3.5. Residue Theory

On the contents of the lecture. At last, the reader learns something, which
Euler did not know, and which he would highly appreciate. Residue theory allows
one to evaluate a lot of integrals which were not accessible by the Newton-Leibniz
formula.

Monotone curve. A monotone curve I' is defined as a subset of the complex
plane which is the image of a monotone path. Nonempty intersections of vertical
and horizontal lines with a monotone curve are either points or closed intervals.

The points of the monotone curve which have an extremal sum of real and
imaginary parts are called its endpoints, the other points of the curve are called its
interior points.

A continuous injective monotone path p whose image coincides with I is called
a parametrization of T,

LEMMA 3.5.1. Let py: [a,b] = C and py: [c,d] — C be two parametrizations of
the same monotone curve I'. Then p; *ps: [c,d] — [a,b] is a continuous monotone
bijection.

Proor. Set P;(t) = Rep;(t) + Imp;(t). Then P, and P, are continuous and
strictly monotone. And p;(t) = pa(7) if and only if P;(t) = P(7). Hence p; 'ps =
P 'P,. Since P;' and P, are monotone continuous, the composition P, ' P, is
monotone continuous. o

Orientation. One says that two parametrizations p; and ps of a monotone
curve I have the same orientation, if pflpg is increasing, and one says that they
have opposite orientations, if pflpg is decreasing.

Orientation divides all parametrizations of a curve into two classes. All elements
of one orientation class have the same orientation and all elements of the other class
have the opposite orientation.

An oriented curve is a curve with fixed circulation direction. A choice of orien-
tation means distinguishing one of the orientation classes as positive, corresponding
to the oriented curve. For a monotone curve, to specify its orientation, it is suffi-
cient to indicate which of its endpoints is its beginning and which is the end. Then
all positively oriented parametrizations start with its beginning and finish at its
end, and negatively oriented parametrizations do the opposite.

If an oriented curve is denoted by I', then its body, the curve without orientation,
is denoted |I'| and the curve with the same body but with opposite orientation is
denoted —T.

If IV is a monotone curve which is contained in an oriented curve I', then one
defines the induced orientation on I by I' as the orientation of a parametrization
of I'" which extends to a positive parametrization of I.

Line integral. One defines the integral [;. f(z) dg(z) along a oriented mono-
tone curve I' as the integral fp f(2) dg(z), where p is a positively oriented parametr-
ization of I'. This definition does not depend on the choice of p, because different
parametrizations are obtained from each other by an increasing change of variable
(Lemma 3.5.1).

One defines a partition of a curve I' by a point x as a pair of monotone curves
'y, s, such that I' = ' Ul and 'y NIy = . And we write in this case I' = 'y + 5.
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84 3.5 RESIDUE THEORY
The Partition Rule for the line integral is
(3.5.1) / f(z)dg(z) = | [f(z)dg(z) + | f(z)dg(2),
| A P I L2

where the orientations on I'; are induced by an orientation of I'. To prove the
Partition Rule consider a positive parametrization p: [a,b] — I'. Then the restric-
tions of p over [a,p~!(x)] and [p~!(x),b] give positive parametrizations of I'; and

['y. Hence the equality (3.5.1) follows from ffﬁl(x) f(z) dg(z)+f:,1(z) f(z)dg(z) =
S, 1(2) dg(2).

A sequence of oriented monotone curves {I'x}}_; with disjoint interiors is called
a chain of monotone curves and denoted by >, _; I'y. The body of a chain C' =
> h_y T is defined as |J;_, |Tx| and denoted by |C|. The interior of the chain is
defined as the union of interiors of its elements.

The integral of a form fdg along the chain is defined as fZZﬂFk fdg
k=1 Jr, fdg.

One says that two chains ) ) I'; and >, I'} have the same orientation, if
the orientations induced by I'y and 1";- onTyN 1";- coincide in the case when I'y N 1";-
has a nonempty interior. Two chains with the same body and orientation are called
equivalent.

LEMMA 3.5.2. If two chains C = Y ;_ Ty and C" = Y} I}, are equivalent
then the integrals along these chains coincide for any form fdg.

Proor. For any interior point x of the chain C, one defines the subdivision
of C by z as F]~+ + I + > iy Tklk # j], where T'; is the curve containing x and
F]-+ + I'; is the partition of I' by z. The subdivision does not change the integral
along the chain due to the Partition Rule.

Hence we can subdivide C step by step by endpoints of C’ to construct a chain
() whose endpoints include all endpoints of P’. And the integral along @ is the
same as along P. Another possibility to construct @ is to subdivide C’ by endpoints
of C'. This construction shows that the integral along @) coincides with the integral
along C'. Hence the integrals along C' and C’ coincide. O

Due to this lemma, one can introduce the integral of a differential form along
any oriented piecewise monotone curve I'. To do this one considers a monotone
partition of I' into a sequence {I'y}}_, of monotone curves with disjoint interiors
and equip all I'y with the induced orientation. One gets a chain and the integral
along this chain does not depend on the partition.

Contour integral. A domain D is defined as a connected bounded part of
the plane with piecewise monotone boundary. The boundary of D denoted 0D is
the union of finitely many monotone curves. And we suppose that 9D C D, that
is we consider a closed domain.

For a monotone curve I, which is contained in the boundary of a domain D, one
defines the induced orientation of I' by D as the orientation of a parametrization
which leaves D on the left during the movement along I' around D.

One introduces the integral ¢, ,, f(2)dg(z) as the integral along any chain whose
body coincides with D and whose orientations of curves are induced by D.

Due to Lemma 3.5.2 the choice of chain does not affect the integral.
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F1Gure 3.5.1. Contour integral

LEMMA 3.5.3. Let D be a domain andl be either a vertical or a horizontal line,
which bisects D into two parts: D' and D" lying on the different sides of l. Then

$op f(2)dz = $,p, f(2)dz + $yp f(2)d2.

PROOF. The line [ intersects the boundary of D in a finite sequence of points
and intervals {J}7" ;.

Set 'D = 0D NAD'" and 0"D = 8D NID". The intersection &'D N 9" D
consists of finitely many points. Indeed, the interior points of .J; do not belong to
this intersection, because their small neighborhoods have points of D only from one
side of I. Hence

(2)dz + (2)dz = f(z)dz.
&'D 8" D oD

The boundary of D’ consists of 'D and some number of intervals. And the

boundary of D" consists of 3"’ D and the same intervals, but with opposite orien-

tation. Therefore
L:/ f(z)dz:—/ f(z)d=.
INoD’ InoD"
On the other hand

(2)dz = (2)dz + L and (z)dz = f(z)dz— L,
oD’ 8D ap" 8" D
hence
(z)dz + (2)dz = (2)dz + (2)dz = f(z)dz.
oD oD 8D 8" D oD
g

LeMMA 3.5.4 (Estimation). If |f(z)| < B for any z from a body of a chain
C =34_1 T, then | [, f(2) dz| < 4Bn diam|C].
ProoF. By Lemma 3.3.6 for any k£ one has ‘fl“k f(z) dz‘ < 4B|Ay — Bi| <

4B diam |C| where Ay and By are endpoints of I'y. The summation of these in-
equalities proves the lemma. d

THEOREM 3.5.5 (Cauchy). If a function f is complex differentiable in a domain
D then §,,, f(z)dz = 0.
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Proor. Fix a rectangle R with sides parallel to the coordinate axis which
contains D and denote by |R| its area and by P its perimeter.

The proof is by contradiction. Suppose |§3D f(z) dz| # 0. Denote by c the ratio
of |§5, f(2)dz| /|R|. We will construct a nested sequence of rectangles {R}2,
such that

e Ry = R, Ryy1 C Ry;
o Ry is similar to R;
. |f8(kaD) f(z)dz| > c|Rg|, where |Ry| is the area of Ry.

The induction step: Suppose Ry, is already constructed. Divide Ry in two equal
rectanges R and R} by drawing either a vertical, if k is even, or a horizontal, if k
is odd, interval joining the middles of the opposite sides of Ry. Set Dy = D N Ry,
D' = DNR}, D" = DNR]. We state that at least one of the following inequalities

holds:
(3.5.2) ng” f(z)dz

(2)dz

> | Ry,

> c|Rj|.
oD’

Indeed, in the opposite case one gets

(z)dz + (2)dz
oD! oD
Since §,,, f(2)dz + $,,, f(2)dz = §,,, f(z)dz by Lemma 3.5.3 we get a contra-
diction with the hypothesis |prc f(2)dz| > c|Rg|. Hence, one of the inequalities
(3.5.2) holds. If the first inequality holds we set Ry1+1 = R}, else we set Ry11 = R}/,
After constructing the sequence { Ry}, consider a point zq belonging to (;—, Ry.
This point belongs to D, because all its neighborhoods contain points of D. Con-
sider the linearization f(z) = f(20)+f'(20)(2—20)+0(2)(2—20). Since ¢, , (f(20)+
f'(20)(z — #0))dz = 0 one gets

7€3Dk 0(2)(z — z0)dz

The boundary of Dy is contained in the union ORj U Ry N @D. Consider a
monotone partition 0D = 22:1 I';.. Since the intersection of Rj; with a monotone
curve is a monotone curve, one concludes that 0D N Ry is a union of at most n
monotone curves. As ORy consists of 4 monotone curves we get that 0Dy, is as a
body of a chain with at most 4 4+ n monotone curves.

Denote by Py the perimeter of Ri. And suppose that o(z) is bounded in Ry
by a constant of. Then |o(z)(z — zp)| < Proy for all z € Ry,.

Since diam 0D;, < % by the Estimation Lemma 3.5.4, we get the following
inequality:

< c|Ry,| + c|Ry| = c|Rk|.

(3.5.3)

(z)dz
0Dy,

Z C|Rk|.

(3.5.4)

P ‘
7{ 0(2)(z — z0)dz| < 4(4 + n)Pkok?’c =2(4+n)opP?.
0Dy,

The ratio P?/|Rg| is constant for even k. Therefore the inequalities (3.5.3) and

(3.5.4) contradict each other for o < 2@_@3% = 2(43‘_5)‘132.
c|R|

lo(z)| < Farmpe holds for some neighborhood V' of zo as o(x) is infinitesimally
small at zy. This is a contradiction, because V' contains some Ray,. [l

However the inequality



3.5 RESIDUE THEORY 87

Residues. By f; f(2)dz we denote the integral along the boundary of the
disk {|z — zo| < r}.

LEMMA 3.5.6. Suppose a function f(z) is complex differentiable in the domain
D with the exception of a finite set of points {zy}}_,. Then

fdz =3¢ f)dz,

oD k=1 2k
where T is so small that all disks |z — zi| < T are contained in D and disjoint.

PRrROOF. Denote by D' the complement of the union of the disks in D. Then
OD' is the union of 8D and the boundary circles of the disks. By the Cauchy
Theorem 3.5.5, §,,, f(2)dz = 0. On the other hand this integral is equal to the
sum ¢, f(2)dz and the sum of integrals along boundaries of the circles. The
orientation induced by D’ onto the boundaries of these circles is opposite to the
orientation induced from the circles. Hence

0= - f(z)dz = ﬁDf(z)dz—,;%Zk f(z)dz.
d

A singular point of a complex function is defined as a point where either the
function or its derivative are not defined. A singular point is called isolated, if it
has a neighborhood, where it is the only singular point. A point is called a regular
point if it not a singular point.

One defines the residue of f at a point 2y and denotes it as res,, f as the
limit lim,_,¢ QLM f; f(2)dz. The above lemma shows that this limit exists for any
isolated singular point and moreover, that all integrals along sufficiently small cir-
cumferences in this case are the same.

Since in all regular points the residues are 0 the conclusion of Lemma 3.5.6 for
a function with finitely many singular points can be presented in the form:

(3.5.5) f(z)dz =2mi ) res, f.

oD zeD

An isolated singular point zp is called a simple pole of a function f(z) if there
exists a nonzero limit lim,_,., f(z)(z — 2o).

LEMMA 3.5.7. If zg is a simple pole of f(z) then res,, f = lim,_,.,(z —20) f(2).

PROOF. Set L = lim,_,.,(z — 20) f(2). Then f(z) = L+ (ZOEZZ)O), where o(z) is
infinitesimally small at z¢. Hence

(3.5.6) %Z: % = %Z: f(z)dz — ?{Z . —Lzo dz.

Since the second integral from the right-hand side of (3.5.6) is equal to 2Lmi and
the other one is equal to 2mires;, f for sufficiently small r, we conclude that the
integral from the left-hand side also is constant for sufficiently small r. To prove that

L = res,, f we have to prove that this constant ¢ = lim,_,¢ Z'; ZOEZZ)O dz is 0. Indeed,

assume that |¢| > 0. Then there is a neighborhood U of zy such that |o(z)| < |3£2|
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for all z € U. Then one gets a contradiction by estimation of f: m (which is
0 Z2—%20
equal to |c| for sufficiently small r) from above by Ll for 7 less than the radius of

2

U. Indeed, the integrand is bounded by % and the path of integration (the circle)

can be divided into four monotone curves of diameter rv/2: quarters of the circle.

T oo(z)d le|] _ el
fzo OziZOZ S]'G\/ﬁé_% 0

REMARK 3.5.8. Denote by I'(r, $,z0) an arc of the circle |z — zo| = r, whose
angle measure is ¢. Under the hypothesis of Lemma 3.5.7 the same arguments prove
the following

Hence by the Estimation Lemma 3.5.4 one gets

lim f(z)dz =i¢ lim f(2)(z — z0).

r—0 L(¢,r,0z) z—2p

Problems.

1
Evaluate §; 1122 -

Evaluate §, -2
Evaluate fol Lz
Evaluate fol 4.

Evaluate fol sin L dz.
Evaluate fol ze* dz.
Evaluate 3%5/ ? 22 cotmz dz.

1
Evaluate fzz %

+r d¢
Evaluate [ ST3eosd"

. Evaluate [17 40
2w d
. Evaluate fO w.

. Evaluate fj;o 112‘4.
&

+oo d
. Evaluate fO m
2
. Evaluate fjooj 11;4

3
. Evaluate f:rooj Tos dz.
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