
2.3. Stieltjes IntegralOn the 
ontents of the le
ture. The Stieltjes relativization of the integralmakes the integral 
exible. We learn the main transformations of integrals. Theyallow us to evaluate a lot of integrals.Basi
 rules. A parametri
 
urve is a mapping of an interval into the plane.In 
artesian 
oordinates a parametri
 
urve 
an be presented as a pair of fun
tionsx(t); y(t). The �rst fun
tion x(t) represents the value of abs
ises at the moment t,and the se
ond y(t) is the ordinate at the same moment. We de�ne the integralR ba f(t) dg(t) for a nonnegative fun
tion f , 
alled the integrand, and with respe
t toa nonde
reasing 
ontinuous fun
tion g, 
alled the di�erand, as the area below the
urve f(t); g(t) j t 2 [a; b℄.A monotone fun
tion f is 
alled 
ontinuous over the interval [a; b℄ if it takes allintermediate values, that is, the image f [a; b℄ of [a; b℄ 
oin
ides with [f(a); f(b)℄. Ifit is not 
ontinuous for some y 2 [f(a); f(b)℄ n f [a; b℄, there is a point x(y) 2 [a; b℄with the following property: f(x) < y if x < x(y) and f(x) > y if x > x(y). Let usde�ne a generalized preimage f [�1℄(y) of a point y 2 [f(a); f(b)℄ either as its usualpreimage f�1(y) if it is not empty, or as x(y) in the opposite 
ase.Now the 
urvilinear trapezium below the 
urve f(t); g(t) over [a; b℄ is de�nedas f(x; y) j 0 � y � g(f [�1℄(x))g.The basi
 rules for relative integrals transform into:Rule of 
onstant R ba f(t) dg(t) = 
(g(b)� g(a)); if f(t) = 
 for t 2 (a; b),Rule of inequality R ba f1(t) dg(t) � R ba f2(t) dg(t); if f1(t) � f2(t) for t 2 (a; b),Rule of partition R 
a f(t) dg(t) = R ba f(t) dg(t) + R 
b f(t) dg(t) for b 2 (a; 
).Addition theorem. The proofs of other properties of the integral are basedon pie
ewise 
onstant fun
tions. For any number x, let us de�ne its "-integral partas "[x="℄. Immediately from the de�nition one gets:Lemma 2.3.1. For any monotone nonnegative fun
tion f on the interval [a; b℄and for any " > 0, the fun
tion [f ℄" is pie
ewise 
onstant su
h that [f(x)℄" � f(x) �[f(x)℄" + " for all x.Theorem 2.3.2 (on multipli
ation). For any nonnegative monotone f , andany 
ontinuous nonde
reasing g and any positive 
onstant 
 one has(2.3.1) Z ba 
f(x) dg(x) = 
 Z ba f(x) dg(x) = Z ba f(x) d
g(x):Proof. For the pie
ewise 
onstant f" = [f ℄", the proof is by a dire
t 
al
ula-tion. Hen
e(2.3.2) Z ba 
f"(x) dg(x) = 
 Z ba f"(x) dg(x) = Z ba f"(x) d
g(x) = I":Now let us estimate the di�eren
es between integrals from (2.3.1) and their approx-imations from (2.3.2). For example, for the right-hand side integrals one has:(2.3.3) Z ba f d
g � Z ba f" d
g = Z ba (f � f") d
g � Z ba " d
g = "(
g(b)� 
g(a)):44
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e R ba f d
g = I" + "1, where "1 � 
"(g(b) � g(a)). The same argument proves
 R ba f dg = I" + "2 and R ba 
f dg = I" + "3, where "2; "3 � 
"(g(b)� g(a)). Then thepairwise di�eren
es between the integrals of (2.3.1) do not ex
eed 2
"(g(b)� g(a)).Consequently they are less than any positive number, that is, they are zero. �Theorem 2.3.3 (Addition Theorem). Let f1, f2 be nonnegative monotone fun
-tions and g1, g2 be nonde
reasing 
ontinuous fun
tions over [a; b℄, thenZ ba (f1(t) + f2(t)) dg1(t) = Z ba f1(t) dg1(t) + Z ba f2(t) dg1(t);(2.3.4) Z ba f1(t) d(g1(t) + g2(t)) = Z ba f1(t) dg1(t) + Z ba f1(t) dg2(t):(2.3.5)Proof. For pie
ewise 
onstant integrands both the equalities follow from theRule of Constant and the Rule of Partition. To prove (2.3.4) repla
e f1 and f2 inboth parts by [f1℄" and [f2℄". We get equality and denote by I" the 
ommon valueof both sides of this equality. Then by (2.3.3) both integrals on the right-hand sidedi�er from they approximation at most by "(g1(b)�g1(a)), therefore the right-handside of (2.3.4) di�ers from I" at most by 2"(g1(b)� g1(a)). The same is true for theleft-hand side of (2.3.4). This follows immediately from (2.3.3) in 
ase f = f1+ f2,f" = [f1℄" + [f2℄" and g = g1. Consequently, the di�eren
e between left-hand andright-hand sides of (2.3.4) does not ex
eed 4"(g1(b) � g1(a)). As " 
an be 
hosenarbitrarily small this di�eren
e has to be zero.The proof of (2.3.5) is even simpler. Denote by I" the 
ommon value of bothparts of (2.3.5) where f1 is 
hanged by [f1℄". By (2.3.3) one 
an estimate thedi�eren
es between the integrals of (2.3.5) and their approximations as being �"(g1(b)+ g2(b)� g1(a)� g2(a)) for the left-hand side, and as � "(g1(b)� g1(a)) and� "(g2(b)� g2(a)) for the 
orresponding integrals of the right-hand side of (2.3.5).So both sides di�er from I" by at most � "(g1(b) � g1(a) + g2(b) � g2(a)). Hen
ethe di�eren
e vanishes. �Di�erential forms. An expression of the type f1dg1 + f2dg2 + � � � + fndgnis 
alled a di�erential form. One 
an add di�erential forms and multiply them byfun
tions. The integral of a di�erential form R ba (f1 dg1 + f2dg2 + � � � + fndgn) isde�ned as the sum of the integralsPnk=1 R ba fk dgk. Two di�erential forms are 
alledequivalent on the interval [a; b℄ if their integrals are equal for all subintervals of [a; b℄.For the sake of brevity we denote the di�erential form f1dg1 + f2dg2 + � � �+ fndgnby FdG, where F = ff1; : : : ; fng is a 
olle
tion of integrands and G = fg1; : : : ; gngis a 
olle
tion of di�erands.Theorem 2.3.4 (on multipli
ation). Let FdG and F 0dG0 be two di�erentialforms, with positive in
reasing integrands and 
ontinuous in
reasing di�erands,whi
h are equivalent on [a; b℄. Then their produ
ts by any in
reasing fun
tion fon [a; b℄ are equivalent on [a; b℄ too.Proof. If f is 
onstant then the statement follows from the multipli
ationformula. If f is pie
ewise 
onstant, then divide [a; b℄ into intervals where it is 
on-stant and prove the equality for parts and after 
olle
t the results by the PartitionRule. In the general 
ase, 0 � R ba fF dG � R ba [f ℄"F dG � R ba "F dG = " R ba F dG.Sin
e R ba [f ℄"F 0 dG0 = R ba [f ℄"F dG, one 
on
ludes that ���R ba fF 0 dG0 � R ba fF dG��� �



46 2.3 stieltjes integral" R ba F dG + " R ba F 0 dG0. The right-hand side of this inequality 
an be made arbi-trarily small. Hen
e the left-hand side is 0. �Integration by parts.Theorem 2.3.5. If f and g are 
ontinuous nonde
reasing nonnegative fun
tionson [a; b℄ then d(fg) is equivalent to fdg + gdf .Proof. Consider [
; d℄ � [a; b℄. The integral R d
 f dg represents the area belowthe 
urve (f(t); g(t))t2[
;d℄. And the integral R d
 g df represents the area on the leftof the same 
urve. Its union is equal to [0; f(d)℄� [0; g(d)℄ n [0; f(
)℄� [0; g(
)℄. Thearea of this union is equal to (f(d)g(d)�f(
)g(
) = R d
 dfg. On the other hand thearea of this union is the sum of the areas of 
urvilinear trapezia representing theintegrals R d
 f dg and R d
 g df . �Change of variable. Consider a Stieltjes integral R ba f(�) dg(�) and supposethere is a 
ontinuous nonde
reasing mapping � : [t0; t1℄! [a; b℄, su
h that �(t0) = aand �(t1) = b. The 
omposition g(�(t)) is a 
ontinuous nonde
reasing fun
tion andthe 
urve f(f(�(t); g(�(t))) j t 2 [t0; t1℄g just 
oin
ides with the 
urve f(f(�); g(�)) j� 2 [a; b℄. Hen
e, the following equality holds; it is known as the Change of Variableformula: Z t1t0 f(�(t)) dg(�(t)) = Z �(t1)�(t0) f(�) dg(�):For di�erentials this means that the equality F (x)dG(x) = F 0(x)dG0(x) 
onservesif one substitutes instead of an independent variable x a fun
tion.Di�erential Transformations.Case dxn. Integration by parts for f(t) = g(t) = t gives dt2 = tdt+ tdt. Hen
etdt = d t22 . If we already know that dxn = ndxn�1, then dxn+1 = d(xxn) =xdxn+xndx = nxxn�1dx+xndx = (n+1)xndx. This proves the Fermat Theoremfor natural n.Case d npx. To evaluate d npx substitute x = yn into the equality dyn =nyn�1dy. One gets dx = nxnpxd npx, hen
e d npx = npxnx dx.Case lnxdx. We know d lnx = 1xdx. Integration by parts gives lnxdx =d(x ln x)� xd lnx = d(x lnx) � dx = d(x ln x� x).Problems.1. Evaluate dx2=3.2. Evaluate dx�1.3. Evaluate x lnx dx.4. Evaluate d ln2 x.5. Evaluate ln2 x dx.6. Evaluate dex.7. Investigate the 
onvergen
e of P1k=2 1k lnk .


