
1.4. In�nite Produ
tsOn the 
ontents of the le
ture. In this le
ture we be
ome a
quainted within�nite produ
ts. The famous Euler Identity will be proved. We will �nd out that�(2) is another name for the Euler series. And we will see how Euler's de
ompositionof the sine fun
tion into a produ
t works to sum up the Euler Series.Definition. The produ
t of an in�nite sequen
e of numbers fakg, su
h thatak � 1 for all k, is de�ned as the least number majorizing all partial produ
tsQnk=1 ak = a1a2 : : : an.A sequen
e of natural numbers is 
alled essentially �nite if all but �nitelymany of its elements are equal to zero. Denote by N1 the set of all essentially�nite sequen
es of natural numbers.Theorem 1.4.1. For any given sequen
e of positive seriesP1k=0 ajk, j = 1; 2; : : :su
h that aj0 = 1 for all j one has(1.4.1) 1Yj=1 1Xk=0 ajk = Xfkjg2N1 1Yj=1 ajkj :The summands on the right-hand side of (1.4.1) usually 
ontain fa
tors whi
hare less than one. But ea
h of the summands 
ontains only �nitely many fa
torsdi�erent from 1. So the summands are in fa
t �nite produ
ts.Proof. For a sequen
e fkjg 2 N1 de�ne its length as maximal j for whi
hkj 6= 0 and its maximum as the value of its maximal term. The length of the zerosequen
e is de�ned as 0.Consider a �nite subset S � N1 . Consider the partial sumXfkjg2S 1Yk=1 ajkj :To estimate it, denote by L the maximal length of elements of S and denote by Mthe greatest of maxima of fkjg 2 S. In this 
aseXfkjg2S 1Yj=1 ajkj = Xfkjg2S LYj=1 ajkj � Xfkjg2NLM LYj=1 ajkj = LYj=1 MXk=0 ajk � 1Yj=1 1Xk=0 ajk;where NLM denotes the set of all �nite sequen
es fk1; k2; : : : ; kLg of natural numberssu
h that ki � M . By All-for-One this implies one of the required inequalities,namely, �.To prove the opposite inequality, we prove that for any natural L one has(1.4.2) LYj=1 1Xk=0 ajk = Xfkjg2NL LYj=1 ajkj ;where NL denotes the set of all �nite sequen
es fk1; : : : kLg of natural numbers.The proof is by indu
tion on L. 16



1.4 infinite produ
ts 17Lemma 1.4.2. For any families faigi2I , fbjgj2J of nonnegative numbers, onehas Xi2I aiXj2J bj = X(i;j)2I�J aibj :Proof of Lemma 1.4.2. Sin
e I � J = Fi2Ifig � J by the Sum PartitionTheorem one gets: X(i;j)2I�J aibj =Xi2I X(i;j)2fig�J aibj=Xi2I Xj2J aibj=Xi2I aiXj2J bj=Xj2J bjXi2I ai: �Case L = 2 follows from Lemma 1.4.2, be
ause N2 = N � N. The indu
tionstep is done as follows L+1Yj=1 1Xk=0 ajk = 1Xk=0 aL+1k LYj=1 1Xk=0 ajk=Xk2NaL+1k Xfkjg2NL LYj=1 ajkj= Xfkjg2NL+1 L+1Yj=1 ajkj :The left-hand side of (1.4.2) is a partial produ
t for the left-hand side of (1.4.1)and the right-hand side of (1.4.2) is a subsum of the right-hand side of (1.4.1).Consequently, all partial produ
ts of the right-hand side in (1.4.1) do not ex
eedits left-hand side. This proves the inequality �. �Euler's Identity. Our next goal is to prove the Euler Identity.1Xk=1 1k� = 1Yp=1�1� 1p���[p is prime℄Here � is any rational (or even irrational) positive number.The produ
t on the right-hand side is 
alled the Euler Produ
t. The series onthe left-hand side is 
alled the Diri
hlet series. Ea
h fa
tor of the Euler Produ
texpands into the geometri
 seriesP1k=0 1pk� . By Theorem 1.4.1, the produ
t of thesegeometri
 series is equal to the sum of produ
ts of the type p�k1�1 p�k2�2 : : : p�kn�n= N��. Here fpig are di�erent prime numbers, fkig are positive natural numbersand pk11 pk22 : : : pknn = N . But ea
h produ
t pk11 pk22 : : : pknn = N is a natural number,di�erent produ
ts represent di�erent numbers and any natural number has a uniquerepresentation of this sort. This is exa
tly what is 
alled Prin
ipal Theorem of



18 1.4 infinite produ
tsArithmeti
. That is, the above de
omposition of the Euler produ
t expands in theDiri
hlet series.Convergen
e of the Diri
hlet series.Theorem 1.4.3. The Diri
hlet series P1n=1 1ns 
onverges if and only if s > 1.Proof. Consider a f2kg pa
king of the series. Then the n-th term of thepa
ked series one estimates from above as2n+1�1Xk=2n 1ks � 2n+1�1Xk=2n 1(2n)s = 2n 12ns = 2n�ns = (21�s)n:If s > 1 then 21�s < 1 and the pa
ked series is termwise majorized by a 
onvergentgeometri
 progression. Hen
e it 
onverges. In the 
ase of the Harmoni
 series(s = 1) the n-th term of its pa
king one estimates from below as2n+1�1Xk=2n 1k � 2n+1�1Xk=2n 12n+1 = 2n 12n+1 = 12 :That is why the harmoni
 series diverges. A Diri
hlet series for s < 1 termwisemajorizes the Harmoni
 series and so diverges. �The Riemann �-fun
tion. The fun
tion�(s) = 1Xn=1 1nsis 
alled the Riemann �-fun
tion. It is of great importan
e in number theory.The simplest appli
ation of Euler's Identity represents Euler's proof of thein�nity of the set of primes. The divergen
e of the harmoni
 series P1k=1 1k impliesthe Euler Produ
t has to 
ontain in�nitely many fa
tors to diverge.Euler proved an essentially more exa
t result: the series of re
ipro
al primesdivergesP 1p =1.Summing via multipli
ation. Multipli
ation of series gives rise to a newapproa
h to evaluating their sums. Consider the geometri
 series P1k=0 xk . Then 1Xk=0 xk!2 = Xj;k2N2 xjxk = 1Xm=0 Xj+k=m xjxk = 1Xm=0(m+ 1)xm:As P1k=0 xk = 11�x one gets P1k=0(k + 1)xk = 1(1�x)2 .Sine-produ
t. Now we are ready to understand how two formulassinxx = 1Yk=1�1� x2k2�2� ; sinx = 1Xk=0(�1)k x2k+1(2k + 1)!(1.4.3)whi
h appeared in the Legends, yield an evaluation of the Euler Series. Sin
e atthe moment we do not know how to multiply in�nite sequen
es of numbers whi
hare less than one, we invert the produ
t in the �rst formula. We get(1.4.4) xsinx = 1Yk=1�1� x2k2�2��1 = 1Yk=1 1Xj=0 x2jk2j�2j :



1.4 infinite produ
ts 19To avoid negative numbers, we interpret the series1Xk=0(�1)k x2k+1(2k + 1)!in the se
ond formula of (1.4.3) as the di�eren
e1Xk=0 x4k+1(4k + 1)! � 1Xk=0 x4k+3(4k + 3)! :Substituting this expression for sinx in xsinx and 
an
elling out x, we getxsinx = 11� 1Pk=1(�1)k+1 x2k(2k+1)! = 1Xj=0 1Xk=1(�1)k+1 x2k(2k + 1)!!j :All terms on the right-hand side starting with j = 2 are divisible by x4. Conse-quently the only summand with x2 on the right-hand side is x26 . On the other handin (1.4.4) after an expansion into a sum by Theorem 1.4.1, the terms with x2 givethe seriesP1k=1 x2k2�2 . Comparing these results, one gets P1k=1 1k2 = �26 .Problems.1. Prove Q1n=1 1:1 =1.2. Prove the identity Q1n=1 a2n = (Q1n=1 an)2 (an � 1).3. Does Q1n=1(1 + 1n ) 
onverge?4. Evaluate Q1n=2 n2n2�1 .5. Prove the divergen
e of Q11 (1 + 1k )[k is prime℄.6. Evaluate Q1n=3 n(n+1)(n�2)(n+3) .7. Evaluate Q1n=3 n2�1n2�4 .8. Evaluate Q1n=1(1 + 1n(n+2) ).9. Evaluate Q1n=1 (2n+1)(2n+7)(2n+3)(2n+5) .10. Evaluate Q1n=2 n3+1n3�1 .11. Prove the inequality Q1k=2(1 + 1k2 ) �P1k=2 1k2 .12. Prove the 
onvergen
e of the Wallis produ
t Q 4k24k2�1 .13. Evaluate P1k=1 1k4 by applying (1.4.3).14. Prove Q1n=2 n2+1n2 <1.15. Multiply a geometri
 series by itself and get a power series expansion for (1�x)�2.16. De�ne �(n) as the number of divisors of n. Prove �2(x) =P1n=1 �(n)nx .17. De�ne �(n) as the number of numbers whi
h are less than n are relatively primeto n. Prove �(x�1)�(x) =P1n=1 �(n)nx .18. De�ne �(n) (M�obius fun
tion) as follows: �(1) = 1, �(n) = 0, if n is divisible bythe square of a prime number, �(n) = (�1)k, if n is the produ
t of k di�erentprime numbers. Prove 1�(x) =P1k=1 �(n)nx .�19. ProveP1k=1 [k is prime℄k =1.�20. Prove the identity Q1n=0(1 + x2n) = 11�x .


