1.5. Telescopic Sums

On the content of this lecture. In this lecture we learn the main secret of
elementary summation theory. We will evaluate series via their partial sums. We

introduce factorial powers, which are easy to sum. Following Stirling we expand

ﬁ into a series of negative factorial powers and apply this expansion to evaluate

the Euler series with Stirling’s accuracy of 107%.
1

The series 3,7, tr5- In the first lecture we calculated infinite sums di-

rectly without invoking partial sums. Now we present a dual approach to summing
series. According to this approach, at first one finds a formula for the n-th par-

tial sum and then substitutes in this formula infinity instead of n. The series

PP k(++1) gives a simple example for this method. The key to sum it up is the

following identity
1 1 1

k(k+1) k k+1

Because of this identity 2,7, zziqy turns into the sum of differences

a5 (12D (D) (Bt e (B ) e

Its n-th partial sum is equal to 1 — %ﬂ Substituting in this formula n = 400, one
gets 1 as its ultimate sum.

Telescopic sums. The sum (1.5.1) represents a telescopic sum. This name is
used for sums of the form Y ,_,(ar — ax41). The value of such a telescopic sum
is determined by the values of the first and the last of ag, similarly to a telescope,
whose thickness is determined by the radii of the external and internal rings. Indeed,

n n n n n—1
Z(ak — Qpq1) = Zak - Zak+1 =ao + Zak - Z Qkt1 — Qp41 = Ao — Qpy1-
k=0 k=0 k=0 k=1 k=0

The same arguments for infinite telescopic sums give

(1.5.2) Z(ak — @k41) = ao-
k=0
But this proof works only if 377, a < co. This is untrue for 3777, iy, owing

to the divergence of the Harmonic series. But the equality (1.5.2) holds also if

ar tends to 0 as k tends to infinity. Indeed, in this case ag is the least number
. . . . [o'e)

majorizing all ap — ay, the n-th partial sums of )/~ ax.

Differences. For a given sequence {aj} one denotes by {Aay} the sequence
of differences Aay = ap4+1 — ar and calls the latter sequence the difference of {ay}.
This is the main formula of elementary summation theory.

n—1
E Aap = a, — ag
k=0

To telescope a series >, ay, it is sufficient to find a sequence {A;} such that

AAy = ag. On the other hand the sequence of sums A,, = Zz;é ay, has difference
AA, = a,. Therefore, we see that to telescope a sum is equivalent to find a formula
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for partial sums. This lead to concept of a telescopic function. For a function f(z)
we introduce its difference Af(z) as f(x + 1) — f(x). A function f(z) telescopes
Say if Af(k) = ay, for all .

Often the sequence {ay} that we would like to telescope has the form a = f(k)
for some function. Then we are searching for a telescopic function F(x) for f(x),
i.e., a function such that AF(x) = f(x).

To evaluate the difference of a function is usually much easier than to telescope
it. For this reason one has evaluated the differences of all basic functions and
organized a table of differences. In order to telescope a given function, look in this
table to find a table function whose difference coincides with or is close to given
function.

For example, the differences of z™ for n < 3 are Az = 1, Az? = 2z + 1,

Az? = 3z% + 3z —|— 1. To telescope Y .-, k* we choose in this table z*. Then

Ar® g2 o T+3 = £ Therefore, 2* = A (% - 3—2 + %) This immediately

3
implies the following formula for sums of squares:

(1.5.3) Z k2 = 2”_37””

Factorial powers. The usual powers =" have complicated differences. The
so-called factorial powers 2% have simpler differences. For any number x and any
natural number k, let 2& denote z(z — 1)(z — 2)...(z — k + 1), and by === we
denote WM At last we define 22 = 1. The factorial power satisfies the
following addition law.

‘xm = ob(z — k)m‘

We leave to the reader to check this rule for all integers m, k. The power n™ for
a natural n coincides with the factorial n! = 1-2-3---n. The main property of
factorial powers is given by:

Az™ = nz™2t
The proof is straightforward'

(3: + 1) ( + 1\1+(k 1) (k—1)+1
= (ﬂ?+1)$——gjk—1($_k+1)
= ko™t

Applying this formula one can easily telescope any factorial polynomial, i.e., an
expression of the form

1 2 3 n
ag +a1x + a2x= +asx= +---+ apT .

Indeed, the explicit formula for the telescoping function is

1 2 3 4 SIS
apr™ + Gt + Lat + P+ + n”_Ha:

Therefore, another strategy to telescope z* is to represent it as a factorial polyno-
mial.

For example, to represent x~ as factorial polynomial, consider a + bx + cxz, a
general factorial polynomial of degree 2. We are looking for 22 = a + bz + ca®.
Substituting = 0 in this equality one gets a = 0. Substituting = 1, one gets
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1 = b, and finally for z = 2 one has 4 = 2+ 2¢. Hence ¢ = 1. As result 2% = z + z*.
And the telescoping function is given by
12 4+ 12% = 122 — o) + L(2(2® — 3z + 2)) = L(22° - 322 + ).

And we have once again proved the formula (1.5.3).

Stirling Estimation of the Euler series. We will expand (1+ (e into a series

of negatlve factorial powers in order to telescope it. A natural first approximation

to (1+z2) is 272 m We represent (1+x)2 as r— —l—R1( ), where
_ 1 -2 _ 1
B =T~ ey

The remainder R;(z) is in a natural way approximated by =2 If R, () = =2+

Ry(z) then Ry(x) = MW Further, Ry(z) = 22— + Rs(z), where
2.3 3y

AR PE eI D) | S [ R R

The above calculations lead to the conjecture

n!
1.5.4 ! ==l
(154) 1+$ ka +1$

n! ,—n—1
x+1$

Nkl =2=% " Owing to the inequality 2=~

This conjecture is easily proved by induction. The remainder R, (z) =

represents the difference ﬁ —
< =y +1)" which is valid for all z > 0 the remainder decreases to 0 as n increases
to infinity. This implies

THEOREM 1.5.1. For all x > 0 one has

—2-k
1+x Zk'x

To calculate Ziip m, replace all summands by the expressions (1.5.4). We

will get
1-n
1 .
Changing the order of summation we have

Zm'Zk = m+zk+1

> (5w

k=p

m=0
—2— —1—
Since ﬁx " telescopes the sequence {ki} S kT = ﬁ —
Denote the sum of remainders Zk —p ,ﬁr'l — " by R(n,p). Then for all natural p
and n one has
00 1 n—1 m)
. —1-m
—_— = ——p +R(n
Z(1+k)2 14+m + B(n.p)
k=p m=0
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For p = 0 and n = +00, the right-hand side turns into the Euler series, and one
could get a false impression that we get nothing new. But k=22 < T ==t <
(k — 1)_2_n hence

[ee) . !
=22 < <S nlk-1)Fr = T (p-1)Tin
1+n Zn _R(n,p)_;n( ) e Gy
Since (p — 1)==2 — pL = (1+n)(p—1)=2=L, there is a 6 € (0, 1) such that
n! —1—n —2—n
= Onl(p—1
R(n.p) = v +onllp—1)
Finally we get:
= 1 k!
= =t 4+ oni(p—1
ZkQ kZHk +Z1+k +énl(p — 1)~
For p = n = 3 this formula turns into
Z + crpr 1,0
K 9 4 40 180 420
For p = n = 10 one gets R(10,10) < 10!9=2.  After cancellations one has

1
2:11.12-13-14-15-17-19°

This is approximately 2 - 10~8. Therefore
10—1 10—1

1
2 e +Zl+—k10

is less than the sum of the Euler series by only 2-107%. In such a way one can in
one hour calculate eight digits of 77, k% after the decimal point. It is not a bad
result, but it is still far from Euler’s eighteen digits. For p = 10, to provide eighteen
digits one has to sum essentially more than one hundred terms of the series. This
is a bit too much for a person, but is possible for a computer.

Problems.
1. Telescope Y k3.
2. Represent z* as a factorial polynomial.
o0 1
3. EValuate Zk:l k(k—+2)
o0 1
4. Evaluate Zk:l W
5. Prove: If Aay > Aby, for all k and a; > by then ap > by, for all k.
6. A(z + a) = n(z + o)™
7. Prove Archimedes’s inequality %- ° < >hoy Lg? < ("H)
8. Telescope > 57 &
9. Prove the inequalities + > Y77 | 75 > %H
10. Prove that the degree of AP(x) is less than the degree of P(z) for any polyno-
mial P(z).
11. Relying on A2™ = 2" prove that P(n) < 2™ eventually for any polynomial
P(z).
12. Prove Y ;- kl(z — 1)=1=t — 1



