
1.6. Complex SeriesOn the ontents of the leture. Complex numbers hide the key to the EulerSeries. The summation theory developed for positive series now extends to omplexseries. We will see that omplex series an help to sum real series.Cubi equation. Complex numbers arise in onnetion with the solution ofthe ubi equation. The substitution x = y� a3 redues the general ubi equationx3 + ax2 + bx+  = 0 to y3 + py + q = 0:The redued equation one solves by the following trik. One looks for a root in theform y = �+�. Then (�+�)3+p(�+�)+q = 0 or �3+�3+3��(�+�)+p(�+�)+q =0. The latter equality one redues to the system�3 + �3 = �q;3�� = �p:(1.6.1)Raising the seond equation into a ube one gets�3 + �3 = �q;27�3�3 = �p3:Now �3, �3 are roots of the quadrati equationx2 + qx� p327 ;alled the resolution of the original ubi equation. Sometimes the resolution hasno roots, while the ubi equation always has a root. Nevertheless one an evaluatea root of the ubi equation with the help of its resolution. To do this one simplyignores that the numbers under the square roots are negative.For example onsider the following ubi equation(1.6.2) x3 � 32x� 12 = 0:Then (1.6.1) turns into �3 + �3 = 12 ;�3�3 = 18 ;The orresponding resolution is t2 � t2 + 18 = 0 and its roots aret1;2 = 14 �q 116 � 18 = 14 � 14p�1:Then the desired root of the ubi equation is given by(1.6.3) 3q 14 (1 +p�1) + 3q 14 (1�p�1) = 13p4 � 3p1 +p�1 + 3p1�p�1� :It turns out that the latter expression one uniquely interprets as a real number whihis a root of the equation (1.6.2). To evaluate it onsider the following expression(1.6.4) 3q(1 +p�1)2 � 3q(1 +p�1) 3q(1�p�1) + 3q(1�p�1)2:Sine (1 +p�1)2 = 12 + 2p�1 +p�12 = 1 + 2p�1� 1 = 2p�1;the left summand of (1.6.4) is equal to3q2p�1 = 3p2 3qp�1 = 3p2q 3p�1 = 3p2p�1:24



1.6 omplex series 25Similarly (1 � p�1)2 = �2p�1, and the right summand of (1.6.4) turns into� 3p2p�1. Finally (1 +p�1)(1�p�1) = 12 �p�12 = 2 and the entral one is� 3p2. As a result the whole expression (1.6.4) is evaluated as � 3p2.On the other hand one evaluates the produt of (1.6.3) and (1.6.4) by the usualformula as the sum of ubes13p4 ((1 +p�1) + (1�p�1)) = 13p4 ((1 + 1) + (p�1)�p�1)) = 13p4 (2 + 0) = 3p2:Consequently (1.6.3) is equal to 3p2� 3p2 = �1. And �1 is a true root of (1.6.2).Arithmeti of omplex numbers. In the sequel we use i instead of p�1.There are two basi ways to represent a omplex number. The representationz = a + ib, where a and b are real numbers we all the Cartesian form of z. Thenumbers a and b are alled respetively the real and the imaginary parts of z and aredenoted by Re z and by Im z respetively. Addition and multipliation of omplexnumbers are de�ned via their real and imaginary parts as followsRe(z1 + z2) = Re z1 +Re z2;Im(z1 + z2) = Im z1 + Im z2;Re(z1z2) = Re z1Re z2 � Im z1 Im z2;Im(z1z2) = Re z1 Im z2 + Im z1Re z2:The trigonometri form of a omplex number is z = �(os� + i sin�), where� � 0 is alled the module or the absolute value of a omplex number z and isdenoted jzj, and � is alled its argument. The argument of a omplex number isde�ned modulo 2�. We denote by Arg z the set of all arguments of z, and by arg zthe element of Arg z whih satis�es the inequalities �� < arg z � �. So arg z isuniquely de�ned for all omplex numbers. arg z is alled the prinipal argument ofz. The number a � bi is alled the onjugate to z = a + bi and denoted z. Onehas zz = jzj2. This allows us to express z�1 as zjzj2 .
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Figure 1.6.1. The representation of a omplex numberIf z = a+ib then jzj = pa2 + b2 and arg z = artg ba . One represents a omplexnumber z = a+bi as a point Z of the plane with oordinates (a; b). Then jzj is equal



26 1.6 omplex seriesto the distane from Z to the origin O. And arg z represents the angle betweenthe axis of absises and the ray �!OZ. Addition of omplex numbers orrespondsto usual vetor addition. And the usual triangle inequality turns into the moduleinequality : jz + �j � jzj+ j�j:The multipliation formula for omplex numbers in the trigonometri form is espe-ially simple: r(os�+ i sin�)r0(os + i sin )= rr0(os(�+  ) + i sin(�+  )):(1.6.5)Indeed, the left-hand side and the right-hand side of (1.6.5) transform torr0(os� os � sin� sin ) + irr0(sin� os + sin os�):That is, the module of the produt is equal to the produt of modules and theargument of produt is equal to the sum of arguments:Arg z1z2 = Arg z1 �Arg z2:Any omplex number is uniquely de�ned by its module and argument.The multipliation formula allows us to prove by indution the following:(Moivre Formula) (os�+ i sin�)n = (osn�+ i sinn�):Sum of a omplex series. Now is the time to extend our summation theoryto series made of omplex numbers. We extend the whole theory without anylosses to so-alled absolutely onvergent series. The series P1k=1 zk with arbitraryomplex terms is alled absolutely onvergent, if the series P1k=1 jzkj of absolutevalues onverges.For any real number x one de�nes two nonnegative numbers: its positive x+ andnegative x� parts as x+ = x[x � 0℄ and x� = �x[x < 0℄. The following identitiesharaterize the positive and negative parts of xx+ + x� = jxj; x+ � x� = x:Now the sum of an absolutely onvergent series of real numbers is de�ned as follows:(1.6.6) 1Xk=1 ak = 1Xk=1 a+k � 1Xk=1 a�k :That is, from the sum of all positive summands one subtrats the sum of modulesof all negative summands. The two series on the right-hand side onverge, beausea+k � jakj, a�k � jakj and P1k=1 jakj <1.For an absolutely onvergent omplex series P1k=1 zk we de�ne the real andimaginary parts of its sum separately by the formulasRe 1Xk=1 zk = 1Xk=1Re zk; Im 1Xk=1 zk = 1Xk=1 Im zk:(1.6.7)The series in the right-hand sides of these formulas are absolutely onvergent, sinejRe zkj � jzkj and j Im zkj � jzkj.



1.6 omplex series 27Theorem 1.6.1. For any pair of absolutely onvergent series P1k=1 ak andP1k=1 bk its termwise sum P1k=1(ak + bk) absolutely onverges and(1.6.8) 1Xk=1(ak + bk) = 1Xk=1 ak + 1Xk=1 bk:Proof. First, remark that the absolute onvergene of the series on the left-hand side follows from the Module Inequality jak+bkj � jakj+ jbkj and the absoluteonvergene of the series on the right-hand side.Now onsider the ase of real numbers. Representing all sums in (1.6.8) asdi�erenes of their positive and negative parts and separating positive and negativeterms in di�erent sides one transforms (1.6.8) into1Xk=1 a+k + 1Xk=1 b+k + 1Xk=1(ak + bk)� = 1Xk=1 a�k + 1Xk=1 b�k + 1Xk=1(ak + bk)+:But this equality is true due to termwise addition for positive series and the follow-ing identity, x� + y� + (x+ y)+ = x+ + y+ + (x+ y)�:Moving terms around turns this identity into(x+ y)+ � (x+ y)� = (x+ � x�) + (y+ � y�);whih is true due to the identity x+ �+x� = x.In the omplex ase the equality (1.6.8) splits into two equalities, one for realparts and another for imaginary parts. As for real series the termwise addition isalready proved, we an write the following hain of equalities,Re (P1k=1 ak +P1k=1 bk) = ReP1k=1 ak +ReP1k=1 bk=P1k=1Re ak +P1k=1 Re bk=P1k=1(Re ak +Re bk)=P1k=1Re(ak + bk)= ReP1k=1(ak + bk);whih proves the equality of real parts in (1.6.8). The same proof works for theimaginary parts. �Sum Partition Theorem. An unordered sum of a family of omplex numbersis de�ned by the same formulas (1.6.6) and (1.6.7). Sine for positive series non-ordered sums oinide with the ordered sums, we get the same oinidene for allabsolutely onvergent series. Hene the ommutativity law holds for all absolutelyonvergene series.Theorem 1.6.2. If I = Fj2J Ij andP1k=1 jakj <1 thenPj2J ���Pi2Ij ai��� <1and Pj2JPi2Ij ai =Pi2I ai.Proof. At �rst onsider the ase of real summands. By de�nition Pi2I ai =Pi2I a+i �Pi2I a�i . By Sum Partition Theorem positive series one transforms theoriginal sum into Pj2JPi2Ij a+i �Pj2JPi2Ij a�i :



28 1.6 omplex seriesNow by the Termwise Addition applied at �rst to external and after to internalsums one getsPj2J �Pi2Ij a+i �Pi2Ij a�i � =Pj2JPi2Ij (a+i � a�i ) =Pj2JPi2Ij ai:So the Sum Partition Theorem is proved for all absolutely onvergent real series.And it immediately extends to absolutely onvergent omplex series by its splittinginto real and imaginary parts. �Theorem 1.6.3 (Termwise Multipliation). If P1k=1 jzkj < 1 then for any(omplex) , P1k=1 jzkj <1 and P1k=1 zk = P1k=1 zk.Proof. Termwise Multipliation for positive numbers gives the �rst statementof the theorem P1k=1 jzkj = P1k=1 jjjzkj = jjP1k=1 jzkj. The further proof isdivided into �ve ases.At �rst suppose  is positive and zk real. Then z+k = z+k and by virtue ofTermwise Multipliation for positive series we getP1k=1 zk =P1k=1 z+k �P1k=1 z�k= P1k=1 z+k � P1k=1 z�k=  �P1k=1 z+k �P1k=1 z�k �= P1k=1 zk:The seond ase. Let  = �1 and zk be real. In this aseP1k=1�zk =P1k=1(�zk)+ �P1k=1(�zk)� =P1k=1 z�k �P1k=1 z+k = �P1k=1 zk:The third ase. Let  be real and zk omplex. In this ase Re zk = Re zk andthe two ases above imply the Termwise Multipliation for any real . HeneReP1k=1 zk =P1k=1 Re zk=P1k=1 Re zk= P1k=1Re zk= ReP1k=1 zk= Re P1k=1 zk:The same is true for imaginary parts.The fourth ase. Let  = i and zk be omplex. Then Re izk = � Im zk andIm izk = Re zk. So one gets for real partsReP1k=1 izk =P1k=1 Re(izk)=P1k=1� Im zk= �P1k=1 Im zk= � ImP1k=1 zk= Re iP1k=1 zk:



1.6 omplex series 29The general ase. Let  = a+ bi with real a, b. ThenP1k=1 zk = aP1k=1 zk + ibP1k=1 zk=P1k=1 azk +P1k=1 ibzk=P1k=1(azk + ibzk)=P1k=1 zk: �Multipliation of Series. For two given series P1k=0 ak and P1k=0 bk, onede�nes their onvolution as a seriesP1n=0 n, where n =Pnk=0 akbn�k.Theorem 1.6.4 (Cauhy). For any pair of absolutely onvergent seriesP1k=0 akand P1k=0 bk their onvolution P1k=0 k absolutely onverges andP1k=0 k =P1k=0 akP1k=0 bk:Proof. Consider the double seriesPi;j aibj . Then by the Sum Partition The-orem its sum is equal toP1j=0 (P1i=0 aibj) =P1j=0 bj (P1i=0 ai) = (P1i=0 ai)(P1j=0 bj):On the other hand,Pi;j aibj =P1n=0Pn+1�1k=0 akbn�k. But the last sum is just theonvolution.This proof goes through for positive series. In the generalase we have to proveabsolute onvergene of the double series. But this follows from(P1k=0 jakj) (P1k=0 jbkj) =P1k=0 jkj: �Module Inequality.(1.6.9) ����� 1Xk=1 zk����� � 1Xk=1 jzkj:Let zk = xk + iyk. Summation of the inequalities �jxkj � xk � jxk j gives�P1k=1 jxkj � P1k=1 xk � P1k=1 jxk j, whih means jP1k=1 xkj � P1k=1 jxk j. Thesame inequality is true for yk. Consider z0k = jxk j + ijykj. Then jzkj = jz0kj andjP1k=1 zkj � jP1k=1 z0kj. Therefore it is suÆient to prove the inequality (1.6.9) forz0k, that is, for numbers with non-negative real and imaginary parts. Now supposingxk; yk to be nonnegative one gets the following hain of equivalent transformationsof (1.6.9):(P1k=1 xk)2 + (P1k=1 yk)2 � (P1k=1 jzkj)2P1k=1 xk �q(P1k=1 jzkj)2 � (P1k=1 yk)2Pnk=1 xk �q(P1k=1 jzkj)2 � (P1k=1 yk)2; 8n = 1; 2; : : :P1k=1 yk �q(P1k=1 jzkj)2 � (RePnk=1 xk)2; 8n = 1; 2; : : :Pmk=1 yk �q(P1k=1 jzkj)2 � (Pnk=1 xk)2; 8n;m = 1; 2; : : :(Pnk=1 xk)2 + (Pmk=1 yk)2 � (P1k=1 jzkj)2 ; 8m;n = 1; 2; : : :



30 1.6 omplex seriesr�PNk=1 xk�2 + �PNk=1 yk�2 �P1k=1 jzkj; 8N = 1; 2; : : :���PNk=1 zk��� �P1k=1 jzkj; 8N = 1; 2; : : :The inequalities of the last system hold beause ���PNk=1 zk��� � PNk=1 jzkj �P1k=1 jzkj.Complex geometri progressions. The sum of a geometri progression witha omplex ratio is given by the same formula(1.6.10) n�1Xk=0 zk = 1� zn1� z :And the proof is the same as in the ase of real numbers. But the meaning ofthis formula is di�erent. Any omplex formula is in fat a pair of formulas. Anyomplex equation is in fat a pair of equations.In partiular, for z = q(sin� + i os�) the real part of the left-hand side of(1.6.10) owing to the Moivre Formula turns intoPn�1k=0 qk sin k� and the right-handside turns into Pn�1k=0 qk os k�. So the formula for a geometri progression splitsinto two formulas whih allow us to telesope some trigonometri series.Espeially interesting is the ase with the ratio "n = os 2�n + i sin 2�n . In thisase the geometri progression ylially takes the same values, beause "nn = 1.The terms of this sequene are alled the roots of unity, beause they satisfy theequation zn � 1 = 0.Lemma 1.6.5. (zn � 1) =Qnk=1(z � "kn).Proof. Denote by P (z) the right-hand side produt. This polynomial hasdegree n, has major oeÆient 1 and has all "kn as its roots. Then the di�erene(zn � 1)� P (z) is a polynomial of degree < n whih has n di�erent roots. Suh apolynomial has to be 0 by virtue of the following general theorem. �Theorem 1.6.6. The number of roots of any nonzero omplex polynomial doesnot exeed its degree.Proof. The proof is by indution on the degree of P (z). A polynomial ofdegree 1 has the form az+b and the only root is � ba . Suppose our theorem is provedfor any polynomial of degree< n. Consider a polynomial P (z) = a0+a1z+� � �+anznof degree n, where the oeÆients are omplex numbers. Suppose it has at least nroots z1; : : : ; zn. Consider the polynomial P �(z) = anQnk=1(z� zk). The di�ereneP (z) � P �(z) has degree < n and has at least n roots (all zk). By the indutionhypothesis this di�erene is zero. Hene, P (z) = P �(z). But P �(z) has only nroots. Indeed, for any z di�erent from all zk one has jz � zkj > 0. ThereforejP �(z)j = janjQnk=1 jz � zkj > 0. �By bloking onjugated roots one gets a pure real formula:zn � 1 = (z � 1) (n�1)=2Yk=1 �z2 � 2z os 2k�n + 1� :



1.6 omplex series 31Complexi�ation of series. Complex numbers are e�etively applied tosum up so-alled trigonometri series, i.e., series of the type P1k=0 ak os kx andP1k=0 ak sin kx. For example, to sum the series P1k=1 qk sin k� one ouples it withits dualP1k=0 qk os k� to form a omplex seriesP1k=0 qk(os k�+i sin k�). The lastis a omplex geometri series. Its sum is 11�z , where z = os�+i sin�. Now the sumof the sine seriesP1k=1 qk sin k� is equal to Im 11�z , the imaginary part of the om-plex series, and the real part of the omplex series oinides with the osine series.In partiular, for q = 1, one has 11�z = 11+os�+i sin� . To evaluate the real and imag-inary parts one multiplies both numerator and denominator by 1 + os� � i sin�.Then one gets (1 � os�)2 + sin2 � = 1 � 2 os2 � + os2 � + sin2 � = 2 � 2 os�as the denominator. Hene 11�z = 1�os�+i sin�2�2 os� = 12 + 12 ot �2 . And we get tworemarkable formulas for the sum of the divergent series1Xk=0 os k� = 12 ; 1Xk=1 sin k� = 12 ot �2 :For � = 0 the left series turns into P1k=0(�1)k. The evaluation of the Euler seriesvia this osine series is remarkably short, it takes one line. But one has to knowintegrals and a something else to justify this evaluation.Problems.1. Find real and imaginary parts for 11�i , ( 1�i1+i )3, i5+2i19+1 , (1+i)5(1�i)3 .2. Find trigonometri form for �1, 1 + i, p3 + i.3. Prove that z1z2 = 0 implies either z1 = 0 or z2 = 0.4. Prove the distributivity law for omplex numbers.5. Analytially prove the inequality jz1 + z2j � jz1j+ jz2j.6. Evaluate Pn�1k=1 1zk(zk+1) , where zk = 1 + kz.7. Evaluate Pn�1k=1 z2k, where zk = 1 + kz.8. Evaluate Pn�1k=1 sin k2k .9. Solve z2 = i.10. Solve z2 = 3� 4i.11. Telesope P1k=1 sin 2k3k .12. Prove that the onjugated to a root of polynomial with real oeÆient is theroot of the polynomial.13. Prove that z1 + z2 = z1 + z2.14. Prove that z1z2 = z1 z2.�15. Solve 8x3 � 6x� 1 = 0.16. Evaluate P1k=1 sin k2k .17. Evaluate P1k=1 sin 2k3k .18. Prove absolute onvergene of P1k=0 zkk! for any z.19. For whih z the seriesP1k=1 zkk absolutely onverges?20. Multiply a geometri series onto itself several times applying Cauhy formula.21. Find series for p1 + x by method of inde�nite oeÆients.22. Does seriesP1k=1 sin kk absolutely onverge?23. Does seriesP1k=1 sin kk2 absolutely onverge?


