
2.5. Quadrature of Cir
leOn the 
ontents of the le
ture. We extend the 
on
ept of the integralto 
omplex fun
tions. We evaluate a very important integral H 1zdz by applyingAr
himedes' theorem on the area of 
ir
ular se
tor. As a 
onsequen
e, we evaluatethe Wallis produ
t and the Stirling 
onstant.De�nition of a 
omplex integral. To spe
ify an integral of a 
omplex fun
-tion one has to indi
ate not only its limits, but also the path of integration. Apath of integration is a mapping p : [a; b℄ ! C , of an interval [a; b℄ of the real lineinto 
omplex plane. The integral of a 
omplex di�erential form fdg (here f and gare 
omplex fun
tions of 
omplex variable) along the path p is de�ned via separateintegration of di�erent 
ombinations of real and imaginary parts in the followingway:Z ba Re f(p(t)) dRe g(p(t))� Z ba Im f(p(t)) d Im g(p(t))+ i Z ba Re f(p(t)) d Im g(p(t)) + i Z ba Im f(p(t)) dRe g(p(t))Two 
omplex di�erential forms are 
alled equal if their integrals 
oin
ide for allpaths. So, the de�nition above 
an be written shortly as fdg = Re fdRe g �Im fd Im g + iRe fd Im g + i Im fdRe g.The integral R 1z dz. The Integral is the prin
ipal 
on
ept of Cal
ulus andR 1zdz is the prin
ipal integral. Let us evaluate it along the path p(t) = 
os t+i sin t,t 2 [0; �℄, whi
h goes along the ar
 of the 
ir
le of the length � � �=2. Sin
e1
os t+i sin t = 
os t� i sin t, one hasZp 1z dz = Z �0 
os t d 
os t+ Z �0 sin t d sin t� i Z �0 sin t d 
os t+ i Z �0 
os t d sin t:(2.5.1)Its real part transforms into R �0 12 d 
os2 t + R �0 12 d sin2 t = R �0 12 d(
os2 t + sin2 t) =R �0 12 d1 = 0. An attentive reader has to obje
t: integrals were de�ned only fordi�erential forms with non-de
reasing di�erands, while 
os t de
reases.Sign rule. Let us de�ne the integral for any di�erential form fdg with any
ontinuous monotone di�erand g and any integrand f of a 
onstant sign (i.e, non-positive or non-negative). The de�nition relies on the following Sign Rule.(2.5.2) Z ba �f dg = � Z ba f dg = Z ba f d(�g)If f is of 
onstant sign, and g is monotone, then among the forms fdg, �fdg, fd(�g)and �fd(�g) there is just one with non-negative integrand and non-de
reasingdi�erand. For this form, the integral was de�ned earlier, for the other 
ases it isde�ned by the Sign Rule.Thus the integral of a negative fun
tion against an in
reasing di�erand and theintegral of a positive fun
tion against a de
reasing di�erand are negative. And theintegral of a negative fun
tion against a de
reasing di�erand is positive.52



2.5 quadrature of 
ir
le 53The Sign Rule agrees with the Constant Rule: the formula R ba 
 dg = 
(g(b) �g(a)) remains true either for negative 
 or de
reasing g.The Partition Rule also is not a�e
ted by this extension of the integral.The Inequality Rule takes the following form: if f1(x) � f2(x) for all x 2 [a; b℄then R ba f1(x) dg(x) � R ba f2(x) dg(x) for non-de
reasing g and R ba f1(x) dg(x) �R ba f2(x) dg(x) for non-in
reasing g.Change of variable. Now all integrals in (2.5.1) are de�ned. The next obje
-tion 
on
erns transformation 
os td 
os t = 12d 
os2 t. This transformation is basedon a de
reasing 
hange of variable x = 
os t in dx2=2 = xdx. But what happenswith an integral when one applies a de
reasing 
hange of variable? The 
urvilineartrapezium, whi
h represents the integral, does not 
hange at all under any 
hangeof variable, even for a non-monotone one. Hen
e the only thing that may happenis a 
hange of sign. And the sign 
hanges by the Sign Rule, simultaneously on bothsides of equality dx2=2 = xdx. If the integrals of xdx and dx2 are positive, bothintegrals of 
os td 
os t and 
os2 t are negative and have the same absolute value.These arguments work in the general 
ase:A de
reasing 
hange of variable reverses the sign of the integral.Addition Formula. The next question 
on
erns the legitima
y of addition ofdi�erentials, whi
h appeared in the 
al
ulation d 
os2 t+d sin2 t = d(
os2 t+sin2 t) =0, where di�erands are not 
omonotone: 
os t de
reases, while sin t in
reases. Theaddition formula in its full generality will be proved in the next le
ture, but thisspe
ial 
ase is not diÆ
ult to prove. Our equality is equivalent to d sin2 t = �d 
os2 t.By the Sign Rule �d 
os2 t = d(� 
os2 t), but � 
os2 t is in
reasing. And by theAddition Theorem d(� 
os2 t+1) = d(� 
os2 t)+d1 = d(� 
os2 t). But � 
os2 t+1 =sin2 t. Hen
e our evaluation of the real part of (2.5.1) is justi�ed.Trigonometri
 integrals. We pro
eed to the evaluation of the imaginary partof (2.5.1), whi
h is 
os t d sin t� sin t d 
os t. This is a simple geometri
 problem.The integral of sin t d 
os t is negative as 
os t is de
reasing on [0; �2 ℄, and its ab-solute value is equal to the area of the 
urvilinear triangle A0BA, whi
h is obtainedfrom the 
ir
ular se
tor OBA with area �=2 by deletion of the triangle OA0B, whi
hhas area 12 
os� sin�. Thus R �0 sin t d 
os t is �=2� 12 
os� sin�.The integral of 
os t d sin t is equal to the area of 
urvilinear trapezium OB0BA.The latter 
onsists of a 
ir
ular se
tor OBA with area �=2 and a triangle OB0Bwith area 12 
os� sin�. Thus R �0 
os t d sin t = �=2 + 12 
os� sin�.As a result we get Rp 1z dz = i�. This result has a lot of 
onsequen
es. Buttoday we restri
t our attention to the integrals of sin t and 
os t.Multipli
ation of di�erentials. We have proved(2.5.3) 
os t d sin t� sin t d 
os t = dt:Multiplying this equality by 
os t, one gets
os2 t d sin t� sin t 
os t d 
os t = 
os t dt:Repla
ing 
os2 t by (1�sin2 t) and moving 
os t into the di�erential, one transformsthe left-hand side asd sin t� sin2 t d sin t� 12 sin t d 
os2 t = d sin t� 12 sin t d sin2 t� 12 sin t d 
os2 t:
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φFigure 2.5.1. Trigonometri
 integralsWe already know that d sin2 t+ d 
os2 t is zero. Now we have to prove the same forthe produ
t of this form by 12 sin t. The arguments are the same: we multiply by12 sin t the equivalent equality d sin2 t = d(� 
os2 t) whose di�erands are in
reasing.This is a general way to extend the theorem on multipli
ation of di�erentials tothe 
ase of any monotone fun
tions. We will do it later. Now we get just d sin t =
os t dt.Further, multipli
ation of the left-hand side of (2.5.3) by sin t givessin t 
os t d sin t� sin2 t d 
os t = 12 
os t d sin2 t� d 
os t+ 12 
os t d 
os2 t = �d 
os t:So we get d 
os t = � sin tdt.Theorem 2.5.1. d sin t = 
os t dt and d 
os t = � sin t dt.We have proved this equality only for [0; �=2℄. But due to well-known symme-tries this suÆ
es.Appli
ation of trigonometri
 integrals.Lemma 2.5.2. For any 
onvergent in�nite produ
t of fa
tors � 1 one has(2.5.4) lim nYk=1 pk = 1Yk=1 pk:Proof. Let " be a positive number. ThenQ1k=1 pk >Q1k=1 pk�", and by All-for-One there is n su
h thatQnk=1 pk >Q1k=1 pk�". Then for anym > n one has theinequalities Q1k=1 pk � Qmk=1 pk >Q1k=1 pk � ". Therefore jQmk=1 pk �Q1k=1 pkj <". �Wallis produ
t. Set In = R �0 sinn x dx. Then I0 = R �0 1 dx = � and I1 =R �0 sinx dx = � 
os� + 
os 0 = 2. For n � 2, let us repla
e the integrand sinn x by
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ir
le 55sinn�2 x(1� 
os2 x) and obtainIn = Z �0 sinn�2 x(1� 
os2 x) dx= Z �0 sinn�2 x dx� Z �0 sinn�2 x 
osx d sinx= In�2 � 1n�1 Z �0 
osx d sinn�1(x)= In�2 � Z �0 d(
osx sinn�1 x) + Z �0 sinn�1 x d 
osx= In�2 � 1n�1In:We get the re
urren
e relation In = n�1n In�2, whi
h gives the formula(2.5.5) I2n = � (2n� 1)!!2n!! ; I2n�1 = 2(2n� 2)!!(2n� 1)!!where n!! denotes the produ
t n(n � 2)(n � 4) � � � (n mod 2 + 1). Sin
e sinn x �sinn�1 x for all x 2 [0; �℄, the sequen
e fIng de
reases. Sin
e In � In�1 � In�2, onegets n�1n = InIn�2 � In�1In�2 � 1. Hen
e In�1In�2 di�ers from 1 less than 1n . Consequently,lim In�1In�2 = 1. In parti
ular, lim I2n+1I2n = 1. Substituting in this last formula theexpressions of In from (2.5.5) one getslim �2 (2n+ 1)!!(2n� 1)!!2n!!2n!! = 1:Therefore this is the famous Wallis Produ
t�2 = lim 2n!!2n!!(2n� 1)!!(2n+ 1)!! = 1Yn=1 4n24n2 � 1 :Stirling 
onstant. In Le
ture 2.4 we have proved that(2.5.6) lnn! = n lnn� n+ 12 lnn+ � + on;where on is in�nitesimally small and � is a 
onstant. Now we are ready to determinethis 
onstant. Consider the di�eren
e ln 2n!� 2 lnn!. By (2.5.6) it expands into(2n ln 2n� 2n+ 12 ln 2n+ � + o2n)� 2(n lnn� n+ 12 lnn+ � + on)= 2n ln 2 + 12 ln 2n� lnn� � + o0n;where o0n = o2n � 2on is in�nitesimally small. Then � 
an be presented as� = 2 lnn!� ln 2n! + 2n ln 2 + 12 lnn+ 12 ln 2� lnn+ o0n:Multiplying by 2 one gets2� = 4 lnn!� 2 ln 2n! + 2 ln 22n � lnn+ ln 2 + 2o0n:Hen
e 2� = lim(4 lnn!� 2 ln 2n! + 2 ln 22n � lnn+ ln 2). Swit
hing to produ
t andkeeping in mind the identities n! = n!!(n� 1)!! and n!2n = 2n!! one gets�2 = lim n!424n+1(2n!)2n = lim 2 � (2n!!)4(2n!!)2(2n� 1)!!2n lim 2 � (2n!!)2(2n+ 1)(2n� 1)!!(2n+ 1)!!n = 2�:
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ir
leProblems.1. Evaluate R p1� x2 dx.2. Evaluate R 1p1�x2 dx.3. Evaluate R p5� x2 dx.4. Evaluate R 
os2 x dx.5. Evaluate R tanx dx.6. Evaluate R sin4 x dx.7. Evaluate R sinx2 dx.8. Evaluate R tanx dx.9. Evaluate R x2 sinx dx.10. Evaluate d ar
sinx.11. Evaluate R ar
sinx dx.12. Evaluate R ex 
osx dx.


