
1.6. Complex SeriesOn the 
ontents of the le
ture. Complex numbers hide the key to the EulerSeries. The summation theory developed for positive series now extends to 
omplexseries. We will see that 
omplex series 
an help to sum real series.Cubi
 equation. Complex numbers arise in 
onne
tion with the solution ofthe 
ubi
 equation. The substitution x = y� a3 redu
es the general 
ubi
 equationx3 + ax2 + bx+ 
 = 0 to y3 + py + q = 0:The redu
ed equation one solves by the following tri
k. One looks for a root in theform y = �+�. Then (�+�)3+p(�+�)+q = 0 or �3+�3+3��(�+�)+p(�+�)+q =0. The latter equality one redu
es to the system�3 + �3 = �q;3�� = �p:(1.6.1)Raising the se
ond equation into a 
ube one gets�3 + �3 = �q;27�3�3 = �p3:Now �3, �3 are roots of the quadrati
 equationx2 + qx� p327 ;
alled the resolution of the original 
ubi
 equation. Sometimes the resolution hasno roots, while the 
ubi
 equation always has a root. Nevertheless one 
an evaluatea root of the 
ubi
 equation with the help of its resolution. To do this one simplyignores that the numbers under the square roots are negative.For example 
onsider the following 
ubi
 equation(1.6.2) x3 � 32x� 12 = 0:Then (1.6.1) turns into �3 + �3 = 12 ;�3�3 = 18 ;The 
orresponding resolution is t2 � t2 + 18 = 0 and its roots aret1;2 = 14 �q 116 � 18 = 14 � 14p�1:Then the desired root of the 
ubi
 equation is given by(1.6.3) 3q 14 (1 +p�1) + 3q 14 (1�p�1) = 13p4 � 3p1 +p�1 + 3p1�p�1� :It turns out that the latter expression one uniquely interprets as a real number whi
his a root of the equation (1.6.2). To evaluate it 
onsider the following expression(1.6.4) 3q(1 +p�1)2 � 3q(1 +p�1) 3q(1�p�1) + 3q(1�p�1)2:Sin
e (1 +p�1)2 = 12 + 2p�1 +p�12 = 1 + 2p�1� 1 = 2p�1;the left summand of (1.6.4) is equal to3q2p�1 = 3p2 3qp�1 = 3p2q 3p�1 = 3p2p�1:24



1.6 
omplex series 25Similarly (1 � p�1)2 = �2p�1, and the right summand of (1.6.4) turns into� 3p2p�1. Finally (1 +p�1)(1�p�1) = 12 �p�12 = 2 and the 
entral one is� 3p2. As a result the whole expression (1.6.4) is evaluated as � 3p2.On the other hand one evaluates the produ
t of (1.6.3) and (1.6.4) by the usualformula as the sum of 
ubes13p4 ((1 +p�1) + (1�p�1)) = 13p4 ((1 + 1) + (p�1)�p�1)) = 13p4 (2 + 0) = 3p2:Consequently (1.6.3) is equal to 3p2� 3p2 = �1. And �1 is a true root of (1.6.2).Arithmeti
 of 
omplex numbers. In the sequel we use i instead of p�1.There are two basi
 ways to represent a 
omplex number. The representationz = a + ib, where a and b are real numbers we 
all the Cartesian form of z. Thenumbers a and b are 
alled respe
tively the real and the imaginary parts of z and aredenoted by Re z and by Im z respe
tively. Addition and multipli
ation of 
omplexnumbers are de�ned via their real and imaginary parts as followsRe(z1 + z2) = Re z1 +Re z2;Im(z1 + z2) = Im z1 + Im z2;Re(z1z2) = Re z1Re z2 � Im z1 Im z2;Im(z1z2) = Re z1 Im z2 + Im z1Re z2:The trigonometri
 form of a 
omplex number is z = �(
os� + i sin�), where� � 0 is 
alled the module or the absolute value of a 
omplex number z and isdenoted jzj, and � is 
alled its argument. The argument of a 
omplex number isde�ned modulo 2�. We denote by Arg z the set of all arguments of z, and by arg zthe element of Arg z whi
h satis�es the inequalities �� < arg z � �. So arg z isuniquely de�ned for all 
omplex numbers. arg z is 
alled the prin
ipal argument ofz. The number a � bi is 
alled the 
onjugate to z = a + bi and denoted z. Onehas zz = jzj2. This allows us to express z�1 as zjzj2 .
arg z
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Z

Figure 1.6.1. The representation of a 
omplex numberIf z = a+ib then jzj = pa2 + b2 and arg z = ar
tg ba . One represents a 
omplexnumber z = a+bi as a point Z of the plane with 
oordinates (a; b). Then jzj is equal
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omplex seriesto the distan
e from Z to the origin O. And arg z represents the angle betweenthe axis of abs
ises and the ray �!OZ. Addition of 
omplex numbers 
orrespondsto usual ve
tor addition. And the usual triangle inequality turns into the moduleinequality : jz + �j � jzj+ j�j:The multipli
ation formula for 
omplex numbers in the trigonometri
 form is espe-
ially simple: r(
os�+ i sin�)r0(
os + i sin )= rr0(
os(�+  ) + i sin(�+  )):(1.6.5)Indeed, the left-hand side and the right-hand side of (1.6.5) transform torr0(
os� 
os � sin� sin ) + irr0(sin� 
os + sin 
os�):That is, the module of the produ
t is equal to the produ
t of modules and theargument of produ
t is equal to the sum of arguments:Arg z1z2 = Arg z1 �Arg z2:Any 
omplex number is uniquely de�ned by its module and argument.The multipli
ation formula allows us to prove by indu
tion the following:(Moivre Formula) (
os�+ i sin�)n = (
osn�+ i sinn�):Sum of a 
omplex series. Now is the time to extend our summation theoryto series made of 
omplex numbers. We extend the whole theory without anylosses to so-
alled absolutely 
onvergent series. The series P1k=1 zk with arbitrary
omplex terms is 
alled absolutely 
onvergent, if the series P1k=1 jzkj of absolutevalues 
onverges.For any real number x one de�nes two nonnegative numbers: its positive x+ andnegative x� parts as x+ = x[x � 0℄ and x� = �x[x < 0℄. The following identities
hara
terize the positive and negative parts of xx+ + x� = jxj; x+ � x� = x:Now the sum of an absolutely 
onvergent series of real numbers is de�ned as follows:(1.6.6) 1Xk=1 ak = 1Xk=1 a+k � 1Xk=1 a�k :That is, from the sum of all positive summands one subtra
ts the sum of modulesof all negative summands. The two series on the right-hand side 
onverge, be
ausea+k � jakj, a�k � jakj and P1k=1 jakj <1.For an absolutely 
onvergent 
omplex series P1k=1 zk we de�ne the real andimaginary parts of its sum separately by the formulasRe 1Xk=1 zk = 1Xk=1Re zk; Im 1Xk=1 zk = 1Xk=1 Im zk:(1.6.7)The series in the right-hand sides of these formulas are absolutely 
onvergent, sin
ejRe zkj � jzkj and j Im zkj � jzkj.
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omplex series 27Theorem 1.6.1. For any pair of absolutely 
onvergent series P1k=1 ak andP1k=1 bk its termwise sum P1k=1(ak + bk) absolutely 
onverges and(1.6.8) 1Xk=1(ak + bk) = 1Xk=1 ak + 1Xk=1 bk:Proof. First, remark that the absolute 
onvergen
e of the series on the left-hand side follows from the Module Inequality jak+bkj � jakj+ jbkj and the absolute
onvergen
e of the series on the right-hand side.Now 
onsider the 
ase of real numbers. Representing all sums in (1.6.8) asdi�eren
es of their positive and negative parts and separating positive and negativeterms in di�erent sides one transforms (1.6.8) into1Xk=1 a+k + 1Xk=1 b+k + 1Xk=1(ak + bk)� = 1Xk=1 a�k + 1Xk=1 b�k + 1Xk=1(ak + bk)+:But this equality is true due to termwise addition for positive series and the follow-ing identity, x� + y� + (x+ y)+ = x+ + y+ + (x+ y)�:Moving terms around turns this identity into(x+ y)+ � (x+ y)� = (x+ � x�) + (y+ � y�);whi
h is true due to the identity x+ �+x� = x.In the 
omplex 
ase the equality (1.6.8) splits into two equalities, one for realparts and another for imaginary parts. As for real series the termwise addition isalready proved, we 
an write the following 
hain of equalities,Re (P1k=1 ak +P1k=1 bk) = ReP1k=1 ak +ReP1k=1 bk=P1k=1Re ak +P1k=1 Re bk=P1k=1(Re ak +Re bk)=P1k=1Re(ak + bk)= ReP1k=1(ak + bk);whi
h proves the equality of real parts in (1.6.8). The same proof works for theimaginary parts. �Sum Partition Theorem. An unordered sum of a family of 
omplex numbersis de�ned by the same formulas (1.6.6) and (1.6.7). Sin
e for positive series non-ordered sums 
oin
ide with the ordered sums, we get the same 
oin
iden
e for allabsolutely 
onvergent series. Hen
e the 
ommutativity law holds for all absolutely
onvergen
e series.Theorem 1.6.2. If I = Fj2J Ij andP1k=1 jakj <1 thenPj2J ���Pi2Ij ai��� <1and Pj2JPi2Ij ai =Pi2I ai.Proof. At �rst 
onsider the 
ase of real summands. By de�nition Pi2I ai =Pi2I a+i �Pi2I a�i . By Sum Partition Theorem positive series one transforms theoriginal sum into Pj2JPi2Ij a+i �Pj2JPi2Ij a�i :



28 1.6 
omplex seriesNow by the Termwise Addition applied at �rst to external and after to internalsums one getsPj2J �Pi2Ij a+i �Pi2Ij a�i � =Pj2JPi2Ij (a+i � a�i ) =Pj2JPi2Ij ai:So the Sum Partition Theorem is proved for all absolutely 
onvergent real series.And it immediately extends to absolutely 
onvergent 
omplex series by its splittinginto real and imaginary parts. �Theorem 1.6.3 (Termwise Multipli
ation). If P1k=1 jzkj < 1 then for any(
omplex) 
, P1k=1 j
zkj <1 and P1k=1 
zk = 
P1k=1 zk.Proof. Termwise Multipli
ation for positive numbers gives the �rst statementof the theorem P1k=1 j
zkj = P1k=1 j
jjzkj = j
jP1k=1 jzkj. The further proof isdivided into �ve 
ases.At �rst suppose 
 is positive and zk real. Then 
z+k = 
z+k and by virtue ofTermwise Multipli
ation for positive series we getP1k=1 
zk =P1k=1 
z+k �P1k=1 
z�k= 
P1k=1 z+k � 
P1k=1 z�k= 
 �P1k=1 z+k �P1k=1 z�k �= 
P1k=1 zk:The se
ond 
ase. Let 
 = �1 and zk be real. In this 
aseP1k=1�zk =P1k=1(�zk)+ �P1k=1(�zk)� =P1k=1 z�k �P1k=1 z+k = �P1k=1 zk:The third 
ase. Let 
 be real and zk 
omplex. In this 
ase Re 
zk = 
Re zk andthe two 
ases above imply the Termwise Multipli
ation for any real 
. Hen
eReP1k=1 
zk =P1k=1 Re 
zk=P1k=1 
Re zk= 
P1k=1Re zk= 
ReP1k=1 zk= Re 
P1k=1 zk:The same is true for imaginary parts.The fourth 
ase. Let 
 = i and zk be 
omplex. Then Re izk = � Im zk andIm izk = Re zk. So one gets for real partsReP1k=1 izk =P1k=1 Re(izk)=P1k=1� Im zk= �P1k=1 Im zk= � ImP1k=1 zk= Re iP1k=1 zk:



1.6 
omplex series 29The general 
ase. Let 
 = a+ bi with real a, b. Then
P1k=1 zk = aP1k=1 zk + ibP1k=1 zk=P1k=1 azk +P1k=1 ibzk=P1k=1(azk + ibzk)=P1k=1 
zk: �Multipli
ation of Series. For two given series P1k=0 ak and P1k=0 bk, onede�nes their 
onvolution as a seriesP1n=0 
n, where 
n =Pnk=0 akbn�k.Theorem 1.6.4 (Cau
hy). For any pair of absolutely 
onvergent seriesP1k=0 akand P1k=0 bk their 
onvolution P1k=0 
k absolutely 
onverges andP1k=0 
k =P1k=0 akP1k=0 bk:Proof. Consider the double seriesPi;j aibj . Then by the Sum Partition The-orem its sum is equal toP1j=0 (P1i=0 aibj) =P1j=0 bj (P1i=0 ai) = (P1i=0 ai)(P1j=0 bj):On the other hand,Pi;j aibj =P1n=0Pn+1�1k=0 akbn�k. But the last sum is just the
onvolution.This proof goes through for positive series. In the general
ase we have to proveabsolute 
onvergen
e of the double series. But this follows from(P1k=0 jakj) (P1k=0 jbkj) =P1k=0 j
kj: �Module Inequality.(1.6.9) ����� 1Xk=1 zk����� � 1Xk=1 jzkj:Let zk = xk + iyk. Summation of the inequalities �jxkj � xk � jxk j gives�P1k=1 jxkj � P1k=1 xk � P1k=1 jxk j, whi
h means jP1k=1 xkj � P1k=1 jxk j. Thesame inequality is true for yk. Consider z0k = jxk j + ijykj. Then jzkj = jz0kj andjP1k=1 zkj � jP1k=1 z0kj. Therefore it is suÆ
ient to prove the inequality (1.6.9) forz0k, that is, for numbers with non-negative real and imaginary parts. Now supposingxk; yk to be nonnegative one gets the following 
hain of equivalent transformationsof (1.6.9):(P1k=1 xk)2 + (P1k=1 yk)2 � (P1k=1 jzkj)2P1k=1 xk �q(P1k=1 jzkj)2 � (P1k=1 yk)2Pnk=1 xk �q(P1k=1 jzkj)2 � (P1k=1 yk)2; 8n = 1; 2; : : :P1k=1 yk �q(P1k=1 jzkj)2 � (RePnk=1 xk)2; 8n = 1; 2; : : :Pmk=1 yk �q(P1k=1 jzkj)2 � (Pnk=1 xk)2; 8n;m = 1; 2; : : :(Pnk=1 xk)2 + (Pmk=1 yk)2 � (P1k=1 jzkj)2 ; 8m;n = 1; 2; : : :



30 1.6 
omplex seriesr�PNk=1 xk�2 + �PNk=1 yk�2 �P1k=1 jzkj; 8N = 1; 2; : : :���PNk=1 zk��� �P1k=1 jzkj; 8N = 1; 2; : : :The inequalities of the last system hold be
ause ���PNk=1 zk��� � PNk=1 jzkj �P1k=1 jzkj.Complex geometri
 progressions. The sum of a geometri
 progression witha 
omplex ratio is given by the same formula(1.6.10) n�1Xk=0 zk = 1� zn1� z :And the proof is the same as in the 
ase of real numbers. But the meaning ofthis formula is di�erent. Any 
omplex formula is in fa
t a pair of formulas. Any
omplex equation is in fa
t a pair of equations.In parti
ular, for z = q(sin� + i 
os�) the real part of the left-hand side of(1.6.10) owing to the Moivre Formula turns intoPn�1k=0 qk sin k� and the right-handside turns into Pn�1k=0 qk 
os k�. So the formula for a geometri
 progression splitsinto two formulas whi
h allow us to teles
ope some trigonometri
 series.Espe
ially interesting is the 
ase with the ratio "n = 
os 2�n + i sin 2�n . In this
ase the geometri
 progression 
y
li
ally takes the same values, be
ause "nn = 1.The terms of this sequen
e are 
alled the roots of unity, be
ause they satisfy theequation zn � 1 = 0.Lemma 1.6.5. (zn � 1) =Qnk=1(z � "kn).Proof. Denote by P (z) the right-hand side produ
t. This polynomial hasdegree n, has major 
oeÆ
ient 1 and has all "kn as its roots. Then the di�eren
e(zn � 1)� P (z) is a polynomial of degree < n whi
h has n di�erent roots. Su
h apolynomial has to be 0 by virtue of the following general theorem. �Theorem 1.6.6. The number of roots of any nonzero 
omplex polynomial doesnot ex
eed its degree.Proof. The proof is by indu
tion on the degree of P (z). A polynomial ofdegree 1 has the form az+b and the only root is � ba . Suppose our theorem is provedfor any polynomial of degree< n. Consider a polynomial P (z) = a0+a1z+� � �+anznof degree n, where the 
oeÆ
ients are 
omplex numbers. Suppose it has at least nroots z1; : : : ; zn. Consider the polynomial P �(z) = anQnk=1(z� zk). The di�eren
eP (z) � P �(z) has degree < n and has at least n roots (all zk). By the indu
tionhypothesis this di�eren
e is zero. Hen
e, P (z) = P �(z). But P �(z) has only nroots. Indeed, for any z di�erent from all zk one has jz � zkj > 0. ThereforejP �(z)j = janjQnk=1 jz � zkj > 0. �By blo
king 
onjugated roots one gets a pure real formula:zn � 1 = (z � 1) (n�1)=2Yk=1 �z2 � 2z 
os 2k�n + 1� :



1.6 
omplex series 31Complexi�
ation of series. Complex numbers are e�e
tively applied tosum up so-
alled trigonometri
 series, i.e., series of the type P1k=0 ak 
os kx andP1k=0 ak sin kx. For example, to sum the series P1k=1 qk sin k� one 
ouples it withits dualP1k=0 qk 
os k� to form a 
omplex seriesP1k=0 qk(
os k�+i sin k�). The lastis a 
omplex geometri
 series. Its sum is 11�z , where z = 
os�+i sin�. Now the sumof the sine seriesP1k=1 qk sin k� is equal to Im 11�z , the imaginary part of the 
om-plex series, and the real part of the 
omplex series 
oin
ides with the 
osine series.In parti
ular, for q = 1, one has 11�z = 11+
os�+i sin� . To evaluate the real and imag-inary parts one multiplies both numerator and denominator by 1 + 
os� � i sin�.Then one gets (1 � 
os�)2 + sin2 � = 1 � 2 
os2 � + 
os2 � + sin2 � = 2 � 2 
os�as the denominator. Hen
e 11�z = 1�
os�+i sin�2�2 
os� = 12 + 12 
ot �2 . And we get tworemarkable formulas for the sum of the divergent series1Xk=0 
os k� = 12 ; 1Xk=1 sin k� = 12 
ot �2 :For � = 0 the left series turns into P1k=0(�1)k. The evaluation of the Euler seriesvia this 
osine series is remarkably short, it takes one line. But one has to knowintegrals and a something else to justify this evaluation.Problems.1. Find real and imaginary parts for 11�i , ( 1�i1+i )3, i5+2i19+1 , (1+i)5(1�i)3 .2. Find trigonometri
 form for �1, 1 + i, p3 + i.3. Prove that z1z2 = 0 implies either z1 = 0 or z2 = 0.4. Prove the distributivity law for 
omplex numbers.5. Analyti
ally prove the inequality jz1 + z2j � jz1j+ jz2j.6. Evaluate Pn�1k=1 1zk(zk+1) , where zk = 1 + kz.7. Evaluate Pn�1k=1 z2k, where zk = 1 + kz.8. Evaluate Pn�1k=1 sin k2k .9. Solve z2 = i.10. Solve z2 = 3� 4i.11. Teles
ope P1k=1 sin 2k3k .12. Prove that the 
onjugated to a root of polynomial with real 
oeÆ
ient is theroot of the polynomial.13. Prove that z1 + z2 = z1 + z2.14. Prove that z1z2 = z1 z2.�15. Solve 8x3 � 6x� 1 = 0.16. Evaluate P1k=1 sin k2k .17. Evaluate P1k=1 sin 2k3k .18. Prove absolute 
onvergen
e of P1k=0 zkk! for any z.19. For whi
h z the seriesP1k=1 zkk absolutely 
onverges?20. Multiply a geometri
 series onto itself several times applying Cau
hy formula.21. Find series for p1 + x by method of inde�nite 
oeÆ
ients.22. Does seriesP1k=1 sin kk absolutely 
onverge?23. Does seriesP1k=1 sin kk2 absolutely 
onverge?


