
1.5. Teles
opi
 SumsOn the 
ontent of this le
ture. In this le
ture we learn the main se
ret ofelementary summation theory. We will evaluate series via their partial sums. Weintrodu
e fa
torial powers, whi
h are easy to sum. Following Stirling we expand11+x2 into a series of negative fa
torial powers and apply this expansion to evaluatethe Euler series with Stirling's a

ura
y of 10�8.The series P1k=1 1k(k+1) . In the �rst le
ture we 
al
ulated in�nite sums di-re
tly without invoking partial sums. Now we present a dual approa
h to summingseries. A

ording to this approa
h, at �rst one �nds a formula for the n-th par-tial sum and then substitutes in this formula in�nity instead of n. The seriesP1k=1 1k(k+1) gives a simple example for this method. The key to sum it up is thefollowing identity 1k(k + 1) = 1k � 1k + 1 :Be
ause of this identity P1k=1 1k(k+1) turns into the sum of di�eren
es(1.5.1) �1� 12�+�12 � 13�+�13 � 14�+ � � �+� 1n � 1n+ 1�+ : : : :Its n-th partial sum is equal to 1� 1n+1 . Substituting in this formula n = +1, onegets 1 as its ultimate sum.Teles
opi
 sums. The sum (1.5.1) represents a teles
opi
 sum. This name isused for sums of the form Pnk=0(ak � ak+1). The value of su
h a teles
opi
 sumis determined by the values of the �rst and the last of ak, similarly to a teles
ope,whose thi
kness is determined by the radii of the external and internal rings. Indeed,nXk=0(ak � ak+1) = nXk=0 ak � nXk=0 ak+1 = a0 + nXk=1 ak � n�1Xk=0 ak+1 � an+1 = a0 � an+1:The same arguments for in�nite teles
opi
 sums give(1.5.2) 1Xk=0(ak � ak+1) = a0:But this proof works only if P1k=0 ak <1. This is untrue for P1k=1 1k(k+1) , owingto the divergen
e of the Harmoni
 series. But the equality (1.5.2) holds also ifak tends to 0 as k tends to in�nity. Indeed, in this 
ase a0 is the least numbermajorizing all a0 � an, the n-th partial sums of P1k=0 ak.Di�eren
es. For a given sequen
e fakg one denotes by f�akg the sequen
eof di�eren
es �ak = ak+1 � ak and 
alls the latter sequen
e the di�eren
e of fakg.This is the main formula of elementary summation theory.n�1Xk=0�ak = an � a0To teles
ope a seriesP1k=0 ak it is suÆ
ient to �nd a sequen
e fAkg su
h that�Ak = ak. On the other hand the sequen
e of sums An =Pn�1k=0 ak has di�eren
e�An = an. Therefore, we see that to teles
ope a sum is equivalent to �nd a formula20
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opi
 sums 21for partial sums. This lead to 
on
ept of a teles
opi
 fun
tion. For a fun
tion f(x)we introdu
e its di�eren
e �f(x) as f(x + 1) � f(x). A fun
tion f(x) teles
opesPak if �f(k) = ak for all k.Often the sequen
e fakg that we would like to teles
ope has the form ak = f(k)for some fun
tion. Then we are sear
hing for a teles
opi
 fun
tion F (x) for f(x),i.e., a fun
tion su
h that �F (x) = f(x).To evaluate the di�eren
e of a fun
tion is usually mu
h easier than to teles
opeit. For this reason one has evaluated the di�eren
es of all basi
 fun
tions andorganized a table of di�eren
es. In order to teles
ope a given fun
tion, look in thistable to �nd a table fun
tion whose di�eren
e 
oin
ides with or is 
lose to givenfun
tion.For example, the di�eren
es of xn for n � 3 are �x = 1, �x2 = 2x + 1,�x3 = 3x2 + 3x + 1. To teles
ope P1k=1 k2 we 
hoose in this table x3. Then�x33 �x2 = x+ 13 = �x22 ��x6 . Therefore, x2 = ��x33 � x22 + x6�. This immediatelyimplies the following formula for sums of squares:(1.5.3) n�1Xk=1 k2 = 2n3 � 3n2 + n6 :Fa
torial powers. The usual powers xn have 
ompli
ated di�eren
es. Theso-
alled fa
torial powers xk have simpler di�eren
es. For any number x and anynatural number k, let xk denote x(x � 1)(x � 2) : : : (x � k + 1), and by x�k wedenote 1(x+1)(x+2):::(x+k) . At last we de�ne x0 = 1. The fa
torial power satis�es thefollowing addition law. xk+m = xk(x� k)mWe leave to the reader to 
he
k this rule for all integers m, k. The power nn fora natural n 
oin
ides with the fa
torial n! = 1 � 2 � 3 � � �n. The main property offa
torial powers is given by: �xn = nxn�1The proof is straightforward:(x + 1)k � xk = (x+ 1)1+(k�1) � x(k�1)+1= (x+ 1)xk�1 � xk�1(x� k + 1)= kxk�1:Applying this formula one 
an easily teles
ope any fa
torial polynomial, i.e., anexpression of the forma0 + a1x1 + a2x2 + a3x3 + � � �+ anxn:Indeed, the expli
it formula for the teles
oping fun
tion isa0x1 + a12 x2 + a23 x3 + a34 x4 + � � �+ ann+1xn+1:Therefore, another strategy to teles
ope xk is to represent it as a fa
torial polyno-mial.For example, to represent x2 as fa
torial polynomial, 
onsider a+ bx+ 
x2, ageneral fa
torial polynomial of degree 2. We are looking for x2 = a + bx + 
x2.Substituting x = 0 in this equality one gets a = 0. Substituting x = 1, one gets
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opi
 sums1 = b, and �nally for x = 2 one has 4 = 2+2
. Hen
e 
 = 1. As result x2 = x+x2.And the teles
oping fun
tion is given by12x2 + 13x3 = 12 (x2 � x) + 13 (x(x2 � 3x+ 2)) = 16 (2x3 � 3x2 + x):And we have on
e again proved the formula (1.5.3).Stirling Estimation of the Euler series. We will expand 1(1+x)2 into a seriesof negative fa
torial powers in order to teles
ope it. A natural �rst approximationto 1(1+x2) is x�2 = 1(x+1)(x+2) . We represent 1(1+x)2 as x�2 +R1(x), whereR1(x) = 1(1 + x)2 � x�2 = 1(x+ 1)2(x + 2) :The remainder R1(x) is in a natural way approximated by x�3. If R1(x) = x�3 +R2(x) then R2(x) = 2(x+1)2(x+2)(x+3) . Further, R2(x) = 2x�4 +R3(x), whereR3(x) = 2 � 3(x+ 1)2(x+ 2)(x+ 3)(x+ 4) = 3!x+ 1x�4:The above 
al
ulations lead to the 
onje
ture(1.5.4) 1(1 + x)2 = n�1Xk=0 k!x�k�2 + n!x+ 1x�n�1:This 
onje
ture is easily proved by indu
tion. The remainder Rn(x) = n!x+1x�n�1represents the di�eren
e 1(1+x)2 �Pn�1k=0 k!x�2�k. Owing to the inequality x�1�n� 1(n+1)! , whi
h is valid for all x � 0, the remainder de
reases to 0 as n in
reasesto in�nity. This impliesTheorem 1.5.1. For all x � 0 one has1(1 + x)2 = 1Xk=0 k!x�2�k :To 
al
ulateP1k=p 1(1+k)2 , repla
e all summands by the expressions (1.5.4). Wewill get 1Xk=p n�1Xm=0m!k�2�m + n!k + 1k�1�n! :Changing the order of summation we haven�1Xm=0m! 1Xk=p k�2�m + 1Xk=p n!k + 1k�1�n:Sin
e 11+mx�1�m teles
opes the sequen
e fk�2�mg, P1k=p k�2�m = 11+mp�1�m,Denote the sum of remainders P1k=p n!k+1k�1�n by R(n; p). Then for all natural pand n one has 1Xk=p 1(1 + k)2 = n�1Xm=0 m!1 +mp�1�m +R(n; p)



1.5 teles
opi
 sums 23For p = 0 and n = +1, the right-hand side turns into the Euler series, and one
ould get a false impression that we get nothing new. But k�2�n � 1k+1k�1�n �(k � 1)�2�n, hen
en!1 + np�1�n = 1Xk=pn!k�2�n � R(n; p) � 1Xk=p n!(k � 1)�2�n = n!1 + n (p� 1)�1�n:Sin
e (p� 1)�1�n � p�1�n = (1 + n)(p� 1)�2�n, there is a � 2 (0; 1) su
h thatR(n; p) = n!1 + np�1�n + �n!(p� 1)�2�n:Finally we get:1Xk=1 1k2 = p�1Xk=0 1(1 + k)2 + n�1Xk=0 k!1 + k p�1�k + �n!(p� 1)�2�n:For p = n = 3 this formula turns into1Xk=1 1k2 = 1 + 14 + 19 + 14 + 140 + 1180 + �420 :For p = n = 10 one gets R(10; 10) � 10!9�12. After 
an
ellations one has12�11�12�13�14�15�17�19 . This is approximately 2 � 10�8. Therefore10�1Xk=0 1(k + 1)2 + 10�1Xk=0 k!1 + k10�1�kis less than the sum of the Euler series by only 2 � 10�8. In su
h a way one 
an inone hour 
al
ulate eight digits of P1k=1 1k2 after the de
imal point. It is not a badresult, but it is still far from Euler's eighteen digits. For p = 10, to provide eighteendigits one has to sum essentially more than one hundred terms of the series. Thisis a bit too mu
h for a person, but is possible for a 
omputer.Problems.1. Teles
ope P k3.2. Represent x4 as a fa
torial polynomial.3. Evaluate P1k=1 1k(k+2) .4. Evaluate P1k=1 1k(k+1)(k+2)(k+3) .5. Prove: If �ak � �bk for all k and a1 � b1 then ak � bk for all k.6. �(x + a)n = n(x+ a)n�1.7. Prove Ar
himedes's inequality n33 �Pn�1k=1 k2 � (n+1)33 .8. Teles
ope P1k=1 k2k .9. Prove the inequalities 1n �P1k=n+1 1k2 � 1n+1 .10. Prove that the degree of �P (x) is less than the degree of P (x) for any polyno-mial P (x).11. Relying on �2n = 2n, prove that P (n) < 2n eventually for any polynomialP (x).12. ProveP1k=0 k!(x� 1)�1�k = 1x .


