2.3. Stieltjes Integral

On the contents of the lecture. The Stieltjes relativization of the integral
makes the integral flexible. We learn the main transformations of integrals. They
allow us to evaluate a lot of integrals.

Basic rules. A parametric curve is a mapping of an interval into the plane.
In cartesian coordinates a parametric curve can be presented as a pair of functions
x(t),y(t). The first function x(t) represents the value of abscises at the moment ¢,
and the second y(t) is the ordinate at the same moment. We define the integral

f f(t)dg(t) for a nonnegative function f, called the integrand, and with respect to
a nondecreasmg continuous function g, called the differand, as the area below the
curve f(t),g(t) | t € [a,b].

A monotone function f is called continuous over the interval [a, b] if it takes all
intermediate values, that is, the image f[a,b] of [a, b] coincides with [f(a), f(b)]. If
it is not continuous for some y € [f(a), f(b)] \ fla,b], there is a point z(y) € [a, b]
with the following property: f(z) <y if z < z(y) and f(z) >y if z > z(y). Let us
define a generalized preimage fl='1(y) of a point y € [f(a), f(b)] either as its usual
preimage f~!(y) if it is not empty, or as z(y) in the opposite case.

Now the curvilinear trapezium below the curve f(t),g(t) over [a,b] is defined
as {(z,y) | 0 <y < g(F-(x))}.

The basic rules for relative integrals transform into:

Rule of constant f; ft)dg(t) = c(g(d) — g(a)), if f(t) =c for t € (a,b),
Rule of inequality f; fi(t)dg(t) < f; f2(t)dg(t), if fi(t) < fo(t) for t € (a,b),
Rule of partition [ f(t) dg(t) = f; f@&)dg(t) + [, f(t)dg(t) for b € (a,c).

Addition theorem. The proofs of other properties of the integral are based
on piecewise constant functions. For any number z, let us define its e-integral part
as e[z /e]. Immediately from the definition one gets:

LEMMA 2.3.1. For any monotone nonnegative function f on the interval [a, b]
and for any € > 0, the function [f]. is piecewise constant such that [f(x)]. < f(z) <
[f(x)]c + € for all x.

THEOREM 2.3.2 (on multiplication). For any nonnegative monotone f, and
any continuous nondecreasing g and any positive constant ¢ one has

(2.3.1) /aCf( ) dg(x —c/ f(z) dg(z /f ) deg(x

PROOF. For the piecewise constant f. = [f]., the proof is by a direct calcula-
tion. Hence

(2.3.2) / ef.(z) dg(z) = / (&) dg(z / f-(&) deg (e

Now let us estimate the differences between integrals from (2.3.1) and their approx-
imations from (2.3.2). For example, for the right-hand side integrals one has:

sy | ' fdeg - / ' deg = / (= £ deg < / e deg = eeq(t)  ca(a).
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Hence f; fdeg = I. + €1, where 1 < ce(g(b) — g(a)). The same argument proves
cfab fdg=1I.+¢2 and fab cf dg = I. + &3, where 3, e3 < ce(g(b) — g(a)). Then the
pairwise differences between the integrals of (2.3.1) do not exceed 2ce(g(b) — g(a)).
Consequently they are less than any positive number, that is, they are zero. d

THEOREM 2.3.3 (Addition Theorem). Let fi, fo be nonnegative monotone func-
tions and g1, g» be nondecreasing continuous functions over [a,b], then

(2.3.4) / (1(t) + Fo() o (¢ /fl ) dgy (t /fz ) dg (¢

(2.3.5) /fl t) + ga(t /fl ) dga (t /f1 ) dga(t

ProOF. For piecewise constant integrands both the equalities follow from the
Rule of Constant and the Rule of Partition. To prove (2.3.4) replace f; and f> in
both parts by [f1]. and [f2].. We get equality and denote by I. the common value
of both sides of this equality. Then by (2.3.3) both integrals on the right-hand side
differ from they approximation at most by (g1 (b) — g1 (a)), therefore the right-hand
side of (2.3.4) differs from I. at most by 2(g1(b) — g1(a)). The same is true for the
left-hand side of (2.3.4). This follows immediately from (2.3.3) in case f = f1 + fa,
fe = [f1)s + [f2)c and g = g1. Consequently, the difference between left-hand and
right-hand sides of (2.3.4) does not exceed 4¢(g1(b) — g1(a)). As € can be chosen
arbitrarily small this difference has to be zero.

The proof of (2.3.5) is even simpler. Denote by I. the common value of both
parts of (2.3.5) where f; is changed by [fi]. By (2.3.3) one can estimate the
differences between the integrals of (2.3.5) and their approximations as being <
€(g1(b) + g2(b) — g1(a) — g2(a)) for the left-hand side, and as < e(g1 (b) — g1(a)) and
< g(g2(b) — g2(a)) for the corresponding integrals of the right-hand side of (2.3.5).
So both sides differ from I. by at most < e(g1(b) — g1(a) + g2(b) — g2(a)). Hence
the difference vanishes. d

Differential forms. An expression of the type fidg, + fodgs + -+ + frndgn
is called a differential form. One can add differential forms and multiply them by

functions. The integral of a differential form fab (fidgr + fadga + -+ + fudgyn) is

defined as the sum of the integrals _,_, f; fr dgr. Two differential forms are called
equivalent on the interval [a, b] if their integrals are equal for all subintervals of [a, b].
For the sake of brevity we denote the differential form fidg: + fodgs + -+ + frdgn
by FdG, where F = {f1,..., fn} is a collection of integrands and G = {g1,...,9n}
is a collection of differands.

THEOREM 2.3.4 (on multiplication). Let F'dG and F'dG' be two differential
forms, with positive increasing integrands and continuous increasing differands,
which are equivalent on [a,b]. Then their products by any increasing function f
on [a,b] are equivalent on [a,b] too.

PROOF. If f is constant then the statement follows from the multiplication
formula. If f is piecewise constant, then divide [a, b] into intervals where it is con-
stant and prove the equality for parts and after collect the results by the Partition

Rule. In the general case, 0 < f; fFdG — fab[f]ngG < fab eF dG = z—:fadeG.
Since fab[f]EF’ dG' = f;[f]EFdG, one concludes that ‘f; fF'dG' — fab deG‘ <
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€ f; FdG +¢ fab F'dG'. The right-hand side of this inequality can be made arbi-
trarily small. Hence the left-hand side is 0. g

Integration by parts.

THEOREM 2.3.5. If f and g are continuous nondecreasing nonnegative functions
on [a,b] then d(fg) is equivalent to fdg + gdf.

Proor. Consider [c,d] C [a,b]. The integral fcd f dg represents the area below

the curve (f(t),g(t))te[c,q)- And the integral fcd g df represents the area on the left
of the same curve. Its union is equal to [0, f(d)] x [0, g(d)]\ [0, f(c)] x [0, g(c)]. The
area of this union is equal to (f(d)g(d) — f(c)g(c) = fcd dfg. On the other hand the
area of this union is the sum of the areas of curvilinear trapezia representing the

integrals fcd fdg and fcdgdf. O

Change of variable. Consider a Stieltjes integral fab f(r)dg(7) and suppose
there is a continuous nondecreasing mapping 7: [to, t1] — [a, b], such that 7(t9) = a
and 7(¢1) = b. The composition g(7(t)) is a continuous nondecreasing function and
the curve {(f(7(t),9(7(t))) | t € [to,t1]} just coincides with the curve {(f(7), g(7)) |
T € [a,b]. Hence, the following equality holds; it is known as the Change of Variable

formula:
T(t1)

CF(r() dg(r(t) = / £(r) dg(r).

to (to)
For differentials this means that the equality F(z)dG(x) = F'(x)dG'(x) conserves
if one substitutes instead of an independent variable = a function.

Differential Transformations.

Case dz™. Integration by parts for f(t) = g(t) = t gives dt? = tdt + tdt. Hence
tdt = d%. If we already know that dz” = ndz™!, then dz"t! = d(zz") =
xdz" + z"dx = nxz" dr +z"dz = (n+ 1)z"dz. This proves the Fermat Theorem
for natural n.

Case d%¥/z. To evaluate d%¥/r substitute z = y™ into the equality dy” =

ny™ tdy. One gets do = %d%, hence d%¥/z = l—gdaz.

Case Inzdz. We know dlnz = %daz. Integration by parts gives lnzdx =
dizlnz) —zdlnz =d(xzlnz) — de = d(zlnz — ).

Problems.
Evaluate dz2/3.
Evaluate dz—'.
Evaluate z In z dz.
Evaluate dIn® z.
Evaluate In” z dz.
Evaluate de”.

Investigate the convergence of > .., L

klnk"*
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