do not change the inequality as d¢ = 0. Due to this
fact, we can increase ¢ and d to satisfy 5 < £. Set L(z) = ©(c) + (v — ¢)Inc. By
Lemma 4.4.9 for = € [¢,c+ 1] one has |@x — L(z)| < §°O(c—1) =lnc—In(c—1) =
In(1+ =25) < 24 < £. Since |O(z) — L(z)| < § for z = ¢,d, <t¢, it follows that
00 (c) + 00(d) — O(ch + df) differs from OL(c) + OL(d) — L(ch + df) = 0 by less
than by e. The inequality (4.4.7) is proved. Passing to the limit as ¢ tends to 0,
one eliminates €.

Hence ¢(z) is convex on any interval of length 1 and has period 1. Then ¢(z)
is constant. Indeed, consider a pair a,b with condition b — 1 < a < b. Then
a=(b—1)0+ b0 for § =b—a. Hence f(a) < f(b)0 + f(b—1)8 = f(b). O

LeMMA 4.4.11. ©"(1 +z) = I'(z).

ProoF. The function F(z) = [° F (t) dt is convex because its second derivative
is I'. The difference of F' = F is IJ%E Hence 0F(z) = In(z 4+ 1) 4 ¢, where ¢ is some
constant. It follows that F'(z — 1) — cx + ¢ = ©(z). Hence O is twice differentiable
and its second derivative is I". O

Gamma function. Now we define Euler’s gamma function T'(x) as exp(O(x)),
where ©(x) is the function telescoping the logarithm. Exponentiating (4.4.4) gives
a representation of the Gamma function in so-called canonical Weierstrass form:

(4.4.8) D) = ﬁ (1+ %)_1e%.

k=1
Since d InI'(x) = Inx, one gets the following characteristic equation of the Gamma
function
(4.4.9) [(z+1) =2l'(z).

Since ©(1) = 0, according to (4.4.4), one proves by induction that I'(n) = (n — 1)!
using (4.4.9).
A nonnegative function f is called logarithmically convez if ln f(z) is convex.

THEOREM 4.4.12 (characterization). ['(z) is the unique logarithmically convex
function defined for x > 0, which satisfies equation (4.4.9) for all x > 0 and takes
the value 1 at 1.
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PRrOOF. Logarithmical convexity of I'(z) follows from the convexity of O(x).
Further T'(1) = exp©(1) = 1. If f is a logarithmically convex function satisfying
the gamma-equation, then In f satisfies all the conditions of Theorem 4.4.4. Hence,
In f(z) = ©(x) and f(z) =T'(x). O

THEOREM 4.4.13 (Euler). For any x > 0 one has ['(z) = [~ t*"le ! dt.

Let us check that the integral satisfies all the conditions of Theorem 4.4.12.
For z = 1 the integral gives [~ e~tdt = —e~!|;” = 1. The integration by parts
S tretdt = — [Cttde™t = —te ! |7+ [ e tat* ! dx proves that it satis-
fies the gamma-equation (4.4.9). It remains to prove logarithmic convexity of the
integral.

LEMMA 4.4.14 (mean criterium). If f is a monotone function which satisfies
the following mean inequality 2f($T+y) < f(x) + f(y) for all x,y then f is convex.

PROOF. We have to prove the inequality f(zf+yf) < 0f(z)+6f(y) = L(9) for
all 8, z and y. Set F(t) = f(z+ (y — x)t); than F also satisfies the mean inequality.
And to prove our lemma it is sufficient to prove that F(t) < L(¢) for all ¢ € [0, 1].

First we prove this inequality only for all binary rational numbers ¢, that is
for numbers of the type 3%, mm < 2". The proof is by induction on n, the degree
of the denominator. If n = 0, the statement is true. Suppose the inequality
F(t) < L(t) is already proved for fractions with denominators of degree < n.

Consider r = 5%, with odd m = 2k + 1. Set r— = J& r© = Etl By the

induction hypothesJirs F(r¥) < L(Ii). Since r = ”+;”_, by the mean inequality
one has F(r) < £ );f(r ) < L );L(r ) — L(”+;”_) = L(r).

Thus our inequality is proved for all binary rational ¢. Suppose F(¢) > L(t)
for some t. Consider two binary rational numbers p, ¢ such that ¢ € [p,q] and
la—p| < [HA=F. In this case |L(p) = L(t)| < [p—#|f(y) — £ (2)] < |F(t) = L(1)|.
Therefore F(p) < L(p) < F(t). The same arguments give F'(q) < F(t). This is
a contradiction, because t is between p and ¢ and its image under a monotone
mapping has to be between images of p and q. d

LeEmMA 4.4.15 (Cauchy-Bunyakovski-Schwarz).

(4.4.10) (/ f(z :U) < /ab fA(z)dx /ab g*(z) de.

PRrROOF. Since f ) + tg(x))?dx > 0 for all ¢, the discriminant of the fol-
lowing quadratic equatlon is non-negative:

b b b
(4.4.11) t2/ g*(x) da:+2t/ f(x)g(x) d:U—l—/ fA(z)dz = 0.

This discriminant is 4 (f f(x dm) - 4f; f?(z)dx f; g% () du. O

Now we are ready to prove the logarithmic convexity of the Euler integral.
The integral is obviously an increasing function, hence by the mean criterion it is
sufficient to prove the following inequality:

0o 2 0o 0o
(4.4.12) (/ Ea > g/ t“le’tdt/ vl t gt
0 0 0
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This inequality turns into the Cauchy-Bunyakovski-Schwarz inequality (4.4.10) for
flz) =t e~t/2 and g(t) = t*= e~ /2
Evaluation of products. From the canonical Weierstrass form it follows that

—e7T

(4.4.13) [1{—2/n)exp(z/n)} = (=)’

e

[T +a/nyesp(-o/m) = s

One can evaluate a lot of products by splitting them into parts which have this

canonical form (4.4.13). For example, consider the product [~ (1 - g—z) Divi-
sion by n? transforms it into [T~ (1 — 5=) (1 + 5-)~'. Introducing multipliers
ez and e’ﬁ, one gets a canonical form

(4.4.14) ﬁ{(l—%) ei}_lﬁ {<1+%> e—%}_l.

n=1 n=1
Now we can apply (4.4.13) for ¢ = % The first product of (4.4.14) is equal to
—1D(~1/2)e™/2, and the second one is $T'(1/2)e?/2. Since according to the char-
acteristic equation for I-function, I'(1/2) = —$I'(1/2), one gets ['(1/2)?/2 as the
value of Wallis product. Since the Wallis product is 7, we get I'(1/2) = /7.

Problems.

Evaluate the product [To7, (14 £) (1 + 22) (1 — 32).

Evaluate the product [T, %

Prove: The sum of logillr;tm};rinically convex functions is logarithmically convex.

Prove I'(z) = lim;, 0o ———.

Prove [[52, £ (B2)" =T(z + 1).
Prove Legendre’s doubling formula ['(2z)T'(0.5) = 22*7!T'(z + 0.5)['(z).

S UL R W N =



