1.4. Infinite Products

On the contents of the lecture. In this lecture we become acquainted with
infinite products. The famous Euler Identity will be proved. We will find out that
¢(2) is another name for the Euler series. And we will see how Euler’s decomposition
of the sine function into a product works to sum up the Euler Series.

DEFINITION. The product of an infinite sequence of numbers {ay}, such that
ar > 1 for all k, is defined as the least number majorizing all partial products

[Tiiiar = a1az...ay.
A sequence of natural numbers is called essentially finite if all but finitely

many of its elements are equal to zero. Denote by N> the set of all essentially
finite sequences of natural numbers.

THEOREM 1.4.1. For any given sequence of positive series y - ai, j=12...
such that al =1 for all j one has
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The summands on the right-hand side of (1.4.1) usually contain factors which
are less than one. But each of the summands contains only finitely many factors
different from 1. So the summands are in fact finite products.

PRroOF. For a sequence {k;} € N define its length as maximal j for which
k; # 0 and its mazimum as the value of its maximal term. The length of the zero
sequence is defined as 0.

Consider a finite subset S C N°°. Consider the partial sum
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To estimate it, denote by L the maximal length of elements of S and denote by M
the greatest of maxima of {k;} € S. In this case
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where N, denotes the set of all finite sequences {k1, ko, ...,k } of natural numbers
such that k; < M. By All-for-One this implies one of the required inequalities,
namely, >.

To prove the opposite inequality, we prove that for any natural L one has
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where N denotes the set of all finite sequences {ki,...kr} of natural numbers.
The proof is by induction on L.
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LEMMA 1.4.2. For any families {a;}icr, {bj}jes of nonnegative numbers, one
has
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PROOF OF LEMMA 1.4.2. Since I x J = | |;c;{i} x J by the Sum Partition

Theorem one gets:
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Case L = 2 follows from Lemma 1.4.2, because N> = N x N. The induction
step is done as follows
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The left-hand side of (1.4.2) is a partial product for the left-hand side of (1.4.1)
and the right-hand side of (1.4.2) is a subsum of the right-hand side of (1.4.1).
Consequently, all partial products of the right-hand side in (1.4.1) do not exceed
its left-hand side. This proves the inequality <. a

Euler’s Identity. Our next goal is to prove the Euler Identity.

o 1 o) 1 —[p is prime]
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Here a is any rational (or even irrational) positive number.

The product on the right-hand side is called the Fuler Product. The series on
the left-hand side is called the Dirichlet series. Each factor of the Euler Product
expands into the geometric series Y po pk%. By Theorem 1.4.1, the product of these

geometric series is equal to the sum of products of the type pfklo‘pgkw L

= N~2. Here {p;} are different prime numbers, {k;} are positive natural numbers

and p’flp’262 ...pk = N. But each product prIpIQ“2 ...pk" = N is a natural number,
different products represent different numbers and any natural number has a unique
representation of this sort. This is exactly what is called Principal Theorem of
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Arithmetic. That is, the above decomposition of the Euler product expands in the
Dirichlet series.

Convergence of the Dirichlet series.

THEOREM 1.4.3. The Dirichlet series Y ., == converges if and only if s > 1.

n=1 ns
Proor. Consider a {2*} packing of the series. Then the n-th term of the
packed series one estimates from above as
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If s > 1 then 2'~% < 1 and the packed series is termwise majorized by a convergent
geometric progression. Hence it converges. In the case of the Harmonic series
(s = 1) the n-th term of its packing one estimates from below as

ontl_g ontl_g

Y12 Y maclmmy
k:_ on+l on+l 2°

k=2n k=2n

That is why the harmonic series diverges. A Dirichlet series for s < 1 termwise
majorizes the Harmonic series and so diverges. O

The Riemann (-function. The function
(oo}
1
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is called the Riemann (-function. It is of great importance in number theory.

The simplest application of Euler’s Identity represents Euler’s proof of the
infinity of the set of primes. The divergence of the harmonic series Y - % implies
the Euler Product has to contain infinitely many factors to diverge.

Euler proved an essentially more exact result: the series of reciprocal primes
diverges }° & = 0.

Summing via multiplication. Multiplication of series gives rise to a new
approach to evaluating their sums. Consider the geometric series > -, x*. Then
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As Y2 o a% = & one gets Y07 (k + 1)z* = ﬁ
Sine-product. Now we are ready to understand how two formulas
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which appeared in the Legends, yield an evaluation of the Euler Series. Since at
the moment we do not know how to multiply infinite sequences of numbers which
are less than one, we invert the product in the first formula. We get

-1 oo o0 2j
(1.4.4) S H ( k27r2> = H Z k2$jﬂ-2j.
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To avoid negative numbers, we interpret the series
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in the second formula of (1.4.3) as the difference
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Substituting this expression for sinx in and cancelling out x, we get

All terms on the right-hand side starting with j = 2 are divisible by z*. Conse-

quently the only summand with 22 on the right-hand side is %. On the other hand
in (1.4.4) after an expansion into a sum by Theorem 1.4.1, the terms with z? give

7I'2

. 2 .
the series ) . | 8. Comparing these results, one gets Y . k% =%

Problems.
. Prove [0, 1.1 =
. Prove the identity [, a2 = ([To—; an)? (an > 1).
. Does T[]0, (1+ %) converge?
. Evaluate [] 2 2

n=2 nZ—1"

. Prove the divergence of [[{°(1 + &)k Is prime],

n(n+1
. Evaluate Hn 3 W

Evaluate [[°°, %=L

n=3 n2—4-

Evaluate [, (1 + n(n+2))

[e%s) 2n+1)(2n+7
Evaluate Hn:l W

3
Evaluate [],, %t

. Prove the inequality [[,”,(1 4+ 72) > > 10y 72
. Prove the convergence of the Wallis product []

e
N = O

4k
4k2
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. Evaluate }_;” | 7 by applying (1.4.3).

. Prove [[°%, 41 < oo.

. Multiply a geometric series by itself and get a power series expansion for (1 —
T) 2.

16. Define 7(n) as the number of divisors of n. Prove (*(z) =Y -, %

17. Define ¢(n) as the number of numbers which are less than n are relatively prime

to n. Prove C(Cz(;)l) =3, %
18. Define u(n) (Mdbius function) as follows: u(1) =1, u(n) = 0, if n is divisible by

the square of a prime number u( ) = ( 1)k, if n is the product of k different
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prime numbers. Prove C(w ey n’” .

*19. Prove > .2 1% o

*20. Prove the identity [[°o (1 +2%") = .




