
2.6. Virtually monotone funtionsMonotonization of the integrand. Let us say that a pair of funtions f1, f2monotonize a funtion f , if f1 is non-negative and non-dereasing, f2 is non-positiveand non-inreasing and f = f1 + f2.Lemma 2.6.1. Let f = f1 + f2 and f = f 01 + f 02 be two monotonizations of f .Then for any monotone h one has f1dh+ f2dh = f1dh+ f 02dh.Proof. Our equality is equivalent to f1dh � f 02dh = f 01dh � f2dh. By thesign rule this turns into f1dh + (�f 02)dh = f 01dh + (�f2)dh. Now all integrandsare nonnegative and for non-dereasing h we an apply the Addition Theorem andtransform the inequality into (f1 � f 02)dh = (f 01 � f2)dh. This is true beause(f1 � f 02) = (f 01 � f2).The ase of a non-inreasing di�erand is redued to the ase of a non-dereasingone by the transformation f1d(�h)+f2d(�h) = f 01d(�h)+f 02d(�h), whih is basedon the Sign Rule. �A funtion whih has a monotonization is alled virtually monotone.We de�ne the integral R ba f dg for any virtually monotone integrand f and anyontinuous monotone di�erand g via a monotonization f = f1 + f2 byZ ba f dg = Z ba f1 dg + Z ba f2 dg:Lemma 2.6.1 demonstrates that this de�nition does not depend on the hoieof a monotonization.Lemma 2.6.2. Let f and g be virtually monotone funtions; then f + g isvirtually monotone and fdh+ gdh = (f + g)dh for any ontinuous monotone h.Proof. Let h be nondereasing. Consider monotonizations f = f1 + f2 andg = g1 + g2. Then fdh + gdh = f1dh + f2dh + g1dh + g2dh by de�nition viamonotonization of the integrand. By virtue of the Addition Theorem 2.3.3 thisturns into (f1 + g1)dh + (f2 + g2)dh. But the pair of brakets monotonize f + g.Hene f+g is proved to be virtually monotone and the latter expression is (f+g)dhby de�nition, via monotonization of the integrand. The ase of non-inreasing h isredued to the previous ase via �fd(�h)� gd(�h) = �(f + g)d(�h). �Lemma on loally onstant funtions. Let us say that a funtion f(x) isloally onstant at a point x if f(y) = f(x) for all y suÆiently lose to x, i.e., forall y from an interval (x� "; x+ ").Lemma 2.6.3. A funtion f whih is loally onstant at eah point of an intervalis onstant.Proof. Suppose f(x) is not onstant on [a; b℄. We will onstrut by indutiona sequene of intervals Ik = [ak; bk℄, suh that I0 = [a; b℄, Ik+1 � Ik, jbk � akj �2jbk+1 � ak+1j and the funtion f is not onstant on eah Ik. First step: Let = (a + b)=2, as f is not onstant f(x) 6= f() for some x. Then hoose [x; ℄ or[; x℄ as for [a1; b1℄. On this interval f is not onstant. The same are all furthersteps. The intersetion of the sequene is a point suh that any of its neighborhoodsontains some interval of the sequene. Hene f is not loally onstant at thispoint. �57



58 2.6 virtually monotone funtionsLemma 2.6.4. If f(x) is a ontinuous monotone funtion and a < f(x) < bthen a < f(y) < b for all y suÆiently lose to x.Proof. If f takes values greater than b, then it takes value b and if f(x) takesvalues less than a then it takes value a due to ontinuity. Then [f�1(a); f�1(b)℄ isthe interval where inequalities hold. �Lemma 2.6.5. Let g1, g2 be ontinuous omonotone funtions. Then g1+ g2 isontinuous and monotone, and for any virtually monotone f one has(2.6.1) fdg1 + fdg2 = fd(g1 + g2):Proof. Suppose g1(x) + g2(x) < p, let " = p � g1(x) � g2(x). Then g1(y) <g1(y) + "=2 and g2(y) < g2(y) + "=2 for all y suÆiently lose to x. Hene g(y) +g2(y) < p for all y suÆiently lose to x. The same is true for the opposite inequality.Hene sgn(g1(x)+g2(x)�p) is loally onstant at all points where it is not 0. But itis not onstant if p is an intermediate value, hene it is not loally onstant, heneit takes value 0. At this point g1(x) + g2(x) = p and the ontinuity of g1 + g2 isproved.Consider a monotonization f = f1+f2. Let gi be nondereasing. By de�nitionvia monotonization of the integrand, the left-hand side of (2.6.1) turns into (f1dg1+f2dg1) + (f1dg2 + f2dg2) = (f1dg1 + f1dg2) + (f2dg1 + f2dg2). By the AdditionTheorem 2.3.3 f1dg1 + f1dg2 = f1d(g1 + g2). And the equality f2dg1 + f2dg2 =f2d(g1+ g2) follows from (�f2)dg1+(�f2)dg2 = (�f2)d(g1+ g2) by the Sign Rule.Hene the left-hand side is equal to f1d(g1 + g2) + f2d(g1 + g2), whih oinideswith the right-hand side of (2.6.1) by de�nition via monotonization of integrand.The ase of non-inreasing di�erands is taken are of via transformation of (2.6.1)by the Sign Rule into fd(�g1) + fd(�g2) = fd(�g1 � g2). �Lemma 2.6.6. Let g1 + g2 = g3 + g4 where all (�1)kgk are non-inreasingontinuous funtions. Then fdg1+ fdg2 = fdg3+ fdg4 for any virtually monotonef . Proof. Our equality is equivalent to fdg1 � fdg4 = fdg3 � fdg2. By theSign Rule it turns into fdg1 + fd(�g4) = fdg3 + fd(�g2). Now all di�erands arenondereasing and by Lemma 2.6.5 it transforms into fd(g1 � g4) = fd(g3 � g2).This is true beause g1 � g4 = g3 � g2. �Monotonization of the di�erand. A monotonization by ontinuous fun-tions is alled ontinuous. A virtually monotone funtion whih has a ontinuousmonotonization is alled ontinuous. The integral for any virtually monotone in-tegrand f against a virtually monotone ontinuous di�erand g is de�ned via aontinuous virtualization g = g1 + g2 of the di�erandZ ba f dg = Z ba f dg1 + Z ba f dg2:The integral is well-de�ned beause of Lemma 2.6.6.Theorem 2.6.7 (Addition Theorem). For any virtually monotone funtionsf; f 0 and any virtually monotone ontinuous g; g0, fdg + f 0dg = (f + f 0)dg andfdg + fdg0 = fd(g + g0)



2.6 virtually monotone funtions 59Proof. To prove fdg+ f 0dg = (f + f 0)dg, onsider a ontinuous monotoniza-tion g = g1+g2. Then by de�nition of the integral for virtually monotone di�erandsthis equality turns into (fdg1+fdg2)+(f 0dg1+f 0dg2) = (f+f 0)dg1+(f+f 0)dg2. Af-ter rearranging it turns into (fdg1+f 0dg1)+(fdg2+f 0dg2) = (f+f 0)dg1+(f+f 0)dg2.But this is true due to Lemma 2.6.2.To prove fdg + fdg0 = fd(g + g0), onsider monotonizations g = g1 + g2,g0 = g01 + g02. Then (g1+ g01) + (g2 + g02) is a monotonization for g+ g0. And by thede�nition of the integral for virtually monotone di�erands our equality turns intofdg1 + fdg2 + fdg01 + fdg02 �Change of variable.Lemma 2.6.8. If f is virtually monotone and g is monotone, then f(g(x)) isvirtually monotone.Proof. Let f1 + f2 be a monotonization of f . If h is non-dereasing thenf1(h(x)) + f2(h(x)) gives a monotonization of f(g(x)). If h is dereasing then themonotonization is given by (f2(h(x)) + ) + (f1(h(x)) � ) where  is a suÆientlylarge onstant to provide positivity of the �rst brakets and negativity of the seondone. �The following natural onvention is applied to de�ne an integral with reversedlimits: R ba f(x) dg(x) = � R ab f(x) dg(x).Theorem 2.6.9 (on hange of variable). If h : [a; b℄! [h(a); h(b)℄ is monotone,f(x) is virtually monotone and g(x) is virtually monotone ontinuous thenZ ba f(h(t)) dg(h(t)) = Z h(b)h(a) f(x) dg(x):Proof. Let f = f1+f2 and g = g1+g2 be a monotonization and a ontinuousmonotonization of f and g respetively. The R ba f(h(t)) dg(h(t)) splits into sumof four integrals: R ba fi(h(t)) dgj(h(t)) where fi are of onstant sign and gj aremonotone ontinuous. These integrals oinide with the orresponding integralsR h(b)h(a) fi(x) dgi(x). Indeed their absolute values are the areas of the same urvilineartrapezia. And their signs determined by the Sign Rule are the same. �Integration by parts. We have established the Integration by Parts formulafor non-negative and non-dereasing di�erential forms. Now we extend it to thease of ontinuous monotone forms. In the �rst ase f and g are non-dereasing.In this ase hoose a positive onstant  suÆiently large to provide positivity off +  and g+  on the interval of integration. Then d(f + )(g + ) = (f + )d(g +) + (g + )d(f + ). On the other hand d(f + )(g + ) = dfg + df + dg and(f + )d(g + ) + (g + )d(f + ) = fdg + dg + df . Compare these results to getdfg = fdg + gdf . Now if f is inreasing and g is dereasing then �g is inreasingand we get �dfg = df(�g) = fd(�g) + (�g)df = �fdg � gdf , whih leads todfg = fdg + gdf . The other ases: f dereasing, g inreasing and both dereasingare proved by the same arguments. The extension of the Integration by Partsformula to pieewise monotone forms immediately follows by the Partition Rule.Variation. De�ne the variation of a sequene of numbers fxkgnk=1 as the sumP1k=1 jxk+1 � xkj. De�ne the variation of a funtion f along a sequene fxkgnk=0



60 2.6 virtually monotone funtionsas the variation of sequene ff(xk)gnk=0. De�ne a hain on an interval [a; b℄ as anondereasing sequene fxkgnk=0 suh that x0 = a and xn = b. De�ne the partialvariation of f on an interval [a; b℄ as its variation along a hain on the interval.The least number surpassing all partial variations funtion f over [a; b℄ is alledthe (ultimate) variation of a funtion f(x) on an interval [a; b℄ and is denoted byvarf [a; b℄.Lemma 2.6.10. For any funtion f one has the inequality varf [a; b℄ � jf(b)�f(a)j. If f is a monotone funtion on [a; b℄, then varf [a; b℄ = jf(b)� f(a)j.Proof. The inequality varf [a; b℄ � jf(b)� f(a)j follows immediately from thede�nition beause fa; bg is a hain. For monotone f , all partial variations aretelesopi sums equal to jf(b)� f(a)j �Theorem 2.6.11 (additivity of variation). varf [a; b℄ + varf [b; ℄ = varf [a; ℄.Proof. Consider a hain fxkgnk=0 of [a; ℄, whih ontains b. In this ase thevariation of f along fxkgnk=0 splits into sums of partial variations of f along [a; b℄and along [b; ℄. As a partial variations does not exeed an ultimate, we get that inthis ase the variation of f along fxkgnk=0 does not exeed varf [a; b℄ + varf [b; ℄.If fxkgnk=0 does not ontain b, let us add b to the hain. Then in the sumexpressing the partial variation of f , the summand jf(xi+1)�f(xi)j hanges by thesum jf(b)� f(xi)j+ jf(xi+1 � f(b)j whih is greater or equal. Hene the variationdoes not derease after suh modi�ation. But the variation along the modi�edhain does not exeed varf [a; b℄ + varf [b; ℄ as was proved above. As all partialvariations of f over [a; ℄ do not exeed varf [a; b℄ + varf [b; ℄, the same is true forthe ultimate variation.To prove the opposite inequality we onsider a relaxed inequality varf [a; b℄ +varf [b; ℄ � varf [a; ℄ + " where " is an positive number. Choose hains fxkgnk=0on [a; b℄ and fykgmk=0 on [b; ℄ suh that orresponding partial variations of f are� varf [a; b℄ + "=2 and � varf [b; ℄ + "=2 respetively. As the union of these hainsis a hain on [a; ℄ the sum of these partial variations is a partial variation of f on[a; ℄. Consequently this sum is less or equal to varf [a; ℄. On the other hand it isgreater or equal to varf [a; b℄ + "=2+varf [b; ℄ + "=2. Comparing these results givesjust the relaxed inequality. As the relaxed inequality is proved for all " > 0 it alsoholds for " = 0. �Lemma 2.6.12. For any funtions f , g one has the inequality varf+g[a; b℄ �varf [a; b℄ + varg [a; b℄.Proof. Sine jf(xk+1) + g(xk+1) � f(xk) � g(xk)j � jf(xk+1) � f(xk)j +jg(xk+1) � g(xk)j, the variation of f + g along any sequene does not exeed thesum of the variations of f and g along the sequene. Hene all partial variations off + g do not exeed varf [a; b℄ + varg [a; b℄, and so the same is true for the ultimatevariation. �Lemma 2.6.13. For any funtion of �nite variation on [a; b℄, the funtionsvarf [a; x℄ and varf [a; x℄� f(x) are both nondereasing funtions of x.Proof. That varf [a; x℄ is nondereasing follows from nonnegativity and addi-tivity of variation. If x > y then the inequality varf [a; x℄� f(x) � varf [a; y℄� f(y)



2.6 virtually monotone funtions 61is equivalent to varf [a; x℄�varf [a; y℄ � f(x)�f(y). This is true beause varf [a; x℄�varf [a; y℄ = varf [x; y℄ � jf(x)� f(y)j. �Lemma 2.6.14. varf2 [a; b℄ � 2(jf(a)j+ varf [a; b℄) varf [a; b℄.Proof. For all x; y 2 [a; b℄ one hasjf(x) + f(y)j = j2f(a) + f(x)� f(a) + f(y)� f(a)j� 2jf(a)j+ varf [a; x℄ + varf [a; y℄� 2jf(a)j+ 2varf [a; b℄:HenePn�1k=0 jf2(xk+1)� f2(xk)j =Pn�1k=0 jf(xk+1)� f(xk)jjf(xk+1) + f(xk)j� 2(jf(a)j+ varf [a; b℄)Pn�1k=0 jf(xk+1)� f(xk)j� 2(jf(a)j+ varf [a; b℄) varf [a; b℄ �Lemma 2.6.15. If varf [a; b℄ <1 and varg[a; b℄ <1, then varfg[a; b℄ <1.Proof. 4fg = (f + g)2 � (f � g)2. �Theorem 2.6.16. The funtion f is virtually monotone on [a; b℄ if and only ifit has a �nite variation.Proof. Sine monotone funtions have �nite variation on �nite intervals, andthe variation of a sum does not exeed the sum of variations, one gets that allvirtually monotone funtions have �nite variation. On the other hand, if f has�nite variation then f = (varf [a; x℄ + ) + (f(x) � varf [a; x℄ � ), the funtionsin the brakets are monotone due to Lemma 2.6.13, and by hoosing a onstant suÆiently large, one obtains that the seond braket is negative. �Problems.1. Evaluate R i1 z2 dz.2. Prove that 1=f(x) has �nite variation if it is bounded.3. Prove R ba f(x) dg(x) � max[a;b℄ f varg[a; b℄.


