
2.6. Virtually monotone fun
tionsMonotonization of the integrand. Let us say that a pair of fun
tions f1, f2monotonize a fun
tion f , if f1 is non-negative and non-de
reasing, f2 is non-positiveand non-in
reasing and f = f1 + f2.Lemma 2.6.1. Let f = f1 + f2 and f = f 01 + f 02 be two monotonizations of f .Then for any monotone h one has f1dh+ f2dh = f1dh+ f 02dh.Proof. Our equality is equivalent to f1dh � f 02dh = f 01dh � f2dh. By thesign rule this turns into f1dh + (�f 02)dh = f 01dh + (�f2)dh. Now all integrandsare nonnegative and for non-de
reasing h we 
an apply the Addition Theorem andtransform the inequality into (f1 � f 02)dh = (f 01 � f2)dh. This is true be
ause(f1 � f 02) = (f 01 � f2).The 
ase of a non-in
reasing di�erand is redu
ed to the 
ase of a non-de
reasingone by the transformation f1d(�h)+f2d(�h) = f 01d(�h)+f 02d(�h), whi
h is basedon the Sign Rule. �A fun
tion whi
h has a monotonization is 
alled virtually monotone.We de�ne the integral R ba f dg for any virtually monotone integrand f and any
ontinuous monotone di�erand g via a monotonization f = f1 + f2 byZ ba f dg = Z ba f1 dg + Z ba f2 dg:Lemma 2.6.1 demonstrates that this de�nition does not depend on the 
hoi
eof a monotonization.Lemma 2.6.2. Let f and g be virtually monotone fun
tions; then f + g isvirtually monotone and fdh+ gdh = (f + g)dh for any 
ontinuous monotone h.Proof. Let h be nonde
reasing. Consider monotonizations f = f1 + f2 andg = g1 + g2. Then fdh + gdh = f1dh + f2dh + g1dh + g2dh by de�nition viamonotonization of the integrand. By virtue of the Addition Theorem 2.3.3 thisturns into (f1 + g1)dh + (f2 + g2)dh. But the pair of bra
kets monotonize f + g.Hen
e f+g is proved to be virtually monotone and the latter expression is (f+g)dhby de�nition, via monotonization of the integrand. The 
ase of non-in
reasing h isredu
ed to the previous 
ase via �fd(�h)� gd(�h) = �(f + g)d(�h). �Lemma on lo
ally 
onstant fun
tions. Let us say that a fun
tion f(x) islo
ally 
onstant at a point x if f(y) = f(x) for all y suÆ
iently 
lose to x, i.e., forall y from an interval (x� "; x+ ").Lemma 2.6.3. A fun
tion f whi
h is lo
ally 
onstant at ea
h point of an intervalis 
onstant.Proof. Suppose f(x) is not 
onstant on [a; b℄. We will 
onstru
t by indu
tiona sequen
e of intervals Ik = [ak; bk℄, su
h that I0 = [a; b℄, Ik+1 � Ik, jbk � akj �2jbk+1 � ak+1j and the fun
tion f is not 
onstant on ea
h Ik. First step: Let
 = (a + b)=2, as f is not 
onstant f(x) 6= f(
) for some x. Then 
hoose [x; 
℄ or[
; x℄ as for [a1; b1℄. On this interval f is not 
onstant. The same are all furthersteps. The interse
tion of the sequen
e is a point su
h that any of its neighborhoods
ontains some interval of the sequen
e. Hen
e f is not lo
ally 
onstant at thispoint. �57



58 2.6 virtually monotone fun
tionsLemma 2.6.4. If f(x) is a 
ontinuous monotone fun
tion and a < f(x) < bthen a < f(y) < b for all y suÆ
iently 
lose to x.Proof. If f takes values greater than b, then it takes value b and if f(x) takesvalues less than a then it takes value a due to 
ontinuity. Then [f�1(a); f�1(b)℄ isthe interval where inequalities hold. �Lemma 2.6.5. Let g1, g2 be 
ontinuous 
omonotone fun
tions. Then g1+ g2 is
ontinuous and monotone, and for any virtually monotone f one has(2.6.1) fdg1 + fdg2 = fd(g1 + g2):Proof. Suppose g1(x) + g2(x) < p, let " = p � g1(x) � g2(x). Then g1(y) <g1(y) + "=2 and g2(y) < g2(y) + "=2 for all y suÆ
iently 
lose to x. Hen
e g(y) +g2(y) < p for all y suÆ
iently 
lose to x. The same is true for the opposite inequality.Hen
e sgn(g1(x)+g2(x)�p) is lo
ally 
onstant at all points where it is not 0. But itis not 
onstant if p is an intermediate value, hen
e it is not lo
ally 
onstant, hen
eit takes value 0. At this point g1(x) + g2(x) = p and the 
ontinuity of g1 + g2 isproved.Consider a monotonization f = f1+f2. Let gi be nonde
reasing. By de�nitionvia monotonization of the integrand, the left-hand side of (2.6.1) turns into (f1dg1+f2dg1) + (f1dg2 + f2dg2) = (f1dg1 + f1dg2) + (f2dg1 + f2dg2). By the AdditionTheorem 2.3.3 f1dg1 + f1dg2 = f1d(g1 + g2). And the equality f2dg1 + f2dg2 =f2d(g1+ g2) follows from (�f2)dg1+(�f2)dg2 = (�f2)d(g1+ g2) by the Sign Rule.Hen
e the left-hand side is equal to f1d(g1 + g2) + f2d(g1 + g2), whi
h 
oin
ideswith the right-hand side of (2.6.1) by de�nition via monotonization of integrand.The 
ase of non-in
reasing di�erands is taken 
are of via transformation of (2.6.1)by the Sign Rule into fd(�g1) + fd(�g2) = fd(�g1 � g2). �Lemma 2.6.6. Let g1 + g2 = g3 + g4 where all (�1)kgk are non-in
reasing
ontinuous fun
tions. Then fdg1+ fdg2 = fdg3+ fdg4 for any virtually monotonef . Proof. Our equality is equivalent to fdg1 � fdg4 = fdg3 � fdg2. By theSign Rule it turns into fdg1 + fd(�g4) = fdg3 + fd(�g2). Now all di�erands arenonde
reasing and by Lemma 2.6.5 it transforms into fd(g1 � g4) = fd(g3 � g2).This is true be
ause g1 � g4 = g3 � g2. �Monotonization of the di�erand. A monotonization by 
ontinuous fun
-tions is 
alled 
ontinuous. A virtually monotone fun
tion whi
h has a 
ontinuousmonotonization is 
alled 
ontinuous. The integral for any virtually monotone in-tegrand f against a virtually monotone 
ontinuous di�erand g is de�ned via a
ontinuous virtualization g = g1 + g2 of the di�erandZ ba f dg = Z ba f dg1 + Z ba f dg2:The integral is well-de�ned be
ause of Lemma 2.6.6.Theorem 2.6.7 (Addition Theorem). For any virtually monotone fun
tionsf; f 0 and any virtually monotone 
ontinuous g; g0, fdg + f 0dg = (f + f 0)dg andfdg + fdg0 = fd(g + g0)



2.6 virtually monotone fun
tions 59Proof. To prove fdg+ f 0dg = (f + f 0)dg, 
onsider a 
ontinuous monotoniza-tion g = g1+g2. Then by de�nition of the integral for virtually monotone di�erandsthis equality turns into (fdg1+fdg2)+(f 0dg1+f 0dg2) = (f+f 0)dg1+(f+f 0)dg2. Af-ter rearranging it turns into (fdg1+f 0dg1)+(fdg2+f 0dg2) = (f+f 0)dg1+(f+f 0)dg2.But this is true due to Lemma 2.6.2.To prove fdg + fdg0 = fd(g + g0), 
onsider monotonizations g = g1 + g2,g0 = g01 + g02. Then (g1+ g01) + (g2 + g02) is a monotonization for g+ g0. And by thede�nition of the integral for virtually monotone di�erands our equality turns intofdg1 + fdg2 + fdg01 + fdg02 �Change of variable.Lemma 2.6.8. If f is virtually monotone and g is monotone, then f(g(x)) isvirtually monotone.Proof. Let f1 + f2 be a monotonization of f . If h is non-de
reasing thenf1(h(x)) + f2(h(x)) gives a monotonization of f(g(x)). If h is de
reasing then themonotonization is given by (f2(h(x)) + 
) + (f1(h(x)) � 
) where 
 is a suÆ
ientlylarge 
onstant to provide positivity of the �rst bra
kets and negativity of the se
ondone. �The following natural 
onvention is applied to de�ne an integral with reversedlimits: R ba f(x) dg(x) = � R ab f(x) dg(x).Theorem 2.6.9 (on 
hange of variable). If h : [a; b℄! [h(a); h(b)℄ is monotone,f(x) is virtually monotone and g(x) is virtually monotone 
ontinuous thenZ ba f(h(t)) dg(h(t)) = Z h(b)h(a) f(x) dg(x):Proof. Let f = f1+f2 and g = g1+g2 be a monotonization and a 
ontinuousmonotonization of f and g respe
tively. The R ba f(h(t)) dg(h(t)) splits into sumof four integrals: R ba fi(h(t)) dgj(h(t)) where fi are of 
onstant sign and gj aremonotone 
ontinuous. These integrals 
oin
ide with the 
orresponding integralsR h(b)h(a) fi(x) dgi(x). Indeed their absolute values are the areas of the same 
urvilineartrapezia. And their signs determined by the Sign Rule are the same. �Integration by parts. We have established the Integration by Parts formulafor non-negative and non-de
reasing di�erential forms. Now we extend it to the
ase of 
ontinuous monotone forms. In the �rst 
ase f and g are non-de
reasing.In this 
ase 
hoose a positive 
onstant 
 suÆ
iently large to provide positivity off + 
 and g+ 
 on the interval of integration. Then d(f + 
)(g + 
) = (f + 
)d(g +
) + (g + 
)d(f + 
). On the other hand d(f + 
)(g + 
) = dfg + 
df + 
dg and(f + 
)d(g + 
) + (g + 
)d(f + 
) = fdg + 
dg + 
df . Compare these results to getdfg = fdg + gdf . Now if f is in
reasing and g is de
reasing then �g is in
reasingand we get �dfg = df(�g) = fd(�g) + (�g)df = �fdg � gdf , whi
h leads todfg = fdg + gdf . The other 
ases: f de
reasing, g in
reasing and both de
reasingare proved by the same arguments. The extension of the Integration by Partsformula to pie
ewise monotone forms immediately follows by the Partition Rule.Variation. De�ne the variation of a sequen
e of numbers fxkgnk=1 as the sumP1k=1 jxk+1 � xkj. De�ne the variation of a fun
tion f along a sequen
e fxkgnk=0
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tionsas the variation of sequen
e ff(xk)gnk=0. De�ne a 
hain on an interval [a; b℄ as anonde
reasing sequen
e fxkgnk=0 su
h that x0 = a and xn = b. De�ne the partialvariation of f on an interval [a; b℄ as its variation along a 
hain on the interval.The least number surpassing all partial variations fun
tion f over [a; b℄ is 
alledthe (ultimate) variation of a fun
tion f(x) on an interval [a; b℄ and is denoted byvarf [a; b℄.Lemma 2.6.10. For any fun
tion f one has the inequality varf [a; b℄ � jf(b)�f(a)j. If f is a monotone fun
tion on [a; b℄, then varf [a; b℄ = jf(b)� f(a)j.Proof. The inequality varf [a; b℄ � jf(b)� f(a)j follows immediately from thede�nition be
ause fa; bg is a 
hain. For monotone f , all partial variations areteles
opi
 sums equal to jf(b)� f(a)j �Theorem 2.6.11 (additivity of variation). varf [a; b℄ + varf [b; 
℄ = varf [a; 
℄.Proof. Consider a 
hain fxkgnk=0 of [a; 
℄, whi
h 
ontains b. In this 
ase thevariation of f along fxkgnk=0 splits into sums of partial variations of f along [a; b℄and along [b; 
℄. As a partial variations does not ex
eed an ultimate, we get that inthis 
ase the variation of f along fxkgnk=0 does not ex
eed varf [a; b℄ + varf [b; 
℄.If fxkgnk=0 does not 
ontain b, let us add b to the 
hain. Then in the sumexpressing the partial variation of f , the summand jf(xi+1)�f(xi)j 
hanges by thesum jf(b)� f(xi)j+ jf(xi+1 � f(b)j whi
h is greater or equal. Hen
e the variationdoes not de
rease after su
h modi�
ation. But the variation along the modi�ed
hain does not ex
eed varf [a; b℄ + varf [b; 
℄ as was proved above. As all partialvariations of f over [a; 
℄ do not ex
eed varf [a; b℄ + varf [b; 
℄, the same is true forthe ultimate variation.To prove the opposite inequality we 
onsider a relaxed inequality varf [a; b℄ +varf [b; 
℄ � varf [a; 
℄ + " where " is an positive number. Choose 
hains fxkgnk=0on [a; b℄ and fykgmk=0 on [b; 
℄ su
h that 
orresponding partial variations of f are� varf [a; b℄ + "=2 and � varf [b; 
℄ + "=2 respe
tively. As the union of these 
hainsis a 
hain on [a; 
℄ the sum of these partial variations is a partial variation of f on[a; 
℄. Consequently this sum is less or equal to varf [a; 
℄. On the other hand it isgreater or equal to varf [a; b℄ + "=2+varf [b; 
℄ + "=2. Comparing these results givesjust the relaxed inequality. As the relaxed inequality is proved for all " > 0 it alsoholds for " = 0. �Lemma 2.6.12. For any fun
tions f , g one has the inequality varf+g[a; b℄ �varf [a; b℄ + varg [a; b℄.Proof. Sin
e jf(xk+1) + g(xk+1) � f(xk) � g(xk)j � jf(xk+1) � f(xk)j +jg(xk+1) � g(xk)j, the variation of f + g along any sequen
e does not ex
eed thesum of the variations of f and g along the sequen
e. Hen
e all partial variations off + g do not ex
eed varf [a; b℄ + varg [a; b℄, and so the same is true for the ultimatevariation. �Lemma 2.6.13. For any fun
tion of �nite variation on [a; b℄, the fun
tionsvarf [a; x℄ and varf [a; x℄� f(x) are both nonde
reasing fun
tions of x.Proof. That varf [a; x℄ is nonde
reasing follows from nonnegativity and addi-tivity of variation. If x > y then the inequality varf [a; x℄� f(x) � varf [a; y℄� f(y)



2.6 virtually monotone fun
tions 61is equivalent to varf [a; x℄�varf [a; y℄ � f(x)�f(y). This is true be
ause varf [a; x℄�varf [a; y℄ = varf [x; y℄ � jf(x)� f(y)j. �Lemma 2.6.14. varf2 [a; b℄ � 2(jf(a)j+ varf [a; b℄) varf [a; b℄.Proof. For all x; y 2 [a; b℄ one hasjf(x) + f(y)j = j2f(a) + f(x)� f(a) + f(y)� f(a)j� 2jf(a)j+ varf [a; x℄ + varf [a; y℄� 2jf(a)j+ 2varf [a; b℄:Hen
ePn�1k=0 jf2(xk+1)� f2(xk)j =Pn�1k=0 jf(xk+1)� f(xk)jjf(xk+1) + f(xk)j� 2(jf(a)j+ varf [a; b℄)Pn�1k=0 jf(xk+1)� f(xk)j� 2(jf(a)j+ varf [a; b℄) varf [a; b℄ �Lemma 2.6.15. If varf [a; b℄ <1 and varg[a; b℄ <1, then varfg[a; b℄ <1.Proof. 4fg = (f + g)2 � (f � g)2. �Theorem 2.6.16. The fun
tion f is virtually monotone on [a; b℄ if and only ifit has a �nite variation.Proof. Sin
e monotone fun
tions have �nite variation on �nite intervals, andthe variation of a sum does not ex
eed the sum of variations, one gets that allvirtually monotone fun
tions have �nite variation. On the other hand, if f has�nite variation then f = (varf [a; x℄ + 
) + (f(x) � varf [a; x℄ � 
), the fun
tionsin the bra
kets are monotone due to Lemma 2.6.13, and by 
hoosing a 
onstant 
suÆ
iently large, one obtains that the se
ond bra
ket is negative. �Problems.1. Evaluate R i1 z2 dz.2. Prove that 1=f(x) has �nite variation if it is bounded.3. Prove R ba f(x) dg(x) � max[a;b℄ f varg[a; b℄.


