2.6. Virtually monotone functions

Monotonization of the integrand. Let us say that a pair of functions fi, fo
monotonize a function f,if f; is non-negative and non-decreasing, fo is non-positive
and non-increasing and f = f; + fs.

LEMMA 2.6.1. Let f = fi + f2 and f = f] + f} be two monotonizations of f.
Then for any monotone h one has fidh + fodh = fidh + fidh.

PrOOF. Our equality is equivalent to fidh — fidh = f{dh — fodh. By the
sign rule this turns into fidh + (—f3)dh = f{dh + (—f2)dh. Now all integrands
are nonnegative and for non-decreasing h we can apply the Addition Theorem and
transform the inequality into (f; — f§)dh = (f] — f2)dh. This is true because
(fi = f3) = (fi — f2)-

The case of a non-increasing differand is reduced to the case of a non-decreasing
one by the transformation fid(—h)+ fod(—h) = f{d(—h)+ fyd(—h), which is based
on the Sign Rule. O

A function which has a monotonization is called virtually monotone.
We define the integral fab f dg for any virtually monotone integrand f and any
continuous monotone differand g via a monotonization f = fi; + f2 by

/abfdgz/abfldgﬁL/:fzdg-

Lemma, 2.6.1 demonstrates that this definition does not depend on the choice
of a monotonization.

LEMMA 2.6.2. Let f and g be virtually monotone functions; then f + g is
virtually monotone and fdh + gdh = (f + g)dh for any continuous monotone h.

PRrROOF. Let h be nondecreasing. Consider monotonizations f = f; + fo and
g = g1 +g2. Then fdh + gdh = fidh + fadh + gidh + gadh by definition via
monotonization of the integrand. By virtue of the Addition Theorem 2.3.3 this
turns into (f1 + g1)dh + (f2 + g2)dh. But the pair of brackets monotonize f + g.
Hence f+g is proved to be virtually monotone and the latter expression is (f +g)dh
by definition, via monotonization of the integrand. The case of non-increasing h is
reduced to the previous case via —fd(—h) — gd(—h) = —(f + g)d(—=h). O

Lemma on locally constant functions. Let us say that a function f(z) is
locally constant at a point  if f(y) = f(z) for all y sufficiently close to x, i.e., for
all y from an interval (z — ¢,z + ¢€).

LEMMA 2.6.3. A function f which is locally constant at each point of an interval
18 constant.

PROOF. Suppose f(z) is not constant on [a,b]. We will construct by induction
a sequence of intervals Ij, = [ay, bg], such that Iy = [a,b], Ix+1 C Iy, |br — ar| >
2|bg+1 — agy1] and the function f is not constant on each I. First step: Let
c=(a+b)/2, as f is not constant f(z) # f(c) for some z. Then choose [z, c] or
[c,z] as for [a1,b1]. On this interval f is not constant. The same are all further
steps. The intersection of the sequence is a point such that any of its neighborhoods
contains some interval of the sequence. Hence f is not locally constant at this
point. (|
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58 2.6 VIRTUALLY MONOTONE FUNCTIONS

LeEMMA 2.6.4. If f(x) is a continuous monotone function and a < f(x) < b
then a < f(y) < b for all y sufficiently close to x.

Proor. If f takes values greater than b, then it takes value b and if f(z) takes
values less than a then it takes value a due to continuity. Then [f~!(a), f~1(b)] is
the interval where inequalities hold.

LEMMA 2.6.5. Let g1, g2 be continuous comonotone functions. Then g, + g2 is
continuous and monotone, and for any virtually monotone f one has

(2.6.1) fdgi + fdgs = fd(g1 + g2).

PROOF. Suppose g1(z) + g2(x) < p, let € = p — g1(z) — g2(x). Then ¢g1(y) <
91(y) +¢/2 and g2(y) < g2(y) + ¢/2 for all y sufficiently close to x. Hence gey) +
92(y) < pfor all y sufficiently close to z. The same is true for the opposite inequality.
Hence sgn(gi(z) +g2(z) —p) is locally constant at all points where it is not 0. But it
is not constant if p is an intermediate value, hence it is not locally constant, hence
it takes value 0. At this point g;(x) + g2(z) = p and the continuity of ¢g; + g2 is
proved.

Consider a monotonization f = fi + f2. Let g; be nondecreasing. By definition
via monotonization of the integrand, the left-hand side of (2.6.1) turns into (f1dg; +
f2dg1) + (fidgz + fadge) = (fidgr + fidga) + (f2dg1 + f2dg2). By the Addition
Theorem 2.3.3 fidg, + fidgs = fid(g1 + g2). And the equality fodg, + fodg, =
f2d(g1 + g2) follows from (—f2)dg1 + (— f2)dgs = (— f2)d(g1 + g=) by the Sign Rule.
Hence the left-hand side is equal to fid(g1 + g2) + f2d(g1 + g2), which coincides
with the right-hand side of (2.6.1) by definition via monotonization of integrand.
The case of non-increasing differands is taken care of via transformation of (2.6.1)
by the Sign Rule into fd(—g1) + fd(—g2) = fd(—g1 — g2). |

LEMMA 2.6.6. Let g1 + g2 = g3 + ga where all (—1)*gy, are non-increasing
continuous functions. Then fdg) + fdgs = fdgs + fdgs for any virtually monotone

f.

PROOF. Our equality is equivalent to fdg; — fdgy = fdgs — fdgs. By the
Sign Rule it turns into fdg; + fd(—g4) = fdgs + fd(—g2). Now all differands are
nondecreasing and by Lemma 2.6.5 it transforms into fd(g; — g4) = fd(gs — g2)-
This is true because g1 — g4 = g3 — go- d

Monotonization of the differand. A monotonization by continuous func-
tions is called continuous. A virtually monotone function which has a continuous
monotonization is called continuous. The integral for any virtually monotone in-
tegrand f against a virtually monotone continuous differand g is defined via a
continuous virtualization g = g; + g» of the differand

/abfdgz/abfdgmL/abfdgz-

The integral is well-defined because of Lemma 2.6.6.

THEOREM 2.6.7 (Addition Theorem). For any virtually monotone functions
fy f' and any virtually monotone continuous g,g', fdg + f'dg = (f + f')dg and

fdg + fdg' = fd(g +g')
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Proor. To prove fdg+ f'dg = (f + f")dg, consider a continuous monotoniza-
tion g = g1 +¢g2. Then by definition of the integral for virtually monotone differands
this equality turns into (fdgs + fdgo)+(f'dgs +1'dgs) = (f-+F)dgi+(f+")dgs. AF-
ter rearranging it turns into (fdg, +f'dg1)+(fdge+f'dgs) = (f+f)dgr+(f+f')dg2.
But this is true due to Lemma 2.6.2.

To prove fdg + fdg' = fd(g + ¢'), consider monotonizations g = g1 + go,
g =gi + g5 Then (g1 + ¢7) + (g2 + g5) is a monotonization for g + ¢g'. And by the
definition of the integral for virtually monotone differands our equality turns into
fdgy + fdgz + fdgy + fdgs O

Change of variable.

LeEMMA 2.6.8. If f is virtually monotone and g is monotone, then f(g(x)) is
virtually monotone.

ProoOF. Let f; + fo be a monotonization of f. If h is non-decreasing then
fi(h(z)) + f2(h(x)) gives a monotonization of f(g(z)). If h is decreasing then the
monotonization is given by (f2(h(z)) + ¢) + (fi(h(x)) — ¢) where ¢ is a sufficiently
large constant to provide positivity of the first brackets and negativity of the second
one. g

The following natural convention is applied to define an integral with reversed
. b
limits: [ f(x) dg(z) = —fba f(x)dg(x).

THEOREM 2.6.9 (on change of variable). If h: [a,b] = [h(a), h(b)] is monotone,
f(x) is virtually monotone and g(x) is virtually monotone continuous then
b h(b)
| s agnay = [ s dste
PROOF. Let f = f1 + fo and g = g1 + g2 be a monotonization and a continuous
monotonization of f and g respectively. The fab F(h(t))dg(h(t)) splits into sum

of four integrals: fab fi(h(t)) dg;j(h(t)) where f; are of constant sign and g; are
monotone continuous. These integrals coincide with the corresponding integrals
I :(S))) fi(z) dg;(x). Indeed their absolute values are the areas of the same curvilinear
trapezia. And their signs determined by the Sign Rule are the same. a

Integration by parts. We have established the Integration by Parts formula
for non-negative and non-decreasing differential forms. Now we extend it to the
case of continuous monotone forms. In the first case f and g are non-decreasing.
In this case choose a positive constant ¢ sufficiently large to provide positivity of
f+cand g+ con the interval of integration. Then d(f + ¢)(g+c¢) = (f + ¢)d(g +
¢) + (g + e)d(f + ¢). On the other hand d(f + ¢)(g + ¢) = dfg + cdf + cdg and
(f+od(g+c)+ (g+c)d(f +c) = fdg + cdg + cdf. Compare these results to get
dfg = fdg + gdf. Now if f is increasing and g is decreasing then —g is increasing
and we get —dfg = df(—g) = fd(—g) + (—g)df = —fdg — gdf, which leads to
dfg = fdg + gdf. The other cases: f decreasing, g increasing and both decreasing
are proved by the same arguments. The extension of the Integration by Parts
formula to piecewise monotone forms immediately follows by the Partition Rule.

Variation. Define the variation of a sequence of numbers {z; }?_. as the sum
q k=1
> req lk+1 — zx|. Define the variation of a function f along a sequence {zy}}_,
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as the variation of sequence {f(xr)}i_,- Define a chain on an interval [a,b] as a
nondecreasing sequence {xj }7_, such that zp = a and x, = b. Define the partial
variation of f on an interval [a,b] as its variation along a chain on the interval.

The least number surpassing all partial variations function f over [a, b] is called
the (ultimate) variation of a function f(z) on an interval [a,b] and is denoted by
varys[a, b].

LEMMA 2.6.10. For any function f one has the inequality vary[a,b] > |f(b) —
f(a)|. If f is a monotone function on [a,b], then varsla,b] = |f(b) — f(a)|.

ProoF. The inequality vary[a,b] > |f(b) — f(a)| follows immediately from the
definition because {a,b} is a chain. For monotone f, all partial variations are
telescopic sums equal to |f(b) — f(a)| O

THEOREM 2.6.11 (additivity of variation). vars[a,b] + vary[b, c] = vars[a, c].

PRrOOF. Consider a chain {z;}}7_, of [a,c], which contains b. In this case the
variation of f along {x}}_, splits into sums of partial variations of f along [a, b]
and along [b,c]. As a partial variations does not exceed an ultimate, we get that in
this case the variation of f along {1 }}_, does not exceed varg[a, b] + vary (b, c].

If {1}, does not contain b, let us add b to the chain. Then in the sum
expressing the partial variation of f, the summand |f(z;+1) — f(z;)| changes by the
sum |f(b) — f(z;)| + |f(zir1 — f(b)| which is greater or equal. Hence the variation
does not decrease after such modification. But the variation along the modified
chain does not exceed vary[a,b] + varg[b, c] as was proved above. As all partial
variations of f over [a,c] do not exceed vary[a,b] + vary[b, c|, the same is true for
the ultimate variation.

To prove the opposite inequality we consider a relazed inequality vars[a,b] +
varg[b, ¢|] < varga,c] + € where ¢ is an positive number. Choose chains {zx}}_,
on [a,b] and {yi}j*, on [b,c] such that corresponding partial variations of f are
> varyg[a,b] +¢/2 and > vary[b, c| + €/2 respectively. As the union of these chains
is a chain on [a, ¢] the sum of these partial variations is a partial variation of f on
[a,c]. Consequently this sum is less or equal to varg[a,c]. On the other hand it is
greater or equal to vars[a,b] +¢/2 + vars[b, c| +¢/2. Comparing these results gives
just the relaxed inequality. As the relaxed inequality is proved for all € > 0 it also
holds for € = 0. O

LEMMA 2.6.12. For any functions f, g one has the inequality vary,4(a,b] <
varyla, b] + vary[a, b].

Proor. Since [f(zk+1) + 9(@rt1) — flar) — glar)| < |f(@rt1) — flaw)| +
|g(zg+1) — g(zr)|, the variation of f + g along any sequence does not exceed the
sum of the variations of f and g along the sequence. Hence all partial variations of
f + g do not exceed vars[a, b] + vary[a, b, and so the same is true for the ultimate
variation. O

LEMMA 2.6.13. For any function of finite variation on [a,b], the functions
vars|a, z] and varg[a,x] — f(x) are both nondecreasing functions of x.

PrOOF. That vary[a, z] is nondecreasing follows from nonnegativity and addi-
tivity of variation. If > y then the inequality var¢[a, x] — f(x) > varga,y] — f(y)
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is equivalent to varys[a, ] —vars[a,y] > f(z)— f(y). This is true because vars[a, z] —
varyla, y] = vars[z,y] > |f(z) — f(y)]- O

LEMMA 2.6.14. varsz[a,b] < 2(|f(a)| + vars[a, b]) vary[a, b].

PRrOOF. For all z,y € [a,b] one has
|f(2) + fW)] = 12f(a) + f(x) = fla) + fy) — f(a)|
< 2|f(a)| + varg[a, «] + varg|a, y]
< 2|f(a)| + 2vary[a, b].
Hence
wo P2 (@ren) = f2@n)l = Th20 1 (@rsn) = F@o)llf (@rr) + flan)]

2(1£(a)] + vars[a,0]) 35 | f (wrs1) = £ ()]

<
< 2(|f(a)] + var[a, ) vary[a, 1]

LEMMA 2.6.15. If varg[a,b] < oo and varg[a,b] < oo, then vargy[a,b] < co.

ProoOF. 4fg = (f +9)* — (f — 9)% O

THEOREM 2.6.16. The function f is virtually monotone on [a,b] if and only if
it has a finite variation.

PROOF. Since monotone functions have finite variation on finite intervals, and
the variation of a sum does not exceed the sum of variations, one gets that all
virtually monotone functions have finite variation. On the other hand, if f has
finite variation then f = (vary[a,z] + ¢) + (f(z) — vary[a, z] — ¢), the functions
in the brackets are monotone due to Lemma 2.6.13, and by choosing a constant ¢
sufficiently large, one obtains that the second bracket is negative. O

Problems.

1. Evaluate ff 22 dz.
. Prove that 1/f(z) has finite variation if it is bounded.

3. Prove fab f(z)dg(z) < max, f varg|a,b].
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