2.5. Quadrature of Circle

On the contents of the lecture. We extend the concept of the integral
to complex functions. We evaluate a very important integral § %dz by applying
Archimedes’ theorem on the area of circular sector. As a consequence, we evaluate
the Wallis product and the Stirling constant.

Definition of a complex integral. To specify an integral of a complex func-
tion one has to indicate not only its limits, but also the path of integration. A
path of integration is a mapping p: [a,b] — C, of an interval [a, b] of the real line
into complex plane. The integral of a complex differential form fdg (here f and g
are complex functions of complex variable) along the path p is defined via separate
integration of different combinations of real and imaginary parts in the following
way:

b
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/ Re f(p(t)) dRe g(p(t)) — / I £ (p(t)) dTm g(p())
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b b
i / Re f(p(t)) dTm g(p(t)) + i / Im £ (p(t)) dRe g(p(t))

Two complex differential forms are called equal if their integrals coincide for all
paths. So, the definition above can be written shortly as fdg = Re fdReg —
Im fdlmg+iRe fdlmg +iIm fdReg.

The integral [ %dz. The Integral is the principal concept of Calculus and
Ik %dz is the principal integral. Let us evaluate it along the path p(t) = cost+isint,
t € [0,¢], which goes along the arc of the circle of the length ¢ < 7/2. Since
L = cost — isint, one has

cost+isint
1 [ [
/—dz:/ costdcost+/ sintdsint
p < 0 0
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(2.5.1) o o
—i/ sintdcost+i/ costdsint.

0 0

Its real part transforms into fo(b Tdcos®t + fo(b : dsin®t = fod’ 2 d(cos®t + sin?t) =

fod) % dl = 0. An attentive reader has to object: integrals were defined only for

differential forms with non-decreasing differands, while cost decreases.

Sign rule. Let us define the integral for any differential form fdg with any
continuous monotone differand g and any integrand f of a constant sign (i.e, non-
positive or non-negative). The definition relies on the following Sign Rule.

(2.5.2) /ab—fdg:—/abfdgz/abfd(—g)

If f is of constant sign, and g is monotone, then among the forms fdg, — fdg, fd(—g)
and — fd(—g) there is just one with non-negative integrand and non-decreasing
differand. For this form, the integral was defined earlier, for the other cases it is
defined by the Sign Rule.

Thus the integral of a negative function against an increasing differand and the
integral of a positive function against a decreasing differand are negative. And the
integral of a negative function against a decreasing differand is positive.
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The Sign Rule agrees with the Constant Rule: the formula fab cdg = ¢(g(b) —
g(a)) remains true either for negative ¢ or decreasing g.

The Partition Rule also is not affected by this extension of the integral.

The Inequality Rule takes the following form: if fi(z) < fa(z) for all = € [a, b]

then fab fi(z)dg(z) < f; f2(z) dg(z) for non-decreasing g and fab fi(z)dg(z) >
fab f2(z) dg(x) for non-increasing g.

Change of variable. Now all integrals in (2.5.1) are defined. The next objec-
tion concerns transformation costdcost = %d cos? t. This transformation is based
on a decreasing change of variable # = cost in dz?/2 = xdz. But what happens
with an integral when one applies a decreasing change of variable? The curvilinear
trapezium, which represents the integral, does not change at all under any change
of variable, even for a non-monotone one. Hence the only thing that may happen
is a change of sign. And the sign changes by the Sign Rule, simultaneously on both
sides of equality da?/2 = zdz. If the integrals of zdz and dz? are positive, both
integrals of costdcost and cos?t are negative and have the same absolute value.
These arguments work in the general case:

A decreasing change of variable reverses the sign of the integral.

Addition Formula. The next question concerns the legitimacy of addition of
differentials, which appeared in the calculation d cos? t+dsin® t = d(cos? t+sin®t) =
0, where differands are not comonotone: cost decreases, while sint increases. The
addition formula in its full generality will be proved in the next lecture, but this
special case is not difficult to prove. Our equality is equivalent to dsin® t = —d cos? t.
By the Sign Rule —dcos®t = d(—cos?t), but —cos®t is increasing. And by the
Addition Theorem d(— cos? t+1) = d(— cos? t)+d1 = d(— cos® t). But —cos®>t+1 =
sin? t. Hence our evaluation of the real part of (2.5.1) is justified.

Trigonometric integrals. We proceed to the evaluation of the imaginary part
of (2.5.1), which is costdsint —sint dcost. This is a simple geometric problem.

The integral of sin¢d cost is negative as cost is decreasing on [0, 5], and its ab-
solute value is equal to the area of the curvilinear triangle A’ BA, which is obtained
from the circular sector OB A with area ¢/2 by deletion of the triangle OA' B, which
has area % cos ¢sin ¢. Thus f0¢ sintdcost is ¢/2 — 3 cos ¢ sin ¢.

The integral of cost dsint is equal to the area of curvilinear trapezium OB’ BA.
The latter consists of a circular sector OBA with area ¢/2 and a triangle OB'B

with area % cos ¢ sin ¢. Thus fod) costdsint = ¢/2 + % coS ¢ sin ¢.
As a result we get fp % dz = i¢. This result has a lot of consequences. But
today we restrict our attention to the integrals of sint¢ and cost.

Multiplication of differentials. We have proved
(2.5.3) costdsint —sintdcost = dt.
Multiplying this equality by cost, one gets

cos? tdsint —sint costdcost = cost dt.

Replacing cos® t by (1 —sin®t) and moving cost into the differential, one transforms
the left-hand side as

dsint —sin® tdsint — tsintdcos®t = dsint — %sintdsin2t— 1 sintdcos? t.
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FIGURE 2.5.1. Trigonometric integrals

We already know that dsin® ¢t +d cos® t is zero. Now we have to prove the same for
the product of this form by %sin t. The arguments are the same: we multiply by
L sint the equivalent equality dsin”t = d(— cos? t) whose differands are increasing.
This is a general way to extend the theorem on multiplication of differentials to
the case of any monotone functions. We will do it later. Now we get just dsint =
costdt.

Further, multiplication of the left-hand side of (2.5.3) by sint gives

sintcostdsint —sin® tdcost = L costdsin®t — dcost + L costdcos® t = —d cost.

So we get dcost = — sintdt.
THEOREM 2.5.1. dsint = costdt and dcost = —sintdt.

We have proved this equality only for [0,7/2]. But due to well-known symme-
tries this suffices.

Application of trigonometric integrals.

LEMMA 2.5.2. For any convergent infinite product of factors > 1 one has

n o0
(2.5.4) lim H Dk = H Dk
k=1 k=1

PROOF. Let ¢ be a positive number. Then [, pr > [Toe; pPr — ¢, and by All-
for-One there is n such that [],_, pr > [I5—; pr—e. Then for any m > n one has the
inequalities [T,—; pr > [Tpey Pr > [Ipey Px — €. Therefore | [T, pr — [Tiey il <
E. O

Wallis product. Set [,, = foﬂ sin” ¢ dx. Then Iy = foﬂ lde = mand I =

foﬂ sinzdxr = —cosm + cos0 = 2. For n > 2, let us replace the integrand sin™ z by
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sin” % (1 — cos? z) and obtain

I, = / sin"~? z(1 — cos® x) dx
0

™ ™
= / sin® 2z dx — / sin” "2 z cosz dsin
0 0

™

=1, o — ﬁ cosz dsin™ ()

™
=12 — dcosxsm 1:v)+/ sin" 'z dcosw
0
— In— Z_n 1

We get the recurrence relation I,, = nT_lln_g, which gives the formula

_ (2n-1)1 _,(@2n=2)N
(255) IQTL = FT, IQn_l = QW
where n!! denotes the product n(n — 2)(n —4)---(n mod 2 4+ 1). Since sin"z <

sin” !z for all = € [0, 7], the sequence {I,,} decreases. Since I,, < In 1 <1I,_2,0ne

gets ”T_l = InI—"Q < ﬁ: L < 1. Hence ;" L differs from 1 less than =. Consequently,
I,

lim ﬁ = 1. In particular, lim = 1. Substituting in this last formula the

Iony1
Ton
expressions of I, from (2.5.5) one gets
T (2n+ D20 -1
2 2n!12n!! N
Therefore this is the famous Wallis Product

lim

T 2n!12n!!
Ty
2 T MM e DEnr 1) H4n2—1

Stirling constant. In Lecture 2.4 we have proved that
(2.5.6) Inn!=nlon—n+ilnn+o+o,,

where o, is infinitesimally small and o is a constant. Now we are ready to determine
this constant. Consider the difference In2n! — 2Inn!. By (2.5.6) it expands into

(2nln2n —2n+ $In2n+4 0 + 02,) — 2(nlnn —n+ $Inn+ o+ o,)
=2nIn2+ $In2n —Inn — o + o,
where o, = 04, — 20, is infinitesimally small. Then o can be presented as

c=2lnn!—In2n!+2nn2+ fInn+$In2—Inn+o,.
Multiplying by 2 one gets
20 =4Inn! —2In2n! 4+ 2n2*" —Inn +1n2 + 20,.

Hence 20 = lim(41lnn! — 21n 2n! + 21n2?" — Inn + In 2). Switching to product and
keeping in mind the identities n! = nll(n — 1)!! and n!2" = 2n!! one gets
9 pligintl 2 (2n!h)? . 2-(2n!)%(2n +1)

7 = = M a2 n - DEn ™ @ - D@n + e
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Problems.

Evaluate [v1— 2?2 dz.

Evaluate [ ﬁdaz.

Evaluate [ V5 — a2 d.

Evaluate [ cos® z dz.
Evaluate [ tanzdz.
Evaluate [ sin'zdz.
Evaluate [ sinz?dz.
Evaluate [ tanzdz.
Evaluate [ ?sinzdx.
Evaluate d arcsin x.

. Evaluate [ arcsinz da.
. Evaluate [e” coszdz.

2.5 QUADRATURE OF CIRCLE



