1.6. Complex Series

On the contents of the lecture. Complex numbers hide the key to the Euler
Series. The summation theory developed for positive series now extends to complex
series. We will see that complex series can help to sum real series.

Cubic equation. Complex numbers arise in connection with the solution of
the cubic equation. The substitution z = y — ¢ reduces the general cubic equation
2% +azx? +bxr +c=0to

v +py+q=0.
The reduced equation one solves by the following trick. One looks for a root in the
formy = a+p. Then (a+5)*+p(a+p)+q = 0or a®+5°+3af(a+p)+p(a+pB)+q =
0. The latter equality one reduces to the system

3 3 _

(1.6.1) “ J;(fﬂ _ :zqai

Raising the second equation into a cube one gets
o’ + B = —q,
270333 = —pd.

Now a3, 82 are roots of the quadratic equation

z? + qr — %,
called the resolution of the original cubic equation. Sometimes the resolution has
no roots, while the cubic equation always has a root. Nevertheless one can evaluate
a root of the cubic equation with the help of its resolution. To do this one simply

ignores that the numbers under the square roots are negative.
For example consider the following cubic equation

3 1 _
Then (1.6.1) turns into

383 _ 1
a” + B - 2
343 _ 1
a B - 8

The corresponding resolution is * — £ 4+ & = 0 and its roots are

tip=1+\/15—-s=1F1vV-1L
Then the desired root of the cubic equation is given by
(1.6.3) Yra+ v+ 3/ta- v =4 (4{/1 TV T+ 31— \/—1) .

It turns out that the latter expression one uniquely interprets as a real number which
is a root of the equation (1.6.2). To evaluate it consider the following expression

(1.6.4) Y+ Va2 - a+venifa - van + Y - voe.

Since

Q+vVoI)2 =12+ 2/ T1+vV-T =1+2/—1-1=2/"1,

the left summand of (1.6.4) is equal to

Vov=T = ¥ay/v—T= va/vT= ¥2 VT
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Similarly (1 — v/—1)2 = —2v/—1, and the right summand of (1.6.4) turns into
—%/2/=1. Finally (14 v=1)(1 — v=1) = 12 — /=1 = 2 and the central one is
—%/2. As a result the whole expression (1.6.4) is evaluated as — 3/2.

On the other hand one evaluates the product of (1.6.3) and (1.6.4) by the usual
formula as the sum of cubes

(VD) + (1= VD) = (1 + 1) + (VoD) — VD) = 22+ 0) = V2.

Consequently (1.6.3) is equal to % = —1. And —1 is a true root of (1.6.2).

Arithmetic of complex numbers. In the sequel we use i instead of \/—1.
There are two basic ways to represent a complex number. The representation
z = a + ib, where a and b are real numbers we call the Cartesian form of z. The
numbers a and b are called respectively the real and the imaginary parts of z and are
denoted by Re z and by Im z respectively. Addition and multiplication of complex
numbers are defined via their real and imaginary parts as follows

Re(z1 + 22) = Rez; + Re 2o,
Im(z; + 22) =Im 2z + Im 2o,
Re(z122) = Rezi Rezo — Im 21 Im 20,

Im(z122) = Rez; Im 22 + Im 21 Re 2».

The trigonometric form of a complex number is z = p(cos ¢ + isin ¢), where
p > 0 is called the module or the absolute value of a complex number z and is
denoted |z|, and ¢ is called its argument. The argument of a complex number is
defined modulo 27. We denote by Argz the set of all arguments of z, and by arg z
the element of Argz which satisfies the inequalities —7 < argz < 7. So argz is
uniquely defined for all complex numbers. argz is called the principal argument of
z.

The number a — bi is called the conjugate to z = a + bi and denoted Z. One

has 2Z = |z|%. This allows us to express z~! as ELE

argz
O Rez

FIGURE 1.6.1. The representation of a complex number

If z = a+1ib then |z| = Va? + b2 and arg z = arctg g One represents a complex
number z = a+bi as a point Z of the plane with coordinates (a, b). Then |z| is equal
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to the distance from Z to the origin O. And argz represents the angle between

the axis of abscises and the ray OZ. Addition of complex numbers corresponds
to usual vector addition. And the usual triangle inequality turns into the module
inequality:

|2+ ¢l < |z +[¢]-

The multiplication formula for complex numbers in the trigonometric form is espe-
cially simple:

r(cos ¢ + i sin @)’ (cos ¢ + i sin 1))
— v/ (cos(¢ + ) + i sin(é + 1)),
Indeed, the left-hand side and the right-hand side of (1.6.5) transform to

(1.6.5)

rr’(cos ¢ cos 1) — sin ¢ sin1p) + irr’ (sin ¢ cos ¢ + sin 1) cos ¢).

That is, the module of the product is equal to the product of modules and the
argument of product is equal to the sum of arguments:

Argzizo = Argz) @ Arg z,.

Any complex number is uniquely defined by its module and argument.
The multiplication formula allows us to prove by induction the following;:

(Moivre Formula) (cos ¢ + isin @)™ = (cosng + isinne).

Sum of a complex series. Now is the time to extend our summation theory
to series made of complex numbers. We extend the whole theory without any
losses to so-called absolutely convergent series. The series ) .- | z; with arbitrary
complex terms is called absolutely convergent, if the series > .-, |zx| of absolute
values converges.

For any real number z one defines two nonnegative numbers: its positive ™ and
negative z~ parts as T = x[x > 0] and x~ = —z[z < 0]. The following identities
characterize the positive and negative parts of x

+

t+ 1 = |7, t -1 =ua.

Now the sum of an absolutely convergent series of real numbers is defined as follows:

(1.6.6) Zak = Zaz —Za,;.
k=1 k=1 k=1

That is, from the sum of all positive summands one subtracts the sum of modules
of all negative summands. The two series on the right-hand side converge, because
aj; <lakl, @ < lag|and 337, Jag| < oo.

For an absolutely convergent complex series Z;’;l z, we define the real and
imaginary parts of its sum separately by the formulas

(1.6.7) Reizk :iRezk, Imizk:iImzk.
k=1 k=1 k=1 k=1

The series in the right-hand sides of these formulas are absolutely convergent, since
|Re zi| < |2k and |Im zx| < |2k
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THEOREM 1.6.1. For any pair of absolutely convergent series y o, ar and
>y bi its termwise sum Yoo (ar, + by) absolutely converges and

(1.6.8) > (ak +by) = Zak + Zbk
k=1

ProoF. First, remark that the absolute convergence of the series on the left-
hand side follows from the Module Inequality |ag, +bg| < |ak|+ |bx| and the absolute
convergence of the series on the right-hand side.

Now consider the case of real numbers. Representing all sums in (1.6.8) as
differences of their positive and negative parts and separating positive and negative
terms in different sides one transforms (1.6.8) into

Zak Zb++2 ay + b)~ Zak Zb;+2(ak+bk)+
k=1 k=1 k=1

But this equality is true due to termwise addition for positive series and the follow-
ing identity,
Ay @yt =gty + (w4 y)”

Moving terms around turns this identity into
@+y)t —@+y) =@ -2 )+ —y),

which is true due to the identity z+ — +z— = z.

In the complex case the equality (1.6.8) splits into two equalities, one for real
parts and another for imaginary parts. As for real series the termwise addition is
already proved, we can write the following chain of equalities,

Re(Y oo ae+ Yo be) =Red oo ar+Red o by
=Y Reap +> 7, Reby
=> r (Reay + Reby)
= > po, Re(ay + by)
=Re 32,7, (ar + br),

which proves the equality of real parts in (1.6.8). The same proof works for the
imaginary parts. d

Sum Partition Theorem. An unordered sum of a family of complex numbers
is defined by the same formulas (1.6.6) and (1.6.7). Since for positive series non-
ordered sums coincide with the ordered sums, we get the same coincidence for all
absolutely convergent series. Hence the commutativity law holds for all absolutely
convergence series.

THEOREM 1.6.2. IfI = | |;c; I; and 377, |ag| < oo then ), ; ‘Ziel,- a;| < oo

and EjeJ Eielj @i =D ieq @i

PROOF. At first consider the case of real summands. By definition ), ;a; =

+
Y icr @ — 2;er @; - By Sum Partition Theorem positive series one transforms the
original sum into

. _
Yjes 2uier; %~ 2jes 2aier; Y -



28 1.6 COMPLEX SERIES

Now by the Termwise Addition applied at first to external and after to internal
sums one gets

+ -\ _ +_ -y
Zje] (Zielj a; — ZiEI]- a; ) = Zje] Zielj (a] —a;) = Zje] Zielj ;.

So the Sum Partition Theorem is proved for all absolutely convergent real series.
And it immediately extends to absolutely convergent complex series by its splitting
into real and imaginary parts. O

THEOREM 1.6.3 (Termwise Multiplication). If .7, |zx| < oo then for any
(complex) ¢, > oo, |czi| < 00 and Y ;2 ez =€y ooy 2k

ProoF. Termwise Multiplication for positive numbers gives the first statement
of the theorem Y 77, |czi| = Y pey lellzk| = le| Xpey |2k]- The further proof is
divided into five cases.

At first suppose c is positive and z real. Then cz,': = cz,j and by virtue of
Termwise Multiplication for positive series we get

ZZL CZr = EZL cz,j - Zlii1 czy,
= szozl le - 621?;1 2y
=c (leozl le - Zl?;l ZI;)

= €Dy %k

The second case. Let ¢ = —1 and z; be real. In this case

21?;1 —Zk = ZZL(—@)* - ZZ.;1(_Z1«)7 = Z/ii1 2, = ZZL le =- 220:1 2

The third case. Let ¢ be real and z; complex. In this case Reczr = cRez, and
the two cases above imply the Termwise Multiplication for any real ¢. Hence

Red po ¢z = > oy Reczy
=Y po cRez
=cYy o, Rez
=cRe) ;7 2
=Rec) oo 2k

The same is true for imaginary parts.

The fourth case. Let ¢ = i and zp be complex. Then Reizp; = —Imz; and
Im iz, = Rezg. So one gets for real parts

Re} p2yizr = 2opry Re(iz)
= Yhoy —Imzy
==Yk Imzy
=—-Im> >, 2z

=Rei) po, 2k
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The general case. Let ¢ = a + bi with real a, b. Then
CYohor 2k = Ay 2k DI 2
=D poq Qzk + 2o pey bz
= Yo (azp +ibzp)
=D poy CZk.

O

Multiplication of Series. For two given series Y .~ a; and Y.~ bg, one
defines their convolution as a series ZZO:O Cn, Where ¢, = EZ:O arby,_k.

THEOREM 1.6.4 (Cauchy). For any pair of absolutely convergent series y p- o ai
and Y2, br their convolution Y ., ¢ absolutely converges and

leozo Ck = ZI?;O g EZio by

ProoF. Consider the double series ), ; a;b;. Then by the Sum Partition The-
orem its sum is equal to

Ym0 (g aibj) = 3720 by (2 @) = (X0 ai) (2720 bj)-

On the other hand, )=, sa;b; = 3277 P ! akby_k. But the last sum is just the
convolution.

This proof goes through for positive series. In the generalcase we have to prove
absolute convergence of the double series. But this follows from

(ko law]) (ZkZo [0x]) = 2520 lexl-

Module Inequality.

(1.6.9)

o o
> <D Ll
k=1 k=1

Let z;, = xp + iyr. Summation of the inequalities —|z| < zp < |x| gives
=Yoo wk] < Xpey e < > pey |k|, which means [0 x| < 3007, |zk|. The
same inequality is true for y. Consider zj, = |zx| + ¢|yx|. Then |z;| = |2;| and
1> ey 2kl <> pey 2;]- Therefore it is sufficient to prove the inequality (1.6.9) for
zy,, that is, for numbers with non-negative real and imaginary parts. Now supposing
Zk, Y to be nonnegative one gets the following chain of equivalent transformations
of (1.6.9):

(rzs @) + (Sl we)” < (252 J24])”
S e < (0 )’ — (25, )
S e < (0 ) - (52, ), V=12,
T2k < (T2 )’ - (ReXj_, 21), Vn=1,2,...

S < (T2 ) = (Tp, @), Vnam =12,
n 2 m 2 0o 2
(Zk:l T) + (Zkzl yr)” < (Zk:l lzx])”, VYm,n=1,2,...
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\/(Zgl xk)Q + (Zgil yk)Q < Zzozl lze], VN =1,2,...

Sz <SRl vV =12,

The inequalities of the last system hold because ‘chvzl zk‘ <N <

Complex geometric progressions. The sum of a geometric progression with
a complex ratio is given by the same formula

n—1
1—2z"
1.6.1 § k= )
(1.6.10) k_oz 1=,

And the proof is the same as in the case of real numbers. But the meaning of
this formula is different. Any complex formula is in fact a pair of formulas. Any
complex equation is in fact a pair of equations.

In particular, for z = g(sin ¢ + icos @) the real part of the left-hand side of
(1.6.10) owing to the Moivre Formula turns into Zz;é q" sin k¢ and the right-hand
side turns into ZZ;& q* cosk¢. So the formula for a geometric progression splits
into two formulas which allow us to telescope some trigonometric series.

Especially interesting is the case with the ratio £, = cos %’r + i sin 27” In this
case the geometric progression cyclically takes the same values, because ]} =
The terms of this sequence are called the roots of unity, because they satisfy the
equation 2" — 1 =0.

LEMMA 1.6.5. (2" —1) =[];_,(z — k).

PROOF. Denote by P(z) the right-hand side product. This polynomial has
degree n, has major coefficient 1 and has all € as its roots. Then the difference
(2™ — 1) — P(2) is a polynomial of degree < n which has n different roots. Such a
polynomial has to be 0 by virtue of the following general theorem. d

THEOREM 1.6.6. The number of roots of any nonzero complex polynomial does
not exceed its degree.

PROOF. The proof is by induction on the degree of P(z). A polynomial of
degree 1 has the form az+b and the only root is —%. Suppose our theorem is proved
for any polynomial of degree < n. Consider a polynomial P(z) = ap+aiz+- - -+a,z"
of degree n, where the coefficients are complex numbers. Suppose it has at least n
roots z1,. .., 2,. Consider the polynomial P*(z) = ay, [[}_, (# — z¢). The difference
P(z) — P*(z) has degree < n and has at least n roots (all z;). By the induction
hypothesis this difference is zero. Hence, P(z) = P*(z). But P*(z) has only n
roots. Indeed, for any z different from all z; one has |z — z;x| > 0. Therefore
P*(2)] = lanl TTj_, = — 2] > 0. 0

By blocking conjugated roots one gets a pure real formula:

(n—1)/2 Ok
2P—1=(z2-1) H <z2—2zcos——|—1>.
k=1

n
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Complexification of series. Complex numbers are effectively applied to
sum up so-called trigonometric series, i.e., series of the type Z,;";O ar, cos kx and
ZZOZO ay sin kx. For example, to sum the series 21311 q* sin k¢ one couples it with
its dual Y-, ¢* cos k¢ to form a complex series Y- o~ ¢* (cos k¢+i sin k¢). The last
is a complex geometric series. Its sum is ﬁ, where z = cos ¢+i sin ¢. Now the sum
of the sine series ZZ’;I ¢* sin k¢ is equal to Im ﬁ, the imaginary part of the com-
plex series, and the real part of the complex series coincides with the cosine series.
In particular, for ¢ = 1, one has = = m To evaluate the real and imag-
inary parts one multiplies both numerator and denominator by 1 + cos ¢ — ¢ sin ¢.
Then one gets (1 — cos¢)? 4 sin® ¢ = 1 — 2cos? ¢ + cos? ¢ + sin® ¢ = 2 — 2cos ¢

as the denominator. Hence ;- = % =1+ 1Lcot2. And we get two
remarkable formulas for the sum of the divergent series
o0 (oo}
1 1L ¢
coskp = —, sink¢ = — cot —.
D A= 5o

For ¢ = 0 the left series turns into Y ,-,(—1)*. The evaluation of the Euler series
via this cosine series is remarkably short, it takes one line. But one has to know
integrals and a something else to justify this evaluation.

Problems.

i imagi 1 (l=iys 42 (149)°
Find real and imaginary parts for 1=, ({57)7 o7, TR

Find trigonometric form for —1, 144, v/3 + .

Prove that z122 = 0 implies either z; = 0 or 22 = 0.

Prove the distributivity law for complex numbers.

Analytically prove the inequality |z1 + 22| < |21] + |22]-
-1 1 —

Evaluate 3 ;=) — 7, where 2, = 1 + kz.

Evaluate Y 7} 27, where 2z, = 1 + k=.
n—1 Sink
k=1 2k -
9. Solve 22 = .

10. Solve 22 = 3 — 4i.

11. Telescope Y. o, 2k

12. Prove that the conjugated to a root of polynomial with real coefficient is the

root of the polynomial.

13. Prove that z; + 29 = z7 + Z3.

14. Prove that z1z3 = 71 Z3.
*15. Solve 823 — 6z — 1 =0.

16. Evaluate ) ;7 S;ka

17. Evaluate ) -, 882k

18. Prove absolute convergence of Y 7o Z,'C—I: for any z.

® X SoRwN =

Evaluate

19. For which z the series Y ;- % absolutely converges?
20. Multiply a geometric series onto itself several times applying Cauchy formula.
21. Find series for v/1 + x by method of indefinite coefficients.

22. Does series S o0 Stk ahsolutely converge?
k=1 & y

23. Does series > oo, Siknf absolutely converge?




