
3.5. Residue TheoryOn the 
ontents of the le
ture. At last, the reader learns something, whi
hEuler did not know, and whi
h he would highly appre
iate. Residue theory allowsone to evaluate a lot of integrals whi
h were not a

essible by the Newton-Leibnizformula.Monotone 
urve. A monotone 
urve � is de�ned as a subset of the 
omplexplane whi
h is the image of a monotone path. Nonempty interse
tions of verti
aland horizontal lines with a monotone 
urve are either points or 
losed intervals.The points of the monotone 
urve whi
h have an extremal sum of real andimaginary parts are 
alled its endpoints, the other points of the 
urve are 
alled itsinterior points.A 
ontinuous inje
tive monotone path p whose image 
oin
ides with � is 
alleda parametrization of �.Lemma 3.5.1. Let p1 : [a; b℄! C and p2 : [
; d℄! C be two parametrizations ofthe same monotone 
urve �. Then p�11 p2 : [
; d℄ ! [a; b℄ is a 
ontinuous monotonebije
tion.Proof. Set Pi(t) = Re pi(t) + Im pi(t). Then P1 and P2 are 
ontinuous andstri
tly monotone. And p1(t) = p2(�) if and only if P1(t) = P2(�). Hen
e p�11 p2 =P�11 P2. Sin
e P�11 and P2 are monotone 
ontinuous, the 
omposition P�11 P2 ismonotone 
ontinuous. �Orientation. One says that two parametrizations p1 and p2 of a monotone
urve � have the same orientation, if p�11 p2 is in
reasing, and one says that theyhave opposite orientations, if p�11 p2 is de
reasing.Orientation divides all parametrizations of a 
urve into two 
lasses. All elementsof one orientation 
lass have the same orientation and all elements of the other 
lasshave the opposite orientation.An oriented 
urve is a 
urve with �xed 
ir
ulation dire
tion. A 
hoi
e of orien-tation means distinguishing one of the orientation 
lasses as positive, 
orrespondingto the oriented 
urve. For a monotone 
urve, to spe
ify its orientation, it is suÆ-
ient to indi
ate whi
h of its endpoints is its beginning and whi
h is the end. Thenall positively oriented parametrizations start with its beginning and �nish at itsend, and negatively oriented parametrizations do the opposite.If an oriented 
urve is denoted by �, then its body, the 
urve without orientation,is denoted j�j and the 
urve with the same body but with opposite orientation isdenoted ��.If �0 is a monotone 
urve whi
h is 
ontained in an oriented 
urve �, then onede�nes the indu
ed orientation on �0 by � as the orientation of a parametrizationof �0 whi
h extends to a positive parametrization of �.Line integral. One de�nes the integral R� f(z) dg(z) along a oriented mono-tone 
urve � as the integral Rp f(z) dg(z), where p is a positively oriented parametr-ization of �. This de�nition does not depend on the 
hoi
e of p, be
ause di�erentparametrizations are obtained from ea
h other by an in
reasing 
hange of variable(Lemma 3.5.1).One de�nes a partition of a 
urve � by a point x as a pair of monotone 
urves�1, �2, su
h that � = �1[�2 and �1\�2 = x. And we write in this 
ase � = �1+�2.83



84 3.5 residue theoryThe Partition Rule for the line integral is(3.5.1) Z�1+�2 f(z) dg(z) = Z�1 f(z) dg(z) + Z�2 f(z) dg(z);where the orientations on �i are indu
ed by an orientation of �. To prove thePartition Rule 
onsider a positive parametrization p : [a; b℄! �. Then the restri
-tions of p over [a; p�1(x)℄ and [p�1(x); b℄ give positive parametrizations of �1 and�2. Hen
e the equality (3.5.1) follows from R p�1(x)a f(z) dg(z)+R bp�1(x) f(z) dg(z) =R ba f(z) dg(z).A sequen
e of oriented monotone 
urves f�kgnk=1 with disjoint interiors is 
alleda 
hain of monotone 
urves and denoted by Pnk=1 �k. The body of a 
hain C =Pnk=1 �k is de�ned as Snk=1 j�kj and denoted by jCj. The interior of the 
hain isde�ned as the union of interiors of its elements.The integral of a form f dg along the 
hain is de�ned as RPnk=1 �k f dg =Pnk=1 R�k f dg.One says that two 
hains Pnk=1 �k and Pmk=1 �0k have the same orientation, ifthe orientations indu
ed by �k and �0j on �k \�0j 
oin
ide in the 
ase when �k \�0jhas a nonempty interior. Two 
hains with the same body and orientation are 
alledequivalent.Lemma 3.5.2. If two 
hains C = Pnk=1 �k and C 0 = Pmk=1 �0k are equivalentthen the integrals along these 
hains 
oin
ide for any form fdg.Proof. For any interior point x of the 
hain C, one de�nes the subdivisionof C by x as �+j + ��j +Pnk=1 �k[k 6= j℄, where �j is the 
urve 
ontaining x and�+j + ��j is the partition of � by x. The subdivision does not 
hange the integralalong the 
hain due to the Partition Rule.Hen
e we 
an subdivide C step by step by endpoints of C 0 to 
onstru
t a 
hainQ whose endpoints in
lude all endpoints of P 0. And the integral along Q is thesame as along P . Another possibility to 
onstru
t Q is to subdivide C 0 by endpointsof C. This 
onstru
tion shows that the integral along Q 
oin
ides with the integralalong C 0. Hen
e the integrals along C and C 0 
oin
ide. �Due to this lemma, one 
an introdu
e the integral of a di�erential form alongany oriented pie
ewise monotone 
urve �. To do this one 
onsiders a monotonepartition of � into a sequen
e f�kgnk=1 of monotone 
urves with disjoint interiorsand equip all �k with the indu
ed orientation. One gets a 
hain and the integralalong this 
hain does not depend on the partition.Contour integral. A domain D is de�ned as a 
onne
ted bounded part ofthe plane with pie
ewise monotone boundary. The boundary of D denoted �D isthe union of �nitely many monotone 
urves. And we suppose that �D � D, thatis we 
onsider a 
losed domain.For a monotone 
urve �, whi
h is 
ontained in the boundary of a domainD, onede�nes the indu
ed orientation of � by D as the orientation of a parametrizationwhi
h leaves D on the left during the movement along � around D.One introdu
es the integral H�D f(z)dg(z) as the integral along any 
hain whosebody 
oin
ides with �D and whose orientations of 
urves are indu
ed by D.Due to Lemma 3.5.2 the 
hoi
e of 
hain does not a�e
t the integral.
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D

Figure 3.5.1. Contour integralLemma 3.5.3. Let D be a domain and l be either a verti
al or a horizontal line,whi
h bise
ts D into two parts: D0 and D00 lying on the di�erent sides of l. ThenH�D f(z)dz = H�D0 f(z)dz + H�D00 f(z)dz.Proof. The line l interse
ts the boundary of D in a �nite sequen
e of pointsand intervals fJkgmk=1.Set �0D = �D \ �D0 and �00D = �D \ �D00. The interse
tion �0D \ �00D
onsists of �nitely many points. Indeed, the interior points of Jk do not belong tothis interse
tion, be
ause their small neighborhoods have points of D only from oneside of l. Hen
e Z�0D f(z) dz + Z�00D f(z) dz = I�D f(z)dz:The boundary of D0 
onsists of �0D and some number of intervals. And theboundary of D00 
onsists of �00D and the same intervals, but with opposite orien-tation. Therefore L = Zl\�D0 f(z) dz = � Zl\�D00 f(z) dz:On the other handI�D0 f(z)dz = Z�0D f(z) dz + L andI�D00 f(z)dz = Z�00D f(z) dz � L;hen
eI�D0 f(z)dz + I�D00 f(z)dz = Z�0D f(z) dz + Z�00D f(z) dz = I�D f(z)dz: �Lemma 3.5.4 (Estimation). If jf(z)j � B for any z from a body of a 
hainC =Pnk=1 �k, then ��RC f(z) dz�� � 4Bn diam jCj.Proof. By Lemma 3.3.6 for any k one has ���R�k f(z) dz��� � 4BjAk � Bkj �4B diam jCj where Ak and Bk are endpoints of �k. The summation of these in-equalities proves the lemma. �Theorem 3.5.5 (Cau
hy). If a fun
tion f is 
omplex di�erentiable in a domainD then H�D f(z)dz = 0.



86 3.5 residue theoryProof. Fix a re
tangle R with sides parallel to the 
oordinate axis whi
h
ontains D and denote by jRj its area and by P its perimeter.The proof is by 
ontradi
tion. Suppose ��H�D f(z) dz�� 6= 0. Denote by 
 the ratioof ��H�D f(z) dz��=jRj. We will 
onstru
t a nested sequen
e of re
tangles fRkg1k=0su
h that� R0 = R, Rk+1 � Rk;� R2k is similar to R;� j H�(Rk\D) f(z) dzj � 
jRkj, where jRkj is the area of Rk.The indu
tion step: Suppose Rk is already 
onstru
ted. Divide Rk in two equalre
tanges R0k and R00k by drawing either a verti
al, if k is even, or a horizontal, if kis odd, interval joining the middles of the opposite sides of Rk. Set Dk = D \ Rk,D0 = D\R0k, D00 = D\R00k . We state that at least one of the following inequalitiesholds:(3.5.2) ����I�D0 f(z)dz���� � 
jR0kj; ����I�D00 f(z)dz���� � 
jR00k j:Indeed, in the opposite 
ase one gets����I�D0 f(z)dz + I�D00 f(z)dz���� < 
jR0kj+ 
jR0kj = 
jRkj:Sin
e H�D0 f(z)dz + H�D00 f(z)dz = H�Dk f(z)dz by Lemma 3.5.3 we get a 
ontra-di
tion with the hypothesis j Rpk f(z) dzj � 
jRkj. Hen
e, one of the inequalities(3.5.2) holds. If the �rst inequality holds we set Rk+1 = R0k else we set Rk+1 = R00k .After 
onstru
ting the sequen
e fRkg, 
onsider a point z0 belonging toT1k=1 Rk.This point belongs to D, be
ause all its neighborhoods 
ontain points of D. Con-sider the linearization f(z) = f(z0)+f 0(z0)(z�z0)+o(z)(z�z0). Sin
e H�Dk (f(z0)+f 0(z0)(z � z0))dz = 0 one gets(3.5.3) ����I�Dk o(z)(z � z0)dz���� = ����I�Dk f(z)dz���� � 
jRkj:The boundary of Dk is 
ontained in the union �Rk [ Rk \ �D. Consider amonotone partition �D =Pnk=1 �k. Sin
e the interse
tion of Rk with a monotone
urve is a monotone 
urve, one 
on
ludes that �D \ Rk is a union of at most nmonotone 
urves. As �Rk 
onsists of 4 monotone 
urves we get that �Dk is as abody of a 
hain with at most 4 + n monotone 
urves.Denote by Pk the perimeter of Rk. And suppose that o(x) is bounded in Rkby a 
onstant ok. Then jo(x)(z � z0)j � Pkok for all z 2 Rk.Sin
e diam �Dk � Pk2 by the Estimation Lemma 3.5.4, we get the followinginequality:(3.5.4) ����I�Dk o(z)(z � z0)dz���� � 4(4 + n)Pkok Pk2 = 2(4 + n)okP 2k :The ratio P 2k =jRkj is 
onstant for even k. Therefore the inequalities (3.5.3) and(3.5.4) 
ontradi
t ea
h other for ok < 
jRkj2(4+n)P 2k = 
jRj2(4+n)P 2 . However the inequalityjo(x)j < 
jRj2(4+n)P 2 holds for some neighborhood V of z0 as o(x) is in�nitesimallysmall at z0. This is a 
ontradi
tion, be
ause V 
ontains some R2k. �



3.5 residue theory 87Residues. By H rz0 f(z) dz we denote the integral along the boundary of thedisk fjz � z0j � rg.Lemma 3.5.6. Suppose a fun
tion f(z) is 
omplex di�erentiable in the domainD with the ex
eption of a �nite set of points fzkgnk=1. ThenI�D f(z)dz = nXk=1 I rzk f(z) dz;where r is so small that all disks jz � zkj < r are 
ontained in D and disjoint.Proof. Denote by D0 the 
omplement of the union of the disks in D. Then�D0 is the union of �D and the boundary 
ir
les of the disks. By the Cau
hyTheorem 3.5.5, H�D0 f(z)dz = 0. On the other hand this integral is equal to thesum H�D f(z)dz and the sum of integrals along boundaries of the 
ir
les. Theorientation indu
ed by D0 onto the boundaries of these 
ir
les is opposite to theorientation indu
ed from the 
ir
les. Hen
e0 = I�D0 f(z)dz = I�D f(z)dz � nXk=1 I rzk f(z) dz: �A singular point of a 
omplex fun
tion is de�ned as a point where either thefun
tion or its derivative are not de�ned. A singular point is 
alled isolated, if ithas a neighborhood, where it is the only singular point. A point is 
alled a regularpoint if it not a singular point.One de�nes the residue of f at a point z0 and denotes it as resz0 f as thelimit limr!0 12�i H rz0 f(z)dz. The above lemma shows that this limit exists for anyisolated singular point and moreover, that all integrals along suÆ
iently small 
ir-
umferen
es in this 
ase are the same.Sin
e in all regular points the residues are 0 the 
on
lusion of Lemma 3.5.6 fora fun
tion with �nitely many singular points 
an be presented in the form:(3.5.5) I�D f(z)dz = 2�iXz2D resz f:An isolated singular point z0 is 
alled a simple pole of a fun
tion f(z) if thereexists a nonzero limit limz!z0 f(z)(z � z0).Lemma 3.5.7. If z0 is a simple pole of f(z) then resz0 f = limz!z0(z�z0)f(z).Proof. Set L = limz!z0(z � z0)f(z). Then f(z) = L+ o(z)(z�z0) , where o(z) isin�nitesimally small at z0. Hen
e(3.5.6) I rz0 o(z) dzz � z0 = I rz0 f(z) dz � I rz0 Lz � z0 dz:Sin
e the se
ond integral from the right-hand side of (3.5.6) is equal to 2L�i andthe other one is equal to 2�i resz0 f for suÆ
iently small r, we 
on
lude that theintegral from the left-hand side also is 
onstant for suÆ
iently small r. To prove thatL = resz0 f we have to prove that this 
onstant 
 = limr!0 H rz0 o(z)z�z0 dz is 0. Indeed,assume that j
j > 0. Then there is a neighborhood U of z0 su
h that jo(z)j � j
j32



88 3.5 residue theoryfor all z 2 U . Then one gets a 
ontradi
tion by estimation of ���H rz0 o(z) dzz�z0 ��� (whi
h isequal to j
j for suÆ
iently small r) from above by j
jp2 for r less than the radius ofU . Indeed, the integrand is bounded by j
j32r and the path of integration (the 
ir
le)
an be divided into four monotone 
urves of diameter rp2: quarters of the 
ir
le.Hen
e by the Estimation Lemma 3.5.4 one gets ���H rz0 o(z) dzz�z0 ��� � 16p2 j
j32 = j
jp2 . �Remark 3.5.8. Denote by �(r; �; z0) an ar
 of the 
ir
le jz � z0j = r, whoseangle measure is �. Under the hypothesis of Lemma 3.5.7 the same arguments provethe following limr!0 Z�(�;r;0z) f(z) dz = i� limz!z0 f(z)(z � z0):Problems.1. Evaluate H 11 dz1+z4 .2. Evaluate H 10 dzsin z .3. Evaluate H 10 dzez�1 .4. Evaluate H 10 dzz2 .5. Evaluate H 10 sin 1z dz.6. Evaluate H 10 ze 1z dz.7. Evaluate H 5=20 z2 
ot�z dz.8. Evaluate H 122 z dz(z�1)(z�2)2 .9. Evaluate R +��� d�5+3 
os� .10. Evaluate R +��� d�(1+
os2 �)2 .11. Evaluate R 2�0 d�(1+
os�)2 .12. Evaluate R +1�1 dx1+x4 .13. Evaluate R +10 dx(1+x2)(4+x2) .14. Evaluate R +1�1 1+x21+x4 .15. Evaluate R +1�1 x31+x6 dx.


