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Preface

This book represents an introductory course of Calculus. The course evolved
from the lectures, which the author had given in the Kolmogorov School in years
– for the one-year stream. The Kolmogorov School is a special physics-
mathematical undergraduate school for gifted children. Most of the graduates of
Kolmogorov School continue their education in Moscow University, where they have
to learn the Calculus from the beginning.

This motivates the author efforts to create a course of Calculus, which on the
one hand facilitates to the students the perception of the standard one, but on the
other hand misses the maximum possible of the standard material to provide the
freshness of perception of the customary course. In the present form the course was
given in Uppsala University in the autumn semester of  for a group of advanced
first-year students.

The material of the course covers the standard Calculus of the first-year, covers
the essential part of the standard course of the complex Calculus, in particular,
it includes the theory of residues. Moreover it contains an essential part of the
theory of finite differences. Such topics presented here as Newton interpolation
formula, Bernoulli polynomials, Gamma-function and Euler-Maclaurin summation
formula one usually learns only beyond the common programs of a mathematical
faculty. And the last lecture of the course is devoted to divergent series—a subject
unfamiliar to the most of modern mathematicians.

The presence of a number of material exceeding the bounds of the standard
course is accompanied with the absence of some of “inevitable” topics1 and concepts.
There is no a theory of real numbers. There is no theory of the integral neither
Riemann nor Lebesgue. The present course even does not contain the Cauchy
criterion of convergence. Such achievements of the ninetieth century as uniform
convergence and uniform continuity are avoided. Nevertheless the level of rigor in
the book is modern. In the first chapter the greek principle of exhaustion works
instead of the theory of limits.

“Less words, more actions” this is the motto of the present course. Under
“words” we mean “concepts and definitions” and under “actions” we mean “calcu-
lations and formulas”. Every lecture gives a new recipe for the evaluation of series
or integrals and is equipped with problems for independent solution. More difficult
problems are marked with an asterisk. The course has a lot to do with the Concrete
Mathematics of Graham, Knuth, Patashnik.2

The order of exposition in the course is far from the standard one. The stan-
dard modern course of Calculus starts with sequences and their limits. This course,
following to Euler’s Introductio in Analysin Infinitorum,3 starts with series. The
introduction of the concept of the limits is delayed up to tenth lecture. The Newton-
Leibniz formula appears after all elementary integrals are already evaluated. And
power series for elementary functions are obtained without help of Taylor series.

1A.Ya. Hinchin wrote: “The modern course of Calculus has to begin with the theory of real

numbers”.
2R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, .
3L. Euler, Introductio in Analysin Infinitorum, . Available in Opera Omnia, Series I,

Volume 8, Springer, .
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vi preface

The course demonstrates the unity of real, complex and discrete Calculus. For ex-
ample, complex numbers immediately after their introduction are applied to eval-
uate a real series.

Two persons play a crucial role in appearance of these lectures. These are
Alexandre Rusakov and Oleg Viro. Alexandre Rusakov several years was an assis-
tent of the author in the Kolmogorov School, he had written the first conspectus
of the course and forced the author to publish it. Oleg Viro has invited the author
to Uppsala University. Many hours the author and Oleg spent in “correcting of
English” in these lectures. But his influence on this course is far more then a sim-
ple correction of English. This is Oleg who convinces the author not to construct
the integral, and simply reduces it to the concept of the area. The realization of
this idea ascending to Oleg’s teacher Rokhlin is one of characteristic features of the
course.

The main motivation of the author was to present the power and the beauty of
the Calculus. The author understand that this course is somewhere difficult, but he
believes that it is nowhere tiresome. The course gives a new approach to exposition
of Calculus, which may be interesting for students as well as for teachers. Moreover
it may be interesting for mathematicians as a “mathematical roman”.



The Legend of Euler’s Series

“One of the great mathematical challenges of the early th century was to
find an expression for the sum of reciprocal squares

(?) 1 +
1
22

+
1
32

+
1
42

+
1
52

+ . . .

Joh. Bernoulli eagerly sought for this expression for many decades.”1

In  Jac. Bernoulli proved the convergence of the series. In –
Goldbach and D. Bernoulli evaluated the series with an accuracy of 0.01. Stirling
in  found eight digits of the sum.

L. Euler in  calculated the first eighteen digits (!) after the decimal point
of the sum (?) and recognized π2/6, which has the same eighteen digits. He conjec-
tured that the infinite sum is equal to π2/6. In  Euler discovered an expansion
of the sine function into an infinite product of polynomials:

(??)
sinx
x

=
(

1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)(
1− x2

42π2

)
· · ·

Comparing this presentation with the standard sine series expansion

sinx = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− · · ·

Euler not only proved that the sum (?) is equal to π2/6, moreover he calculated all
sums of the type

1 +
1
2k

+
1
3k

+
1
4k

+
1
5k

+ · · ·
for even k.

Putting x = π/2 in (??) he got the beautiful Wallis Product
π

2
=

2 · 2
1 · 3

4 · 4
3 · 5

6 · 6
5 · 7

8 · 8
7 · 9

· · ·

which had been known since . But Euler’s first proof of (??) was not satis-
factory. In , in his famous Introductio in Analysin Infinitorum, he presented a
proof which was sufficiently rigorous for the th century. The series of reciprocal
squares was named the Euler series.

If somebody wants to understand all the details of the above legend he has to
study a lot of things, up to complex contour integrals. This is why the detailed
mathematical exposition of the legend of Euler’s series turns into an entire course
of Calculus. The fascinating history of Euler’s series is the guiding thread of the
present course, On Euler’s footsteps.

1E. Hairer, G. Wanner, Analysis by its History, Springer, .

vii





CHAPTER 1

Series
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1.1. Autorecursion of Infinite Expressions

On the contents of the lecture. The lecture presents a romantic style of
early analytics. The motto of the lecture could be “infinity, equality and no defi-
nitions!”. Infinity is the main personage we will play with today. We demonstrate
how infinite expressions (i.e., infinite sums, products, fractions) arise in solutions
of simple equations, how it is possible to calculate them, and how the results of
such calculations apply to finite mathematics. In particular, we will deduce the
Euler-Binet formula for Fibonacci numbers, the first Euler’s formula of the course.
We become acquainted with geometric series and the golden section.

Achilles and the turtle. The ancient Greek philosopher Zeno claimed that
Achilles pursuing a turtle could never pass it by, in spite of the fact that his velocity
was much greater than the velocity of the turtle. His arguments adopted to our
purposes are the following.

First Zeno proposed a pursuing algorithm for Achilles:
Initialization. Assign to the variable goal the original position of the turtle.
Action. Reach the goal.
Correction. If the current turtle’s position is goal, then stop, else reassign to

the variable goal the current position of the turtle and go to Action.
Secondly, Zeno remarks that this algorithm never stops if the turtle constantly

moves in one direction.
And finally, he notes that Achilles has to follow his algorithm if he want pass

the turtle by. He may be not aware of this algorithm, but unconsciously he must
perform it. Because he cannot run the turtle down without reaching the original
position of the turtle and then all positions of the turtle which the variable goal
takes.

Zeno’s algorithm generates a sequence of times {tk}, where tk is the time of
execution of the k-th action of the algorithm. And the whole time of work of the
algorithm is the infinite sum

∑∞
k=1 tk; and this sum expresses the time Achilles

needs to run the turtle down. (The corrections take zero time, because Achilles
really does not think about them.) Let us name this sum the Zeno series.

Assume that both Achilles and the turtle run with constant velocities v and
w, respectively. Denote the initial distance between Achilles and the turtle by d0.
Then t1 = d0

v . The turtle in this time moves by the distance d1 = t1w = w
v d0. By

his second action Achilles overcomes this distance in time t2 = d1
v = w

v t1, while the
turtle moves away by the distance d2 = t2w = w

v d1. So we see that the sequences of
times {tk} and distances {dk} satisfy the following recurrence relations: tk = w

v tk−1,
dk = w

v dk−1.
Hence {tk} as well as {dk} are geometric progressions with ratio w

v . And the
time t which Achilles needs to run the turtle down is

t = t1 + t2 + t3 + · · · = t1 + w
v t1 + w2

v2 t1 + · · · = t1

(
1 + w

v + w2

v2 + · · ·
)
.

In spite of Zeno, we know that Achilles does catch up with the turtle. And
one easily gets the time t he needs to do it by the following argument: the distance
between Achilles and the turtle permanently decreases with the velocity v − w.
Consequently it becomes 0 in the time t = d0

v−w = t1
v

v−w . Comparing the results
we come to the following conclusion

(1.1.1) v
v−w = 1 + w

v + w2

v2 + w3

v3 + · · · .

2



1.1 autorecursion of infinite expressions 3

Infinite substitution. We see that some infinite expressions represent finite
values. The fraction in the left-hand side of (1.1.1) expands into the infinite series
on the right-hand side. Infinite expressions play a key rôle in mathematics and
physics. Solutions of equations quite often are presented as infinite expressions.

For example let us consider the following simple equation

(1.1.2) t = 1 + qt.

Substituting on the right-hand side 1 + qt instead of t, one gets a new equation
t = 1 + q(1 + qt) = 1 + q + q2t. Any solution of the original equation satisfies this
one. Repeating this trick, one gets t = 1 + q(1 + q(1 + qt)) = 1 + q + q2 + q3t.
Repeating this infinitely many times, one eliminates t on the right hand side and
gets a solution of (1.1.2) in an infinite form

t = 1 + q + q2 + q3 + · · · =
∞∑
k=0

qk.

On the other hand, the equation (1.1.2) solved in the usual way gives t = 1
1−q . As

a result, we obtain the following formula

(1.1.3)
1

1− q
= 1 + q + q2 + q3 + q4 + · · · =

∞∑
k=0

qk.

which represents a special case of (1.1.1) for v = 1, w = q.

Autorecursion. An infinite expression of the form a1 +a2 +a3 + . . . is called a
series and is concisely denoted by

∑∞
k=1 ak. Now we consider a summation method

for series which is inverse to the above method of infinite substitution. To find the
sum of a series we shall construct an equation which is satisfied by its sum. We
name this method autorecursion. Recursion means “return to something known”.
Autorecursion is “return to oneself”.

The series a2 +a3 + · · · =
∑∞
k=2 ak obtained from

∑∞
k=1 ak by dropping its first

term is called the shift of
∑∞
k=1 ak.

We will call the following equality the shift formula:
∞∑
k=1

ak = a1 +
∞∑
k=2

ak.

Another basic formula we need is the following multiplication formula:

λ
∞∑
k=1

ak =
∞∑
k=1

λak.

These two formulas are all one needs to find the sum of geometric series∑∞
k=0 q

k. To be exact, the multiplication formula gives the equality
∑∞
k=1 q

k =
q
∑∞
k=0 q

k. Hence the shift formula turns into equation x = 1 + qx, where x is∑∞
k=0 q

k. The solution of this equation gives us the formula (1.1.3) for the sum of
the geometric series again.

From this formula, one can deduce the formula for the sum of a finite geometric
progression. By

∑n
k=0 ak is denoted the sum a0 + a1 + a2 + · · ·+ an. One has

n−1∑
k=0

qk =
∞∑
k=0

qk −
∞∑
k=n

qk =
1

1− q
− qn

1− q
=

1− qn

1− q
.



4 1.1 autorecursion of infinite expressions

This is an important formula which was traditionally studied in school.

The series
∑∞
k=0 kx

k. To find the sum of
∑∞
k=1 kx

k we have to apply addi-
tionally the following addition formula,

∞∑
k=1

(ak + bk) =
∞∑
k=1

ak +
∞∑
k=1

bk

which is the last general formula for series we introduce in the first lecture.
Reindexing the shift

∑∞
k=2 kx

k we give it the form
∑∞
k=1(k + 1)xk+1. Further

it splits into two parts

x
∞∑
k=1

(k + 1)xk = x
∞∑
k=1

kxk + x
∞∑
k=1

xk = x
∞∑
k=1

kxk + x
x

1− x

by the addition formula. The first summand is the original sum multiplied by
x. The second is a geometric series. We already know its sum. Now the shift
formula for the sum s(x) of the original series turns into the equation s(x) =
x+ x x

1−x + xs(x). Its solution is s(x) = x
(1−x)2 .

Fibonacci Numbers. Starting with φ0 = 0, φ1 = 1 and applying the recur-
rence relation

φn+1 = φn + φn−1,

one constructs an infinite sequence of numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . , called
Fibonacci numbers. We are going to get a formula for φn.

To do this let us consider the following function Φ(x) =
∑∞
k=0 φkx

k, which
is called the generating function for the sequence {φk}. Since φ0 = 0, the sum
Φ(x) + xΦ(x) transforms in the following way:

∞∑
k=1

φkx
k +

∞∑
k=1

φk−1x
k =

∞∑
k=1

φk+1x
k =

Φ(x)− x
x

.

Multiplying both sides of the above equation by x and collecting all terms containing
Φ(x) on the right-hand side, one gets x = Φ(x)− xΦ(x)− x2Φ(x) = x. It leads to

Φ(x) =
x

1− x− x2
.

The roots of the equation 1− x− x2 = 0 are −1±
√

5
2 . More famous is the pair

of their inverses 1±
√

5
2 . The number φ = −1+

√
5

2 is the so-called golden section or
golden mean. It plays a significant rôle in mathematics, architecture and biology.
Its dual is φ̂ = −1−

√
5

2 . Then φφ̂ = −1, and φ+ φ̂ = 1. Hence (1− xφ)(1− xφ̂) =
1− x− x2, which in turn leads to the following decomposition:

x

x2 + x− 1
=

1√
5

(
1

1− φx
− 1

1− φ̂x

)
.

We expand both fractions on the right hand side into geometric series:

1
1− φx

=
∞∑
k=0

φkxk,
1

1− φ̂x
=
∞∑
k=0

φ̂kxk.



1.1 autorecursion of infinite expressions 5

This gives the following representation for the generating function

Φ(x) =
1√
5

∞∑
k=0

(φk − φ̂k)xk.

On the other hand the coefficient at xk in the original presentation of Φ(x) is φk.
Hence

(1.1.4) φk =
1√
5

(φk − φ̂k) =
(
√

5 + 1)k + (−1)k(
√

5− 1)k

2k
√

5
.

This is called the Euler-Binet formula. It is possible to check it for small k and
then prove it by induction using Fibonacci recurrence.

Continued fractions. The application of the method of infinite substitution
to the solution of quadratic equation leads us to a new type of infinite expressions,
the so-called continued fractions. Let us consider the golden mean equation x2 −
x − 1 = 0. Rewrite it as x = 1 + 1

x . Substituting 1 + 1
x instead of x on the right-

hand side we get x = 1 + 1
1+ 1

x

. Repeating the substitution infinitely many times
we obtain a solution in the form of the continued fraction:

(1.1.5) 1 +
1

1 +
1

1 + 1
1+...

As this fraction seems to represent a positive number and the golden mean is the
unique positive root of the golden mean equation, it is natural to conclude that this
fraction is equal to φ = 1+

√
5

2 . This is true and this representation allows one to
calculate the golden mean and

√
5 effectively with great precision.

To be precise, consider the sequence

(1.1.6) 1, 1 + 1
1 , 1 +

1
1 + 1

1

, 1 +
1

1 +
1

1 + 1
1

, . . .

of so-called convergents of the continued fraction (1.1.5). Let us remark that all
odd convergents are less than φ and all even convergents are greater than φ. To
see this, compare the n-th convergent with the corresponding term of the following
sequence of fractions:

(1.1.7) 1 + 1
x , 1 +

1
1 + 1

x

, 1 +
1

1 +
1

1 + 1
x

, . . . .

We know that for x = φ all terms of the above sequence are equal to φ. Hence
all we need is to observe how the removal of 1

x affects the value of the considered
fraction. The value of the first fraction of the sequence decreases, the value of the
second fraction increases. If we denote the value of n-th fraction by fn, then the
value of the next fraction is given by the following recurrence relation:

(1.1.8) fn+1 = 1 +
1
fn
.

Hence increasing fn decreases fn+1 and decreasing fn increases fn+1. Consequently
in general all odd fractions of the sequence (1.1.7) are less than the corresponding
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convergent, and all even are greater. The recurrence relation (1.1.8) is valid for the
golden mean convergent. By this recurrence relation one can quickly calculate the
first ten convergents 1, 2, 3

2 ,
5
3 ,

8
5 ,

13
8 ,

21
13 ,

34
21 ,

55
34 ,

89
55 . The golden mean lies between

last two fractions, which have the difference 1
34·55 . This allows us to determine the

first four decimal digits after the decimal point of it and of
√

5.

Problems.
1. Evaluate

∑∞
k=0

22k

33k .
2. Evaluate 1− 1 + 1− 1 + · · · .
3. Evaluate 1 + 1− 1− 1 + 1 + 1− 1− 1 + · · · .
4. Evaluate

∑∞
k=1

k
3k

.
5. Evaluate

∑∞
k=1

k2

2k
.

6. Decompose the fraction 1
a+x into a power series.

7. Find the generating function for the sequence {2k}.
8. Find sum the

∑∞
k=1 φk3−k.

9. Prove by induction the Euler-Binet formula.
∗10. Evaluate 1− 2 + 1 + 1− 2 + 1 + · · · .
11. Approximate

√
2 by a rational with precision 0.0001.

12. Find the value of 1 +
1

2 +
1

1 +
1

2 + · · ·

.

13. Find the value of
√

2 +
√

2 +
√

2 + · · ·.
14. By infinite substitution, solve the equation x2 − 2x− 1 = 0, and represent

√
2

by a continued fraction.
15. Find the value of the infinite product 2 · 2 1

2 · 2 1
4 · 2 1

8 · · · · .
16. Find a formula for n-th term of the recurrent sequence xn+1 = 2xn + xn−1,

x0 = x1 = 1.
17. Find the sum of the Fibonacci numbers

∑∞
k=1 φk.

18. Find sum 1 + 0− 1 + 1 + 0− 1 + · · · .
19. Decompose into the sum of partial fractions 1

x2−3x+2 .



1.2. Positive Series

On the contents of the lecture. Infinity is pregnant with paradoxes. Para-
doxes throw us down from the heavens to the earth. We leave the poetry for prose,
and rationalize the infinity and equality by working with finiteness and inequality.
We shall lay a solid foundation for a summation theory for positive series. And the
reader will find out what

∑∞
k=1

1
k2 = π2

6 precisely means.

Divergent series paradox. Let us consider the series
∑∞
k=0 2k. This is a

geometric series. We know how to sum it up by autorecursion. The autorecursion
equation is s = 1 + 2s. The only number satisfying this equation is −1. The sum
of positive numbers turns to be negative!? Something is wrong!

A way to save the situation is to admit infinity as a feasible solution. Infinity
is an obvious solution of s = 1 + 2s. The sum of any geometric series

∑∞
k=0 q

k with
denominator q ≥ 1 is obviously infinite, isn’t it?

Indeed, this sum is greater than 1 + 1 + 1 + 1 + . . . , which symbolizes infinity.
(The autorecursion equation for 1 + 1 + 1 + . . . is s = s+ 1. Infinity is the unique
solution of this equation.)

The series
∑∞
k=0 2k represents Zeno’s series in the case of the Mighty Turtle,

which is faster than Achilles. To be precise, this series arises if v = d0 = 1 and
w = 2. As the velocity of the turtle is greater than the velocity of Achilles he
never reaches it. So the infinity is right answer for this problem. But the negative
solution −1 also makes sense. One could interpret it as an event in the past. Just
the point in time when the turtle passed Achilles.

Oscillating series paradoxes. The philosopher Gvido Grandy in  at-
tracted public attention to the series 1 − 1 + 1 − 1 + . . . . He claimed this series
symbolized the Creation of Universe from Nothing. Namely, insertion of brackets
in one way gives Nothing (that is 0), in another way, gives 1.

(1− 1) + (1− 1) + (1− 1) + · · · = 0 + 0 + 0 + · · · = 0,

1− (1− 1)− (1− 1)− (1− 1)− · · · = 1− 0− 0− 0− · · · = 1.

On the other hand, this series 1 − 1 + 1 − 1 + 1 − 1 + . . . is geometric with
negative ratio q = −1. Its autorecursion equation s = 1− s has the unique solution
s = 1

2 . Neither +∞ nor −∞ satisfy it. So 1
2 seems to be its true sum.

Hence we see the Associativity Law dethroned by 1− 1 + 1− 1 + . . . . The next
victim is the Commutativity Law. The sum −1 + 1 − 1 + 1 − 1 + . . . is equal to
− 1

2 . But the last series is obtained from 1− 1 + 1− 1 + . . . by transposition of odd
and even terms.

And the third amazing thing: diluting it by zeroes changes its sum. The sum
1 + 0− 1 + 1 + 0− 1 + 1 + 0− 1 + . . . by no means is 1

2 . It is 2
3 . Indeed, if we denote

this sum by s then by shift formulas one gets

s = 1 + 0− 1 + 1 + 0− 1 + 1 + 0− 1 + 1 + 0− 1 + . . . ,

s− 1 = 0− 1 + 1 + 0− 1 + 1 + 0− 1 + 1 + 0− 1 + 1 + . . . ,

s− 1− 0 = −1 + 1 + 0− 1 + 1 + 0− 1 + 1 + 0− 1 + 1 + 0 + . . . .

7



8 1.2 positive series

Summing the numbers column-wise (i.e., by the Termwise Addition Formula), we
get

s+ (s− 1) + (s− 1− 0) = (1 + 0− 1) + (0− 1 + 1) + (−1 + 1 + 0)

+ (1 + 0− 1) + (0− 1 + 1) + (−1 + 1 + 0) + . . . .

The left-hand side is 3s − 2. The right-hand side is the zero series. That is why
s = 2

3 .
The series 1 − 1 + 1 − 1 + . . . arises as Zeno’s series in the case of a blind

Achilles directed by a cruel Zeno, who is interested, as always, only in proving his
claim, and a foolish, but merciful turtle. The blind Achilles is not fast, his velocity
equals the velocity of the turtle. At the first moment Zeno tells the blind Achilles
where the turtle is. Achilles starts the rally. But the merciful turtle wishing to help
him goes towards him instead of running away. Achilles meets the turtle half-way.
But he misses it, being busy to perform the first step of the algorithm. When
he accomplishes this step, Zeno orders: “Turn about!” and surprises Achilles by
saying that the turtle is on Achilles’ initial position. The turtle discovers that
Achilles turns about and does the same. The situation repeats ad infinitum. Now
we see that assigning the sum 1

2 to the series 1 − 1 + 1 − 1 + . . . makes sense. It
predicts accurately the time of the first meeting of Achilles and turtle.

Positivity. The paradoxes discussed above are discouraging. Our intuition
based on handling finite sums fails when we turn to infinite ones. Observe that all
paradoxes above involve negative numbers. And to eliminate the evil in its root,
let us consider only nonnegative numbers.

We return to the ancient Greeks. They simply did not know what a negative
number is. But in contrast to the Greeks, we will retain zero. A series with
nonnegative terms will be called a positive series. We will show that for positive
series all familiar laws, including associativity and commutativity, hold true and
zero terms do not affect the sum.

Definition of Infinite Sum. Let us consider what Euler’s equality could
mean:

∞∑
k=1

1
k2

=
π2

6
.

The natural answer is: the partial sums
∑n
k=1

1
k2 , which contain more and more

reciprocal squares, approach closer and closer the value π2

6 . Consequently, all par-
tial sums have to be less than π2

6 , its ultimate sum. Indeed, if some partial sum
exceeds or coincides with π2

6 then all subsequent sums will move away from π2

6 .
Furthermore, any number c which is less than π2

6 has to be surpassed by partial
sums eventually, when they approach π2

6 closer than by π2

6 − c. Hence the ultimate
sum majorizes all partial ones, and any lesser number does not. This means that
the ultimate sum is the smallest number which majorizes all partial sums.

Geometric motivation. Imagine a sequence [ai−1, ai] of intervals of the real
line. Denote by li the length of i-th interval. Let a0 = 0 be the left end point of
the first interval. Let [0, A] be the smallest interval containing the whole sequence.
Its length is naturally interpreted as the sum

∑∞
i=1 li

This motivates the following definition.
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Definition. If the partial sums of the positive series
∑∞
k=1 ak increase without

bound, its sum is defined to be ∞ and the series is called divergent. In the opposite
case the series called convergent, and its sum is defined as the smallest number A
such that A ≥

∑n
k=1 ak for all n.

This Definition is equivalent to the following couple of principles. The first
principle limits the ultimate sum from below:

Principle (One-for-All). The ultimate sum of a positive series majorizes all
partial sums.

And the second principle limits the ultimate sum from above:

Principle (All-for-One). If all partial sums of a positive series do not exceed
a number, then the ultimate sum also does not exceed it.

Theorem 1.2.1 (Termwise Addition Formula).
∞∑
k=1

ak +
∞∑
k=1

bk =
∞∑
k=1

(ak + bk).

Proof. The inequality
∑∞
k=1 ak +

∑∞
k=1 bk ≤

∑∞
k=1(ak + bk) is equivalent to∑∞

k=1 ak ≤
∑∞
k=1(ak + bk)−

∑∞
k=1 bk. By All-for-One, the last is equivalent to the

system of inequalities
N∑
k=1

ak ≤
∞∑
k=1

(ak + bk)−
∞∑
k=1

bk N = 1, 2, . . . .

This system is equivalent to the following system
∞∑
k=1

bk ≤
∞∑
k=1

(ak + bk)−
N∑
k=1

ak N = 1, 2, . . . .

Each inequality of the last system, in its turn, is equivalent to the system of in-
equalities

M∑
k=1

bk ≤
∞∑
k=1

(ak + bk)−
N∑
k=1

ak M = 1, 2, . . . .

But these inequalities are true for all N and M , as the following computations
show.

M∑
k=1

bk +
N∑
k=1

ak ≤
M+N∑
k=1

bk +
M+N∑
k=1

ak =
M+N∑
k=1

(ak + bk) ≤
∞∑
k=1

(ak + bk).

In the opposite direction, we see that any partial sum on the right-hand side∑n
k=1(ak + bk) splits into

∑n
k=1 ak +

∑n
k=1 bk. And by virtue of the One-for-All

principle, this does not exceed
∑∞
k=1 ak +

∑∞
k=1 bk. Now, the All-for-One principle

provides the inequality in the opposite direction. �

Theorem 1.2.2 (Shift Formula).
∞∑
k=0

ak = a0 +
∞∑
k=1

ak.
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Proof. The Shift Formula immediately follows from the Termwise Addition
formula. To be precise, immediately from the definition, one gets the following:
a0 + 0 + 0 + 0 + 0 + · · · = a0 and that 0 + a1 + a2 + a3 + · · · =

∑∞
k=1 ak. Termwise

Addition of these series gives

a0 +
∞∑
k=1

ak = (a0 + 0) + (0 + a1) + (0 + a2) + (0 + a3) + · · · =
∞∑
k=0

ak.

�

Theorem 1.2.3 (Termwise Multiplication Formula).

λ
∞∑
k=1

ak =
∞∑
k=1

λak.

Proof. For any partial sum from the right-hand side one has
n∑
k=1

λak = λ
n∑
k=1

ak ≤ λ
∞∑
k=1

ak

by the Distributivity Law for finite sums and One-for-All. This implies the inequal-
ity λ

∑∞
k=1 ak ≥

∑∞
k=1 λak by All-for-One. The opposite inequality is equivalent

to
∑∞
k=1 ak ≥

1
λ

∑∞
k=1 λak. As any partial sum

∑n
k=1 ak is equal to 1

λ

∑n
k=1 λak,

which does not exceed 1
λ

∑∞
k=1 λak, one gets the opposite inequality. �

Geometric series. We have to return to the geometric series, because the
autorecursion equation produced by shift and multiplication formulas says nothing
about convergence. So we have to prove convergence for

∑∞
k=0 q

k with positive
q < 1. It is sufficient to prove the following inequality for all n

1 + q + q2 + q3 + · · ·+ qn < 1
1−q .

Multiplying both sides by 1− q one gets on the left-hand side

(1− q) + (q − q2) + (q2 − q3) + · · ·+ (qn−1 − qn) + (qn − qn+1)

= 1− q + q − q2 + q2 − q3 + q3 − · · · − qn + qn − qn+1

= 1− qn+1

and 1 on the right-hand side. The inequality 1−qn+1 < 1 is obvious. Hence we have
proved the convergence. Now the autorecursion equation x = 1 + qx for

∑∞
k=0 q

k

is constructed in usual way by the shift formula and termwise multiplication. It
leaves only two possibilities for

∑∞
k=0 q

k, either 1
q−1 or ∞. For q < 1 we have

proved convergence, and for q ≥ 1 infinity is the true answer.
Let us pay special attention to the case q = 0. We adopt a common convention:

00 = 1.

This means that the series
∑∞
k=0 0k satisfies the common formula for a convergent

geometric series
∑∞
k=0 0k = 1

1−0 = 1. Finally we state the theorem, which is
essentially due to Eudoxus, who proved the convergence of the geometric series
with ratio q < 1.
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Theorem 1.2.4 (Eudoxus). For every nonnegative q one has
∞∑
k=0

qk =
1

1− q
for q < 1, and

∞∑
k=0

qk =∞ for q ≥ 1.

Comparison of series. Quite often exact summation of series is too difficult,
and for practical purposes it is enough to know the sum approximatively. In this
case one usually compares the series with another one whose sum is known. Such
a comparison is based on the following Termwise Comparison Principle, which
immediately follows from the definition of a sum.

Principle (Termwise Comparison). If ak ≤ bk for k, then
∞∑
k=1

ak ≤
∞∑
k=1

bk.

The only series we have so far to compare with are the geometric ones. The
following lemma is very useful for this purposes.

Lemma 1.2.5 (Ratio Test). If ak+1 ≤ qak for k holds for some q < 1 then
∞∑
k=0

ak ≤
a0

1− q
.

Proof. By induction one proves the inequality ak ≤ a0q
k. Now by Termwise

Comparison one estimates
∑∞
k=0 ak from above by the geometric series

∑∞
k=0 a0q

k =
a0

1−q �

If the series under consideration satisfies an autorecursion equation, to prove
its convergence usually means to evaluate it exactly. For proving convergence, the
Termwise Comparison Principle can be strengthened. Let us say that the series∑∞
k=1 ak is eventually majorized by the series

∑∞
k=1 bk, if the inequality bk ≥ ak

holds for each k starting from k = n for some n. The following lemma is very useful
to prove convergence.

Principle (Eventual Comparison). A series
∑∞
k=1 ak, which is eventually ma-

jorized by a convergent series
∑∞
k=1 bk, is convergent.

Proof. Consider a tail
∑∞
k=n bk, which termwise majorizes

∑∞
k=n ak. Then

∞∑
k=1

ak =
n−1∑
k=1

ak +
∞∑
k=n

ak

≤
n−1∑
k=1

ak +
∞∑
k=n

bk

≤
n−1∑
k=1

ak +
∞∑
k=1

bk

<∞.
�

Consider the series
∑∞
k=1 k2−k. The ratio of two successive terms ak+1

ak
of the

series is k+1
2k . This ratio is less or equal to 2

3 starting with k = 3. Hence this series
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is eventually majorizes by the geometric series
∑∞
k=0 a3

2k

3k
, (a3 = 2

3 ). This proves
its convergence. And now by autorecursion equation one gets its sum.

Harmonic series paradox. Now we have a solid background to evaluate
positive series. Nevertheless, we must be careful about infinity! Consider the
following calculation:

∞∑
k=1

1
2k(2k − 1)

=
∞∑
k=1

1
2k − 1

−
∞∑
k=1

1
2k

=
∞∑
k=1

1
2k − 1

− 1
2

∞∑
k=1

1
k

=
∞∑
k=1

1
2k − 1

− 1
2

( ∞∑
k=1

1
2k − 1

+
∞∑
k=1

1
2k

)

=

( ∞∑
k=1

1
2k − 1

− 1
2

∞∑
k=1

1
2k − 1

)
− 1

2

∞∑
k=1

1
2k

=
1
2

( ∞∑
k=1

1
2k − 1

)
− 1

2

∞∑
k=1

1
2k

=
1
2

∞∑
k=1

1
2k(2k − 1)

.

We get that the sum
∑∞
k=1

1
(2k−1)2k satisfies the equation s = s

2 . This equation has

two roots 0 and ∞. But s satisfies the inequalities 1
2 < s < π2

6 . What is wrong?

Problems.
1. Prove

∑∞
k=1 0 = 0.

2. Prove
∑∞
k=1 0k = 1.

3. Prove
∑∞
k=0 ak =

∑∞
k=0 a2k +

∑∞
k=0 a2k+1.

4. Prove
∑∞
k=1(ak − bk) =

∑∞
k=1 ak −

∑∞
k=1 bk for convergent series.

5. Evaluate
∑∞
k=1

1
k(k+1) .

6. Prove (1− 1
2 ) + ( 1

3 −
1
4 ) + ( 1

5 −
1
6 ) + · · · = 1− [( 1

2 −
1
3 ) + ( 1

4 −
1
5 ) + · · · .

7. Prove the convergence of
∑∞
k=0

2k

k! .
8. Prove the convergence of

∑∞
k=1

1000k

k! .
9. Prove the convergence of

∑∞
k=1

k1000

2k
.

10. Prove that qn < 1
n(1−q) for 0 < q < 1.

11. Prove that for any positive q < 1 there is an n that qn < 1
2 .

12. Prove
∑∞
k=1

1
k! ≤ 2.

13. Evaluate
∑∞
k=1

1
k(k+2) .

14. Prove the convergence of the Euler series
∑∞
k=1

1
k2 .

∗15. Prove that
∑∞
i=1

∑∞
j=1 aij =

∑∞
j=1

∑∞
i=1 aij for aij ≥ 0.



1.3. Unordered Sums

On the contents of the lecture. Our summation theory culminates in the
Sum Partition Theorem. This lecture will contribute towards evaluation of the
Euler series in two ways: we prove its convergence, and even estimate its sum by 2.
On the other hand, we will realize that evaluation of the Euler series with Euler’s
accuracy (10−18) seems to be beyond a human being’s strength.

. Consider a family {ai}i∈I of nonnegative numbers indexed by elements of an
arbitrary set I. An important special case of I is the set of pairs of natural numbers
N × N. Families indexed by N × N are called double series. They arise when one
multiplies one series by another one.

Any sum of the type
∑
i∈K ai, where K is a finite subset of I is called a subsum

of {ai}i∈I over K.

Definition. The least number majorizing all subsums of {ai}i∈I over finite
subsets is called its (ultimate) sum and denoted by

∑
i∈I ai

The One-for-All and All-for-One principles for non-ordered sums are obtained
from the corresponding principles for ordered sums by replacing “partial sums” by
“finite subsums”.

Commutativity. In case I = N we have a definition which apparently is new.
But fortunately this definition is equivalent to the old one. Indeed, as any finite
subsum of positive series does not exceed its ultimate (ordered) sum, the non-
ordered sum also does not exceed it. On the other hand, any partial sum of the
series is a finite subsum. This implies the opposite inequality. Therefore we have
established the equality.

∞∑
k=1

ak =
∑
k∈N

ak

This means that positive series obey the Commutativity Law. Because the non-
ordered sum obviously does not depend on the order of summands.

Partitions. A family of subsets {Ik}k∈K of a set I is called a partition of I
and is written

⊔
k∈K Ik if I =

⋃
k∈K Ik and Ik ∩ Ij = ∅ for all k 6= j.

Theorem 1.3.1 (Sum Partition Theorem). For any partition I =
⊔
j∈J Ij of

the indexing set and any family {ai}i∈I of nonnegative numbers,

(1.3.1)
∑
i∈I

ai =
∑
j∈J

∑
i∈Ij

ai.

Iverson notation. We will apply the following notation: a statement included
into [ ] takes value 1, if the statement is true, and 0, if it is false. Prove the following
simple lemmas to adjust to this notation. In both lemmas one has K ⊂ I.

Lemma 1.3.2.
∑
i∈K ai =

∑
i∈I ai[i ∈ K].

In particular, for K = I, Lemma 1.3.2 turns into

Lemma 1.3.3.
∑
i∈I ai =

∑
i∈I ai[i ∈ I].

Lemma 1.3.4.
∑
k∈K [i ∈ Ik] = [i ∈ IK ] for all i ∈ I iff IK =

⊔
k∈K Ik.

13
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Proof of Sum Partition Theorem. At first we prove the following Sum
Transposition formula for finite J ,

(1.3.2)
∑
i∈I

∑
j∈J

aij =
∑
j∈J

∑
i∈I

aij .

Indeed, if J contains just two elements, this formula turns into the Termwise Ad-
dition formula. The proof of this formula is the same as for series. Suppose the
formula is proved for any set which contains fewer elements than J does. Decom-
pose J into a union of two nonempty subsets J1tJ2. Then applying only Termwise
Addition and Lemmas 1.3.2, 1.3.3, 1.3.4, we get∑

i∈I

∑
j∈J

aij =
∑
i∈I

∑
j∈J

aij [j ∈ J ]

=
∑
i∈I

∑
j∈J

(aij [j ∈ J1] + aij [j ∈ J2])

=
∑
i∈I

∑
j∈J

aij [j ∈ J1] +
∑
i∈I

∑
j∈J

aij [j ∈ J2]

=
∑
i∈I

∑
j∈J1

aij +
∑
i∈I

∑
j∈J2

aij .

But the last two sums can be transposed by the induction hypothesis. After such
a transposition one gets∑

j∈J1

∑
i∈I

aij +
∑
j∈J2

∑
i∈I

aij =
∑
j∈J

[j ∈ J1]
∑
i∈I

aij +
∑
j∈J

[j ∈ J2]
∑
i∈I

aij

=
∑
j∈J

([j ∈ J1] + [j ∈ J2])
∑
i∈I

aij

=
∑
j∈J

[j ∈ J ]
∑
i∈I

aij

=
∑
j∈J

∑
i∈I

aij

and the Sum Transposition formula for finite J is proved. Consider the general case.
To prove ≤ in (1.3.2), consider a finite K ⊂ I. By the finite Sum Transposition
formula the subsum

∑
i∈K

∑
j∈J aij is equal to

∑
j∈J

∑
i∈K aij . But this sum is

termwise majorized by the right-hand side sum in (1.3.2). Therefore the left-hand
side does not exceed the right-hand side by All-for-One principle.

To derive the Sum Partition Theorem from the Sum Transposition formula,
pose aij = ai[i ∈ Ij ]. Then ai =

∑
j∈J aij and (1.3.1) turns into (1.3.2). This

completes the proof of the Sum Partition Theorem.

Blocking. For a given a series
∑∞
k=0 ak and an increasing sequence of natural

numbers {nk}∞k=0 starting with n0 = 0 one defines a new series
∑∞
k=0Ak by the

rule Ak =
∑nk+1−1
i=nk

ai. The series
∑∞
k=0Ak is called blocking of

∑∞
k=0 ak by {nk}.

The Sum Partition Theorem implies that the sums of blocked and unblocked
series coincide. Blocking formalizes putting of brackets. Therefore the Sum Parti-
tion Theorem implies the Sequential Associativity Law : Placing brackets does not
change the sum of series.
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Estimation of the Euler series. Let us compare the Euler series with the
series

∑∞
k=0

1
2k

, blocked by {2n} to
∑∞
k=1 ak. The sum

∑2n+1−1
k=2n

1
k2 consists of 2n

summands, all of which are less then the first one, which is 1
22n . As 2n 1

22n = 1
2n , it

follows that an ≤ 1
2n for each n. Summing these inequalities, one gets

∑∞
k=1 ak ≤ 2.

Now let us estimate how many terms of Euler’s series one needs to take into
account to find its sum up to the eighteenth digit. To do this, we need to estimate
its tail. The arguments above give

∑∞
k=2n

1
k2 ≤ 1

2n−1 . To obtain a lower estimate,

let us remark that all terms of sum
∑2n+1−1
k=2n

1
k2 exceed 1

22(n+1) . As the number
of summands is 2n, one gets an ≥ 1

4·2n . Hence
∑∞
k=2n

1
k2 ≥ 1

2n+1 . Since 210 =
1024 ' 103, one gets 260 ' 1018. So, to provide an accuracy of 10−18 one needs
to sum approximately 1018 terms. This task is inaccessible even for a modern
computer. How did Euler manage to do this? He invented a summation formula
(Euler-MacLaurin formula) and transformed this slowly convergent series into non-
positive divergent (!) one, whose partial sum containing as few as ten terms gave
eighteen digit accuracy. The whole calculation took him an evening. To introduce
this formula, one needs to know integrals and derivatives. We will do this later.

Problems.
1. Find

∑∞
k=1

1
(2k)2 and

∑∞
k=1

1
(2k−1)2 , assuming

∑∞
k=1

1
k2 = π2/6.

2. Prove the convergence of
∑∞
k=1

1
k
√
k

.
3. Estimate how many terms of the series

∑∞
n=1

1
n3 are necessary for calculation

of its sum with precision 10−3.
4. Estimate the value of

∑∞
k=1

1
2k

1
k .

5. Prove the equality
∑∞
k=0 ak

∑∞
k=0 bk =

∑
j,k∈N ajbk.

6. Estimate how many terms of the Harmonic series give the sum surpassing 1000.
7. Prove the Dirichlet formula

∑n
k=1

∑k
i=1 aki =

∑n
i=1

∑n
k=i aki.

8. Evaluate
∑
i,j∈N

1
2i3j .

9. Evaluate
∑
i,j∈N

i+j
2i3j .

10. Represent an unordered sum
∑
i+j<n aij as a double sum.

11. Evaluate
∑
i,j∈N

ij
2i3j .

12. Change the summation order in
∑∞
i=0

∑2i
j=0 aij .

13. Define by Iverson notation the following functions:
• [x] (integral part),
• |x| (module),
• sgnx (signum),
• n! (factorial).

14. Define only by formulas the expression [p is prime].



1.4. Infinite Products

On the contents of the lecture. In this lecture we become acquainted with
infinite products. The famous Euler Identity will be proved. We will find out that
ζ(2) is another name for the Euler series. And we will see how Euler’s decomposition
of the sine function into a product works to sum up the Euler Series.

.

Definition. The product of an infinite sequence of numbers {ak}, such that
ak ≥ 1 for all k, is defined as the least number majorizing all partial products∏n
k=1 ak = a1a2 . . . an.

A sequence of natural numbers is called essentially finite if all but finitely
many of its elements are equal to zero. Denote by N∞ the set of all essentially
finite sequences of natural numbers.

Theorem 1.4.1. For any given sequence of positive series
∑∞
k=0 a

j
k, j = 1, 2, . . .

such that aj0 = 1 for all j one has

(1.4.1)
∞∏
j=1

∞∑
k=0

ajk =
∑

{kj}∈N∞

∞∏
j=1

ajkj .

The summands on the right-hand side of (1.4.1) usually contain factors which
are less than one. But each of the summands contains only finitely many factors
different from 1. So the summands are in fact finite products.

Proof. For a sequence {kj} ∈ N∞ define its length as maximal j for which
kj 6= 0 and its maximum as the value of its maximal term. The length of the zero
sequence is defined as 0.

Consider a finite subset S ⊂ N∞. Consider the partial sum∑
{kj}∈S

∞∏
k=1

ajkj .

To estimate it, denote by L the maximal length of elements of S and denote by M
the greatest of maxima of {kj} ∈ S. In this case

∑
{kj}∈S

∞∏
j=1

ajkj =
∑
{kj}∈S

L∏
j=1

ajkj ≤
∑

{kj}∈NLM

L∏
j=1

ajkj =
L∏
j=1

M∑
k=0

ajk ≤
∞∏
j=1

∞∑
k=0

ajk,

where NLM denotes the set of all finite sequences {k1, k2, . . . , kL} of natural numbers
such that ki ≤ M . By All-for-One this implies one of the required inequalities,
namely, ≥.

To prove the opposite inequality, we prove that for any natural L one has

(1.4.2)
L∏
j=1

∞∑
k=0

ajk =
∑

{kj}∈NL

L∏
j=1

ajkj ,

where NL denotes the set of all finite sequences {k1, . . . kL} of natural numbers.
The proof is by induction on L.

16
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Lemma 1.4.2. For any families {ai}i∈I , {bj}j∈J of nonnegative numbers, one
has ∑

i∈I
ai
∑
j∈J

bj =
∑

(i,j)∈I×J

aibj .

Proof of Lemma 1.4.2. Since I × J =
⊔
i∈I{i} × J by the Sum Partition

Theorem one gets: ∑
(i,j)∈I×J

aibj =
∑
i∈I

∑
(i,j)∈{i}×J

aibj

=
∑
i∈I

∑
j∈J

aibj

=
∑
i∈I

ai
∑
j∈J

bj

=
∑
j∈J

bj
∑
i∈I

ai.

�

Case L = 2 follows from Lemma 1.4.2, because N2 = N × N. The induction
step is done as follows

L+1∏
j=1

∞∑
k=0

ajk =
∞∑
k=0

aL+1
k

L∏
j=1

∞∑
k=0

ajk

=
∑
k∈N

aL+1
k

∑
{kj}∈NL

L∏
j=1

ajkj

=
∑

{kj}∈NL+1

L+1∏
j=1

ajkj .

The left-hand side of (1.4.2) is a partial product for the left-hand side of (1.4.1)
and the right-hand side of (1.4.2) is a subsum of the right-hand side of (1.4.1).
Consequently, all partial products of the right-hand side in (1.4.1) do not exceed
its left-hand side. This proves the inequality ≤. �

Euler’s Identity. Our next goal is to prove the Euler Identity.

∞∑
k=1

1
kα

=
∞∏
p=1

(
1− 1

pα

)−[p is prime]

Here α is any rational (or even irrational) positive number.
The product on the right-hand side is called the Euler Product. The series on

the left-hand side is called the Dirichlet series. Each factor of the Euler Product
expands into the geometric series

∑∞
k=0

1
pkα

. By Theorem 1.4.1, the product of these

geometric series is equal to the sum of products of the type p−k1α
1 p−k2α

2 . . . p−knαn

= N−α. Here {pi} are different prime numbers, {ki} are positive natural numbers
and pk1

1 p
k2
2 . . . pknn = N . But each product pk1

1 p
k2
2 . . . pknn = N is a natural number,

different products represent different numbers and any natural number has a unique
representation of this sort. This is exactly what is called Principal Theorem of
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Arithmetic. That is, the above decomposition of the Euler product expands in the
Dirichlet series.

Convergence of the Dirichlet series.

Theorem 1.4.3. The Dirichlet series
∑∞
n=1

1
ns converges if and only if s > 1.

Proof. Consider a {2k} packing of the series. Then the n-th term of the
packed series one estimates from above as

2n+1−1∑
k=2n

1
ks
≤

2n+1−1∑
k=2n

1
(2n)s

= 2n
1

2ns
= 2n−ns = (21−s)n.

If s > 1 then 21−s < 1 and the packed series is termwise majorized by a convergent
geometric progression. Hence it converges. In the case of the Harmonic series
(s = 1) the n-th term of its packing one estimates from below as

2n+1−1∑
k=2n

1
k
≥

2n+1−1∑
k=2n

1
2n+1

= 2n
1

2n+1
=

1
2
.

That is why the harmonic series diverges. A Dirichlet series for s < 1 termwise
majorizes the Harmonic series and so diverges. �

The Riemann ζ-function. The function

ζ(s) =
∞∑
n=1

1
ns

is called the Riemann ζ-function. It is of great importance in number theory.
The simplest application of Euler’s Identity represents Euler’s proof of the

infinity of the set of primes. The divergence of the harmonic series
∑∞
k=1

1
k implies

the Euler Product has to contain infinitely many factors to diverge.
Euler proved an essentially more exact result: the series of reciprocal primes

diverges
∑

1
p =∞.

Summing via multiplication. Multiplication of series gives rise to a new
approach to evaluating their sums. Consider the geometric series

∑∞
k=0 x

k. Then( ∞∑
k=0

xk

)2

=
∑
j,k∈N2

xjxk =
∞∑
m=0

∑
j+k=m

xjxk =
∞∑
m=0

(m+ 1)xm.

As
∑∞
k=0 x

k = 1
1−x one gets

∑∞
k=0(k + 1)xk = 1

(1−x)2 .

Sine-product. Now we are ready to understand how two formulas

sinx
x

=
∞∏
k=1

(
1− x2

k2π2

)
, sinx =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
(1.4.3)

which appeared in the Legends, yield an evaluation of the Euler Series. Since at
the moment we do not know how to multiply infinite sequences of numbers which
are less than one, we invert the product in the first formula. We get

(1.4.4)
x

sinx
=
∞∏
k=1

(
1− x2

k2π2

)−1

=
∞∏
k=1

∞∑
j=0

x2j

k2jπ2j
.
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To avoid negative numbers, we interpret the series
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

in the second formula of (1.4.3) as the difference
∞∑
k=0

x4k+1

(4k + 1)!
−
∞∑
k=0

x4k+3

(4k + 3)!
.

Substituting this expression for sinx in x
sin x and cancelling out x, we get

x

sinx
=

1

1−
∞∑
k=1

(−1)k+1 x2k

(2k+1)!

=
∞∑
j=0

( ∞∑
k=1

(−1)k+1 x2k

(2k + 1)!

)j
.

All terms on the right-hand side starting with j = 2 are divisible by x4. Conse-
quently the only summand with x2 on the right-hand side is x2

6 . On the other hand
in (1.4.4) after an expansion into a sum by Theorem 1.4.1, the terms with x2 give
the series

∑∞
k=1

x2

k2π2 . Comparing these results, one gets
∑∞
k=1

1
k2 = π2

6 .

Problems.
1. Prove

∏∞
n=1 1.1 =∞.

2. Prove the identity
∏∞
n=1 a

2
n = (

∏∞
n=1 an)2 (an ≥ 1).

3. Does
∏∞
n=1(1 + 1

n ) converge?
4. Evaluate

∏∞
n=2

n2

n2−1 .
5. Prove the divergence of

∏∞
1 (1 + 1

k )[k is prime].
6. Evaluate

∏∞
n=3

n(n+1)
(n−2)(n+3) .

7. Evaluate
∏∞
n=3

n2−1
n2−4 .

8. Evaluate
∏∞
n=1(1 + 1

n(n+2) ).

9. Evaluate
∏∞
n=1

(2n+1)(2n+7)
(2n+3)(2n+5) .

10. Evaluate
∏∞
n=2

n3+1
n3−1 .

11. Prove the inequality
∏∞
k=2(1 + 1

k2 ) ≥
∑∞
k=2

1
k2 .

12. Prove the convergence of the Wallis product
∏

4k2

4k2−1 .
13. Evaluate

∑∞
k=1

1
k4 by applying (1.4.3).

14. Prove
∏∞
n=2

n2+1
n2 <∞.

15. Multiply a geometric series by itself and get a power series expansion for (1−
x)−2.

16. Define τ(n) as the number of divisors of n. Prove ζ2(x) =
∑∞
n=1

τ(n)
nx .

17. Define φ(n) as the number of numbers which are less than n are relatively prime
to n. Prove ζ(x−1)

ζ(x) =
∑∞
n=1

φ(n)
nx .

18. Define µ(n) (Möbius function) as follows: µ(1) = 1, µ(n) = 0, if n is divisible by
the square of a prime number, µ(n) = (−1)k, if n is the product of k different
prime numbers. Prove 1

ζ(x) =
∑∞
k=1

µ(n)
nx .

∗19. Prove
∑∞
k=1

[k is prime]
k =∞.

∗20. Prove the identity
∏∞
n=0(1 + x2n) = 1

1−x .



1.5. Telescopic Sums

On the content of this lecture. In this lecture we learn the main secret of
elementary summation theory. We will evaluate series via their partial sums. We
introduce factorial powers, which are easy to sum. Following Stirling we expand

1
1+x2 into a series of negative factorial powers and apply this expansion to evaluate
the Euler series with Stirling’s accuracy of 10−8.

The series
∑∞
k=1

1
k(k+1) . In the first lecture we calculated infinite sums di-

rectly without invoking partial sums. Now we present a dual approach to summing
series. According to this approach, at first one finds a formula for the n-th par-
tial sum and then substitutes in this formula infinity instead of n. The series∑∞
k=1

1
k(k+1) gives a simple example for this method. The key to sum it up is the

following identity
1

k(k + 1)
=

1
k
− 1
k + 1

.

Because of this identity
∑∞
k=1

1
k(k+1) turns into the sum of differences

(1.5.1)
(

1− 1
2

)
+
(

1
2
− 1

3

)
+
(

1
3
− 1

4

)
+ · · ·+

(
1
n
− 1
n+ 1

)
+ . . . .

Its n-th partial sum is equal to 1− 1
n+1 . Substituting in this formula n = +∞, one

gets 1 as its ultimate sum.

Telescopic sums. The sum (1.5.1) represents a telescopic sum. This name is
used for sums of the form

∑n
k=0(ak − ak+1). The value of such a telescopic sum

is determined by the values of the first and the last of ak, similarly to a telescope,
whose thickness is determined by the radii of the external and internal rings. Indeed,
n∑
k=0

(ak − ak+1) =
n∑
k=0

ak −
n∑
k=0

ak+1 = a0 +
n∑
k=1

ak −
n−1∑
k=0

ak+1 − an+1 = a0 − an+1.

The same arguments for infinite telescopic sums give

(1.5.2)
∞∑
k=0

(ak − ak+1) = a0.

But this proof works only if
∑∞
k=0 ak <∞. This is untrue for

∑∞
k=1

1
k(k+1) , owing

to the divergence of the Harmonic series. But the equality (1.5.2) holds also if
ak tends to 0 as k tends to infinity. Indeed, in this case a0 is the least number
majorizing all a0 − an, the n-th partial sums of

∑∞
k=0 ak.

Differences. For a given sequence {ak} one denotes by {∆ak} the sequence
of differences ∆ak = ak+1 − ak and calls the latter sequence the difference of {ak}.
This is the main formula of elementary summation theory.

n−1∑
k=0

∆ak = an − a0

To telescope a series
∑∞
k=0 ak it is sufficient to find a sequence {Ak} such that

∆Ak = ak. On the other hand the sequence of sums An =
∑n−1
k=0 ak has difference

∆An = an. Therefore, we see that to telescope a sum is equivalent to find a formula

20
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for partial sums. This lead to concept of a telescopic function. For a function f(x)
we introduce its difference ∆f(x) as f(x + 1) − f(x). A function f(x) telescopes∑
ak if ∆f(k) = ak for all k.

Often the sequence {ak} that we would like to telescope has the form ak = f(k)
for some function. Then we are searching for a telescopic function F (x) for f(x),
i.e., a function such that ∆F (x) = f(x).

To evaluate the difference of a function is usually much easier than to telescope
it. For this reason one has evaluated the differences of all basic functions and
organized a table of differences. In order to telescope a given function, look in this
table to find a table function whose difference coincides with or is close to given
function.

For example, the differences of xn for n ≤ 3 are ∆x = 1, ∆x2 = 2x + 1,
∆x3 = 3x2 + 3x + 1. To telescope

∑∞
k=1 k

2 we choose in this table x3. Then
∆x3

3 −x
2 = x+ 1

3 = ∆x2

2 −∆x
6 . Therefore, x2 = ∆

(
x3

3 −
x2

2 + x
6

)
. This immediately

implies the following formula for sums of squares:

(1.5.3)
n−1∑
k=1

k2 =
2n3 − 3n2 + n

6
.

Factorial powers. The usual powers xn have complicated differences. The
so-called factorial powers xk have simpler differences. For any number x and any
natural number k, let xk denote x(x − 1)(x − 2) . . . (x − k + 1), and by x

−k we
denote 1

(x+1)(x+2)...(x+k) . At last we define x0 = 1. The factorial power satisfies the
following addition law.

x
k+m = x

k(x− k)m

We leave to the reader to check this rule for all integers m, k. The power nn for
a natural n coincides with the factorial n! = 1 · 2 · 3 · · ·n. The main property of
factorial powers is given by:

∆xn = nx
n−1

The proof is straightforward:

(x+ 1)k − xk = (x+ 1)1+(k−1) − x(k−1)+1

= (x+ 1)xk−1 − xk−1(x− k + 1)

= kx
k−1

.

Applying this formula one can easily telescope any factorial polynomial, i.e., an
expression of the form

a0 + a1x
1 + a2x

2 + a3x
3 + · · ·+ anx

n
.

Indeed, the explicit formula for the telescoping function is

a0x
1 + a1

2 x
2 + a2

3 x
3 + a3

4 x
4 + · · ·+ an

n+1x
n+1

.

Therefore, another strategy to telescope xk is to represent it as a factorial polyno-
mial.

For example, to represent x2 as factorial polynomial, consider a + bx + cx
2, a

general factorial polynomial of degree 2. We are looking for x2 = a + bx + cx
2.

Substituting x = 0 in this equality one gets a = 0. Substituting x = 1, one gets
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1 = b, and finally for x = 2 one has 4 = 2 + 2c. Hence c = 1. As result x2 = x+x
2.

And the telescoping function is given by

1
2x

2 + 1
3x

3 = 1
2 (x2 − x) + 1

3 (x(x2 − 3x+ 2)) = 1
6 (2x3 − 3x2 + x).

And we have once again proved the formula (1.5.3).

Stirling Estimation of the Euler series. We will expand 1
(1+x)2 into a series

of negative factorial powers in order to telescope it. A natural first approximation
to 1

(1+x2) is x−2 = 1
(x+1)(x+2) . We represent 1

(1+x)2 as x−2 +R1(x), where

R1(x) =
1

(1 + x)2
− x−2 =

1
(x+ 1)2(x+ 2)

.

The remainder R1(x) is in a natural way approximated by x−3. If R1(x) = x
−3 +

R2(x) then R2(x) = 2
(x+1)2(x+2)(x+3) . Further, R2(x) = 2x−4 +R3(x), where

R3(x) =
2 · 3

(x+ 1)2(x+ 2)(x+ 3)(x+ 4)
=

3!
x+ 1

x
−4
.

The above calculations lead to the conjecture

(1.5.4)
1

(1 + x)2
=
n−1∑
k=0

k!x−k−2 +
n!

x+ 1
x
−n−1

.

This conjecture is easily proved by induction. The remainder Rn(x) = n!
x+1x

−n−1

represents the difference 1
(1+x)2 −

∑n−1
k=0 k!x−2−k. Owing to the inequality x

−1−n

≤ 1
(n+1)! , which is valid for all x ≥ 0, the remainder decreases to 0 as n increases

to infinity. This implies

Theorem 1.5.1. For all x ≥ 0 one has

1
(1 + x)2

=
∞∑
k=0

k!x−2−k
.

To calculate
∑∞
k=p

1
(1+k)2 , replace all summands by the expressions (1.5.4). We

will get
∞∑
k=p

(
n−1∑
m=0

m!k−2−m +
n!

k + 1
k
−1−n

)
.

Changing the order of summation we have

n−1∑
m=0

m!
∞∑
k=p

k
−2−m +

∞∑
k=p

n!
k + 1

k
−1−n

.

Since 1
1+mx

−1−m telescopes the sequence {k−2−m},
∑∞
k=p k

−2−m = 1
1+mp

−1−m,
Denote the sum of remainders

∑∞
k=p

n!
k+1k

−1−n by R(n, p). Then for all natural p
and n one has

∞∑
k=p

1
(1 + k)2

=
n−1∑
m=0

m!
1 +m

p
−1−m +R(n, p)
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For p = 0 and n = +∞, the right-hand side turns into the Euler series, and one
could get a false impression that we get nothing new. But k−2−n ≤ 1

k+1k
−1−n ≤

(k − 1)−2−n, hence

n!
1 + n

p
−1−n =

∞∑
k=p

n!k−2−n ≤ R(n, p) ≤
∞∑
k=p

n!(k − 1)−2−n =
n!

1 + n
(p− 1)−1−n

.

Since (p− 1)−1−n − p−1−n = (1 + n)(p− 1)−2−n, there is a θ ∈ (0, 1) such that

R(n, p) =
n!

1 + n
p
−1−n + θn!(p− 1)−2−n

.

Finally we get:
∞∑
k=1

1
k2

=
p−1∑
k=0

1
(1 + k)2

+
n−1∑
k=0

k!
1 + k

p
−1−k + θn!(p− 1)−2−n

.

For p = n = 3 this formula turns into
∞∑
k=1

1
k2

= 1 +
1
4

+
1
9

+
1
4

+
1
40

+
1

180
+

θ

420
.

For p = n = 10 one gets R(10, 10) ≤ 10!9−12. After cancellations one has
1

2·11·12·13·14·15·17·19 . This is approximately 2 · 10−8. Therefore
10−1∑
k=0

1
(k + 1)2

+
10−1∑
k=0

k!
1 + k

10−1−k

is less than the sum of the Euler series by only 2 · 10−8. In such a way one can in
one hour calculate eight digits of

∑∞
k=1

1
k2 after the decimal point. It is not a bad

result, but it is still far from Euler’s eighteen digits. For p = 10, to provide eighteen
digits one has to sum essentially more than one hundred terms of the series. This
is a bit too much for a person, but is possible for a computer.

Problems.
1. Telescope

∑
k3.

2. Represent x4 as a factorial polynomial.
3. Evaluate

∑∞
k=1

1
k(k+2) .

4. Evaluate
∑∞
k=1

1
k(k+1)(k+2)(k+3) .

5. Prove: If ∆ak ≥ ∆bk for all k and a1 ≥ b1 then ak ≥ bk for all k.
6. ∆(x+ a)n = n(x+ a)n−1.
7. Prove Archimedes’s inequality n3

3 ≤
∑n−1
k=1 k

2 ≤ (n+1)3

3 .
8. Telescope

∑∞
k=1

k
2k

.
9. Prove the inequalities 1

n ≥
∑∞
k=n+1

1
k2 ≥ 1

n+1 .
10. Prove that the degree of ∆P (x) is less than the degree of P (x) for any polyno-

mial P (x).
11. Relying on ∆2n = 2n, prove that P (n) < 2n eventually for any polynomial

P (x).
12. Prove

∑∞
k=0 k!(x− 1)−1−k = 1

x .



1.6. Complex Series

On the contents of the lecture. Complex numbers hide the key to the Euler
Series. The summation theory developed for positive series now extends to complex
series. We will see that complex series can help to sum real series.

Cubic equation. Complex numbers arise in connection with the solution of
the cubic equation. The substitution x = y− a

3 reduces the general cubic equation
x3 + ax2 + bx+ c = 0 to

y3 + py + q = 0.
The reduced equation one solves by the following trick. One looks for a root in the
form y = α+β. Then (α+β)3+p(α+β)+q = 0 or α3+β3+3αβ(α+β)+p(α+β)+q =
0. The latter equality one reduces to the system

α3 + β3 = −q,
3αβ = −p.

(1.6.1)

Raising the second equation into a cube one gets

α3 + β3 = −q,
27α3β3 = −p3.

Now α3, β3 are roots of the quadratic equation

x2 + qx− p3

27 ,

called the resolution of the original cubic equation. Sometimes the resolution has
no roots, while the cubic equation always has a root. Nevertheless one can evaluate
a root of the cubic equation with the help of its resolution. To do this one simply
ignores that the numbers under the square roots are negative.

For example consider the following cubic equation

(1.6.2) x3 − 3
2x−

1
2 = 0.

Then (1.6.1) turns into
α3 + β3 = 1

2 ,

α3β3 = 1
8 ,

The corresponding resolution is t2 − t
2 + 1

8 = 0 and its roots are

t1,2 = 1
4 ±

√
1
16 −

1
8 = 1

4 ±
1
4

√
−1.

Then the desired root of the cubic equation is given by

(1.6.3) 3
√

1
4 (1 +

√
−1) + 3

√
1
4 (1−

√
−1) = 1

3
√

4

(
3
√

1 +
√
−1 + 3

√
1−
√
−1
)
.

It turns out that the latter expression one uniquely interprets as a real number which
is a root of the equation (1.6.2). To evaluate it consider the following expression

(1.6.4) 3
√

(1 +
√
−1)2 − 3

√
(1 +

√
−1) 3

√
(1−

√
−1) + 3

√
(1−

√
−1)2.

Since
(1 +

√
−1)2 = 12 + 2

√
−1 +

√
−1

2
= 1 + 2

√
−1− 1 = 2

√
−1,

the left summand of (1.6.4) is equal to

3

√
2
√
−1 = 3

√
2 3

√√
−1 = 3

√
2
√

3
√
−1 = 3

√
2
√
−1.

24



1.6 complex series 25

Similarly (1 −
√
−1)2 = −2

√
−1, and the right summand of (1.6.4) turns into

− 3
√

2
√
−1. Finally (1 +

√
−1)(1 −

√
−1) = 12 −

√
−1

2
= 2 and the central one is

− 3
√

2. As a result the whole expression (1.6.4) is evaluated as − 3
√

2.
On the other hand one evaluates the product of (1.6.3) and (1.6.4) by the usual

formula as the sum of cubes
1

3
√

4
((1 +

√
−1) + (1−

√
−1)) = 1

3
√

4
((1 + 1) + (

√
−1)−

√
−1)) = 1

3
√

4
(2 + 0) = 3

√
2.

Consequently (1.6.3) is equal to
3√2
− 3
√

2
= −1. And −1 is a true root of (1.6.2).

Arithmetic of complex numbers. In the sequel we use i instead of
√
−1.

There are two basic ways to represent a complex number. The representation
z = a + ib, where a and b are real numbers we call the Cartesian form of z. The
numbers a and b are called respectively the real and the imaginary parts of z and are
denoted by Re z and by Im z respectively. Addition and multiplication of complex
numbers are defined via their real and imaginary parts as follows

Re(z1 + z2) = Re z1 + Re z2,

Im(z1 + z2) = Im z1 + Im z2,

Re(z1z2) = Re z1 Re z2 − Im z1 Im z2,

Im(z1z2) = Re z1 Im z2 + Im z1 Re z2.

The trigonometric form of a complex number is z = ρ(cosφ + i sinφ), where
ρ ≥ 0 is called the module or the absolute value of a complex number z and is
denoted |z|, and φ is called its argument. The argument of a complex number is
defined modulo 2π. We denote by Arg z the set of all arguments of z, and by arg z
the element of Arg z which satisfies the inequalities −π < arg z ≤ π. So arg z is
uniquely defined for all complex numbers. arg z is called the principal argument of
z.

The number a − bi is called the conjugate to z = a + bi and denoted z. One
has zz = |z|2. This allows us to express z−1 as z

|z|2 .

arg z

Re z

Im z

 O

Z

Figure 1.6.1. The representation of a complex number

If z = a+ib then |z| =
√
a2 + b2 and arg z = arctg b

a . One represents a complex
number z = a+bi as a point Z of the plane with coordinates (a, b). Then |z| is equal
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to the distance from Z to the origin O. And arg z represents the angle between
the axis of abscises and the ray

−→
OZ. Addition of complex numbers corresponds

to usual vector addition. And the usual triangle inequality turns into the module
inequality :

|z + ζ| ≤ |z|+ |ζ|.
The multiplication formula for complex numbers in the trigonometric form is espe-
cially simple:

r(cosφ+ i sinφ)r′(cosψ + i sinψ)

= rr′(cos(φ+ ψ) + i sin(φ+ ψ)).
(1.6.5)

Indeed, the left-hand side and the right-hand side of (1.6.5) transform to

rr′(cosφ cosψ − sinφ sinψ) + irr′(sinφ cosψ + sinψ cosφ).

That is, the module of the product is equal to the product of modules and the
argument of product is equal to the sum of arguments:

Arg z1z2 = Arg z1 ⊕Arg z2.

Any complex number is uniquely defined by its module and argument.
The multiplication formula allows us to prove by induction the following:

(Moivre Formula) (cosφ+ i sinφ)n = (cosnφ+ i sinnφ).

Sum of a complex series. Now is the time to extend our summation theory
to series made of complex numbers. We extend the whole theory without any
losses to so-called absolutely convergent series. The series

∑∞
k=1 zk with arbitrary

complex terms is called absolutely convergent, if the series
∑∞
k=1 |zk| of absolute

values converges.
For any real number x one defines two nonnegative numbers: its positive x+ and

negative x− parts as x+ = x[x ≥ 0] and x− = −x[x < 0]. The following identities
characterize the positive and negative parts of x

x+ + x− = |x|, x+ − x− = x.

Now the sum of an absolutely convergent series of real numbers is defined as follows:

(1.6.6)
∞∑
k=1

ak =
∞∑
k=1

a+
k −

∞∑
k=1

a−k .

That is, from the sum of all positive summands one subtracts the sum of modules
of all negative summands. The two series on the right-hand side converge, because
a+
k ≤ |ak|, a

−
k ≤ |ak| and

∑∞
k=1 |ak| <∞.

For an absolutely convergent complex series
∑∞
k=1 zk we define the real and

imaginary parts of its sum separately by the formulas

Re
∞∑
k=1

zk =
∞∑
k=1

Re zk, Im
∞∑
k=1

zk =
∞∑
k=1

Im zk.(1.6.7)

The series in the right-hand sides of these formulas are absolutely convergent, since
|Re zk| ≤ |zk| and | Im zk| ≤ |zk|.
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Theorem 1.6.1. For any pair of absolutely convergent series
∑∞
k=1 ak and∑∞

k=1 bk its termwise sum
∑∞
k=1(ak + bk) absolutely converges and

(1.6.8)
∞∑
k=1

(ak + bk) =
∞∑
k=1

ak +
∞∑
k=1

bk.

Proof. First, remark that the absolute convergence of the series on the left-
hand side follows from the Module Inequality |ak+bk| ≤ |ak|+ |bk| and the absolute
convergence of the series on the right-hand side.

Now consider the case of real numbers. Representing all sums in (1.6.8) as
differences of their positive and negative parts and separating positive and negative
terms in different sides one transforms (1.6.8) into

∞∑
k=1

a+
k +

∞∑
k=1

b+k +
∞∑
k=1

(ak + bk)− =
∞∑
k=1

a−k +
∞∑
k=1

b−k +
∞∑
k=1

(ak + bk)+.

But this equality is true due to termwise addition for positive series and the follow-
ing identity,

x− + y− + (x+ y)+ = x+ + y+ + (x+ y)−.

Moving terms around turns this identity into

(x+ y)+ − (x+ y)− = (x+ − x−) + (y+ − y−),

which is true due to the identity x+ −+x− = x.
In the complex case the equality (1.6.8) splits into two equalities, one for real

parts and another for imaginary parts. As for real series the termwise addition is
already proved, we can write the following chain of equalities,

Re (
∑∞
k=1 ak +

∑∞
k=1 bk) = Re

∑∞
k=1 ak + Re

∑∞
k=1 bk

=
∑∞
k=1 Re ak +

∑∞
k=1 Re bk

=
∑∞
k=1(Re ak + Re bk)

=
∑∞
k=1 Re(ak + bk)

= Re
∑∞
k=1(ak + bk),

which proves the equality of real parts in (1.6.8). The same proof works for the
imaginary parts. �

Sum Partition Theorem. An unordered sum of a family of complex numbers
is defined by the same formulas (1.6.6) and (1.6.7). Since for positive series non-
ordered sums coincide with the ordered sums, we get the same coincidence for all
absolutely convergent series. Hence the commutativity law holds for all absolutely
convergence series.

Theorem 1.6.2. If I =
⊔
j∈J Ij and

∑∞
k=1 |ak| <∞ then

∑
j∈J

∣∣∣∑i∈Ij ai

∣∣∣ <∞
and

∑
j∈J

∑
i∈Ij ai =

∑
i∈I ai.

Proof. At first consider the case of real summands. By definition
∑
i∈I ai =∑

i∈I a
+
i −

∑
i∈I a

−
i . By Sum Partition Theorem positive series one transforms the

original sum into ∑
j∈J

∑
i∈Ij a

+
i −

∑
j∈J

∑
i∈Ij a

−
i .
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Now by the Termwise Addition applied at first to external and after to internal
sums one gets

∑
j∈J

(∑
i∈Ij a

+
i −

∑
i∈Ij a

−
i

)
=
∑
j∈J

∑
i∈Ij (a

+
i − a

−
i ) =

∑
j∈J

∑
i∈Ij ai.

So the Sum Partition Theorem is proved for all absolutely convergent real series.
And it immediately extends to absolutely convergent complex series by its splitting
into real and imaginary parts. �

Theorem 1.6.3 (Termwise Multiplication). If
∑∞
k=1 |zk| < ∞ then for any

(complex) c,
∑∞
k=1 |czk| <∞ and

∑∞
k=1 czk = c

∑∞
k=1 zk.

Proof. Termwise Multiplication for positive numbers gives the first statement
of the theorem

∑∞
k=1 |czk| =

∑∞
k=1 |c||zk| = |c|

∑∞
k=1 |zk|. The further proof is

divided into five cases.
At first suppose c is positive and zk real. Then cz+

k = cz+
k and by virtue of

Termwise Multiplication for positive series we get∑∞
k=1 czk =

∑∞
k=1 cz

+
k −

∑∞
k=1 cz

−
k

= c
∑∞
k=1 z

+
k − c

∑∞
k=1 z

−
k

= c
(∑∞

k=1 z
+
k −

∑∞
k=1 z

−
k

)
= c

∑∞
k=1 zk.

The second case. Let c = −1 and zk be real. In this case∑∞
k=1−zk =

∑∞
k=1(−zk)+ −

∑∞
k=1(−zk)− =

∑∞
k=1 z

−
k −

∑∞
k=1 z

+
k = −

∑∞
k=1 zk.

The third case. Let c be real and zk complex. In this case Re czk = cRe zk and
the two cases above imply the Termwise Multiplication for any real c. Hence

Re
∑∞
k=1 czk =

∑∞
k=1 Re czk

=
∑∞
k=1 cRe zk

= c
∑∞
k=1 Re zk

= cRe
∑∞
k=1 zk

= Re c
∑∞
k=1 zk.

The same is true for imaginary parts.
The fourth case. Let c = i and zk be complex. Then Re izk = − Im zk and

Im izk = Re zk. So one gets for real parts

Re
∑∞
k=1 izk =

∑∞
k=1 Re(izk)

=
∑∞
k=1− Im zk

= −
∑∞
k=1 Im zk

= − Im
∑∞
k=1 zk

= Re i
∑∞
k=1 zk.
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The general case. Let c = a+ bi with real a, b. Then

c
∑∞
k=1 zk = a

∑∞
k=1 zk + ib

∑∞
k=1 zk

=
∑∞
k=1 azk +

∑∞
k=1 ibzk

=
∑∞
k=1(azk + ibzk)

=
∑∞
k=1 czk.

�

Multiplication of Series. For two given series
∑∞
k=0 ak and

∑∞
k=0 bk, one

defines their convolution as a series
∑∞
n=0 cn, where cn =

∑n
k=0 akbn−k.

Theorem 1.6.4 (Cauchy). For any pair of absolutely convergent series
∑∞
k=0 ak

and
∑∞
k=0 bk their convolution

∑∞
k=0 ck absolutely converges and∑∞

k=0 ck =
∑∞
k=0 ak

∑∞
k=0 bk.

Proof. Consider the double series
∑
i,j aibj . Then by the Sum Partition The-

orem its sum is equal to∑∞
j=0 (

∑∞
i=0 aibj) =

∑∞
j=0 bj (

∑∞
i=0 ai) = (

∑∞
i=0 ai)(

∑∞
j=0 bj).

On the other hand,
∑
i,j aibj =

∑∞
n=0

∑n+1−1
k=0 akbn−k. But the last sum is just the

convolution.
This proof goes through for positive series. In the generalcase we have to prove

absolute convergence of the double series. But this follows from

(
∑∞
k=0 |ak|) (

∑∞
k=0 |bk|) =

∑∞
k=0 |ck|.

�

Module Inequality.

(1.6.9)

∣∣∣∣∣
∞∑
k=1

zk

∣∣∣∣∣ ≤
∞∑
k=1

|zk|.

Let zk = xk + iyk. Summation of the inequalities −|xk| ≤ xk ≤ |xk| gives
−
∑∞
k=1 |xk| ≤

∑∞
k=1 xk ≤

∑∞
k=1 |xk|, which means |

∑∞
k=1 xk| ≤

∑∞
k=1 |xk|. The

same inequality is true for yk. Consider z′k = |xk| + i|yk|. Then |zk| = |z′k| and
|
∑∞
k=1 zk| ≤ |

∑∞
k=1 z

′
k|. Therefore it is sufficient to prove the inequality (1.6.9) for

z′k, that is, for numbers with non-negative real and imaginary parts. Now supposing
xk, yk to be nonnegative one gets the following chain of equivalent transformations
of (1.6.9):

(
∑∞
k=1 xk)2 + (

∑∞
k=1 yk)2 ≤ (

∑∞
k=1 |zk|)

2

∑∞
k=1 xk ≤

√
(
∑∞
k=1 |zk|)

2 − (
∑∞
k=1 yk)2

∑n
k=1 xk ≤

√
(
∑∞
k=1 |zk|)

2 − (
∑∞
k=1 yk)2

, ∀n = 1, 2, . . .∑∞
k=1 yk ≤

√
(
∑∞
k=1 |zk|)

2 − (Re
∑n
k=1 xk)2

, ∀n = 1, 2, . . .∑m
k=1 yk ≤

√
(
∑∞
k=1 |zk|)

2 − (
∑n
k=1 xk)2

, ∀n,m = 1, 2, . . .

(
∑n
k=1 xk)2 + (

∑m
k=1 yk)2 ≤ (

∑∞
k=1 |zk|)

2
, ∀m,n = 1, 2, . . .
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k=1 xk

)2

+
(∑N

k=1 yk

)2

≤
∑∞
k=1 |zk|, ∀N = 1, 2, . . .∣∣∣∑N

k=1 zk

∣∣∣ ≤∑∞k=1 |zk|, ∀N = 1, 2, . . .

The inequalities of the last system hold because
∣∣∣∑N

k=1 zk

∣∣∣ ≤ ∑N
k=1 |zk| ≤∑∞

k=1 |zk|.

Complex geometric progressions. The sum of a geometric progression with
a complex ratio is given by the same formula

(1.6.10)
n−1∑
k=0

zk =
1− zn

1− z
.

And the proof is the same as in the case of real numbers. But the meaning of
this formula is different. Any complex formula is in fact a pair of formulas. Any
complex equation is in fact a pair of equations.

In particular, for z = q(sinφ + i cosφ) the real part of the left-hand side of
(1.6.10) owing to the Moivre Formula turns into

∑n−1
k=0 q

k sin kφ and the right-hand
side turns into

∑n−1
k=0 q

k cos kφ. So the formula for a geometric progression splits
into two formulas which allow us to telescope some trigonometric series.

Especially interesting is the case with the ratio εn = cos 2π
n + i sin 2π

n . In this
case the geometric progression cyclically takes the same values, because εnn = 1.
The terms of this sequence are called the roots of unity, because they satisfy the
equation zn − 1 = 0.

Lemma 1.6.5. (zn − 1) =
∏n
k=1(z − εkn).

Proof. Denote by P (z) the right-hand side product. This polynomial has
degree n, has major coefficient 1 and has all εkn as its roots. Then the difference
(zn − 1)− P (z) is a polynomial of degree < n which has n different roots. Such a
polynomial has to be 0 by virtue of the following general theorem. �

Theorem 1.6.6. The number of roots of any nonzero complex polynomial does
not exceed its degree.

Proof. The proof is by induction on the degree of P (z). A polynomial of
degree 1 has the form az+b and the only root is − b

a . Suppose our theorem is proved
for any polynomial of degree< n. Consider a polynomial P (z) = a0+a1z+· · ·+anzn
of degree n, where the coefficients are complex numbers. Suppose it has at least n
roots z1, . . . , zn. Consider the polynomial P ∗(z) = an

∏n
k=1(z−zk). The difference

P (z) − P ∗(z) has degree < n and has at least n roots (all zk). By the induction
hypothesis this difference is zero. Hence, P (z) = P ∗(z). But P ∗(z) has only n
roots. Indeed, for any z different from all zk one has |z − zk| > 0. Therefore
|P ∗(z)| = |an|

∏n
k=1 |z − zk| > 0. �

By blocking conjugated roots one gets a pure real formula:

zn − 1 = (z − 1)
(n−1)/2∏
k=1

(
z2 − 2z cos

2kπ
n

+ 1
)
.
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Complexification of series. Complex numbers are effectively applied to
sum up so-called trigonometric series, i.e., series of the type

∑∞
k=0 ak cos kx and∑∞

k=0 ak sin kx. For example, to sum the series
∑∞
k=1 q

k sin kφ one couples it with
its dual

∑∞
k=0 q

k cos kφ to form a complex series
∑∞
k=0 q

k(cos kφ+i sin kφ). The last
is a complex geometric series. Its sum is 1

1−z , where z = cosφ+i sinφ. Now the sum
of the sine series

∑∞
k=1 q

k sin kφ is equal to Im 1
1−z , the imaginary part of the com-

plex series, and the real part of the complex series coincides with the cosine series.
In particular, for q = 1, one has 1

1−z = 1
1+cosφ+i sinφ . To evaluate the real and imag-

inary parts one multiplies both numerator and denominator by 1 + cosφ − i sinφ.
Then one gets (1 − cosφ)2 + sin2 φ = 1 − 2 cos2 φ + cos2 φ + sin2 φ = 2 − 2 cosφ
as the denominator. Hence 1

1−z = 1−cosφ+i sinφ
2−2 cosφ = 1

2 + 1
2 cot φ2 . And we get two

remarkable formulas for the sum of the divergent series
∞∑
k=0

cos kφ =
1
2
,

∞∑
k=1

sin kφ =
1
2

cot
φ

2
.

For φ = 0 the left series turns into
∑∞
k=0(−1)k. The evaluation of the Euler series

via this cosine series is remarkably short, it takes one line. But one has to know
integrals and a something else to justify this evaluation.

Problems.
1. Find real and imaginary parts for 1

1−i , ( 1−i
1+i )

3, i5+2
i19+1 , (1+i)5

(1−i)3 .

2. Find trigonometric form for −1, 1 + i,
√

3 + i.
3. Prove that z1z2 = 0 implies either z1 = 0 or z2 = 0.
4. Prove the distributivity law for complex numbers.
5. Analytically prove the inequality |z1 + z2| ≤ |z1|+ |z2|.
6. Evaluate

∑n−1
k=1

1
zk(zk+1) , where zk = 1 + kz.

7. Evaluate
∑n−1
k=1 z

2
k, where zk = 1 + kz.

8. Evaluate
∑n−1
k=1

sin k
2k

.

9. Solve z2 = i.
10. Solve z2 = 3− 4i.
11. Telescope

∑∞
k=1

sin 2k
3k

.
12. Prove that the conjugated to a root of polynomial with real coefficient is the

root of the polynomial.
13. Prove that z1 + z2 = z1 + z2.
14. Prove that z1z2 = z1 z2.
∗15. Solve 8x3 − 6x− 1 = 0.

16. Evaluate
∑∞
k=1

sin k
2k

.

17. Evaluate
∑∞
k=1

sin 2k
3k

.
18. Prove absolute convergence of

∑∞
k=0

zk

k! for any z.
19. For which z the series

∑∞
k=1

zk

k absolutely converges?
20. Multiply a geometric series onto itself several times applying Cauchy formula.
21. Find series for

√
1 + x by method of indefinite coefficients.

22. Does series
∑∞
k=1

sin k
k absolutely converge?

23. Does series
∑∞
k=1

sin k
k2 absolutely converge?
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2.1. Natural Logarithm

On the contents of the lecture.
In the beginning of Calculus was the Word, and the Word was
with Arithmetic, and the Word was Logarithm1

Logarithmic tables. Multiplication is much more difficult than addition. A
logarithm reduces multiplication to addition. The invention of logarithms was one
of the great achievements of our civilization.

In early times, when logarithms were unknown instead of them one used trigono-
metric functions. The following identity

2 cosx cos y = cos(x+ y) + cos(x− y)

can be applied to calculate products via tables of cosines. To multiply numbers x
and y, one represents them as cosines x = cos a, y = cos b using the cosine table.
Then evaluate (a + b) and (a − b) and find their cosines in the table. Finally, the
results are summed and divided by 2. That is all. A single multiplication requires
four searches in the table of cosines, two additions, one subtraction and one division
by 2.

A logarithmic function l(x) is a function such that l(xy) = l(x) + l(y) for any
x and y. If one has a logarithmic table, to evaluate the product xy one has to find
in the logarithmic table l(x) and l(y) then sum them and find the antilogarithm of
the sum. This is much easier.

The idea of logarithms arose in , when M. Stiefel compared geometric and
arithmetic progressions. The addition of exponents corresponds to the multiplica-
tion of powers. Hence consider a number close to 1, say, 1.000001. Calculate the
sequence of its powers and place them in the left column. Place in the right col-
umn the corresponding values of exponents, which are just the line numbers. The
logarithmic table is ready.

Now to multiply two numbers x and y, find them (or their approximations) in
the left column of the logarithmic table, and read their logarithms from the right
column. Sum the logarithms and find the value of the sum in the right column.
Next to this sum in the left column the product xy stands. The first tables of such
logarithms were composed by John Napier in 1614.

Area of a curvilinear trapezium. Recall that a sequence is said to be mono-
tone, if it is either increasing or decreasing. The minimal interval which contains
all elements of a given sequence of points will be called supporting interval of the
sequence. And a sequence is called exhausting for an interval I if I is the supporting
interval of the sequence.

Let f be a non-negative function defined on [a, b]. The set {(x, y) | x ∈
[a, b] and 0 ≤ y ≤ f(x)} is called a curvilinear trapezium under the graph of f
over the interval [a, b].

To estimate the area of a curvilinear trapezium under the graph of f over [a, b],
choose an exhausting sequence {xi}ni=0 for [a, b] and consider the following sums:

(2.1.1)
n−1∑
k=0

f(xk)|δxk|,
n−1∑
k=0

f(xk+1)|δxk| (where δxk = xk+1 − xk).

1λoγoς is Greek for “word”, α%ιθµoς means “number”.
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a b

Figure 2.1.1. A curvilinear trapezium

We will call the first of them the receding sum, and the second the advancing sum, of
the sequence {xk} for the function f . If the function f is monotone the area of the
curvilinear trapezium is contained between these two sums. To see this, consider the
following step-figures:

⋃n−1
k=0 [xk, xk+1]×[0, f(xk)] and

⋃n−1
k=0 [xk, xk+1]×[0, f(xk+1)].

If f and {xk} both increase or both decrease the first step-figure is contained in
the curvilinear trapezium and the second step-figure contains the trapezium with
possible exception of a vertical segment [a × [0, f(a)] or [b × [0, f(b)]. If one of f
and {xk} increases and the other decreases, then the step-figures switch the roles.
The rededing sum equals the area of the first step-figure, and the advancing sum
equals the area of the second one. Thus we have proved the following lemma.

Lemma 2.1.1. Let f be a monotone function and let S be the area of the
curvilinear trapezium under the graph of f over [a, b]. Then for any sequence
{xk}nk=0 exhausting [a, b] the area S is contained between

∑n−1
k=0 f(xk)|δxk| and∑n−1

k=0 f(xk+1)|δxk|.

Fermat’s quadratures of parabolas. In  Pierre Fermat proposed an
ingenious trick to determine the area below the curve y = xa.

Figure 2.1.2. Fermat’s quadratures of parabolas
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If a > −1 then consider any interval of the form [0, B]. Choose a positive
q < 1. Then the infinite geometric progression B,Bq,Bq2, Bq3, . . . exhausts [0, B]
and the values of the function for this sequence also form a geometric progression
Ba, qaBa, q2aBa, q3aBa, . . . . Then both the receding and advancing sums turn into
geometric progressions:

∞∑
k=0

Baqka(qkB − qk+1B) = Ba+1(1− q)
∞∑
k=0

qk(a+1)

=
Ba+1(1− q)

1− qa+1
,

∞∑
k=0

Baq(k+1)a(qkB − qk+1B) = Ba+1(1− q)
∞∑
k=0

q(k+1)(a+1)

=
Ba+1(1− q)qa

1− qa+1
.

For a natural a, one has 1−q
1−qa+1 = 1

1+q+q2+···+qa . As q tends to 1 both sums

converge to Ba+1

a+1 . This is the area of the curvilinear trapezium. Let us remark that
for a < 0 this trapezium is unbounded, nevertheless it has finite area if a > −1.

If a < −1, then consider an interval in the form [B,∞]. Choose a positive
q > 1. Then the infinite geometric progression B,Bq,Bq2, Bq3, . . . exhausts [B,∞]
and the values of the function for this sequence also form a geometric progression
Ba, qaBa, q2aBa, q3aBa, . . . . The receding and advancing sums are

∞∑
k=0

Baqka(qk+1B − qkB) = Ba+1(q − 1)
∞∑
k=0

qk(a+1)

=
Ba+1(q − 1)

1− qa+1
,

∞∑
k=0

Baq(k+1)a(qk+1B − qkB) = Ba+1(1− q)
∞∑
k=0

q(k+1)(a+1)

=
Ba+1(q − 1)qa

1− qa+1
.

If a is an integer set p = q−1. Then q−1
1−qa+1 = q 1−p

1−p|a|−1 = q 1
1+p+p2+···+pn−2 .

As q tends to 1 both sums converge to Ba+1

|a|−1 . This is the area of the curvilinear
trapezium.

For a > −1 the area of the curvilinear trapezium under the graph of xa over
[A,B] is equal to the difference between the areas of trapezia over [0, B] and [0, A].
Hence this area is Ba+1−Aa+1

a+1 .
For a < −1 one can evaluate the area of the curvilinear trapezium under the

graph of xa over [A,B] as the difference between the areas of trapezia over [A,∞]
and [B,∞]. The result is expressed by the same formula Ba+1−Aa+1

a+1 .

Theorem 2.1.2 (Fermat). The area below the curve y = xa over the interval
[A,B] is equal to Ba+1−Aa+1

a+1 for a 6= 1.

We have proved this theorem for integer a, but Fermat proved it for all real
a 6= −1.
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The Natural Logarithm. In the case a = −1 the geometric progression for
areas of step-figures turns into an arithmetic progression. This means that the area
below a hyperbola is a logarithm! This discovery was made by Gregory in .

1 x

Figure 2.1.3. The hyperbolic trapezium over [1, x]

The figure bounded from above by the graph of hyperbola y = 1/x, from below
by segment [a, b] of the axis of abscissas, and on each side by vertical lines passing
through the end points of the interval, is called a hyperbolic trapezium over [a, b].

The area of hyperbolic trapezium over [1, x] with x > 1 is called the natural
logarithm of x, and it is denoted by lnx. For a positive number x < 1 its logarithm
is defined as the negative number whose absolute value coincides with the area of
hyperbolic trapezium over [x, 1]. At last, ln 1 is defined as 0.

Theorem 2.1.3 (on logarithm). The natural logarithm is an increasing function
defined for all positive numbers. For each pair of positive numbers x, y

lnxy = lnx+ ln y.

Proof. Consider the case x, y > 1. The difference lnxy − ln y is the area of
the hyperbolic trapezium over [y, xy]. And we have to prove that it is equal to
lnx, the area of trapezium over [1, x]. Choose a large number n. Let q = x1/n.
Then qn = x. The finite geometric progression {qk}nk=0 exhausts [1, x]. Then the
receding and advancing sums are

n−1∑
k=0

q−k(qk+1 − qk) = n(q − 1)
n−1∑
k=0

q−k−1(qk+1 − qk) =
n(q − 1)

q
.(2.1.2)

Now consider the sequence {xqk}nk=0 exhausting [x, xy]. Its receding sum
n−1∑
k=0

x−1q−k(xqk+1 − xqk) = n(q − 1)

just coincides with the receding sum (2.1.2) for lnx. The same is true for the
advancing sum. As a result we obtain for any natural n the following inequalities:

n(q − 1) ≥ lnx ≥ n(q − 1)
q

n(q − 1) ≥ lnxy − ln y ≥ n(q − 1)
q

This implies that | lnxy− lnx− ln y| does not exceed the difference between the the
receding and advancing sums. The statement of Theorem 2.1.3 in the case x, y > 1
will be proved when we will prove that this difference can be made arbitrarily small
by a choice of n. This will be deduced from the following general lemma.



38 2.1 natural logarithm

Lemma 2.1.4. Let f be a monotone function over the interval [a, b] and let
{xk}nk=0 be a sequence that exhausts [a, b]. Then∣∣∣∣∣

n−1∑
k=0

f(xk)δxk −
n−1∑
k=0

f(xk+1)δxk

∣∣∣∣∣ ≤ |f(b)− f(a)|max
k<n
|δxk|

Proof of lemma. The proof of the lemma is a straightforward calculation.
To shorten the notation, set δf(xk) = f(xk+1)− f(xk).∣∣∣∣∣

n−1∑
k=0

f(xk)δxk −
n−1∑
k=0

f(xk+1)δxk

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
k=0

δf(xk)δxk

∣∣∣∣∣
≤
n−1∑
k=0

|δf(xk)|max |δxk|

= max |δxk|
n−1∑
k=0

|δf(xk)|

= max |δxk|

∣∣∣∣∣
n−1∑
k=0

δf(xk)

∣∣∣∣∣
= max |δxk||f(b)− f(a)|.

The equality
∣∣∣∑n−1

k=0 δf(xk)
∣∣∣ =

∑n−1
k=0 |δf(xk)| holds, as δf(xk) have the same signs

due to the monotonicity of f . �

The value max |δxk| is called maximal step of the sequence {xk}. For the
sequence {qk} of [1, x] its maximal step is equal to qn − qn−1 = qn(1 − q−1) =
x(1 − q)/q. It tends to 0 as q tends to 1. In our case |f(b) − f(a)| = 1 − 1

x < 1.
By Lemma 2.1.4 the difference between the receding and advancing sums could be
made arbitrarily small. This completes the proof in the case x, y > 1.

Consider the case xy = 1, x > 1. We need to prove the following

(inversion rule) ln 1/x = − lnx.

As above, put qn = x > 1. The sequence {q−k}nk=0 exhausts [1/x, 1]. The corre-
sponding receding sum

∑n−1
k=0 q

k+1(q−k−q−k−1) =
∑n−1
k=0(q−1) = n(q−1) coincides

with its counterpart for lnx. The same is true for the advancing one. The same
arguments as above prove | ln 1/x| = lnx. The sign of ln 1/x is defined as minus
because 1/x < 1. This proves the inversion rule.

Now consider the case x < 1, y < 1. Then 1/x > 1 and 1/y > 1 and by the
first case ln 1/xy = (ln 1/x+ln 1/y). Replacing all terms of this equation according
to the inversion rule, one gets − lnxy = − lnx− ln y and finally lnxy = lnx+ ln y.

The next case is x > 1, y < 1, xy < 1. Since both 1/x and xy are less then 1,
then by the previous case lnxy + ln 1/x = ln xy

x = ln y. Replacing ln 1/x by − lnx
one gets lnxy − lnx = ln y and finally lnxy = lnx+ ln y.

The last case, x > 1, y < 1, xy > 1 is proved by lnxy + ln 1/y = lnx and
replacing ln 1/y by − ln y. �

Base of a logarithm. Natural or hyperbolic logarithms are not the only loga-
rithmic functions. Other popular logarithms are decimal ones. In computer science
one prefers binary logarithms. Different logarithmic functions are distinguished by
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their bases. The base of a logarithmic function l(x) is defined as the number b
for which l(b) = 1. Logarithms with the base b are denoted by logb x. What is
the base of the natural logarithm? This is the second most important constant in
mathematics (after π). It is an irrational number denoted by e which is equal to
2.71828182845905 . . . . It was Euler who introduced this number and this notation.

Well, e is the number such that the area of hyperbolic trapezium over [1, e]
is 1. Consider the geometric progression qn for q = 1 + 1

n . All summands in the

corresponding hyperbolic receding sum for this progression are equal to qk+1−qk
qk

=
q − 1 = 1

n . Hence the receding sum for the interval [1, qn] is equal to 1 and it is
greater than ln qn. Consequently e > qn. The summands of the advancing sum
in this case are equal to qk+1−qk

qk+1 = 1 − 1
q = 1

n+1 . Hence the advancing sum for
the interval [1, qn+1] is equal to 1. It is less than the corresponding logarithm.
Consequently, e < qn+1. Thus we have proved the following estimates for e:(

1 +
1
n

)n
< e <

(
1 +

1
n

)n+1

We see that
(
1 + 1

n

)n rapidly tends to e as n tends to infinity.

Problems.
1. Prove that lnx/y = lnx− ln y.
2. Prove that ln 2 < 1.
3. Prove that ln 3 > 1.
4. Prove that x > y implies lnx > ln y.
5. Is lnx bounded?
6. Prove that 1

n+1 < ln(1 + 1/n) < 1
n .

7. Prove that x
1+x < ln(1 + x) < x.

8. Prove the Theorem 2.1.2 (Fermat) for a = 1/2, 1/3, 2/3.
9. Prove the unboundedness of n

lnn .
10. Compare

(
1 + 1

n

)n and (1 + 1
n+1 )n+1.

11. Prove the monotonicity of n
lnn .

12. Prove that
∑n−1
k=2

1
k < lnn <

∑n−1
k=1

1
k .

13. Prove that ln(1 + x) > x− x2

2 .
14. Estimate integral part of ln 1000000.
15. Prove that ln x+y

2 ≥ ln x+ln y
2 .

16. Prove the convergence of
∑∞
k=1( 1

k − ln(1 + 1
k )).

17. Prove that (n+ 1
2 )−1 ≤ ln(1 + 1

n ) < 1
2 ( 1
n + 1

n+1 ).
∗18. Prove that 1

1·2 + 1
3·4 + 1

5·6 + · · · = ln 2.



2.2. Definite Integral

On the contents of the lecture. Areas of curvilinear trapezia play an extra-
ordinary important role in mathematics. They generate a key concept of Calculus
— the concept of the integral.

Three basic rules. For a nonnegative function f its integral
∫ b
a
f(x) dx along

the interval [a, b] is defined just as the area of the curvilinear trapezium below the
graph of f over [a, b]. We allow a function to take infinite values. Let us remark
that changing of the value of function in one point does not affect the integral,
because the area of the line is zero. That is why we allow the functions under
consideration to be undefined in a finite number of points of the interval.

Immediately from the definition one gets the following three basic rules of
integration:

Rule of constant
∫ b
a
f(x) dx = c(b− a), if f(x) = c for x ∈ (a, b),

Rule of inequality
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx, if f(x) ≤ g(x) for x ∈ (a, b),

Rule of partition
∫ c
a
f(x) dx =

∫ b
a
f(x) dx+

∫ c
b
f(x) dx for b ∈ (a, c).

Partition. Let |J | denote the length of an interval J . Let us say that a se-
quence {Jk}nk=1 of disjoint open subintervals of an interval I is a partition of I,
if
∑n
k=1 |Ik| = |I|. The boundary of a partition P = {Jk}nk=1 is defined as the

difference I \
⋃n
k=1 Jk and is denoted ∂P .

For any finite subset S of an interval I, which contains the ends of I, there
is a unique partition of I which has this set as the boundary. Such a partition is
called generated by S. For a monotone sequence {xk}nk=0 the generated partition
is {(xk−1, xk)}nk=1.

Piecewise constant functions. A function f(x) is called partially constant
on a partition {Jk}nk=1 of [a, b] if it is constant on each Jk. The Rules of Constant
and Partition immediately imply:

(2.2.1)
∫ b

a

f(x) dx =
n∑
k=1

f(Jk)|Jk|.

Proof. Indeed, the integral splits into a sum of integrals over Jk = [xk−1, xk],
and the function takes the value f(Jk) in (xk−1, xk). �

A function is called piecewise constant over an interval if it is partially constant
with respect to some finite partition of the interval.

Lemma 2.2.1. Let f and g be piecewise constant functions over [a, b]. Then∫ b
a

(f(x)± g(x)) dx =
∫ b
a
f(x) dx±

∫ b
a
g(x) dx.

Proof. First, suppose f(x) = c is constant on the interval (a, b). Let g take the
value gk over the interval (xk, xk+1) for an exhausting {xk}nk=0. Then f(x) + g(x)
takes values (c+gk) over (xk, xk+1). Hence

∫ b
a

(f(x)+g(x)) dx =
∑n−1
k=0(c+gk)|δxk|

due to (2.2.1). Splitting this sum and applying (2.2.1) to both summands, one gets∑n−1
k=0 c|δxk| +

∑n−1
k=0 gk|δxk| =

∫ b
a
f(x) dx +

∫ b
a
g(x) dx. This proves the case of a

constant f .

40
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Now let f be partially constant on the partition generated by {xk}nk=0. Then, by
the partition rule,

∫ b
a

(f(x)+g(x)) dx =
∑n
k=1

∫ xk
xk−1

(f(x)+g(x)) dx. As f is constant
on any (xk−1, xk), for any k one gets

∫ xk
xk−1

(f(x) + g(x)) dx =
∫ xk
xk−1

f(x) dx +∫ xk
xk−1

g(x) dx. Summing up these equalities one completes the proof of Lemma
2.2.1 for the sum.

The statement about differences follows from the addition formula applied to
g(x) and f(x)− g(x). �

Lemma 2.2.2. For any monotone nonnegative function f on the interval [a, b]
and for any ε > 0 there is such piecewise constant function fε such that fε ≤ f(x) ≤
fε(x) + ε.

Proof. fε(x) =
∑∞
k=0 kε[kε ≤ f(x) < (k + 1)ε]. �

Theorem 2.2.3 (Addition Theorem). Let f and g be nonnegative monotone
functions defined on [a, b]. Then∫ b

a

(f(x) + g(x)) dx =
∫ b

a

f(x) dx+
∫ b

a

g(x) dx.

Proof. Let fε and gε be ε-approximations of f and g respectively provided
by Lemma 2.2.2. Set fε(x) = fε(x) + ε and gε(x) = gε(x) + ε. Then fε(x) ≤
f(x) ≤ fε(x) and gε(x) ≤ g(x) ≤ gε(x) for x ∈ (a, b). Summing and integrating
these inequalities in different order gives∫ b

a

(fε(x) + gε(x)) dx ≤
∫ b

a

(f(x) + g(x)) dx ≤
∫ b

a

(fε(x) + gε(x)) dx∫ b

a

fε(x) dx+
∫ b

a

gε(x) dx ≤
∫ b

a

f(x) dx+
∫ b

a

g(x) dx ≤
∫ b

a

fε(x) dx+
∫ b

a

gε(x) dx.

Due to Lemma 2.2.1, the left-hand sides of these inequalities coincide, as well as the
right-hand sides. Hence the difference between the central parts does not exceed∫ b

a

(fε(x)− fε(x)) dx+
∫ b

a

(gε(x)− gε(x)) dx ≤ 2ε(b− a).

Hence, for any positive ε∣∣∣∣∣
∫ b

a

(f(x) + g(x)) dx−
∫ b

a

f(x) dx−
∫ b

a

g(x) dx

∣∣∣∣∣ < 2ε(b− a).

This implies that the left-hand side vanishes. �

Term by term integration of a functional series.

Lemma 2.2.4. Let {fn}∞n=1 be a sequence of nonnegative nondecreasing func-
tions and let p be a piecewise constant function. If

∑∞
k=1 fk(x) ≥ p(x) for all

x ∈ [a, b] then
∑∞
k=1

∫ b
a
fk(x) dx ≥

∫ b
a
p(x) dx.

Proof. Let p be a piecewise constant function with respect to {xi}ni=0. Choose
any positive ε. Since

∑∞
k=1 fk(xi) ≥ p(c), eventually one has

∑m
k=1 fk(xi) > p(xi)−

ε. Fix m such that this inequality holds simultaneously for all {xi}ni=0. Let [xi, xi+1]
be an interval where p(x) is constant. Then for any x ∈ [xi, xi+1] one has these
inequalities:

∑m
k=1 fk(x) ≥

∑m
k=1 fk(xk) > p(xk) − ε = p(x) − ε. Consequently
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for all x ∈ [a, b] one has the inequality
∑m
k=1 fk(x) > p(x) − ε. Taking integrals

gives
∫ b
a

∑m
k=1 fk(x) dx ≥

∫ b
a

(p(x)− ε) dx =
∫ b
a
p(x) dx− ε(b− a). By the Addition

Theorem
∫ b
a

∑m
k=1 fk(x) dx =

∑m
k=1

∫ b
a
fk(x) dx ≤

∑∞
k=1

∫ b
a
fk(x) dx. Therefore∑∞

k=1

∫ b
a
fk(x) dx ≥

∫ b
a
p(x) dx − ε(b − a) for any positive ε. This implies the

inequality
∑∞
k=1

∫ b
a
fk(x) dx ≥

∫ b
a
p(x) dx. �

Theorem 2.2.5. For any sequence {fn}∞n=1 of nonnegative nondecreasing func-
tions on an interval [a, b]∫ b

a

∞∑
k=1

fk(x) dx =
∞∑
k=1

∫ b

a

fk(x) dx.

Proof. Since
∑n
k=1 fk(x) ≤

∑∞
k=1 fk(x) for all x, by integrating one gets∫ b

a

n∑
k=1

fk(x) dx ≤
∫ b

a

∞∑
k=1

fk(x) dx.

By the the Addition Theorem the left-hand side is equal to
∑n
k=1

∫ b
a
fk(x) dx, which

is a partial sum of
∑∞
k=1

∫ b
a
fk(x) dx. Then by All-for-One one gets the inequality∑∞

k=1

∫ b
a
fk(x) dx ≤

∫ b
a

∑∞
k=1 fk(x) dx.

To prove the opposite inequality for any positive ε, we apply Lemma 2.2.2
to find a piecewise constant function Fε, such that Fε(x) ≤

∑∞
k=1 fk(x)dx and∫ b

a

∑∞
k=1(fk(x)− Fε(x)) dx < ε. On the other hand, by Lemma 2.2.4 one gets

∞∑
k=1

∫ b

a

fk(x) dx ≥
∫ b

a

Fε(x) dx.

Together these inequalities imply
∑∞
k=1

∫ b
a
fk(x) dx+ε ≥

∫ b
a

∑∞
k=1 fk(x) dx. As the

last inequality holds for all ε > 0, it holds also for ε = 0 �

Theorem 2.2.6 (Mercator,). For any x ∈ (−1, 1] one has

(2.2.2) ln(1 + x) =
∞∑
k=1

(−1)k+1xk

k

Proof. Consider x ∈ [0, 1). Since
∫ x

0
tk dt = tk+1

k+1 due to the Fermat Theorem
2.1.2, termwise integration of the geometric series

∑∞
k=0 t

k over the interval [0, x]
for x < 1 gives

∫ x
0

1
1−t dt =

∑∞
k=0

∫ x
0
tk dt =

∑∞
k=0

xk+1

k+1 .

Lemma 2.2.7.
∫ x

0
1

1−t dt = ln(1− x).

Proof of Lemma. Construct a translation of the plane which transforms the
curvilinear trapezium below 1

1−t over [0, x] into the trapezium for ln(1−x). Indeed,
the reflection of the plane ((x, y)→ (2− x, y)) along the line x = 1 transforms this
trapezium to the curvilinear trapezium under 1

x−1 over [2 − x, 2]. The parallel
translation by 1 to the left of the latter trapezium (x, y)→ (x− 1, y) transforms it
just in to the ogarithmic trapezium for ln(1− x). �

The Lemma proves the Mercator Theorem for negative x. To prove it for
positive x, set fk(x) = x2k−1 − x2k. All functions fk are nonnegative on [0, 1] and
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k=1 fk(x) = 1

1+x . Termwise integration of this equality over [0, x] gives (2.2.2),
modulo the equality

∫ x
0

1
1+t dt =

∫ x
1

1
t dt. The latter is proved by parallel translation

of the plane. Let us remark, that in the case x = 1 the series
∑∞
k=1

(−1)k+1xk

k is not
absolutely convergent, and under its sum we mean

∑∞
k=1

1
2k(2k−1) =

∑∞
k=1( 1

2k−1 −
1
2k ). And the above proof proves just this fact. �

The arithmetic mean of Mercator’s series evaluated at x and −x gives Gregory’s
Series

(2.2.3)
1
2

ln
1 + x

1− x
= x+

x3

3
+
x5

5
+
x7

7
+ . . . .

Gregory’s series converges much faster than Mercator’s one. For example, putting
x = 1

3 in (2.2.3) one gets

ln 2 =
2
3

+
2

3 · 33
+

2
5 · 35

+
2

7 · 37
+ . . . .

Problems.
1. Prove that

∣∣∣∫ ba f(x) dx
∣∣∣ ≤ ∫ ba |f(x)| dx.

2. Prove the following formulas via piecewise constant approximations:∫ b

a

λf(x) dx = λ

∫ b

a

f(x) dx(multiplication formula) ∫ b

a

f(x) dx =
∫ b+c

a+c

f(x− c) dx(shift formula) ∫ a

0

f(x) dx =
∫ 0

−a
f(−x) dx(reflection formula) ∫ a

0

f(x) dx =
1
k

∫ ka

0

f
(x
k

)
dx(compression formula)

3. Evaluate
∫ 2π

0
(sinx+ 1) dx.

4. Prove the inequality
∫ 2

−2
(2 + x32x) dx > 8.

5. Prove
∫ 2π

0
x(sinx+ 1) dx < 2π.

6. Prove
∫ 200π

100π
x+sin(x)

x dx ≤ 100π + 1
50π.

7. Denote by sn the area of {(x, y) | 0 ≤ x ≤ 1, (1 − x) lnn + x ln(n + 1) ≤ y ≤
ln(1 + x)}. Prove that

∑∞
k=1 sk <∞.

8. Prove that
∑2n
k=1(−1)k+1 xk

k < ln(1 + x) <
∑2n+1
k=1 (−1)k+1 xk

k for x > 0.
9. Compute the logarithms of the primes 2, 3, 5, 7 with accuracy 0.01.

10. Evaluate
∫ 1

0

√
x dx.

∗11. Evaluate
∫ π

0
sinx dx.



2.3. Stieltjes Integral

On the contents of the lecture. The Stieltjes relativization of the integral
makes the integral flexible. We learn the main transformations of integrals. They
allow us to evaluate a lot of integrals.

Basic rules. A parametric curve is a mapping of an interval into the plane.
In cartesian coordinates a parametric curve can be presented as a pair of functions
x(t), y(t). The first function x(t) represents the value of abscises at the moment t,
and the second y(t) is the ordinate at the same moment. We define the integral∫ b
a
f(t) dg(t) for a nonnegative function f , called the integrand, and with respect to

a nondecreasing continuous function g, called the differand, as the area below the
curve f(t), g(t) | t ∈ [a, b].

A monotone function f is called continuous over the interval [a, b] if it takes all
intermediate values, that is, the image f [a, b] of [a, b] coincides with [f(a), f(b)]. If
it is not continuous for some y ∈ [f(a), f(b)] \ f [a, b], there is a point x(y) ∈ [a, b]
with the following property: f(x) < y if x < x(y) and f(x) > y if x > x(y). Let us
define a generalized preimage f [−1](y) of a point y ∈ [f(a), f(b)] either as its usual
preimage f−1(y) if it is not empty, or as x(y) in the opposite case.

Now the curvilinear trapezium below the curve f(t), g(t) over [a, b] is defined
as {(x, y) | 0 ≤ y ≤ g(f [−1](x))}.

The basic rules for relative integrals transform into:

Rule of constant
∫ b
a
f(t) dg(t) = c(g(b)− g(a)), if f(t) = c for t ∈ (a, b),

Rule of inequality
∫ b
a
f1(t) dg(t) ≤

∫ b
a
f2(t) dg(t), if f1(t) ≤ f2(t) for t ∈ (a, b),

Rule of partition
∫ c
a
f(t) dg(t) =

∫ b
a
f(t) dg(t) +

∫ c
b
f(t) dg(t) for b ∈ (a, c).

Addition theorem. The proofs of other properties of the integral are based
on piecewise constant functions. For any number x, let us define its ε-integral part
as ε[x/ε]. Immediately from the definition one gets:

Lemma 2.3.1. For any monotone nonnegative function f on the interval [a, b]
and for any ε > 0, the function [f ]ε is piecewise constant such that [f(x)]ε ≤ f(x) ≤
[f(x)]ε + ε for all x.

Theorem 2.3.2 (on multiplication). For any nonnegative monotone f , and
any continuous nondecreasing g and any positive constant c one has

(2.3.1)
∫ b

a

cf(x) dg(x) = c

∫ b

a

f(x) dg(x) =
∫ b

a

f(x) dcg(x).

Proof. For the piecewise constant fε = [f ]ε, the proof is by a direct calcula-
tion. Hence

(2.3.2)
∫ b

a

cfε(x) dg(x) = c

∫ b

a

fε(x) dg(x) =
∫ b

a

fε(x) dcg(x) = Iε.

Now let us estimate the differences between integrals from (2.3.1) and their ap-
proximations from (2.3.2). For example, for the right-hand side integrals one has:

(2.3.3)
∫ b

a

f dcg −
∫ b

a

fε dcg =
∫ b

a

(f − fε) dcg ≤
∫ b

a

ε dcg = ε(cg(b)− cg(a)).
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Hence
∫ b
a
f dcg = Iε + ε1, where ε1 ≤ cε(g(b) − g(a)). The same argument proves

c
∫ b
a
f dg = Iε + ε2 and

∫ b
a
cf dg = Iε + ε3, where ε2, ε3 ≤ cε(g(b)− g(a)). Then the

pairwise differences between the integrals of (2.3.1) do not exceed 2cε(g(b)− g(a)).
Consequently they are less than any positive number, that is, they are zero. �

Theorem 2.3.3 (Addition Theorem). Let f1, f2 be nonnegative monotone func-
tions and g1, g2 be nondecreasing continuous functions over [a, b], then∫ b

a

(f1(t) + f2(t)) dg1(t) =
∫ b

a

f1(t) dg1(t) +
∫ b

a

f2(t) dg1(t),(2.3.4) ∫ b

a

f1(t) d(g1(t) + g2(t)) =
∫ b

a

f1(t) dg1(t) +
∫ b

a

f1(t) dg2(t).(2.3.5)

Proof. For piecewise constant integrands both the equalities follow from the
Rule of Constant and the Rule of Partition. To prove (2.3.4) replace f1 and f2 in
both parts by [f1]ε and [f2]ε. We get equality and denote by Iε the common value
of both sides of this equality. Then by (2.3.3) both integrals on the right-hand side
differ from they approximation at most by ε(g1(b)−g1(a)), therefore the right-hand
side of (2.3.4) differs from Iε at most by 2ε(g1(b)− g1(a)). The same is true for the
left-hand side of (2.3.4). This follows immediately from (2.3.3) in case f = f1 + f2,
fε = [f1]ε + [f2]ε and g = g1. Consequently, the difference between left-hand and
right-hand sides of (2.3.4) does not exceed 4ε(g1(b) − g1(a)). As ε can be chosen
arbitrarily small this difference has to be zero.

The proof of (2.3.5) is even simpler. Denote by Iε the common value of both
parts of (2.3.5) where f1 is changed by [f1]ε. By (2.3.3) one can estimate the
differences between the integrals of (2.3.5) and their approximations as being ≤
ε(g1(b) + g2(b)− g1(a)− g2(a)) for the left-hand side, and as ≤ ε(g1(b)− g1(a)) and
≤ ε(g2(b)− g2(a)) for the corresponding integrals of the right-hand side of (2.3.5).
So both sides differ from Iε by at most ≤ ε(g1(b) − g1(a) + g2(b) − g2(a)). Hence
the difference vanishes. �

Differential forms. An expression of the type f1dg1 + f2dg2 + · · · + fndgn
is called a differential form. One can add differential forms and multiply them by
functions. The integral of a differential form

∫ b
a

(f1 dg1 + f2dg2 + · · · + fndgn) is
defined as the sum of the integrals

∑n
k=1

∫ b
a
fk dgk. Two differential forms are called

equivalent on the interval [a, b] if their integrals are equal for all subintervals of [a, b].
For the sake of brevity we denote the differential form f1dg1 + f2dg2 + · · ·+ fndgn
by FdG, where F = {f1, . . . , fn} is a collection of integrands and G = {g1, . . . , gn}
is a collection of differands.

Theorem 2.3.4 (on multiplication). Let FdG and F ′dG′ be two differential
forms, with positive increasing integrands and continuous increasing differands,
which are equivalent on [a, b]. Then their products by any increasing function f
on [a, b] are equivalent on [a, b] too.

Proof. If f is constant then the statement follows from the multiplication
formula. If f is piecewise constant, then divide [a, b] into intervals where it is con-
stant and prove the equality for parts and after collect the results by the Partition
Rule. In the general case, 0 ≤

∫ b
a
fF dG −

∫ b
a

[f ]εF dG ≤
∫ b
a
εF dG = ε

∫ b
a
F dG.

Since
∫ b
a

[f ]εF ′ dG′ =
∫ b
a

[f ]εF dG, one concludes that
∣∣∣∫ ba fF ′ dG′ − ∫ ba fF dG∣∣∣ ≤
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ε
∫ b
a
F dG + ε

∫ b
a
F ′ dG′. The right-hand side of this inequality can be made arbi-

trarily small. Hence the left-hand side is 0. �

Integration by parts.

Theorem 2.3.5. If f and g are continuous nondecreasing nonnegative functions
on [a, b] then d(fg) is equivalent to fdg + gdf .

Proof. Consider [c, d] ⊂ [a, b]. The integral
∫ d
c
f dg represents the area below

the curve (f(t), g(t))t∈[c,d]. And the integral
∫ d
c
g df represents the area on the left

of the same curve. Its union is equal to [0, f(d)]× [0, g(d)] \ [0, f(c)]× [0, g(c)]. The
area of this union is equal to (f(d)g(d)−f(c)g(c) =

∫ d
c
dfg. On the other hand the

area of this union is the sum of the areas of curvilinear trapezia representing the
integrals

∫ d
c
f dg and

∫ d
c
g df . �

Change of variable. Consider a Stieltjes integral
∫ b
a
f(τ) dg(τ) and suppose

there is a continuous nondecreasing mapping τ : [t0, t1]→ [a, b], such that τ(t0) = a
and τ(t1) = b. The composition g(τ(t)) is a continuous nondecreasing function and
the curve {(f(τ(t), g(τ(t))) | t ∈ [t0, t1]} just coincides with the curve {(f(τ), g(τ)) |
τ ∈ [a, b]. Hence, the following equality holds; it is known as the Change of Variable
formula: ∫ t1

t0

f(τ(t)) dg(τ(t)) =
∫ τ(t1)

τ(t0)

f(τ) dg(τ).

For differentials this means that the equality F (x)dG(x) = F ′(x)dG′(x) conserves
if one substitutes instead of an independent variable x a function.

Differential Transformations.
Case dxn. Integration by parts for f(t) = g(t) = t gives dt2 = tdt+ tdt. Hence

tdt = d t
2

2 . If we already know that dxn = ndxn−1, then dxn+1 = d(xxn) =
xdxn+xndx = nxxn−1dx+xndx = (n+ 1)xndx. This proves the Fermat Theorem
for natural n.

Case d n
√
x. To evaluate d n

√
x substitute x = yn into the equality dyn =

nyn−1dy. One gets dx = nx
n
√
x
d n
√
x, hence d n

√
x =

n√x
nx dx.

Case lnxdx. We know d lnx = 1
xdx. Integration by parts gives lnxdx =

d(x lnx)− xd lnx = d(x lnx)− dx = d(x lnx− x).

Problems.
1. Evaluate dx2/3.
2. Evaluate dx−1.
3. Evaluate x lnx dx.
4. Evaluate d ln2 x.
5. Evaluate ln2 x dx.
6. Evaluate dex.
7. Investigate the convergence of

∑∞
k=2

1
k ln k .



2.4. Asymptotics of Sums

On the contents of the lecture. We become at last acquainted with the
fundamental concept of a limit. We extend the notion of the sum of a series and
discover that a change of order of summands can affect the ultimate sum. Finally
we derive the famous Stirling formula for n!.

Asymptotic formulas. The Mercator series shows how useful series can be
for evaluating integrals. In this lecture we will use integrals to evaluate both partial
and ultimate sums of series. Rarely one has an explicit formula for partial sums
of a series. There are lots of important cases where such a formula does not exist.
For example, it is known that partial sums of the Euler series cannot be expressed
as a finite combination of elementary functions. When an explicit formula is not
available, one tries to find a so-called asymptotic formula. An asymptotic formula
for a partial sum Sn of a series is a formula of the type Sn = f(n)+R(n) where f is
a known function called the principal part and R(n) is a remainder, which is small,
in some sense, with respect to the principal part. Today we will get an asymptotic
formula for partial sums of the harmonic series.

Infinitesimally small sequences. The simplest asymptotic formula has a
constant as its principal part and an infinitesimally small remainder. One says that
a sequence {zk} is infinitesimally small and writes lim zk = 0, if zk tends to 0 as n
tends to infinity. That is for any positive ε eventually (i.e., beginning with some n)
|zk| < ε. With Iverson notation, this definition can be expressed in the following
clear form:

[{zk}∞k=1 is infinitesimally small] =
∞∏
m=1

2

∣∣∣∣∣
∞∑
n=1

(−1)n
∞∏
k=1

[m[k > n]|zk| < 1]

∣∣∣∣∣ .
Three basic properties of infinitesimally small sequences immediately follow

from the definition:

• if lim ak = lim bk = 0 then lim(ak + bk) = 0;
• if lim ak = 0 then lim akbk = 0 for any bounded sequence {bk};
• if ak ≤ bk ≤ ck for all k and lim ak = lim ck = 0, then lim bk = 0.

The third property is called the squeeze rule.
Today we need just one property of infinitesimally small sequences:

Theorem 2.4.1 (Addition theorem). If the sequences {ak} and {bk} are in-
finitesimally small, than their sum and their difference are infinitesimally small
too.

Proof. Let ε be a positive number. Then ε/2 also is positive number. And
by definition of infinitesimally small, the inequalities |ak| < ε/2 and |bk| < ε/2 hold
eventually beginning with some n. Then for k > n one has |ak ± bk| ≤ |ak|+ |bk| ≤
ε/2 + ε/2 = ε. �

Limit of sequence.

Definition. A sequence {zk} of (complex) numbers converges to a number z
if lim z−zk = 0. The number z is called the limit of the sequence {zk} and denoted
by lim zk.
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An infinite sum represents a particular case of a limit as demonstrated by the
following.

Theorem 2.4.2. The partial sums of an absolutely convergent series
∑∞
k=1 zk

converge to its sum.

Proof. |
∑n−1
k=1 zk −

∑∞
k=1 zk| = |

∑∞
k=n zk| ≤

∑∞
k=n |zk|. Since

∑∞
k=1 |zk| >∑∞

k=1 |zk| − ε, there is a partial sum such that
∑n−1
k=1 |zk| >

∑∞
k=1 |zk| − ε. Then

for all m ≥ n one has
∑∞
k=m |zk| ≤

∑∞
k=n |zk| < ε. �

Conditional convergence. The concept of the limit of sequence leads to a
notion of convergence generalizing absolute convergence.

A series
∑∞
k=1 ak is called (conditionally) convergent if lim

∑n
k=1 ak = A+αn,

where limαn = 0. The number A is called its ultimate sum.
The following theorem gives a lot of examples of conditionally convergent series

which are not absolutely convergent. By [[n]] we denote the even part of the number
n, i.e., [[n]] = 2[n/2].

Theorem 2.4.3 (Leibniz). For any of positive decreasing infinitesimally small
sequence {an}, the series

∑∞
k=1(−1)k+1ak converges.

Proof. Denote the difference ak − ak+1 by δak. The series
∑∞
k=1 δa2k−1 and∑∞

k=1 δa2k are positive and convergent, because their termwise sum is
∑∞
k=1 δak =

a1. Hence S =
∑∞
k=1 δa2k−1 ≤ a1. Denote by Sn the partial sum

∑n−1
k=1(−1)k+1ak.

Then S2n =
∑n−1
k=1 δa2n−1 = S + αn, where limαn = 0. Then Sn = S[[n]] +

an[n is odd]+α[[n]]. As an[n is odd]+α[[n]] is infinitesimally small, this implies the
theorem. �

Lemma 2.4.4. Let f be a non-increasing nonnegative function. Then the series∑∞
k=1 (f(k)−

∫ k+1

k
f(x) dx) is positive and convergent and has sum cf ≤ f(1).

Proof. Integration of the inequalities f(k) ≥ f(x) ≥ f(k + 1) over [k, k + 1]
gives f(k) ≥

∫ k+1

k
f(x) dx ≥ f(n + 1). This proves the positivity of the series and

allows us to majorize it by the telescopic series
∑∞
k=1(f(k)− f(k+ 1)) = f(1). �

Theorem 2.4.5 (Integral Test on Convergence). If a nonnegative function
f(x) decreases monotonically on [1,+∞), then

∑∞
k=1 f(k) converges if and only

if
∫∞

1
f(x) dx <∞.

Proof. Since
∫∞

1
f(x) dx =

∑∞
k=1

∫ k+1

k
f(x) dx, one has

∑∞
k=1 f(k) = cf +∫∞

1
f(x) dx. �

Euler constant. The sum
∑∞
k=1

(
1
k − ln(1 + 1

k )
)
, which is cf for f(x) = 1

x , is
called Euler’s constant and denoted by γ. Its first ten digits are 0.5772156649 . . . .

Harmonic numbers. The sum
∑n
k=1

1
k is denoted Hn and is called the n-th

harmonic number.

Theorem 2.4.6. Hn = lnn+ γ + on where lim on = 0.

Proof. Since lnn =
∑n−1
k=1(ln(k + 1) − ln k) =

∑n−1
k=1 ln(1 + 1

k ), one has
lnn+

∑n−1
k=1

(
1
k − ln(1 + 1

k )
)

= Hn−1. But
∑n−1
k=1

(
1
k − ln(1 + 1

k )
)

= γ + αn, where
limαn = 0. Therefore Hn = lnn+ γ + ( 1

n + αn). �
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Alternating harmonic series. The alternating harmonic series
∑∞
k=1

(−1)k+1

k
is a conditionally convergent series due to the Leibniz Theorem 2.4.3, and it is not
absolutely convergent. To find its sum we apply our Theorem 2.4.6 on asymptotics
of harmonic numbers.

Denote by Sn =
∑n
k=1

(−1)k+1

k the partial sum. Then Sn = H ′n − H ′′n , where
H ′n =

∑n
k=1

1
k [k is odd] and H ′′n =

∑n
k=1

1
k [k is even]. Since H ′′2n = 1

2Hn and
H ′2n = H2n −H ′′2n = H2n − 1

2Hn one gets

S2n = H2n − 1
2Hn − 1

2Hn

= H2n −Hn

= ln 2n+ γ + o2n − lnn− γ − on
= ln 2 + (o2n − on).

Consequently Sn = ln 2+(o[[n]]−o[n/2] +
(−1)n+1

n [n is odd]). As the sum in brackets
is infinitesimally small, one gets

∞∑
k=1

(−1)k+1

k
= ln 2.

The same arguments for a permutated alternating harmonic series give

(2.4.1) 1 + 1
3 −

1
2 + 1

5 + 1
7 −

1
4 + 1

9 + 1
11 −

1
6 + · · · = 3

2 ln 2.

Indeed, in this case its 3n-th partial sum is

S3n = H ′4n −H ′′2n
= H4n − 1

2H2n − 1
2Hn

= ln 4n+ γ + o4n − 1
2 (ln 2n+ γ + o2n + lnn+ γ + on)

= ln 4− 1
2 ln 2 + o′n

= 3
2 ln 2 + o′n,

where lim o′n = 0. Since the difference between Sn and S3m where m = [n/3] is
infinitesimally small, this proves (2.4.1).

Stirling’s Formula. We will try to estimate lnn!. Integration of the inequal-
ities ln[x] ≤ lnx ≤ ln[x+ 1] over [1, n] gives ln(n− 1)! ≤

∫ n
1

lnx dx ≤ lnn!. Let us
estimate the difference D between

∫ n
1

lnx dx and 1
2 (lnn! + ln(n− 1)!).

D =
∫ n

1

(lnx− 1
2 (ln[x] + ln[x+ 1])) dx

=
n−1∑
k=1

∫ 1

0

(
ln(k + x)− ln

√
k(k + 1)

)
dx.

(2.4.2)

To prove that all summands on the left-hand side are nonnegative, we apply the
following general lemma.

Lemma 2.4.7.
∫ 1

0
f(x) dx =

∫ 1

0
f(1− x) dx for any function.

Proof. The reflection of the plane across the line y = 1
2 transforms the curvi-

linear trapezium of f(x) over [0, 1] into curvilinear trapezium of f(1 − x) over
[0, 1]. �
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Lemma 2.4.8.
∫ 1

0
ln(k + x) dx ≥ ln

√
k(k + 1).

Proof. Due to Lemma 2.4.7 one has∫ 1

0

ln(k + x) dx =
∫ 1

0

ln(k + 1− x) dx

=
∫ 1

0

1
2 (ln(k + x) + ln(k + 1− x)) dx

=
∫ 1

0

ln
√

(k + x)(k + 1− x) dx

=
∫ 1

0

ln
√
k(k + 1) + x− x2 dx

≥
∫ 1

0

ln
√
k(k + 1) dx

= ln
√
k(k + 1).

�

Integration of the inequality ln(1 + x/k) ≤ x/k over [0, 1] gives∫ 1

0

ln(1 + x/k) dx ≤
∫ 1

0

x

k
dx =

1
2k
.

This estimate together with the inequality ln(1 + 1/k) ≥ 1/(k + 1) allows us to
estimate the summands from the right-hand side of (2.4.2) in the following way:∫ 1

0

ln(k + x)− ln
√
k(k + 1) dx =

∫ 1

0

ln(k + x)− ln k − 1
2 (ln(k + 1)− ln k) dx

=
∫ 1

0

ln
(
1 + x

k

)
− 1

2 ln
(
1 + 1

k

)
dx

≤ 1
2k −

1
2(k+1) .

We see that Dn ≤
∑∞
k=1

1
2k −

1
2(k+1) = 1

2 for all n. Denote by D∞ the sum
(2.4.2) for infinite n. Then Rn = D∞ −Dn = θ

2n for some nonnegative θ < 1, and
we get

D∞ − θ
2n =

∫ n

1

lnx dx− 1
2 (lnn! + ln(n− 1)!)

=
∫ n

1

lnx dx− lnn! + 1
2 lnn.

(2.4.3)

Substituting in (2.4.3) the value of the integral
∫ n

1
lnx dx =

∫ n
1
d(x lnx − x) =

(n lnn− n)− (1 ln 1− 1) = n lnn− n+ 1, one gets

lnn! = n lnn− n+ 1
2 lnn+ (1−D∞) + θ

2n .

Now we know that 1 ≥ (1 − D∞) ≥ 1
2 , but it is possible to evaluate the value of

D∞ with more accuracy. Later we will prove that 1−D∞ =
√

2π.
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Problems.
1. Does

∑∞
k=1 sin k converge?

2. Does
∑∞
k=1 sin k2 converge?

3. Evaluate 1 + 1
2 −

2
3 + 1

4 + 1
5 −

2
6 + · · · − 2

3n + 1
3n+1 + 1

3n+2 − . . . .
4. Prove: If lim an+1

an
< 1, then

∑∞
k=1 ak converge.

5. Prove: If
∑∞
k=1 |ak − ak−1| <∞, then {ak} converges.

6. Prove the convergence of
∑∞
k=1

(−1)[
√
k]

k
.

7. Prove the convergence of
∑∞
k=2

1
ln3 k

.
8. Prove the convergence of

∑∞
k=2

1
k ln k

√
ln ln k

.
9. Prove the convergence of

∑∞
k=2

1
k ln k(ln ln k)2 .

10. Prove the convergence of
∑∞
k=2

1
k ln k and find its asymptotic formula.

11. Prove the convergence of
∑∞
k=2

1
k ln2 k

.
12. Which partial sum of the above series is 0.01 close to its ultimate sum?
13. Evaluate

∑∞
k=2

1
k ln2 k

with precision 0.01.
14. Evaluate

∫ 3

1
lnx d[x].

15. Express the Stirling constant via the Wallis product π
2 =

∏∞
n=1

2n
2n−1

2n
2n+1 .



2.5. Quadrature of Circle

On the contents of the lecture. We extend the concept of the integral
to complex functions. We evaluate a very important integral

∮
1
zdz by applying

Archimedes’ theorem on the area of circular sector. As a consequence, we evaluate
the Wallis product and the Stirling constant.

Definition of a complex integral. To specify an integral of a complex func-
tion one has to indicate not only its limits, but also the path of integration. A
path of integration is a mapping p : [a, b] → C, of an interval [a, b] of the real line
into complex plane. The integral of a complex differential form fdg (here f and g
are complex functions of complex variable) along the path p is defined via separate
integration of different combinations of real and imaginary parts in the following
way:∫ b

a

Re f(p(t)) dRe g(p(t))−
∫ b

a

Im f(p(t)) d Im g(p(t))

+ i

∫ b

a

Re f(p(t)) d Im g(p(t)) + i

∫ b

a

Im f(p(t)) dRe g(p(t))

Two complex differential forms are called equal if their integrals coincide for all
paths. So, the definition above can be written shortly as fdg = Re fdRe g −
Im fd Im g + iRe fd Im g + i Im fdRe g.

The integral
∫

1
zdz. The Integral is the principal concept of Calculus and∫

1
zdz is the principal integral. Let us evaluate it along the path p(t) = cos t+i sin t,

t ∈ [0, φ], which goes along the arc of the circle of the length φ ≤ π/2. Since
1

cos t+i sin t = cos t− i sin t, one has∫
p

1
z
dz =

∫ φ

0

cos t d cos t+
∫ φ

0

sin t d sin t

− i
∫ φ

0

sin t d cos t+ i

∫ φ

0

cos t d sin t.

(2.5.1)

Its real part transforms into
∫ φ

0
1
2 d cos2 t +

∫ φ
0

1
2 d sin2 t =

∫ φ
0

1
2 d(cos2 t + sin2 t) =∫ φ

0
1
2 d1 = 0. An attentive reader has to object: integrals were defined only for

differential forms with non-decreasing differands, while cos t decreases.

Sign rule. Let us define the integral for any differential form fdg with any
continuous monotone differand g and any integrand f of a constant sign (i.e, non-
positive or non-negative). The definition relies on the following Sign Rule.

(2.5.2)
∫ b

a

−f dg = −
∫ b

a

f dg =
∫ b

a

f d(−g)

If f is of constant sign, and g is monotone, then among the forms fdg, −fdg, fd(−g)
and −fd(−g) there is just one with non-negative integrand and non-decreasing
differand. For this form, the integral was defined earlier, for the other cases it is
defined by the Sign Rule.

Thus the integral of a negative function against an increasing differand and the
integral of a positive function against a decreasing differand are negative. And the
integral of a negative function against a decreasing differand is positive.
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The Sign Rule agrees with the Constant Rule: the formula
∫ b
a
c dg = c(g(b) −

g(a)) remains true either for negative c or decreasing g.
The Partition Rule also is not affected by this extension of the integral.
The Inequality Rule takes the following form: if f1(x) ≤ f2(x) for all x ∈ [a, b]

then
∫ b
a
f1(x) dg(x) ≤

∫ b
a
f2(x) dg(x) for non-decreasing g and

∫ b
a
f1(x) dg(x) ≥∫ b

a
f2(x) dg(x) for non-increasing g.

Change of variable. Now all integrals in (2.5.1) are defined. The next objec-
tion concerns transformation cos td cos t = 1

2d cos2 t. This transformation is based
on a decreasing change of variable x = cos t in dx2/2 = xdx. But what happens
with an integral when one applies a decreasing change of variable? The curvilinear
trapezium, which represents the integral, does not change at all under any change
of variable, even for a non-monotone one. Hence the only thing that may happen
is a change of sign. And the sign changes by the Sign Rule, simultaneously on both
sides of equality dx2/2 = xdx. If the integrals of xdx and dx2 are positive, both
integrals of cos td cos t and cos2 t are negative and have the same absolute value.
These arguments work in the general case:

A decreasing change of variable reverses the sign of the integral.

Addition Formula. The next question concerns the legitimacy of addition of
differentials, which appeared in the calculation d cos2 t+d sin2 t = d(cos2 t+sin2 t) =
0, where differands are not comonotone: cos t decreases, while sin t increases. The
addition formula in its full generality will be proved in the next lecture, but this
special case is not difficult to prove. Our equality is equivalent to d sin2 t = −d cos2 t.
By the Sign Rule −d cos2 t = d(− cos2 t), but − cos2 t is increasing. And by the
Addition Theorem d(− cos2 t+1) = d(− cos2 t)+d1 = d(− cos2 t). But − cos2 t+1 =
sin2 t. Hence our evaluation of the real part of (2.5.1) is justified.

Trigonometric integrals. We proceed to the evaluation of the imaginary part
of (2.5.1), which is cos t d sin t− sin t d cos t. This is a simple geometric problem.

The integral of sin t d cos t is negative as cos t is decreasing on [0, π2 ], and its ab-
solute value is equal to the area of the curvilinear triangle A′BA, which is obtained
from the circular sector OBA with area φ/2 by deletion of the triangle OA′B, which
has area 1

2 cosφ sinφ. Thus
∫ φ

0
sin t d cos t is φ/2− 1

2 cosφ sinφ.
The integral of cos t d sin t is equal to the area of curvilinear trapezium OB′BA.

The latter consists of a circular sector OBA with area φ/2 and a triangle OB′B
with area 1

2 cosφ sinφ. Thus
∫ φ

0
cos t d sin t = φ/2 + 1

2 cosφ sinφ.
As a result we get

∫
p

1
z dz = iφ. This result has a lot of consequences. But

today we restrict our attention to the integrals of sin t and cos t.

Multiplication of differentials. We have proved

(2.5.3) cos t d sin t− sin t d cos t = dt.

Multiplying this equality by cos t, one gets

cos2 t d sin t− sin t cos t d cos t = cos t dt.

Replacing cos2 t by (1−sin2 t) and moving cos t into the differential, one transforms
the left-hand side as

d sin t− sin2 t d sin t− 1
2 sin t d cos2 t = d sin t− 1

2 sin t d sin2 t− 1
2 sin t d cos2 t.
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AA’

BB’

O
φ

Figure 2.5.1. Trigonometric integrals

We already know that d sin2 t+ d cos2 t is zero. Now we have to prove the same for
the product of this form by 1

2 sin t. The arguments are the same: we multiply by
1
2 sin t the equivalent equality d sin2 t = d(− cos2 t) whose differands are increasing.
This is a general way to extend the theorem on multiplication of differentials to
the case of any monotone functions. We will do it later. Now we get just d sin t =
cos t dt.

Further, multiplication of the left-hand side of (2.5.3) by sin t gives

sin t cos t d sin t− sin2 t d cos t = 1
2 cos t d sin2 t− d cos t+ 1

2 cos t d cos2 t = −d cos t.

So we get d cos t = − sin tdt.

Theorem 2.5.1. d sin t = cos t dt and d cos t = − sin t dt.

We have proved this equality only for [0, π/2]. But due to well-known symme-
tries this suffices.

Application of trigonometric integrals.

Lemma 2.5.2. For any convergent infinite product of factors ≥ 1 one has

(2.5.4) lim
n∏
k=1

pk =
∞∏
k=1

pk.

Proof. Let ε be a positive number. Then
∏∞
k=1 pk >

∏∞
k=1 pk−ε, and by All-

for-One there is n such that
∏n
k=1 pk >

∏∞
k=1 pk−ε. Then for anym > n one has the

inequalities
∏∞
k=1 pk ≥

∏m
k=1 pk >

∏∞
k=1 pk − ε. Therefore |

∏m
k=1 pk −

∏∞
k=1 pk| <

ε. �

Wallis product. Set In =
∫ π

0
sinn x dx. Then I0 =

∫ π
0

1 dx = π and I1 =∫ π
0

sinx dx = − cosπ + cos 0 = 2. For n ≥ 2, let us replace the integrand sinn x by
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sinn−2 x(1− cos2 x) and obtain

In =
∫ π

0

sinn−2 x(1− cos2 x) dx

=
∫ π

0

sinn−2 x dx−
∫ π

0

sinn−2 x cosx d sinx

= In−2 − 1
n−1

∫ π

0

cosx d sinn−1(x)

= In−2 −
∫ π

0

d(cosx sinn−1 x) +
∫ π

0

sinn−1 x d cosx

= In−2 − 1
n−1In.

We get the recurrence relation In = n−1
n In−2, which gives the formula

(2.5.5) I2n = π
(2n− 1)!!

2n!!
, I2n−1 = 2

(2n− 2)!!
(2n− 1)!!

where n!! denotes the product n(n − 2)(n − 4) · · · (n mod 2 + 1). Since sinn x ≤
sinn−1 x for all x ∈ [0, π], the sequence {In} decreases. Since In ≤ In−1 ≤ In−2, one
gets n−1

n = In
In−2

≤ In−1
In−2

≤ 1. Hence In−1
In−2

differs from 1 less than 1
n . Consequently,

lim In−1
In−2

= 1. In particular, lim I2n+1
I2n

= 1. Substituting in this last formula the
expressions of In from (2.5.5) one gets

lim
π

2
(2n+ 1)!!(2n− 1)!!

2n!!2n!!
= 1.

Therefore this is the famous Wallis Product

π

2
= lim

2n!!2n!!
(2n− 1)!!(2n+ 1)!!

=
∞∏
n=1

4n2

4n2 − 1
.

Stirling constant. In Lecture 2.4 we have proved that

(2.5.6) lnn! = n lnn− n+ 1
2 lnn+ σ + on,

where on is infinitesimally small and σ is a constant. Now we are ready to determine
this constant. Consider the difference ln 2n!− 2 lnn!. By (2.5.6) it expands into

(2n ln 2n− 2n+ 1
2 ln 2n+ σ + o2n)− 2(n lnn− n+ 1

2 lnn+ σ + on)

= 2n ln 2 + 1
2 ln 2n− lnn− σ + o′n,

where o′n = o2n − 2on is infinitesimally small. Then σ can be presented as

σ = 2 lnn!− ln 2n! + 2n ln 2 + 1
2 lnn+ 1

2 ln 2− lnn+ o′n.

Multiplying by 2 one gets

2σ = 4 lnn!− 2 ln 2n! + 2 ln 22n − lnn+ ln 2 + 2o′n.

Hence 2σ = lim(4 lnn!− 2 ln 2n! + 2 ln 22n − lnn+ ln 2). Switching to product and
keeping in mind the identities n! = n!!(n− 1)!! and n!2n = 2n!! one gets

σ2 = lim
n!424n+1

(2n!)2n
= lim

2 · (2n!!)4

(2n!!)2(2n− 1)!!2n
lim

2 · (2n!!)2(2n+ 1)
(2n− 1)!!(2n+ 1)!!n

= 2π.
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Problems.
1. Evaluate

∫ √
1− x2 dx.

2. Evaluate
∫

1√
1−x2 dx.

3. Evaluate
∫ √

5− x2 dx.
4. Evaluate

∫
cos2 x dx.

5. Evaluate
∫

tanx dx.
6. Evaluate

∫
sin4 x dx.

7. Evaluate
∫

sinx2 dx.
8. Evaluate

∫
tanx dx.

9. Evaluate
∫
x2 sinx dx.

10. Evaluate d arcsinx.
11. Evaluate

∫
arcsinx dx.

12. Evaluate
∫
ex cosx dx.



2.6. Virtually monotone functions

Monotonization of the integrand. Let us say that a pair of functions f1, f2

monotonize a function f , if f1 is non-negative and non-decreasing, f2 is non-positive
and non-increasing and f = f1 + f2.

Lemma 2.6.1. Let f = f1 + f2 and f = f ′1 + f ′2 be two monotonizations of f .
Then for any monotone h one has f1dh+ f2dh = f1dh+ f ′2dh.

Proof. Our equality is equivalent to f1dh − f ′2dh = f ′1dh − f2dh. By the
sign rule this turns into f1dh + (−f ′2)dh = f ′1dh + (−f2)dh. Now all integrands
are nonnegative and for non-decreasing h we can apply the Addition Theorem and
transform the inequality into (f1 − f ′2)dh = (f ′1 − f2)dh. This is true because
(f1 − f ′2) = (f ′1 − f2).

The case of a non-increasing differand is reduced to the case of a non-decreasing
one by the transformation f1d(−h)+f2d(−h) = f ′1d(−h)+f ′2d(−h), which is based
on the Sign Rule. �

A function which has a monotonization is called virtually monotone.
We define the integral

∫ b
a
f dg for any virtually monotone integrand f and any

continuous monotone differand g via a monotonization f = f1 + f2 by∫ b

a

f dg =
∫ b

a

f1 dg +
∫ b

a

f2 dg.

Lemma 2.6.1 demonstrates that this definition does not depend on the choice
of a monotonization.

Lemma 2.6.2. Let f and g be virtually monotone functions; then f + g is
virtually monotone and fdh+ gdh = (f + g)dh for any continuous monotone h.

Proof. Let h be nondecreasing. Consider monotonizations f = f1 + f2 and
g = g1 + g2. Then fdh + gdh = f1dh + f2dh + g1dh + g2dh by definition via
monotonization of the integrand. By virtue of the Addition Theorem 2.3.3 this
turns into (f1 + g1)dh + (f2 + g2)dh. But the pair of brackets monotonize f + g.
Hence f+g is proved to be virtually monotone and the latter expression is (f+g)dh
by definition, via monotonization of the integrand. The case of non-increasing h is
reduced to the previous case via −fd(−h)− gd(−h) = −(f + g)d(−h). �

Lemma on locally constant functions. Let us say that a function f(x) is
locally constant at a point x if f(y) = f(x) for all y sufficiently close to x, i.e., for
all y from an interval (x− ε, x+ ε).

Lemma 2.6.3. A function f which is locally constant at each point of an interval
is constant.

Proof. Suppose f(x) is not constant on [a, b]. We will construct by induction
a sequence of intervals Ik = [ak, bk], such that I0 = [a, b], Ik+1 ⊂ Ik, |bk − ak| ≥
2|bk+1 − ak+1| and the function f is not constant on each Ik. First step: Let
c = (a + b)/2, as f is not constant f(x) 6= f(c) for some x. Then choose [x, c] or
[c, x] as for [a1, b1]. On this interval f is not constant. The same are all further
steps. The intersection of the sequence is a point such that any of its neighborhoods
contains some interval of the sequence. Hence f is not locally constant at this
point. �
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Lemma 2.6.4. If f(x) is a continuous monotone function and a < f(x) < b
then a < f(y) < b for all y sufficiently close to x.

Proof. If f takes values greater than b, then it takes value b and if f(x) takes
values less than a then it takes value a due to continuity. Then [f−1(a), f−1(b)] is
the interval where inequalities hold. �

Lemma 2.6.5. Let g1, g2 be continuous comonotone functions. Then g1 + g2 is
continuous and monotone, and for any virtually monotone f one has

(2.6.1) fdg1 + fdg2 = fd(g1 + g2).

Proof. Suppose g1(x) + g2(x) < p, let ε = p − g1(x) − g2(x). Then g1(y) <
g1(y) + ε/2 and g2(y) < g2(y) + ε/2 for all y sufficiently close to x. Hence g(y) +
g2(y) < p for all y sufficiently close to x. The same is true for the opposite inequality.
Hence sgn(g1(x)+g2(x)−p) is locally constant at all points where it is not 0. But it
is not constant if p is an intermediate value, hence it is not locally constant, hence
it takes value 0. At this point g1(x) + g2(x) = p and the continuity of g1 + g2 is
proved.

Consider a monotonization f = f1 +f2. Let gi be nondecreasing. By definition
via monotonization of the integrand, the left-hand side of (2.6.1) turns into (f1dg1+
f2dg1) + (f1dg2 + f2dg2) = (f1dg1 + f1dg2) + (f2dg1 + f2dg2). By the Addition
Theorem 2.3.3 f1dg1 + f1dg2 = f1d(g1 + g2). And the equality f2dg1 + f2dg2 =
f2d(g1 + g2) follows from (−f2)dg1 + (−f2)dg2 = (−f2)d(g1 + g2) by the Sign Rule.
Hence the left-hand side is equal to f1d(g1 + g2) + f2d(g1 + g2), which coincides
with the right-hand side of (2.6.1) by definition via monotonization of integrand.
The case of non-increasing differands is taken care of via transformation of (2.6.1)
by the Sign Rule into fd(−g1) + fd(−g2) = fd(−g1 − g2). �

Lemma 2.6.6. Let g1 + g2 = g3 + g4 where all (−1)kgk are non-increasing
continuous functions. Then fdg1 + fdg2 = fdg3 + fdg4 for any virtually monotone
f .

Proof. Our equality is equivalent to fdg1 − fdg4 = fdg3 − fdg2. By the
Sign Rule it turns into fdg1 + fd(−g4) = fdg3 + fd(−g2). Now all differands are
nondecreasing and by Lemma 2.6.5 it transforms into fd(g1 − g4) = fd(g3 − g2).
This is true because g1 − g4 = g3 − g2. �

Monotonization of the differand. A monotonization by continuous func-
tions is called continuous. A virtually monotone function which has a continuous
monotonization is called continuous. The integral for any virtually monotone in-
tegrand f against a virtually monotone continuous differand g is defined via a
continuous virtualization g = g1 + g2 of the differand∫ b

a

f dg =
∫ b

a

f dg1 +
∫ b

a

f dg2.

The integral is well-defined because of Lemma 2.6.6.

Theorem 2.6.7 (Addition Theorem). For any virtually monotone functions
f, f ′ and any virtually monotone continuous g, g′, fdg + f ′dg = (f + f ′)dg and
fdg + fdg′ = fd(g + g′)
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Proof. To prove fdg+ f ′dg = (f + f ′)dg, consider a continuous monotoniza-
tion g = g1+g2. Then by definition of the integral for virtually monotone differands
this equality turns into (fdg1+fdg2)+(f ′dg1+f ′dg2) = (f+f ′)dg1+(f+f ′)dg2. Af-
ter rearranging it turns into (fdg1+f ′dg1)+(fdg2+f ′dg2) = (f+f ′)dg1+(f+f ′)dg2.
But this is true due to Lemma 2.6.2.

To prove fdg + fdg′ = fd(g + g′), consider monotonizations g = g1 + g2,
g′ = g′1 + g′2. Then (g1 + g′1) + (g2 + g′2) is a monotonization for g+ g′. And by the
definition of the integral for virtually monotone differands our equality turns into
fdg1 + fdg2 + fdg′1 + fdg′2 �

Change of variable.

Lemma 2.6.8. If f is virtually monotone and g is monotone, then f(g(x)) is
virtually monotone.

Proof. Let f1 + f2 be a monotonization of f . If h is non-decreasing then
f1(h(x)) + f2(h(x)) gives a monotonization of f(g(x)). If h is decreasing then the
monotonization is given by (f2(h(x)) + c) + (f1(h(x))− c) where c is a sufficiently
large constant to provide positivity of the first brackets and negativity of the second
one. �

The following natural convention is applied to define an integral with reversed
limits:

∫ b
a
f(x) dg(x) = −

∫ a
b
f(x) dg(x).

Theorem 2.6.9 (on change of variable). If h : [a, b]→ [h(a), h(b)] is monotone,
f(x) is virtually monotone and g(x) is virtually monotone continuous then∫ b

a

f(h(t)) dg(h(t)) =
∫ h(b)

h(a)

f(x) dg(x).

Proof. Let f = f1 +f2 and g = g1 +g2 be a monotonization and a continuous
monotonization of f and g respectively. The

∫ b
a
f(h(t)) dg(h(t)) splits into sum

of four integrals:
∫ b
a
fi(h(t)) dgj(h(t)) where fi are of constant sign and gj are

monotone continuous. These integrals coincide with the corresponding integrals∫ h(b)

h(a)
fi(x) dgi(x). Indeed their absolute values are the areas of the same curvilinear

trapezia. And their signs determined by the Sign Rule are the same. �

Integration by parts. We have established the Integration by Parts formula
for non-negative and non-decreasing differential forms. Now we extend it to the
case of continuous monotone forms. In the first case f and g are non-decreasing.
In this case choose a positive constant c sufficiently large to provide positivity of
f + c and g + c on the interval of integration. Then d(f + c)(g + c) = (f + c)d(g +
c) + (g + c)d(f + c). On the other hand d(f + c)(g + c) = dfg + cdf + cdg and
(f + c)d(g + c) + (g + c)d(f + c) = fdg + cdg + cdf . Compare these results to get
dfg = fdg + gdf . Now if f is increasing and g is decreasing then −g is increasing
and we get −dfg = df(−g) = fd(−g) + (−g)df = −fdg − gdf , which leads to
dfg = fdg + gdf . The other cases: f decreasing, g increasing and both decreasing
are proved by the same arguments. The extension of the Integration by Parts
formula to piecewise monotone forms immediately follows by the Partition Rule.

Variation. Define the variation of a sequence of numbers {xk}nk=1 as the sum∑∞
k=1 |xk+1 − xk|. Define the variation of a function f along a sequence {xk}nk=0
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as the variation of sequence {f(xk)}nk=0. Define a chain on an interval [a, b] as a
nondecreasing sequence {xk}nk=0 such that x0 = a and xn = b. Define the partial
variation of f on an interval [a, b] as its variation along a chain on the interval.

The least number surpassing all partial variations function f over [a, b] is called
the (ultimate) variation of a function f(x) on an interval [a, b] and is denoted by
varf [a, b].

Lemma 2.6.10. For any function f one has the inequality varf [a, b] ≥ |f(b) −
f(a)|. If f is a monotone function on [a, b], then varf [a, b] = |f(b)− f(a)|.

Proof. The inequality varf [a, b] ≥ |f(b)− f(a)| follows immediately from the
definition because {a, b} is a chain. For monotone f , all partial variations are
telescopic sums equal to |f(b)− f(a)| �

Theorem 2.6.11 (additivity of variation). varf [a, b] + varf [b, c] = varf [a, c].

Proof. Consider a chain {xk}nk=0 of [a, c], which contains b. In this case the
variation of f along {xk}nk=0 splits into sums of partial variations of f along [a, b]
and along [b, c]. As a partial variations does not exceed an ultimate, we get that in
this case the variation of f along {xk}nk=0 does not exceed varf [a, b] + varf [b, c].

If {xk}nk=0 does not contain b, let us add b to the chain. Then in the sum
expressing the partial variation of f , the summand |f(xi+1)−f(xi)| changes by the
sum |f(b)− f(xi)|+ |f(xi+1 − f(b)| which is greater or equal. Hence the variation
does not decrease after such modification. But the variation along the modified
chain does not exceed varf [a, b] + varf [b, c] as was proved above. As all partial
variations of f over [a, c] do not exceed varf [a, b] + varf [b, c], the same is true for
the ultimate variation.

To prove the opposite inequality we consider a relaxed inequality varf [a, b] +
varf [b, c] ≤ varf [a, c] + ε where ε is an positive number. Choose chains {xk}nk=0

on [a, b] and {yk}mk=0 on [b, c] such that corresponding partial variations of f are
≥ varf [a, b] + ε/2 and ≥ varf [b, c] + ε/2 respectively. As the union of these chains
is a chain on [a, c] the sum of these partial variations is a partial variation of f on
[a, c]. Consequently this sum is less or equal to varf [a, c]. On the other hand it is
greater or equal to varf [a, b] + ε/2 + varf [b, c] + ε/2. Comparing these results gives
just the relaxed inequality. As the relaxed inequality is proved for all ε > 0 it also
holds for ε = 0. �

Lemma 2.6.12. For any functions f , g one has the inequality varf+g[a, b] ≤
varf [a, b] + varg[a, b].

Proof. Since |f(xk+1) + g(xk+1) − f(xk) − g(xk)| ≤ |f(xk+1) − f(xk)| +
|g(xk+1) − g(xk)|, the variation of f + g along any sequence does not exceed the
sum of the variations of f and g along the sequence. Hence all partial variations of
f + g do not exceed varf [a, b] + varg[a, b], and so the same is true for the ultimate
variation. �

Lemma 2.6.13. For any function of finite variation on [a, b], the functions
varf [a, x] and varf [a, x]− f(x) are both nondecreasing functions of x.

Proof. That varf [a, x] is nondecreasing follows from nonnegativity and addi-
tivity of variation. If x > y then the inequality varf [a, x]− f(x) ≥ varf [a, y]− f(y)
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is equivalent to varf [a, x]−varf [a, y] ≥ f(x)−f(y). This is true because varf [a, x]−
varf [a, y] = varf [x, y] ≥ |f(x)− f(y)|. �

Lemma 2.6.14. varf2 [a, b] ≤ 2(|f(a)|+ varf [a, b]) varf [a, b].

Proof. For all x, y ∈ [a, b] one has
|f(x) + f(y)| = |2f(a) + f(x)− f(a) + f(y)− f(a)|

≤ 2|f(a)|+ varf [a, x] + varf [a, y]

≤ 2|f(a)|+ 2 varf [a, b].

Hence∑n−1
k=0 |f2(xk+1)− f2(xk)| =

∑n−1
k=0 |f(xk+1)− f(xk)||f(xk+1) + f(xk)|

≤ 2(|f(a)|+ varf [a, b])
∑n−1
k=0 |f(xk+1)− f(xk)|

≤ 2(|f(a)|+ varf [a, b]) varf [a, b]

�

Lemma 2.6.15. If varf [a, b] <∞ and varg[a, b] <∞, then varfg[a, b] <∞.

Proof. 4fg = (f + g)2 − (f − g)2. �

Theorem 2.6.16. The function f is virtually monotone on [a, b] if and only if
it has a finite variation.

Proof. Since monotone functions have finite variation on finite intervals, and
the variation of a sum does not exceed the sum of variations, one gets that all
virtually monotone functions have finite variation. On the other hand, if f has
finite variation then f = (varf [a, x] + c) + (f(x) − varf [a, x] − c), the functions
in the brackets are monotone due to Lemma 2.6.13, and by choosing a constant c
sufficiently large, one obtains that the second bracket is negative. �

Problems.
1. Evaluate

∫ i
1
z2 dz.

2. Prove that 1/f(x) has finite variation if it is bounded.
3. Prove

∫ b
a
f(x) dg(x) ≤ max[a,b] f varg[a, b].
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3.1. Newton-Leibniz Formula

On the contents of the lecture. In this lecture appears the celebrated
Newton-Leibniz formula — the main tool in the evaluation of integrals. It is accom-
panied with such fundamental concepts as the derivative, the limit of a function
and continuity.

Motivation. Consider the following problem: for a given function F find a
function f such that dF (x) = f(x) dx, over [a, b], that is,

∫ d
c
f(t) dt = F (d)− F (c)

for any subinterval [c, d] of [a, b].
Suppose that such an f exists. Since the value of f at a single point does not

affects the integral, we cannot say anything about the value of f at any given point.
But if f is continuous at a point x0, its value is uniquely defined by F .

To be precise, the difference quotient F (x)−F (x0)
x−x0

tends to f(x0) as x tends to
x0. Indeed, F (x) = F (x0) +

∫ x
x0
f(t) dt. Furthermore,

∫ x
x0
f(t) dt = f(x0)(x− x0) +∫ x

x0
(f(t)− f(x0)) dt. Also, |

∫ x
x0

(f(t)− f(x0) dt| ≤ varf [x0, x]|x−x0|. Consequently

(3.1.1)
∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ ≤ varf [x, x0].

However, varf [x, x0] can be made arbitrarily small by choosing x sufficiently close
to x0, since varf x0 = 0.

Infinitesimally small functions. A set is called a neighborhood of a point x
if it contains all points sufficiently close to x, that is, all points y such that |y − x|
is less then a positive number ε.

We will say that a function f is locally bounded (above) by a constant C at a
point x, if f(x) ≤ C for all y sufficiently close to x.

A function o(x) is called infinitesimally small at x0, if |o(x)| is locally bounded
at x0 by any ε > 0.

Lemma 3.1.1. If the functions o and ω are infinitesimally small at x0 then o±ω
are infinitesimally small at x0.

Proof. Let ε > 0. Let O1 be a neighborhood of x0 where |o(x)| < ε/2,
and let O2 be a neighborhood of x0 where |ω(x)| < ε/2. Then O1 ∩ O2 is a
neighborhood where both inequalities hold. Hence for all x ∈ O1 ∩ O2 one has
|o(x)± ω(x)| < ε/2 + ε/2 = ε. �

Lemma 3.1.2. If o(x) is infinitesimally small at x0 and f(x) is locally bounded
at x0, then f(x)o(x) is infinitesimally small at x0.

Proof. The neighborhood where |f(x)o(x)| is bounded by a given ε > 0 can
be constructed as the intersection of a neighborhood U , where |f(x)| is bounded
by a constant C, and a neighborhood V , where |o(x)| is bounded by ε/C. �

Definition. One says that a function f(x) tends to A as x tends to x0 and
writes limx→x0 f(x) = A, if f(x) = A+ o(x) on the complement of x0, where o(x)
is infinitesimally small at x0.

Corollary 3.1.3. If both the limits limx→x0 f(x) and limx→x0 g(x) exist, then
the limit limx→x0 (f(x) + g(x)) also exists and limx→x0 (f(x) + g(x)) = limx→x0 f(x)+
limx→x0 g(x).

64
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Proof. This follows immediately from Lemma 3.1.1. �

Lemma 3.1.4. If the limits limx→x0 f(x) and limx→x0 g(x) exist, then also
limx→x0 f(x)g(x) exists and limx→x0 f(x)g(x) = limx→x0 f(x) limx→x0 g(x).

Proof. If f(x) = A+o(x) and g(x) = B+ω(x), then f(x)g(x) = AB+Aω(x)+
Bo(x) + ω(x)o(x), where Aω(x), Bo(x) and ω(x)o(x) all are infinitesimally small
at x0 by Lemma 3.1.2, and their sum is infinitesimally small by Lemma 3.1.1. �

Definition. A function f is called continuous at x0, if limx→x0 f(x) = f(x0).

A function is said to be continuous (without mentioning a point), if it is con-
tinuous at all points under consideration.

The following lemma gives a lot of examples of continuous functions.

Lemma 3.1.5. If f is a monotone function on [a, b] such that f [a, b] = [f(a),
f(b)] then f is continuous.

Proof. Suppose f is nondecreasing. Suppose a positive ε is given. For a
given point x denote by xε = f−1(f(x) + ε) and xε = f−1(f(x)− ε). Then [xε, xε]
contains a neighborhood of x, and for any y ∈ [xε, xε] one has f(x) + ε = f(xε) ≤
f(y) ≤ f(xε) = f(x) + ε. Hence the inequality |f(y)− f(x)| < ε holds locally at x
for any ε. �

The following theorem immediately follows from Corollary 3.1.3 and Lemma
3.1.4.

Theorem 3.1.6. If the functions f and g are continuous at x0, then f + g and
fg are continuous at x0.

The following property of continuous functions is very important.

Theorem 3.1.7. If f is continuous at x0 and g is continuous at f(x0), then
g(f(x)) is continuous at x0.

Proof. Given ε > 0, we have to find a neighborhood U of x0, such that
|g(f(x)) − g(f(x0))| < ε for x ∈ U . As limy→f(x0) g(y) = g(f(x0)), there exists a
neighborhood V of f(x0) such that |g(y)−g(y0)| < ε for y ∈ V . Thus it is sufficient
to find a U such that f(U) ⊂ V . And we can do this. Indeed, by the definition of
neighborhood there is δ > 0 such that V contains Vδ = {y | |y− f(x0)| < δ}. Since
limx→x0 f(x) = f(x0), there is a neighborhood U of x0 such that |f(x)−f(x0)| < δ
for all x ∈ U . Then f(U) ⊂ Vδ ⊂ V . �

Definition. A function f is called differentiable at a point x0 if the difference
quotient f(x)−(f0)

x−x0
has a limit as x tends to x0. This limit is called the derivative

of the function F at the point x0, and denoted f ′(x0) = limx→x0
f(x)−f(x0)

x−x0
.

Immediately from the definition one evaluates the derivative of linear function

(3.1.2) (ax+ b)′ = a

The following lemma is a direct consequence of Lemma 3.1.3.

Lemma 3.1.8. If f and g are differentiable at x0, then f + g is differentiable
at x0 and (f + g)′(x0) = f ′(x0) + g′(x0).
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Linearization. Let f be differentiable at x0. Denote by o(x) the difference
f(x)−f(x0)

x−x0
− f ′(x0). Then

(3.1.3) f(x) = f(x0) + f ′(x0)(x− x0) + o(x)(x− x0),

where o(x) is infinitesimally small at x0. We will call such a representation a
linearization of f(x).

Lemma 3.1.9. If f is differentiable at x0, then it is continuous at x0.

Proof. All summands but f(x0) on the right-hand side of (3.1.3) are infinites-
imally small at x0; hence limx→x0 f(x) = f(x0). �

Lemma 3.1.10 (on uniqueness of linearization). If f(x) = a + b(x − x0) +
o(x)(x− x0), where limx→x0 o(x) = 0, then f is differentiable at x0 and a = f(x0),
b = f ′(x0).

Proof. The difference f(x)− f(x0) is infinitesimally small at x0 because f is
continuous at x0 and the difference f(x)− a = b(x− x0) + o(x)(x− x0) is infinites-
imally small by the definition of linearization. Hence f(x0) − a is infinitesimally
small. But it is constant, hence f(x0)− a = 0. Thus we established a = f(x0).

The difference f(x)−a
x−x0

− b = o(x) is infinitesimally small as well as f(x)−f(x0)
x−x0

−
f ′(x0). But f(x)−f(x0)

x−x0
= f(x)−a

x−x0
. Therefore b−f ′(x0) is infinitesimally small. That

is b = f ′(x0). �

Lemma 3.1.11. If f and g are differentiable at x0, then fg is differentiable at
x0 and (fg)′(x0) = f ′(x0)g(x0) + g′(x0)f(x0).

Proof. Consider lineariations f(x0)+f ′(x0)(x−x0)+o(x)(x−x0) and g(x0)+
g′(x0)(x − x0) + ω(x)(x − x0). Their product is f(x0)g(x0) + (f ′(x0)g(x0) +
f(x0)g′(x0))(x− x0) + (f(x)ω(x) + f(x0)o(x))(x− x0). This is the linearization of
f(x)g(x) at x0, because fω and go are infinitesimally small at x0. �

Theorem 3.1.12. If f is differentiable at x0, and g is differentiable at f(x0)
then g(f(x)) is differentiable at x0 and (g(f(x0)))′ = g′(f(x0))f ′(x0).

Proof. Denote f(x0) by y0 and substitute into the linearization g(y) = g(y0)+
g′(y0)(y − y0) + o(y)(y − y0) another linearization y = f(x0) + f ′(x0)(x − x0) +
ω(x)(x− x0). Since y − y0 = f ′(x0)(x− x0) + ω(x)(x− x0), we get g(y) = g(y0) +
g′(y0)f ′(x0)(x− x0) + g′(y0)(x− x0)ω(x) + o(f(x))(x− x0). Due to Lemma 3.1.10,
it is sufficient to prove that g′(y0)ω(x) + o(f(x)) is infinitesimally small at x0. The
first summand is obviously infinitesimally small. To prove that the second one also
is infinitesimally small, we remark that o(f(x0) = 0 and o(y) is continuous at f(x0)
and that f(x) is continuous at x0 due to Lemma 3.1.9. Hence by Theorem 3.1.6
the composition is continuous at x0 and infinitesimally small. �

Theorem 3.1.13. Let f be a virtually monotone function on [a, b]. Then
F (x) =

∫ x
a
f(t) dt is virtually monotone and continuous on [a, b]. It is differen-

tiable at any point x0 where f is continuous, and F ′(x0) = f(x0).

Proof. If f has a constant sign, then F is monotone. So, if f = f1 + f2 is a
monotonization of f , then

∫ x
a
f1(x) dx +

∫ x
a
f1(x) dx is a monotonization of F (x).

This proves that F (x) is virtually monotone.
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To prove continuity of F (x) at x0, fix a constant C which bounds f in some
neighborhood U of x0. Then for x ∈ U one proves that |F (x)− F (x0)| is infinites-
imally small via the inequalities |F (x) − F (x0)| = |

∫ x
x0
f(x) dx| ≤ |

∫ x
x0
C dx| =

C|x− x0|.
Now suppose f is continuous at x0. Then o(x) = f(x0) − f(x) is infinitesi-

mally small at x0. Therefore limx→x0
1

x−x0

∫ x
x0
o(x) dx = 0. Indeed for any ε > 0

the inequality |o(x)| ≤ ε holds over [xε, x0] for some xε. Hence |
∫ x
x0
o(x) dx| ≤

|
∫ x
x0
ε dx| = ε|x− x0| for any x ∈ [x0, xε].
Then F (x) = F (x0)+f(x0)(x−x0)+( 1

x−x0

∫ x
x0
o(t) dt)(x−x0) is a linearization

of F (x) at x0. �

Corollary 3.1.14. The functions ln, sin, cos are differentiable and ln′(x) = 1
x ,

sin′ = cos, cos′ = − sin.

Proof. Since d sinx = cosx dx, d cosx = − sinx dx, due to Theorem 3.1.13
both sinx and cosx are continuous, and, as they are continuous, the result follows
from Theorem 3.1.13. And ln′ x = 1

x , by Theorem 3.1.13, follows from the continuity
of 1

x . The continuity follows from Lemma 3.1.5. �

Since sin′(0) = cos 0 = 1 and sin 0 = 0, the linearization of sinx at 0 is x+xo(x).
This implies the following very important equality

(3.1.4) lim
x→0

sinx
x

= 1.

Lemma 3.1.15. If f ′(x) > 0 for all x ∈ [a, b], then f(b) > f(a)|.

Proof. Suppose f(a) ≥ f(b). We construct a sequence of intervals [a, b] ⊃
[a1, b1] ⊃ [a2, b2] ⊃ . . . such that their lengths tend to 0 and f(ak) ≥ f(bk). All
steps of construction are the same. The general step is: let m be the middle point
of [ak, bk]. If f(m) ≤ f(ak) we set [ak+1, bk+1] = [ak,m], otherwise f(m) > f(ak) ≥
f(bk) and we set [ak+1, bk+1] = [m, bk].

Now consider a point x belonging to all [ak, bk]. Let f(y) = f(x) + (f ′(x) +
o(x))(y − x) be the linearization of f at x. Let U be neighborhood where |o(x)| <
f ′(x). Then sgn(f(y) − f(x)) = sgn(y − x) for all y ∈ U . However for some n
we get [an, bn] ⊂ U . If an ≤ x < bn we get f(an) ≤ f(x) < f(bn) else an < x
and f(an) < f(x) ≤ f(bn). In the both cases we get f(an) < f(bn). This is a
contradiction with our construction of the sequence of intervals. �

Theorem 3.1.16. If f ′(x) = 0 for all x ∈ [a, b], then f(x) is constant.

Proof. Set k = f(b)−f(a)
b−a . If k < 0 then g(x) = f(x) − kx/2 has derivative

g′(x) = f ′(x)− k/2 > 0 for all x. Hence by Lemma 3.1.15 g(b) > g(a) and further
f(b) − f(a) > k(b − a)/2. This contradicts the definition of k. If k > 0 then one
gets the same contradiction considering g(x) = −f(x) + kx/2. �

Theorem 3.1.17 (Newton-Leibniz). If f ′(x) is a continuous virtually monotone
function on an interval [a, b], then

∫ b
a
f ′(x) dx = f(b)− f(a).

Proof. Due to Theorem 3.1.13, the derivative of the difference
∫ x
a
f ′(t) dt −

f(x) is zero. Hence the difference is constant by Theorem 3.1.16. Substituting



68 3.1 newton-leibniz formula

x = a we find the constant which is f(a). Consequently,
∫ x
a
f ′(t) dt − f(x) = f(a)

for all x. In particular, for x = b we get the Newton-Leibniz formula. �

Problems.
1. Evaluate (1/x)′,

√
x
′, (
√

sinx2)′.
2. Evaluate exp′ x.
3. Evaluate arctg′ x, tan′ x.
4. Evaluate |x|′, Re z′.
5. Prove: f ′(x) ≡ 1 if and only if f(x) = x+ const.

6. Evaluate
(∫ x2

x
sin t
t dt

)′
as a function of x.

7. Evaluate
√

1− x2
′
.

8. Evaluate (
∫ 1

0
sin kt
t dt)′ as a function of k.

9. Prove: If f is continuous at a and limn→∞ xn = a then limn→∞ f(xn) = f(a).
10. Evaluate

(∫ y
0

[x] dx
)′
y
.

11. Evaluate arcsin′ x.
12. Evaluate

∫
dx

2+3x2 .
13. Prove: If f ′(x) < 0 for all x < m and f ′(x) > 0 for all x > m then f ′(m) = 0.
14. Prove: If f ′(x) is bounded on [a, b] then f is virtually monotone on [a, b].



3.2. Exponential Functions

On the contents of the lecture. We solve the principal differential equation
y′ = y. Its solution, the exponential function, is expanded into a power series. We
become acquainted with hyperbolic functions. And, finally, we prove the irrational-
ity of e.

Debeaune’s problem. In  F. Debeaune posed Descartes the following
geometrical problem: find a curve y(x) such that for each point P the distances
between V and T , the points where the vertical and the tangent lines cut the x-
axis, are always equal to a given constant a. Despite the efforts of Descartes and
Fermat, this problem remained unsolved for nearly 50 years. In  Leibniz solved
the problem via infinitesimal analysis of this curve: let x, y be a given point P (see
the picture). Then increase x by a small increment of b, so that y increases almost
by yb/a. Indeed, in small the curve is considered as the line. Hence the point P ′ of
the curve with vertical projection V ′, one considers as lying on the line TP . Hence
the triangle TP ′V ′ is similar to TPV . As TV = a, TV ′ = b+a this similarity gives
the equality a+b

y+δy = a
y which gives δy = yb/a.

Repeating we obtain a sequence of values

y, y(1 + b
a ), y(1 + b

a )2, y(1 + b
a )3, . . . .

We see that “in small” y(x) transforms an arithmetic progression into a geometric
one. This is the inverse to what the logarithm does. And the solution is a function
which is the inverse to a logarithmic function. Such functions are called exponential.

T  V

P

a b
 V’

P’

T’

Figure 3.2.1. Debeaune’s problem

Tangent line and derivative. A tangent line to a smooth convex curve at a
point x is defined as a straight line such that the line intersects the curve just at x
and the whole curve lies on one side of the line.

We state that the equation of the tangent line to the graph of function f at a
point x0 is just the principal part of linearization of f(x) at x0. In other words,
the equation is y = f(x0) + (x− x0)f ′(x0).

First, consider the case of a horizontal tangent line. In this case f(x0) is either
maximal or minimal value of f(x).

69
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Lemma 3.2.1. If a function f(x) is differentiable at an extremal point x0, then
f ′(x0) = 0.

Proof. Consider the linearization f(x) = f(x0)+f ′(x0)(x−x0)+o(x))(x−x0).
Denote x−x0 by δx, and f(x)−f(x0) by δf(x). If we suppose that f ′(x0) 6= 0, then,
for sufficiently small δx, we get |o(x±δx)| < |f ′(x)|, hence sgn(f ′(x0)+o(x0+δx)) =
sgn(f ′(x0)+o(x0−δx)), and sgn δf(x) = sgn δx. Therefore the sign of δf(x) changes
whenever the sign of δx changes. The sign of δf(x) cannot be positive if f(x0) is
the maximal value of f(x), and it cannot be negative if f(x0) is the minimal value.
This is the contradiction. �

Theorem 3.2.2. If a function f(x) is differentiable at x0 and its graph is
convex, then the tangent line to the graph of f(x) at x0 is y = f(x0)+f ′(x0)(x−x0).

Proof. Let y = ax+ b be the equation of a tangent line to the graph y = f(x)
at the point x0. Since ax+ b passes through x0, one has ax0 + b = f(x0), therefore
b = f(x0)− ax0, and it remains to prove that a = f ′(x0). If the tangent line ax+ b
is not horizontal, consider the function g(x) = f(x) − ax. At x0 it takes either a
maximal or a minimal value and g′(x0) = 0 by Lemma 3.2.1. On the other hand,
g′(x0) = f ′(x0)− a. �

Differential equation. The Debeaune problem leads to a so-called differen-
tial equation on y(x). To be precise, the equation of the tangent line to y(x) at
x0 is y = y(x0) + y′(x0)(x− x0). So the x-coordinate of the point T can be found
from the equation 0 = y(x0) + y′(x0)(x − x0). The solution is x = x0 − y(x0)

y′(x0) .

The x-coordinate of V is just x0. Hence TV is equal to y(x0)
y′(x0) . And Debeaune’s

requirement is y(x0)
y′(x0) = a. Or ay′ = y. Equations that include derivatives of

functions are called differential equations. The equation above is the simplest dif-
ferential equation. Its solution takes one line. Indeed passing to differentials one
gets ay′ dx = y dx, further ady = y dx, then adyy = dx and a d ln y = dx. Hence
a ln y = x+c and finally y(x) = exp(c+ x

a ), where expx denotes the function inverse
to the natural logarithm and c is an arbitrary constant.

Exponenta. The function inverse to the natural logarithm is called the ex-
ponential function. We shall call it the exponenta to distinguish it from other
exponential functions.

Theorem 3.2.3. The exponenta is the unique solution of the differential equa-
tion y′ = y such that y′(0) = 1.

Proof. Differentiation of the equality ln expx = x gives exp′ x
exp x = 1. Hence

expx satisfies the differential equation y′ = y. For x = 0 this equation gives
exp′(0) = exp 0. But exp 0 = 1 as ln 1 = 0.

For the converse, let y(x) be a solution of y′ = y. The derivative of ln y is y′

y = 1.
Hence the derivative of ln y(x) − x is zero. By Theorem 3.1.16 from the previous
lecture, this implies ln y(x)− x = c for some constant c. If y′(0) = 1, then y(0) = 1
and c = ln 1− 0 = 0. Therefore ln y(x) = x and y(x) = exp ln y(x) = expx. �
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Exponential series. Our next goal is to prove that

(3.2.1) expx = 1 + x+
x2

2
+

x3

2 · 3
+ · · ·+ xk

k!
+ · · · =

∞∑
n=0

xn

n!
,

where 0! = 1. This series is absolutely convergent for any x. Indeed, the ratio of
its subsequent terms is x

n and tends to 0, hence it is eventually majorized by any
geometric series.

Hyperbolic functions. To prove that the function presented by series (3.2.1)
is virtually monotone, consider its odd and even parts. These parts represent the
so-called hyperbolic functions: hyperbolic sine shx, and hyperbolic cosine chx.

sh(x) =
∞∑
k=0

x2k+1

(2k + 1)!
, ch(x) =

∞∑
k=0

x2k

(2k)!
.

The hyperbolic sine is an increasing function, as all odd powers are increasing
over the whole line. The hyperbolic cosine is increasing for positive x and decreasing
for negative. Hence both are virtually monotone; and so is their sum.

Consider the integral
∫ x

0
sh t dt. As all terms of the series representing sh are

increasing, we can integrate the series termwise. This integration gives chx. As
shx is locally bounded, chx is continuous by Theorem 3.1.13. Consider the integral∫ x

0
ch t dt; here we also can integrate the series representing ch termwise, because for

positive x all the terms are increasing, and for negative x, decreasing. Integration
gives shx, since the continuity of chx was already proved. Further, by Theorem
3.1.13 we get that shx is differentiable and sh′ x = chx. Now returning to the
equality chx =

∫ x
0

sh t dt we get ch′ x = shx, as shx is continuous.
Therefore (shx+ chx)′ = chx+ shx. And sh 0 + ch 0 = 0 + 1 = 1. Now by the

above Theorem 3.2.3 one gets expx = chx+ shx.

Other exponential functions. The exponenta as a function inverse to the
logarithm transforms sums into products. That is, for all x and y one has

exp(x+ y) = expx exp y.

A function which has this property (i.e., transform sums into products) is called
exponential.

Theorem 3.2.4. For any positive a there is a unique differentiable function
denoted by ax called the exponential function to base a, such that a1 = a and
ax+y = axay for any x, y. This function is defined by the formula exp a lnx.

Proof. Consider l(x) = ln ax. This function has the property l(x+y) = l(x)+
l(y). Therefore its derivative at any point is the same: it is equal to k = limx→0

l(x)
x .

Hence the function l(x)− kx is constant, because its derivative is 0. This constant
is equal to l(0), which is 0. Indeed l(0) = l(0 + 0) = l(0) + l(0). Thus ln ax = kx.
Substituting x = 1 one gets k = ln a. Hence ax = exp(x ln a). So if a differentiable
exponential function with base a exists, it coincides with exp(x ln a). On the other
hand it is easy to see that exp(x ln a) satisfies all the requirements for an exponential
function to base a, that is exp(1 ln a) = a, exp((x+y) ln a) = exp(x ln a) exp(y ln a);
and it is differentiable as composition of differentiable functions. �
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Powers. Hence for any positive a and any real b, one defines the number ab as

ab = exp(b ln a)

a is called the base, and b is called the exponent. For rational b this definition
agrees with the old definition. Indeed if b = p

q then the properties of the exponenta

and the logarithm imply a
p
q = q

√
ap.

Earlier, we have defined logarithms to base b as the number c, and called the
logarithm of b to base a, if ac = b and denoted c = loga b.

The basic properties of powers are collected here.

Theorem 3.2.5.

(ab)
c

= a(bc), ab+c = abac, (ab)c = acbc, loga b =
log b
log a

.

Power functions. The power operation allows us to define the power function xα

for any real degree α. Now we can prove the equality (xα)′ = αxα−1 in its full value.
Indeed, (xα)′ = (exp(α lnx))′ = exp′(α lnx)(α lnx)′ = exp(α lnx)αx = αxα−1.

Infinite products via the Logarithm.

Lemma 3.2.6. Let f(x) be a function continuous at x0. Then for any sequence
{xn} such that limn→∞ xn = x0 one has limn→∞ f(xn) = f(x0).

Proof. For any given ε > 0 there is a neighborhood U of x0 such that |f(x)−
f(x0)| ≤ ε for x ∈ U . As limn→∞ xn = x0, eventually xn ∈ U . Hence eventually
|f(xn)− f(x0)| < ε. �

As we already have remarked, infinite sums and infinite products are limits of
partial products.

Theorem 3.2.7. ln
∏∞
k=1 pk =

∑∞
k=1 ln pk.

Proof.

exp(
∑∞
k=1 ln pk) = exp(limn→∞

∑n
k=1 ln pk)

= limn→∞ exp(
∑n
k=1 ln pk)

= limn→∞
∏n
k=1 pk

=
∏∞
k=1 pk.

Now take logarithms of both sides of the equation. �

Symmetric arguments prove the following: exp
∑∞
k=1 ak =

∏∞
k=1 exp ak.

Irrationality of e. The expansion of the exponenta into a power series gives
an expansion into a series for e which is exp 1.

Lemma 3.2.8. For any natural n one has 1
n+1 < en!− [en!] < 1

n .

Proof. en! =
∑∞
k=0

n!
k! . The partial sum

∑n
k=0

n!
k! is an integer. The tail∑∞

k=n+1
n!
k! is termwise majorized by the geometric series

∑∞
k=1

1
(n+1)k

= 1
n . On

the other hand the first summand of the tail is 1
n+1 . Consequently the tail has its

sum between 1
n+1 and 1

n . �

Theorem 3.2.9. The number e is irrational.
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Proof. Suppose e = p
q where p and q are natural. Then eq! is a natural

number. But it is not an integer by Lemma 3.2.8. �

Problems.
1. Prove the inequalities 1 + x ≤ expx ≤ 1

1−x .
2. Prove the inequalities x

1+x ≤ ln(1 + x) ≤ x.
3. Evaluate limn→∞

(
1− 1

n

)n.
4. Evaluate limn→∞

(
1 + 2

n

)n.
5. Evaluate limn→∞

(
1 + 1

n2

)n.
6. Find the derivative of xx.
7. Prove: x > y implies expx > exp y.
8. Express via e: exp 2, exp(1/2), exp(2/3), exp(−1).
9. Prove that exp(m/n) = e

m
n .

10. Prove that expx > 0 for any x.
11. Prove the addition formulas ch(x+ y) = ch(x) ch(y) + sh(x) sh(y), sh(x+ y) =

sh(x) ch(y) + sh(y) ch(x).
12. Prove that ∆ sh(x− 0.5) = sh 0.5 ch(x), ∆ ch(x− 0.5) = sh 0.5 sh(x).
13. Prove sh 2x = 2 shx chx.
14. Prove ch2(x)− sh2(x) = 1.
15. Solve the equation shx = 4/5.
16. Express via e the sum

∑∞
k=1 k/k!.

17. Express via e the sum
∑∞
k=1 k

2/k!.
18. Prove that { exp k

kn } is unbounded.
19. Prove: The product

∏
(1 + pn) converges if and only if the sum

∑
pn (pn ≥ 0)

converges.
20. Determine the convergence of

∏
e1/n

1+ 1
n

.

21. Does
∏
n(e1/n − 1) converges?

22. Prove the divergence of
∑∞
k=1

[k−prime]
k .

23. Expand ax into a power series.
24. Determine the geometrical sense of shx and chx.
25. Evaluate limn→∞ sinπen!.
26. Does the series

∑∞
k=1 sinπek! converge?

∗27. Prove the irrationality of e2.



3.3. Euler Formula

On the contents of the lecture. The reader becomes acquainted with the
most famous Euler formula. Its special case eiπ = −1 symbolizes the unity of
mathematics: here e represents Analysis, i represents Algebra, and π represents
Geometry. As a direct consequence of the Euler formula we get power series for sin
and cos, which we need to sum up the Euler series.

Complex Newton-Leibniz. For a function of a complex variable f(z) the
derivative is defined by the same formula f ′(z0) = limz→z0

f(z)−f(z0)
z−z0 . We will

denote it also by df(z)
dz , to distinguish from derivatives of paths: complex valued

functions of real variable. For a path p(t) its derivative will be denoted either p′(t)
or dp(t)

dt . The Newton-Leibniz formula for real functions can be expressed by the
equality df(t)

dt dt = df(t). Now we extend this formula to complex functions.
The linearization of a complex function f(z) at z0 has the same form f(z0) +

f ′(z0)(z − z0) + o(z)(z − z0), where o(z) is an infinitesimally small function of
complex variable. The same arguments as for real numbers prove the basic rules of
differentiation: the derivative of sums, products and compositions.

Theorem 3.3.1.
dzn

dz = nzn−1.

Proof.
dz
dz = 1 one gets immediately from the definition of the derivative.

Suppose the equality dzn

dz = nzn−1 is proved for n. Then dzn+1

dz = dzzn

dz = z dz
n

dz +
zn dzdz = znzn−1 + zn = (n+ 1)zndz. And the theorem is proved by induction. �

A smooth path is a differentiable mapping p : [a, b] → C with a continuous
bounded derivative. A function f(z) of a complex variable is called virtually mono-
tone if for any smooth path p(t) the functions Re f(p(t)) and Im f(p(t)) are virtually
monotone.

Lemma 3.3.2. If f ′(z) is bounded, then f(z) is virtually monotone.

Proof. Consider a smooth path p. Then df(p(t))
dt = f ′(p(t))p′(t) is bounded by

some K. Due to Lemma 3.1.15 one has |f(p(t))− f(p(t0))| ≤ K|t− t0|. Hence any
partial variation of f(p(t)) does not exceed K(b − a). Therefore varf(p(t))[a, b] ≤
K. �

Theorem 3.3.3. If a complex function f(z) has a bounded virtually monotone
continuous complex derivative over the image of a smooth path p : [a, b] → C, then∫
p
f ′(z) dz = f(p(b))− f(p(a)).

Proof.
df(p(t))
dt = f ′(p(t))p′(t) = dRe f(p(t))

dt + id Im f(p(t))
dt . All functions here

are continuous and virtually monotone by hypothesis. Passing to differential forms
one gets

df(p(t))
dt dt = dRe f(p(t))

dt dt+ i d Im f(p(t))
dt dt

= d(Re f(p(t))) + i d(Im f(p(t)))

= d(Re f(p(t)) + i Im f(p(t)))

= d(f(p(t)).

Hence
∫
p
f ′(z) dz =

∫
p
df(z). �

74
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Corollary 3.3.4. If f ′(z) = 0 then f(z) is constant.

Proof. Consider p(t) = z0 +(z−z0)t, then f(z)−f(z0) =
∫
p
f ′(ζ) dζ = 0. �

Differentiation of series. Let us say that a complex series
∑∞
k=1 ak majorizes

(eventually) another such series
∑∞
k=1 bk if |bk| ≤ |ak| for all k (resp. for k beyond

some n).
The series

∑∞
k=1 kck(z−z0)k−1 is called a formal derivative of

∑∞
k=0 ck(z−z0)k.

Lemma 3.3.5. Any power series
∑∞
k=0 ck(z− z0)k eventually majorizes its for-

mal derivative
∑∞
k=0 kck(z1 − z0)k−1 if |z1 − z0| < |z − z0|.

Proof. The ratio of the n-th term of the derivative to the n-th term of the
series tends to 0 as n tends to infinity. Indeed, this ratio is k(z1−z0)k

(z−z0)k
= kqk, where

|q| < 1 since |z1 − z0| < |z − z0|. The fact that limn→∞ nqn = 0 follows from
the convergence of

∑∞
k=1 kq

k which we already have proved before. This series is
eventually majorized by any geometric series

∑∞
k=0AQ

k with Q > q. �

A path p(t) is called monotone if both Re p(t) and Im p(t) are monotone.

Lemma 3.3.6. Let p : [a, b] → C be a smooth monotone path, and let f(z) be
virtually monotone. If |f(p(t))| ≤ c for t ∈ [a, b] then

∣∣∣∫p f(z) dz
∣∣∣ ≤ 4c|p(b)− p(a)|.

Proof. Integration of the inequalities −c ≤ Re f(p(t)) ≤ c against dRe z
along the path gives |

∫
p

Re f(z) dRez| ≤ c|Re p(b)−Re p(a)| ≤ c|p(b)− p(a)|. The
same arguments prove |

∫
p

Im f(z) d Imz| ≤ c| Im p(b) − Im p(a)| ≤ c|p(b) − p(a)|.
The sum of these inequalities gives |Re

∫
p
f(z) dz| ≤ 2c|Re p(b) − Re p(a)|. The

same arguments yields | Im
∫
p
f(z) dz| ≤ 2c|Re p(b)−Re p(a)|. And the addition of

the two last inequalities allows us to accomplish the proof of the Lemma because
|
∫
p
f(z) dz| ≤ |Re

∫
p
f(z) dz|+ |

∫
p
f(z) dz|. �

Lemma 3.3.7. |zn − ζn| ≤ n|z − ζ|max{|zn−1|, |ζn−1|}.

Proof. (zn − ζn) = (z − ζ)
∑n−1
k=0 z

kζn−k−1 and |zkζn−k−1| ≤ max{|zn−1|,
|ζn−1|}. �

A linear path from z0 to z1 is defined as a linear mapping p : [a, b] → C, such
that p(a) = z0 and p(b) = z1, that is p(t) = z0(t− a) + (z1 − z0)(t− a)/(b− a).

We denote by
∫ b
a
f(z) dz the integral along the linear path from a to b.

Lemma 3.3.8. For any complex z, ζ and natural n > 0 one has

(3.3.1) |zn − zn0 − nzn−1
0 (z − z0)| ≤ 2n(n− 1)|z − z0|2 max{|z|n−2, |z0|n−2}.

Proof. By the Newton-Leibniz formula, zn − zn0 =
∫ z
z0
nζn−1 dζ. Further,∫ z

z0

nζn−1 dζ =
∫ z

z0

nzn−1
0 dζ +

∫ z

z0

n(ζn−1 − zn−1
0 ) dζ

= nzn−1
0 +

∫ z

z0

n(ζn−1 − zn−1
0 ) dζ.

Consequently, the left-hand side of (3.3.1) is equal to
∣∣∣∫ zz0 n(ζn−1 − zn−1

0 ) dζ
∣∣∣. Due

to Lemma 3.3.7 the absolute value of the integrand along the linear path does not
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exceed (n − 1)|z − z0|max{|zn−2|, |zn−2
0 |}. Now the estimation of the integral by

Lemma 3.3.6 gives just the inequality (3.3.1). �

Theorem 3.3.9. If
∑∞
k=0 ck(z1 − z0)k converges absolutely, then

∑∞
k=0 ck(z −

z0)k and
∑∞
k=1 kck(z − z0)k−1 absolutely converge provided by |z − z0| < |z1 − z0|,

and the function
∑∞
k=1 kck(z−z0)k−1 is the complex derivative of

∑∞
k=0 ck(z−z0)k.

Proof. The series
∑∞
k=0 ck(z − z0)k and its formal derivative are eventually

majorized by
∑∞
k=0 ck(z1 − z0)k if |z − z0| ≤ |z1 − z0| by the Lemma 3.3.5. Hence

they absolutely converge in the circle |z − z0| ≤ |z1 − z0|. Consider

R(z) =
∞∑
k=0

ck(z − z0)k −
∞∑
k=0

ck(ζ − z0)k − (z − ζ)
∞∑
k=1

kck(ζ − z0)k−1.

To prove that the formal derivative is the derivative of
∑∞
k=0 ck(z − z0)k at ζ it is

sufficient to prove that R(z) = o(z)(z − ζ), where o(z) is infinitesimally small at ζ.
One has R(z) =

∑∞
k=1 ck

(
(z − z0)k − (ζ − z0)k − k(ζ − z0)k−1

)
. By Lemma 3.3.8

one gets the following estimate: |R(z)| ≤
∑∞
k=1 2|ck|k(k − 1)|z − ζ|2|z2 − z0|n−2,

where |z2 − z0| = max{|z − z0|, |ζ − z0|}. Hence all we need now is to prove that∑∞
k=1 2k(k − 1)|ck||z2 − z0|k−2|z − ζ| is infinitesimally small at ζ. And this in its

turn follows from the convergence of
∑∞
k=1 2k(k − 1)|ck||z2 − z0|k−2. The latter

may be deduced from Lemma 3.3.5. Indeed, consider z3, such that |z2 − z0| <
|z3 − z0| < |z1 − z0|. The convergence of

∑∞
k=1 k|ck||z3 − z0|k−1 follows from

the convergence of
∑∞
k=0 |ck||z1 − z0|k by Lemma 3.3.5. And the convergence of∑∞

k=2 k(k−1)|ck||z2−z0|k−2 follows from the convergence of
∑∞
k=1 k|ck||z3−z0|k−1

by the same lemma. �

Corollary 3.3.10. Let f(z) =
∑∞
k=0 ckz

k converge absolutely for |z| < r, and
let a, b have absolute values less then r. Then

∫ b
a
f(z) dz =

∑∞
k=0

ck
k+1 (bk+1−ak+1).

Proof. Consider F (z) =
∑∞
k=0

ckz
k+1

k+1 . This series is termwise majorized by
the series of f(z), hence it converges absolutely for |z| < r. By Theorem 3.3.9 f(z)
is its derivative for |z| < r. In our case f(z) is differentiable and its derivative is
bounded by

∑∞
k=0 k|ck|rk0 , where r0 = max{|a|, |b|}. Hence f(z) is continuous and

virtually monotone and our result now follows from Theorem 3.3.3. �

Exponenta in C. The exponenta for any complex number z is defined as
exp z =

∑∞
k=0

zk

k! . The definition works because the series
∑∞
k=0

zk

k! absolutely
converges for any z ∈ C.

Theorem 3.3.11. The exponenta is a differentiable function of a complex vari-
able with derivative exp′ z = exp z, such that for all complex z, ζ the following
addition formula holds: exp(z + ζ) = exp z exp ζ.

Proof. The derivative of the exponenta can be evaluated termwise by Theo-
rem 3.3.9. And this evaluation gives exp′ z = exp z. To prove the addition formula
consider the following function r(z) = exp(z+ζ)

exp z . Differentiation of the equality
r(z) exp z = exp(z+ ζ) gives r′(z) exp z+ r(z) exp z = exp(z+ ζ). Division by exp z
gives r′(z) + r(z) = r(z). Hence r(z) is constant. This constant is determined by
substitution z = 0 as r(z) = exp ζ. This proves the addition formula. �
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Lemma 3.3.12. Let p : [a, b]→ C be a smooth path contained in the complement
of a neighborhood of 0. Then exp

∫
p

1
ζ dζ = p(b)

p(a) .

Proof. First consider the case when p is contained in a circle |z − z0| < |z0|
with center z0 6= 0. In this circle, 1

z expands in a power series:

1
ζ

=
1

z0 − (z0 − ζ)
=

1
z0

1
1− z0−ζ

z0

=
∞∑
k=0

(z0 − ζ)k

zk+1
0

.

Integration of this series is possible to do termwise due to Corollary 3.3.10. Hence
the result of the integration does not depend on the path. And Theorem 3.3.9
provides differentiability of the termwise integral and the possibility of its termwise
differentiation. Such differentiation simply gives the original series, which represents
1
z in this circle.

Consider the function l(z) =
∫ z
z0

1
ζ dζ. Then l′(z) = 1

z . The derivative of

the composition exp l(z) is exp l(z)
z . Hence the composition satisfies the differential

equation y′z = y. We search for a solution of this equation in the form y = zw.
Then y′ = w+w′z and our equation turns into wz +w′z2 = wz. Therefore w′ = 0
and w is constant. To find this constant substitute z = z0 and get 1 = exp 0 =
exp l(z0) = wz0. Hence w = 1

z0
and exp l(z) = z

z0
.

To prove the general case consider a partition {xk}nk=0 of [a, b]. Denote by
pk the restriction of p over [xk, xk+1]. Choose the partition so small that |p(x) −
p(xk)| < |p(xk)| for all x ∈ [xk, xk+1]. Then any pk satisfies the requirement of
the above considered case. Hence exp

∫
pk

1
ζ dζ = p(xk+1)

p(xk) . Further exp
∫
p

1
ζ dζ =

exp
∑n−1
k=0

∫
pk

1
ζ dζ =

∏n−1
k=0

p(xk+1)
p(xk) = p(b)/p(a). �

Theorem 3.3.13 (Euler Formula). For any real φ one has

exp iφ = cosφ+ i sinφ

Proof. In Lecture 2.5 we have evaluated
∫
p

1
z dz = iφ for p(t) = cos t+ i sin t,

t ∈ [0, φ]. Hence Lemma 3.3.12 applied to p(t) immediately gives the Euler formula.
�

Trigonometric functions in C. The Euler formula gives power series expan-
sions for sinx and cosx:

sinx =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
, cosx =

∞∑
k=0

(−1)k
x2k

(2k)!
.

These expansions are used to define trigonometric functions for complex vari-
able. On the other hand the Euler formula allows us to express trigonometric
functions via the exponenta:

sin z =
exp(iz)− exp(−iz)

2i
, cos z =

exp(iz) + exp(−iz)
2

.

The other trigonometric functions tan, cot, sec, cosec are defined for complex vari-
ables by the usual formulas via sin and cos.
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Problems.
1. Evaluate

∑∞
k=1

sin k
k! .

2. Prove the formula of Joh. Bernoulli
∫ 1

0
xx dx =

∑∞
k=1

(−1)k+1

kk
.

3. Find ln(−1).
4. Solve the equation exp z = i.
5. Evaluate ii.
6. Prove sin z = eiz−e−iz

2i , cos z = eiz+e−iz

2 .
7. Prove the identity sin2 z + cos2 z = 1.
8. Solve the equation sin z = 5/3.
9. Solve the equation cos z = 2.

10. Evaluate
∑∞
k=0

cos k
k! .

11. Evaluate
∮
|z|=1

dz

z2
.

12. Evaluate
∑∞
k=1 q

k sin kx
k

.
13. Expand into a power series ex cosx.



3.4. Abel’s Theorem

On the contents of the lecture. The expansion of the logarithm into power
series will be extended to the complex case. We learn the very important Abel’s
transformation of sum. This transformation is a discrete analogue of integrations by
parts. Abel’s theorem on the limit of power series will be applied to the evaluation
of trigonometric series related to the logarithm. The concept of Abel’s sum of a
divergent series will be introduced.

Principal branch of the Logarithm. Since exp(x+ iy) = ex(cos y+ i sin y),
one gets the following formula for the logarithm: Log z = ln |z| + iArg z, where
Arg z = arg z + 2πk. We see that the logarithm is a multi-valued function, that is
why one usually chooses a branch of the logarithm to work. For our purposes it is
sufficient to consider the principal branch of the logarithm:

ln z = ln |z|+ i arg z, −π < arg z ≤ π.

The principal branch of the logarithm is a differentiable function of a complex vari-
able with derivative 1

z , inverse to exp z. This branch is not continuous at negative
numbers. However its restriction on the upper half-plane is continuous and even
differentiable at negative numbers.

Lemma 3.4.1. For any nonnegative z one has
∫ z

1
1
ζ dζ = ln z.

Proof. If Im z 6= 0, the segment [0, z] is contained in the circle |ζ − z0| <
|z0| for z0 = |z|2

Im z . In this circle 1
ζ expands into a power series, which one can

integrate termwise. Since for zk the result of integration depends only on the ends
of path of integration, the same is true for power series. Hence, we can change
the path of integration without changing the result. Consider the following path:
p(t) = cos t + i sin t, t ∈ [0, arg z]. We know the integral

∫
p

1
ζ dζ = i arg z. This

path terminates at z
|z| . Continue this path by the linear path to z. The integral

satisfies
∫ z
z/|z|

1
ζ dζ =

∫ |z|
1

1
z/|z|t dtz/|z| =

∫ |z|
1

1
t dt = ln |z|. Therefore

∫ z
1

1
ζ dζ =∫

p
1
ζ dζ +

∫ z
z/|z|

1
ζ dζ = i arg z + ln |z|. �

Logarithmic series. In particular for |1− z| < 1 termwise integration of the
series 1

ζ =
∑∞
k=0 (1− ζ)k gives the complex Mercator series:

(3.4.1) ln(1 + z) =
∞∑
k=1

(−1)k+1 z
k

k
.

Substitute in this series −z for z and subtract the obtained series from (3.4.1) to
get the complex Gregory series:

1
2

ln
1 + z

1− z
=
∞∑
k=0

(−1)k
z2k+1

2k + 1
.

In particular for z = ix, one has
∣∣∣ 1+ix

1−ix

∣∣∣ = 1 and arg 1+ix
1−ix = 2 arctg x. Therefore

one gets

arctg x =
∞∑
k=0

(−1)k
x2k+1

2k + 1
.

79
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Since arg(1 + eiφ) = arctg sinφ
1+cosφ = arctg tan(φ/2) = φ

2 , the substitution of

exp(iφ) for z in the Mercator series ln(1 + eiφ) =
∑∞
k=1(−1)k+1 eikφ

k gives for the
imaginary parts:

(3.4.2)
∞∑
k=0

(−1)k+1 sin kφ
k

=
φ

2
.

However the last substitution is not correct, because |eiφ| = 1 and (3.4.1) is proved
only for |z| < 1. To justify it we will prove a general theorem, due to Abel.

Summation by parts. Consider two sequences {ak}nk=1, {bk}nk=1. The dif-
ference of their product δakbk = ak+1bk+1 − akbk can be presented as

δ(akbk) = ak+1δbk + bkδak.

Summation of these equalities gives

anbn − a1b1 =
n−1∑
k=1

ak+1δbk +
n−1∑
k=1

bkδak.

A permutation of the latter equality gives the so-called Abel’s transformation of
sums

n−1∑
k=1

bk∆ak = anbn − a1b1 −
n−1∑
k=1

ak+1∆bk.

Abel’s theorem. One writes x → a − 0 instead of x → a and x < a, and
x→ a+ 0 means x > a and x→ a.

Theorem 3.4.2 (Abel).

If
∞∑
k=0

ak converges, then lim
x→1−0

∞∑
k=0

akx
k =

∞∑
k=0

ak.

Proof.
∑∞
k=0 akx

k converges absolutely for |x| < 1, because of the bounded-
ness of {ak}.

Suppose ε > 0. Set A(n,m) =
∑m
k=n ak, A(n,m)(x) =

∑m
k=n akx

k. Choose N
so large that

(3.4.3) |A(0, n)−A(0,∞)| < ε

9
, ∀n > N.

Applying the Abel transformation for any m > n one gets

A(n,m)−A(n,m)(x) =
m∑
k=n

ak(1− xk)

= (1− x)
m∑
k=n

δA(n− 1, k − 1)
k−1∑
j=0

xj

= (1− x)
[
A(n− 1,m)

m∑
j=0

xj −A(n− 1, n)
n∑
j=0

xj −
m∑
k=n

A(n− 1, k)xk
]
.

By (3.4.3) for n > N , one gets |A(n − 1,m)| = |(A(0,m) − A) + (A − A(0, n))| ≤
ε/9 + ε/9 = 2ε/9. Hence, we can estimate from above by 2ε/3

1−x the absolute value of
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the expression in the brackets of the previous equation for A(n,m) − A(n,m)(x).
As a result we get

(3.4.4) |A(n,m)−A(n,m)(x)| ≤ 2ε
3
, ∀m ≥ n > N, ∀x.

Since lim
x→1−0

A(0, N)(x) = A(0, N) one chooses δ so small that for x > 1−δ the

following inequality holds:

|A(0, N)−A(0, N)(x)| < ε

3
.

Summing up this inequality with (3.4.4) for n = N + 1 one gets:

|A(0,m)−A(0,m)(x)| < ε, ∀m > N, |1− x| < δ.

Passing to limits as m tends to infinity the latter inequality gives

|A(0,∞)−A(0,∞)(x)| ≤ ε, for |1− x| < δ.

�

Leibniz series. As the first application of the Abel Theorem we evaluate the
Leibniz series

∑∞
k=0

(−1)k

2k+1 . This series converges by the Leibniz Theorem 2.4.3. By
the Abel Theorem its sum is

lim
x→1−0

∞∑
k=0

(−1)kxk

2k + 1
= lim
x→1−0

arctg x = arctg 1 =
π

4
.

We get the following remarkable equality:
π
4 = 1− 1

3 + 1
5 −

1
7 + 1

9 − . . . .

Abel sum of a series. One defines the Abel sum of a series
∑∞
k=0 ak as

the limit lim
x→1−0

∑∞
k=0 akx

k. The series which have an Abel sum are called Abel

summable. The Abel Theorem shows that all convergent series have Abel sums
coinciding with their usual sums. However there are a lot of series, which have an
Abel sum, but do not converge.

Abel’s inequality. Consider a series
∑∞
k=1 akbk, where the partial sums An =∑n−1

k=1 ak are bounded by some constant A and the sequence {bk} is monotone. Then∑n−1
k=1 akbk =

∑n−1
k=1 bkδAk = Anbn − A1b1 +

∑n−1
k=1 Ak+1δbk. Since

∑n−1
k=1 |δbk| =

|bn − b1|, one gets the following inequality:∣∣∣∣∣
n−1∑
k=1

akbk

∣∣∣∣∣ ≤ 3Amax{|bk|}.

Convergence test.

Theorem 3.4.3. Let the sequence of partial sums
∑n−1
k=1 ak be bounded, and let

{bk} be non-increasing and infinitesimally small. Then
∑∞
k=1 akbk converges to its

Abel sum, if the latter exists.

Proof. The difference between a partial sum
∑n−1
k=1 akbk and the Abel sum is

equal to

lim
x→1−0

n−1∑
k=1

akbk(1− xk) + lim
x→1−0

∞∑
k=n

akbkx
k.
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The first limit is zero, the second limit can be estimated by Abel’s inequality from
above by 3Abn. It tends to 0 as n tends to infinity. �

Application. Now we are ready to prove the equality (3.4.2). The series∑∞
k=1(−1)k+1 sin kx

k has an Abel sum. Indeed,

lim
q→1−0

∞∑
k=1

(−1)k+1 q
k sin kx
k

= Im lim
q→1−0

∞∑
k=1

(−1)k+1 (qeix)k

k

= Im lim
q→1−0

ln(1 + qeix)

= Im ln(1 + eix).

The sums
∑n−1
k=1 sin kx = Im

∑n−1
k=1 e

ikx = Im 1−einx
1−eix are bounded. And 1

k is de-
creasing and infinitesimally small. Hence we can apply Theorem 3.4.3.

Problems.
1. Evaluate 1 + 1

2 −
1
3 −

1
4 + 1

5 + 1
6 −

1
7 −

1
8 + . . . .

2. Evaluate
∑∞
k=1

sin 2k
k .

3.
∑∞
k=1

cos kφ
k = − ln |2 sin φ

2 |, (0 < |φ| ≤ π).
4.
∑∞
k=1

sin kφ
k = π−φ

2 , (0 < φ < 2π).
5.
∑∞
k=0

cos(2k+1)φ
2k+1 = 1

2 ln |2 cot φ2 |, (0 < |φ| < π)

6.
∑∞
k=0

sin(2k+1)φ
2k+1 = π

4 , (0 < φ < π)

7.
∑∞
k=1(−1)k+1 cos kφ

k = ln
(

2 cos φ2
)

, (−π < φ < π)
8. Find the Abel sum of 1− 1 + 1− 1 + . . . .
9. Find the Abel sum of 1− 1 + 0 + 1− 1 + 0 + . . . .

10. Prove: A periodic series, such that the sum of the period is zero, has an Abel
sum.

11. Telescope
∑∞
k=1

k2

2k
.

12. Evaluate
∑n−1
k=0 k cos kx.

13. Estimate from above
∑∞
k=n

sin kx
k2 .

∗14. Prove: If
∑∞
k=0 ak,

∑∞
k=0 bk and their convolution

∑∞
k=0 ck converge, then∑∞

k=0 ck =
∑∞
k=0 ak

∑∞
k=0 bk.



3.5. Residue Theory

On the contents of the lecture. At last, the reader learns something, which
Euler did not know, and which he would highly appreciate. Residue theory allows
one to evaluate a lot of integrals which were not accessible by the Newton-Leibniz
formula.

Monotone curve. A monotone curve Γ is defined as a subset of the complex
plane which is the image of a monotone path. Nonempty intersections of vertical
and horizontal lines with a monotone curve are either points or closed intervals.

The points of the monotone curve which have an extremal sum of real and
imaginary parts are called its endpoints, the other points of the curve are called its
interior points.

A continuous injective monotone path p whose image coincides with Γ is called
a parametrization of Γ.

Lemma 3.5.1. Let p1 : [a, b]→ C and p2 : [c, d]→ C be two parametrizations of
the same monotone curve Γ. Then p−1

1 p2 : [c, d]→ [a, b] is a continuous monotone
bijection.

Proof. Set Pi(t) = Re pi(t) + Im pi(t). Then P1 and P2 are continuous and
strictly monotone. And p1(t) = p2(τ) if and only if P1(t) = P2(τ). Hence p−1

1 p2 =
P−1

1 P2. Since P−1
1 and P2 are monotone continuous, the composition P−1

1 P2 is
monotone continuous. �

Orientation. One says that two parametrizations p1 and p2 of a monotone
curve Γ have the same orientation, if p−1

1 p2 is increasing, and one says that they
have opposite orientations, if p−1

1 p2 is decreasing.
Orientation divides all parametrizations of a curve into two classes. All elements

of one orientation class have the same orientation and all elements of the other class
have the opposite orientation.

An oriented curve is a curve with fixed circulation direction. A choice of orien-
tation means distinguishing one of the orientation classes as positive, corresponding
to the oriented curve. For a monotone curve, to specify its orientation, it is suffi-
cient to indicate which of its endpoints is its beginning and which is the end. Then
all positively oriented parametrizations start with its beginning and finish at its
end, and negatively oriented parametrizations do the opposite.

If an oriented curve is denoted by Γ, then its body, the curve without orientation,
is denoted |Γ| and the curve with the same body but with opposite orientation is
denoted −Γ.

If Γ′ is a monotone curve which is contained in an oriented curve Γ, then one
defines the induced orientation on Γ′ by Γ as the orientation of a parametrization
of Γ′ which extends to a positive parametrization of Γ.

Line integral. One defines the integral
∫

Γ
f(z) dg(z) along a oriented mono-

tone curve Γ as the integral
∫
p
f(z) dg(z), where p is a positively oriented parametr-

ization of Γ. This definition does not depend on the choice of p, because different
parametrizations are obtained from each other by an increasing change of variable
(Lemma 3.5.1).

One defines a partition of a curve Γ by a point x as a pair of monotone curves
Γ1, Γ2, such that Γ = Γ1∪Γ2 and Γ1∩Γ2 = x. And we write in this case Γ = Γ1+Γ2.
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The Partition Rule for the line integral is

(3.5.1)
∫

Γ1+Γ2

f(z) dg(z) =
∫

Γ1

f(z) dg(z) +
∫

Γ2

f(z) dg(z),

where the orientations on Γi are induced by an orientation of Γ. To prove the
Partition Rule consider a positive parametrization p : [a, b]→ Γ. Then the restric-
tions of p over [a, p−1(x)] and [p−1(x), b] give positive parametrizations of Γ1 and

Γ2. Hence the equality (3.5.1) follows from
∫ p−1(x)

a
f(z) dg(z)+

∫ b
p−1(x)

f(z) dg(z) =∫ b
a
f(z) dg(z).

A sequence of oriented monotone curves {Γk}nk=1 with disjoint interiors is called
a chain of monotone curves and denoted by

∑n
k=1 Γk. The body of a chain C =∑n

k=1 Γk is defined as
⋃n
k=1 |Γk| and denoted by |C|. The interior of the chain is

defined as the union of interiors of its elements.
The integral of a form f dg along the chain is defined as

∫∑n
k=1 Γk

f dg =∑n
k=1

∫
Γk
f dg.

One says that two chains
∑n
k=1 Γk and

∑m
k=1 Γ′k have the same orientation, if

the orientations induced by Γk and Γ′j on Γk ∩Γ′j coincide in the case when Γk ∩Γ′j
has a nonempty interior. Two chains with the same body and orientation are called
equivalent.

Lemma 3.5.2. If two chains C =
∑n
k=1 Γk and C ′ =

∑m
k=1 Γ′k are equivalent

then the integrals along these chains coincide for any form fdg.

Proof. For any interior point x of the chain C, one defines the subdivision
of C by x as Γ+

j + Γ−j +
∑n
k=1 Γk[k 6= j], where Γj is the curve containing x and

Γ+
j + Γ−j is the partition of Γ by x. The subdivision does not change the integral

along the chain due to the Partition Rule.
Hence we can subdivide C step by step by endpoints of C ′ to construct a chain

Q whose endpoints include all endpoints of P ′. And the integral along Q is the
same as along P . Another possibility to construct Q is to subdivide C ′ by endpoints
of C. This construction shows that the integral along Q coincides with the integral
along C ′. Hence the integrals along C and C ′ coincide. �

Due to this lemma, one can introduce the integral of a differential form along
any oriented piecewise monotone curve Γ. To do this one considers a monotone
partition of Γ into a sequence {Γk}nk=1 of monotone curves with disjoint interiors
and equip all Γk with the induced orientation. One gets a chain and the integral
along this chain does not depend on the partition.

Contour integral. A domain D is defined as a connected bounded part of
the plane with piecewise monotone boundary. The boundary of D denoted ∂D is
the union of finitely many monotone curves. And we suppose that ∂D ⊂ D, that
is we consider a closed domain.

For a monotone curve Γ, which is contained in the boundary of a domain D, one
defines the induced orientation of Γ by D as the orientation of a parametrization
which leaves D on the left during the movement along Γ around D.

One introduces the integral
∮
∂D

f(z)dg(z) as the integral along any chain whose
body coincides with ∂D and whose orientations of curves are induced by D.

Due to Lemma 3.5.2 the choice of chain does not affect the integral.
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D

Figure 3.5.1. Contour integral

Lemma 3.5.3. Let D be a domain and l be either a vertical or a horizontal line,
which bisects D into two parts: D′ and D′′ lying on the different sides of l. Then∮
∂D

f(z)dz =
∮
∂D′

f(z)dz +
∮
∂D′′

f(z)dz.

Proof. The line l intersects the boundary of D in a finite sequence of points
and intervals {Jk}mk=1.

Set ∂′D = ∂D ∩ ∂D′ and ∂′′D = ∂D ∩ ∂D′′. The intersection ∂′D ∩ ∂′′D
consists of finitely many points. Indeed, the interior points of Jk do not belong to
this intersection, because their small neighborhoods have points of D only from one
side of l. Hence ∫

∂′D

f(z) dz +
∫
∂′′D

f(z) dz =
∮
∂D

f(z)dz.

The boundary of D′ consists of ∂′D and some number of intervals. And the
boundary of D′′ consists of ∂′′D and the same intervals, but with opposite orien-
tation. Therefore

L =
∫
l∩∂D′

f(z) dz = −
∫
l∩∂D′′

f(z) dz.

On the other hand∮
∂D′

f(z)dz =
∫
∂′D

f(z) dz + L and
∮
∂D′′

f(z)dz =
∫
∂′′D

f(z) dz − L,

hence∮
∂D′

f(z)dz +
∮
∂D′′

f(z)dz =
∫
∂′D

f(z) dz +
∫
∂′′D

f(z) dz =
∮
∂D

f(z)dz.

�

Lemma 3.5.4 (Estimation). If |f(z)| ≤ B for any z from a body of a chain
C =

∑n
k=1 Γk, then

∣∣∫
C
f(z) dz

∣∣ ≤ 4Bndiam |C|.

Proof. By Lemma 3.3.6 for any k one has
∣∣∣∫Γk f(z) dz

∣∣∣ ≤ 4B|Ak − Bk| ≤
4B diam |C| where Ak and Bk are endpoints of Γk. The summation of these in-
equalities proves the lemma. �

Theorem 3.5.5 (Cauchy). If a function f is complex differentiable in a domain
D then

∮
∂D

f(z)dz = 0.
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Proof. Fix a rectangle R with sides parallel to the coordinate axis which
contains D and denote by |R| its area and by P its perimeter.

The proof is by contradiction. Suppose
∣∣∮
∂D

f(z) dz
∣∣ 6= 0. Denote by c the ratio

of
∣∣∮
∂D

f(z) dz
∣∣ /|R|. We will construct a nested sequence of rectangles {Rk}∞k=0

such that

• R0 = R, Rk+1 ⊂ Rk;
• R2k is similar to R;
• |
∮
∂(Rk∩D)

f(z) dz| ≥ c|Rk|, where |Rk| is the area of Rk.

The induction step: Suppose Rk is already constructed. Divide Rk in two equal
rectanges R′k and R′′k by drawing either a vertical, if k is even, or a horizontal, if k
is odd, interval joining the middles of the opposite sides of Rk. Set Dk = D ∩ Rk,
D′ = D∩R′k, D′′ = D∩R′′k . We state that at least one of the following inequalities
holds:

(3.5.2)
∣∣∣∣∮
∂D′

f(z)dz
∣∣∣∣ ≥ c|R′k|, ∣∣∣∣∮

∂D′′
f(z)dz

∣∣∣∣ ≥ c|R′′k |.
Indeed, in the opposite case one gets∣∣∣∣∮

∂D′
f(z)dz +

∮
∂D′′

f(z)dz
∣∣∣∣ < c|R′k|+ c|R′k| = c|Rk|.

Since
∮
∂D′

f(z)dz +
∮
∂D′′

f(z)dz =
∮
∂Dk

f(z)dz by Lemma 3.5.3 we get a contra-
diction with the hypothesis |

∫
pk
f(z) dz| ≥ c|Rk|. Hence, one of the inequalities

(3.5.2) holds. If the first inequality holds we set Rk+1 = R′k else we set Rk+1 = R′′k .
After constructing the sequence {Rk}, consider a point z0 belonging to

⋂∞
k=1Rk.

This point belongs to D, because all its neighborhoods contain points of D. Con-
sider the linearization f(z) = f(z0)+f ′(z0)(z−z0)+o(z)(z−z0). Since

∮
∂Dk

(f(z0)+
f ′(z0)(z − z0))dz = 0 one gets

(3.5.3)
∣∣∣∣∮
∂Dk

o(z)(z − z0)dz
∣∣∣∣ =

∣∣∣∣∮
∂Dk

f(z)dz
∣∣∣∣ ≥ c|Rk|.

The boundary of Dk is contained in the union ∂Rk ∪ Rk ∩ ∂D. Consider a
monotone partition ∂D =

∑n
k=1 Γk. Since the intersection of Rk with a monotone

curve is a monotone curve, one concludes that ∂D ∩ Rk is a union of at most n
monotone curves. As ∂Rk consists of 4 monotone curves we get that ∂Dk is as a
body of a chain with at most 4 + n monotone curves.

Denote by Pk the perimeter of Rk. And suppose that o(x) is bounded in Rk
by a constant ok. Then |o(x)(z − z0)| ≤ Pkok for all z ∈ Rk.

Since diam ∂Dk ≤ Pk
2 by the Estimation Lemma 3.5.4, we get the following

inequality:

(3.5.4)
∣∣∣∣∮
∂Dk

o(z)(z − z0)dz
∣∣∣∣ ≤ 4(4 + n)Pkok

Pk
2

= 2(4 + n)okP 2
k .

The ratio P 2
k /|Rk| is constant for even k. Therefore the inequalities (3.5.3) and

(3.5.4) contradict each other for ok <
c|Rk|

2(4+n)P 2
k

= c|R|
2(4+n)P 2 . However the inequality

|o(x)| < c|R|
2(4+n)P 2 holds for some neighborhood V of z0 as o(x) is infinitesimally

small at z0. This is a contradiction, because V contains some R2k. �
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Residues. By
∮ r
z0
f(z) dz we denote the integral along the boundary of the

disk {|z − z0| ≤ r}.

Lemma 3.5.6. Suppose a function f(z) is complex differentiable in the domain
D with the exception of a finite set of points {zk}nk=1. Then∮

∂D

f(z)dz =
n∑
k=1

∮ r

zk

f(z) dz,

where r is so small that all disks |z − zk| < r are contained in D and disjoint.

Proof. Denote by D′ the complement of the union of the disks in D. Then
∂D′ is the union of ∂D and the boundary circles of the disks. By the Cauchy
Theorem 3.5.5,

∮
∂D′

f(z)dz = 0. On the other hand this integral is equal to the
sum

∮
∂D

f(z)dz and the sum of integrals along boundaries of the circles. The
orientation induced by D′ onto the boundaries of these circles is opposite to the
orientation induced from the circles. Hence

0 =
∮
∂D′

f(z)dz =
∮
∂D

f(z)dz −
n∑
k=1

∮ r

zk

f(z) dz.

�

A singular point of a complex function is defined as a point where either the
function or its derivative are not defined. A singular point is called isolated, if it
has a neighborhood, where it is the only singular point. A point is called a regular
point if it not a singular point.

One defines the residue of f at a point z0 and denotes it as resz0 f as the
limit limr→0

1
2πi

∮ r
z0
f(z)dz. The above lemma shows that this limit exists for any

isolated singular point and moreover, that all integrals along sufficiently small cir-
cumferences in this case are the same.

Since in all regular points the residues are 0 the conclusion of Lemma 3.5.6 for
a function with finitely many singular points can be presented in the form:

(3.5.5)
∮
∂D

f(z)dz = 2πi
∑
z∈D

resz f.

An isolated singular point z0 is called a simple pole of a function f(z) if there
exists a nonzero limit limz→z0 f(z)(z − z0).

Lemma 3.5.7. If z0 is a simple pole of f(z) then resz0 f = limz→z0(z−z0)f(z).

Proof. Set L = limz→z0(z − z0)f(z). Then f(z) = L + o(z)
(z−z0) , where o(z) is

infinitesimally small at z0. Hence

(3.5.6)
∮ r

z0

o(z) dz
z − z0

=
∮ r

z0

f(z) dz −
∮ r

z0

L

z − z0
dz.

Since the second integral from the right-hand side of (3.5.6) is equal to 2Lπi and
the other one is equal to 2πi resz0 f for sufficiently small r, we conclude that the
integral from the left-hand side also is constant for sufficiently small r. To prove that
L = resz0 f we have to prove that this constant c = limr→0

∮ r
z0

o(z)
z−z0 dz is 0. Indeed,

assume that |c| > 0. Then there is a neighborhood U of z0 such that |o(z)| ≤ |c|32
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for all z ∈ U . Then one gets a contradiction by estimation of
∣∣∣∮ rz0 o(z) dz

z−z0

∣∣∣ (which is

equal to |c| for sufficiently small r) from above by |c|√
2

for r less than the radius of

U . Indeed, the integrand is bounded by |c|
32r and the path of integration (the circle)

can be divided into four monotone curves of diameter r
√

2: quarters of the circle.
Hence by the Estimation Lemma 3.5.4 one gets

∣∣∣∮ rz0 o(z) dz
z−z0

∣∣∣ ≤ 16
√

2 |c|32 = |c|√
2
. �

Remark 3.5.8. Denote by Γ(r, φ, z0) an arc of the circle |z − z0| = r, whose
angle measure is φ. Under the hypothesis of Lemma 3.5.7 the same arguments prove
the following

lim
r→0

∫
Γ(φ,r,0z)

f(z) dz = iφ lim
z→z0

f(z)(z − z0).

Problems.
1. Evaluate

∮ 1

1
dz

1+z4 .

2. Evaluate
∮ 1

0
dz

sin z .
3. Evaluate

∮ 1

0
dz
ez−1 .

4. Evaluate
∮ 1

0
dz
z2 .

5. Evaluate
∮ 1

0
sin 1

z dz.
6. Evaluate

∮ 1

0
ze

1
z dz.

7. Evaluate
∮ 5/2

0
z2 cotπz dz.

8. Evaluate
∮ 1

2
2

z dz
(z−1)(z−2)2 .

9. Evaluate
∫ +π

−π
dφ

5+3 cosφ .

10. Evaluate
∫ +π

−π
dφ

(1+cos2 φ)2 .

11. Evaluate
∫ 2π

0
dφ

(1+cosφ)2 .

12. Evaluate
∫ +∞
−∞

dx
1+x4 .

13. Evaluate
∫ +∞

0
dx

(1+x2)(4+x2) .

14. Evaluate
∫ +∞
−∞

1+x2

1+x4 .

15. Evaluate
∫ +∞
−∞

x3

1+x6 dx.



3.6. Analytic Functions

On the contents of the lecture. This lecture introduces the reader into
the phantastically beautiful world of analytic functions. Integral Cauchy formula,
Taylor series, Fundamental Theorem of Algebra. The reader will see all of these
treasures in a single lecture.

Theorem 3.6.1 (Integral Cauchy Formula). If function f is complex differen-
tiable in the domain D, then for any interior point z ∈ D one has:

f(z) =
1

2πi

∮
∂D

f(ζ) dz
ζ − z

Proof. The function f(z)
z−z0 has its only singular point inside the circle. This

is z0, which is a simple pole. The residue of f(z)
z−z0 by Lemma 3.5.7 is equal to

limz→z0(z − z0) f(z)
z−z0 = limz→z0 f(z) = f(z0). And by the formula (3.5.5) the

integral is equal to 2πif(z0). �

Lemma 3.6.2. Let
∑∞
k=1 fk be a series of virtually monotone complex functions,

which is termwise majorized by a convergent positive series
∑∞
k=1 ck on a monotone

curve Γ (that is |fk(z)| ≤ ck for natural k and z ∈ Γ) and such that F (z) =∑∞
k=1 fk(z) is virtually monotone. Then

(3.6.1)
∞∑
k=1

∫
Γ

fk(z) dz =
∫

Γ

∞∑
k=1

fk(z) dz.

Proof. By the Estimation Lemma 3.5.4 one has the following inequalities:

(3.6.2)
∣∣∣∣∫

Γ

fk(z) dz
∣∣∣∣ ≤ 4ck diam Γ,

∣∣∣∣∣
∫

Γ

∞∑
k=n

fk(z) dz

∣∣∣∣∣ ≤ 4 diam Γ
∞∑
k=n

ck.

Set Fn(z) =
∑n−1
k=1 fk(z). By the left inequality of (3.6.2), the module of dif-

ference between
∫

Γ
Fn(z) dz =

∑n−1
k=1

∫
Γ
fk(z) dz and the left-hand side of (3.6.1)

does not exceed 4 diam Γ
∑∞
k=n ck. Hence this module is infinitesimally small as

n tends to infinity. On the other hand, by the right inequality of (3.6.2) one gets∣∣∫
Γ
Fn(z) dz −

∫
Γ
F (z) dz

∣∣ ≤ 4 diam Γ
∑∞
k=n ck. This implies that the difference be-

tween the left-hand and right-hand sides of (3.6.1) is infinitesimally small as n tends
to infinity. But this difference does not depend on n. Hence it is zero. �

Lemma 3.6.3. If a real function f defined over an interval [a, b] is locally
bounded, then it is bounded.

Proof. The proof is by contradiction. Suppose that f is unbounded. Divide
the interval [a, b] in half. Then the function has to be unbounded at least on one
of the halves. Consider this half and divide it in half. Choose the half where
the function is unbounded. So we construct a nested infinite sequence of intervals
converging to a point, which coincides with the intersection of all the intervals. And
f is obviously not locally bounded at this point. �

Corollary 3.6.4. A complex function f(z) continuous on the boundary of a
domain D is bounded on ∂D.

89
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Proof. Consider a path p : [a, b]→ ∂D. Then |f(p(t))| is continuous on [a, b],
hence it is locally bounded, hence it is bounded. Since ∂D can be covered by images
of finitely many paths this implies boundedness of f over ∂D. �

Theorem 3.6.5. If a function f(z) is complex differentiable in the disk |z−z0| ≤
R, then for |z − z0| < R

f(z) =
∞∑
k=0

(z − z0)k
∮ R

z0

f(ζ)
(ζ − z0)k+1

dζ,

where the series on the right-hand side absolutely converges for |z − z0| < R.

Proof. Fix a point z such that |z − z0| < R and consider ζ as a variable. For
|ζ − z0| > |z − z0| one has

(3.6.3)
1

ζ − z
=

1
(ζ − z0)− (z − z0)

=
1

ζ − z0

1
1− z−z0

ζ−z0
=
∞∑
k=0

(z − z0)k

(ζ − z0)k+1
.

On the circle |ζ − z0| = R the series on the right-hand side is majorized by the
convergent series

∑∞
k=0

|z−z0|k
Rk+1 for r > |z − z0|. The function f(ζ) is bounded on

|ζ − z0| = R by Corollary 3.6.4. Therefore after multiplication of (3.6.3) by f(ζ)
all the conditions of Lemma 3.6.2 are satisfied. Termwise integration gives:

f(z) =
∮ R

z0

f(ζ)
ζ − z

dζ =
∞∑
k=0

(z − z0)k
∮ R

z0

f(ζ) dζ
(ζ − z0)k+1

.

�

Analytic functions. A function f(z) of complex variable is called an analytic
function in a point z0 if there is a positive ε such that f(z) =

∑∞
k=0 ak(z − z0)k

for all z from a disk |z− z0| ≤ ε and the series absolutely converges. Since one can
differentiate power series termwise (Theorem 3.3.9), any function which is analytic
at z is also complex differentiable at z. Theorem 3.6.5 gives a converse. Thus, we
get the following:

Corollary 3.6.6. A function f(z) is analytic at z if and only if it is complex
differentiable in some neighborhood of z.

Theorem 3.6.7. If f is analytic at z then f ′ is analytic at z. If f and g are
analytic at z then f + g, f − g, fg are analytic at z. If f is analytic at z and g is
analytic at f(z) then g(f(z)) is analytic at z.

Proof. Termwise differentiation of the power series representing f in a neigh-
borhood of z gives the power series for its derivative. Hence f ′ is analytic. The
differentiability of f ± g, fg and g(f(z)) follow from corresponding differentiation
rules. �

Lemma 3.6.8 (Isolated Zeroes). If f(z) is analytic and is not identically equal
to 0 in some neighborhood of z0, then f(z) 6= 0 for all z 6= z0 sufficiently close to
z0.

Proof. Let f(z) =
∑∞
k=0 ck(z − z0)k in a neighborhood U of z0. Let cm

be the first nonzero coefficient. Then
∑∞
k=m ck(z − z0)k−m converges in U to a

differentiable function g(z) by Theorem 3.3.9. Since g(z0) = cm 6= 0 and g(z) is
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continuous at z0, the inequality g(z) 6= 0 holds for all z sufficiently close to z0. As
f(z) = g(z)(z − z0)m, the same is true for f(z). �

Theorem 3.6.9 (Uniqueness Theorem). If two power series
∑∞
k=0 ak(z − z0)k

and
∑∞
k=0 bk(z− z0)k converge in a neighborhood of z0 and their sums coincide for

some infinite sequence {zk}∞k=1 such that zk 6= z0 for all k and limk→∞ zk = z0,
then ak = bk for all k.

Proof. Set ck = ak − bk. Then f(z) =
∑∞
k=0 ck(z − z0)k has a non-isolated

zero at z0. Hence f(z) = 0 in a neighborhood of z0. We get a contradiction
by considering the function g(z) =

∑∞
k=m ck(z − z0)k−m, which is nonzero for all

z sufficiently close to z0 (cf. the proof of the Isolated Zeroes Lemma 3.6.8), and
satisfies the equation f(z) = g(z)(z − z0)m. �

Taylor series. Set f (0) = f and by induction define the (k + 1)-th derivative
f (k+1) of f as the derivative of its k-th derivative f (k). For the first and the second
derivatives one prefers the notation f ′ and f ′′. For example, the k-th derivative of
zn is nkzn−k. (Recall that nk = n(n− 1) . . . (n− k + 1).)

The following series is called the Taylor series of a function f at point z0:
∞∑
k=0

f (k)(z0)
k!

(z − z0)k.

The Taylor series is defined for any analytic function, because an analytic func-
tion has derivative of any order due to Theorem 3.6.7.

Theorem 3.6.10. If a function f is analytic in the disk |z − z0| < r then
f(z) =

∑∞
k=0

f(k)(z0)
k! (z − z0)k for any z from the disk.

Proof. By Theorem 3.6.5, f(z) is presented in the disk by a convergent power
series

∑∞
k=0 ak(z − z0)k. To prove our theorem we prove that

(3.6.4) ak =
∮ R

z0

f(ζ)
(ζ − z0)k+1

dζ =
f (k)(z0)
k!

.

Indeed, a0 = f(z0) and termwise differentiatiion of
∑∞
k=0 ak(z − z0)k applied n

times gives f (n)(z) =
∑∞
k=n k

n
ak(z − z0)k. Putting z = z0, one gets f (n)(z0) =

n
n
an = ann!. �

Theorem 3.6.11 (Liouville). If a function f is analytic and bounded on the
whole complex plane, then f is constant.

Proof. If f is analytic on the whole plane then f(z) =
∑∞
k=0 akz

k, where ak
is defined by (3.6.4). If |f(z)| ≤ B by the Estimation Lemma 3.5.4 one gets

(3.6.5) |ak| =

∣∣∣∣∣
∮ R

0

f(ζ)
zk+1

dζ

∣∣∣∣∣ ≤ 4 · 4 B

Rk+1

R√
2

=
C

Rk
.

Consequently ak for k > 0 is infinitesimally small as R tends to infinity. But ak
does not depend on R, hence it is 0. Therefore f(z) = a0. �

Theorem 3.6.12 (Fundamental Theorem of Algebra). Any nonconstant poly-
nomial P (z) has a complex root.
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Proof. If P (z) has no roots the function f(z) = 1
P (z) is analytic on the whole

plane. Since limz→∞ f(z) = 0 the inequality |f(z)| < 1 holds for |z| = R if R is
sufficiently large. Therefore the estimation (3.6.5) for the k-th coefficient of f holds
with B = 1 for sufficiently large R. Hence the same arguments as in proof of the
Liouville Theorem 3.6.11 show that f(z) is constant. This is a contradiction. �

.
.

.
.

B

singular points
A

Figure 3.6.1. Analytic continuation

Analytic continuation.

Lemma 3.6.13. If an analytic function f(z) has finitely many singular points
in a domain D and a non isolated zero at a point z0 ∈ D then f(z) = 0 for all
regular z ∈ D.

Proof. For any nonsingular point z ∈ D, we construct a sequence of suffi-
ciently small disks D0, D1, D2, . . . , Dn without singular points with the following
properties: 1) z0 ∈ D0 ⊂ U ; 2) z ∈ Dn; 3) zk, the center of Dk, belongs to Dk−1

for all k > 0. Then by induction we prove that f(Dk) = 0. First step: if z0 is a
non-isolated zero of f , then the Taylor series of f vanishes at z0 by the Uniqueness
Theorem 3.6.9. But this series represents f(z) on D0 due to Theorem 3.6.10, since
D0 does not contain singular points. Hence, f(D0) = 0. Suppose we have proved
already that f(Dk) = 0. Then zk+1 is a non-isolated zero of f by the third property
of the sequence {Dk}nk=0. Consequently, the same arguments as above for k = 0
prove that f(Dk+1) = 0. And finally we get f(z) = 0. �

Consider any formula which you know from school about trigonometric func-
tions. For example, tan(x + y) = tan x+tan y

1−tan x tan y . The above lemma implies that
this formula remains true for complex x and y. Indeed, consider the function
T (x, y) = tan(x + y) − tan x+tan y

1−tan x tan y . For a fixed x the function T (x, y) is analytic
and has finitely many singular points in any disk. This function has non-isolated
zeroes in all real points, hence this function is zero in any disk intersecting the real
line. This implies that T (x, y) is zero for all y. The same arguments applied to
T (x, y) with fixed y and variable x prove that T (x, y) is zero for all complex x, y.

The same arguments prove the following theorem.
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Theorem 3.6.14. If some analytic relation between analytic functions holds on
a curve Γ, it holds for any z ∈ C, which can be connected with Γ by a paths avoiding
singular points of the functions.

Lemma 3.6.15. sin t ≥ 2t
π for t ∈ [0, π/2].

Proof. Let f(t) = sin t− 2t
π . Then f ′(x) = cos t− 2

π . Set y = arccos 2
π . Then

f ′(x) ≥ 0 for x ∈ [0, y]. Therefore f is nondecreasing on [0, y], and nonnegative,
because f(0) = 0. On the interval [y, π/2] the derivative of f is negative. Hence
f(x) is non-increasing and nonnegative, because its value on the end of the interval
is 0. �

Lemma 3.6.16 (Jordan). Let f(z) be an analytic function in the upper half-
plane such that lim

z→∞
f(z) = 0. Denote by ΓR the upper half of the circle |z| = R.

Then for any natural m

(3.6.6) lim
R→∞

∫
ΓR

f(z) exp(miz) dz = 0.

Proof. Consider the parametrization z(t) = R cos t+Ri sin t, t ∈ [0, π] of ΓR.
Then the integral (3.6.6) turns into

(3.6.7)
∫ π

0

f(z) exp(iRm cos t−Rm sin t) d(R cos t+Ri sin t)

=
∫ π

0

Rf(z) exp(iRm cos t) exp(−Rm sin t)(− sin t+ i cos t) dt.

If |f(z)| ≤ B on ΓR, then |f(z) exp(iRm cos t)(− sin t + i cos t)| ≤ B on ΓR. And
the module of the integral (3.6.7) can be estimated from above by

BR

∫ π

0

exp(−Rm sin t) dt.

Since sin(π − t) = sin t, the latter integral is equal to 2BR
∫ π/2

0
exp(−Rm sin t) dt.

Since sin t ≥ 2t
π , the latter integral does not exceed

2BR
∫ π/2

0

exp(−2Rmt/π) dt = 2BR
1− exp(−Rm)

2Rm
≤ B

m
.

Since B can be chosen arbitrarily small for sufficiently large R, this proves the
lemma. �

Evaluation of
∫ +∞
−∞

sin x
x dx = limN→∞

∫ N
−N

sin x
x dx. Since sinx = Im eix our

integral is equal to Im
∫ +∞
−∞

eiz

z dz. Set Γ(r) = {z | |z| = r, Im z ≥ 0}. This is a
semicircle. Let us orient it counter-clockwise, so that its initial point is r.

Consider the domain D(R) bounded by the semicircles −Γ(r), Γ(R) and the
intervals [−R,−r], [r,R], where r = 1

R and R > 1. The function eiz

z has no singular
points inside D(R). Hence

∮
∂D(R)

eiz

z dz = 0. Hence for any R

(3.6.8)
∫ −R
−r

eiz

z
dz +

∫ R

r

eiz

z
dz =

∫
Γ(r)

eiz

z
dz −

∫
Γ(R)

eiz

z
dz.

The second integral on the right-hand side tends to 0 as R tends to infinity due to
Jordan’s Lemma 3.6.16. The function eiz

z has a simple pole at 0, hence the first
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r
R

−r
−R

Figure 3.6.2. The domain D(R)

integral on the right-hand side of (3.6.8) tends to πi res e
iz

z = πi due to Remark
3.5.8. As a result, the right-hand side of (3.6.8) tends to πi as R tends to infinity.
Consequently the left-hand side of (3.6.8) also tends to πi as R →∞. The imagi-
nary part of left-hand side of (3.6.8) is equal to

∫ R
−R

sin x
x dx−

∫ r
−r

sin x
x dx. The last

integral tends to 0 as r → 0, because | sin xx | ≤ 1. Hence
∫ R
−R

sin x
x dx tends to π as

R→∞. Finally
∫ +∞
−∞

sin x
x dx = π.

Problems.
1. Prove that an even analytic function f , i.e., a function such that f(z) = f(−z),

has a Taylor series at 0 consisting only of even powers.
2. Prove that analytic function which has a Taylor series only with even powers

is an even function.
3. Prove: If an analytic function f(z) takes real values on [0, 1], then f(x) is real

for any real x.
4. Evaluate

∫ +∞
−∞

1
1+x4 dx.

5. Evaluate
∫ +π

−π
dφ

5+3 cosφ .

6. Evaluate
∫∞

0
x2

(x2+a2)2 dx (a > 0).

7. Evaluate
∫ +∞
−∞

x sin x
x2+4x+20 dx.

8. Evaluate
∫∞

0
cos ax
x2+b2 dx (a, b > 0).
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4.1. Newton Series

On the contents of the lecture. The formula with the binomial series was
engraved on Newton’s gravestone in  at Westminster Abbey.

Interpolation problem. Suppose we know the values of a function f at some
points called interpolation nodes and we would like to interpolate the value of f at
some point, not contained in the data. This is the so-called interpolation problem.
Interpolation was applied in the computation of logarithms, maritime navigation,
astronomical observations and in a lot of other things.

A natural idea is to construct a polynomial which takes given values at the
interpolation nodes and consider its value at the point of interest as the interpola-
tion. Values at n + 1 points define a unique polynomial of degree n, which takes
just these values at these points. In  Newton discovered a formula for this
polynomial, which is now called Newton’s interpolation formula.

Consider the case, when interpolation nodes are natural numbers. Recall that
the difference of a function f is the function denoted δf and defined by δf(x) =
f(x + 1) − f(x). Define iterated differences δkf by induction: δ0f = f , δk+1f =
δ(δkf). Recall that xk denotes the k-th factorial power xk = x(x−1) . . . (x−k+1).

Lemma 4.1.1. For any polynomial P (x), its difference ∆P (x) is a polynomial
of degree one less.

Proof. The proof is by induction on the degree of P (x). The difference is
constant for any polynomial of degree 1. Indeed, δ(ax + b) = a. Suppose the
lemma is proved for polynomials of degree ≤ n and let P (x) =

∑n+1
k=0 akx

k be a
polynomial of degree n + 1. Then P (x) − an+1x

n+1 = Q(x) is a polynomial of
degree ≤ n. ∆P (x) = ∆axn+1 + ∆Q(x). By the induction hypothesis, ∆Q(x) has
degree ≤ n− 1 and, as we know, ∆xn+1 = (n+ 1)xn has degree n. �

Lemma 4.1.2. If ∆P (x) = 0, and P (x) is a polynomial, then P (x) is constant.

Proof. If ∆P (x) = 0, then degree of P (x) cannot be positive by Lemma 4.1.1,
hence P (x) is constant. �

Lemma 4.1.3 (Newton Polynomial Interpolation Formula). For any polynomial
P (x)

(4.1.1) P (x) =
∞∑
k=0

∆kP (0)
k!

x
k
.

Proof. If P (x) = ax + b, then ∆0P (0) = b, ∆1P (0) = a and δkP (x) = 0 for
k > 1. Hence the Newton series (4.1.1) turns into b+ax. This proves our assertion
for polynomials of degree ≤ 1. Suppose it is proved for polynomials of degree n.
Consider P (x) of degree n + 1. Then ∆P (x) =

∑∞
k=1

∆kP (0)
k! x

k by the induction

hypothesis. Denote by Q(x) the Newton series
∑∞
k=0

∆kP (0)
k! x

k for P (x).

96
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Then

∆Q(x) =
∞∑
k=0

∆kP (0)
k!

(x+ 1)k −
∞∑
k=0

∆kP (0)
k!

x
k

=
∞∑
k=0

∆kP (0)
k!

∆xk

=
∞∑
k=0

∆kP (0)
k!

kx
k−1

=
∞∑
k=0

∆kP (0)
(k − 1)!

x
k−1

=
∞∑
k=0

δk(δP (0))
k!

x
k

= ∆P (x).

Hence ∆(P (x) − Q(x)) = 0 and P (x) = Q(x) + c. Since P (0) = Q(0), one gets
c = 0. This proves P (x) = Q(x). �

Lemma 4.1.4 (Lagrange Formula). For any sequence {yk}nk=0, the polynomial
Ln(x) =

∑n
k=0(−1)n−k yk

k!(n−k)!
xn+1

x−k has the property Ln(k) = yk for 0 ≤ k ≤ n.

Proof. For x = k, all terms of the sum
∑n
k=0(−1)n−k yk

k!(n−k)!
xn+1

x−k but the

k-th vanish, and xk

x−k is equal to k!(n− k)!(−1)n−k. �

Lemma 4.1.5. For any function f and for any natural number m ≤ n one has
f(m) =

∑n
k=0

δkf(0)
k! m

k.

Proof. Consider the Lagrange polynomial Ln such that Ln(k) = f(k) for
k ≤ n. Then δkLn(0) = δkf(0) for all k ≤ n and δkLn(0) = 0 for k > n,
because the degree of Ln is n. Hence, Ln(x) =

∑∞
k=0

δkf(0)
k! x

k =
∑n
k=0

δkf(0)
k! x

k

by Lemma 4.1.3. Putting x = m in the latter equality, one gets f(m) = Ln(m) =∑n
k=0

δkf(0)
k! m

k. �

We see that the Newton polynomial gives a solution for the interpolation prob-
lem and our next goal is to estimate the interpolation error.

Theorem on extremal values. The least upper bound of a set of numbers
A is called the supremum of A and denoted by supA. In particular, the ultimate
sum of a positive series is the supremum of its partial sums. And the variation of
a function on an interval is the supremum of its partial variations.

Dually, the greatest lower bound of a set A is called the infinum and denoted
by inf A.

Theorem 4.1.6 (Weierstrass). If a function f is continuous on an interval
[a, b], then it takes maximal and minimal values on [a, b].

Proof. The function f is bounded by Lemma 3.6.3. Denote by B the supre-
mum of the set of values of f on [a, b]. If f does not take the maximum value, then
f(x) 6= B for all x ∈ [a, b]. In this case 1

B−f(x) is a continuous function on [a, b].
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Hence it is bounded by Lemma 3.6.3. But the difference B− f(x) takes arbitrarily
small values, because B−ε does not bound f(x). Therefore 1

B−f(x) is not bounded.
This is in contradiction to Lemma 3.6.3, which states that a locally bounded func-
tion is bounded. The same arguments prove that f(x) takes its minimal value on
[a, b]. �

Theorem 4.1.7 (Rolle). If a function f is continuous on the interval [a, b],
differentiable in interval (a, b) and f(a) = f(b), then f ′(c) = 0 for some c ∈ (a, b).

Proof. If the function f is not constant on [a, b] then either its maximal value
or its minimal value differs from f(a) = f(b). Hence at least one of its extremal
values is taken in some point c ∈ (a, b). Then f ′(c) = 0 by Lemma 3.2.1. �

Lemma 4.1.8. If an n-times differentiable function f(x) has n+ 1 roots in the
interval [a, b], then f (n)(ξ) = 0 for some ξ ∈ (a, b).

Proof. The proof is by induction. For n = 1 this is Rolle’s theorem. Let
{xk}nk=0 be a sequence of roots of f . By Rolle’s theorem any interval (xi, xi+1)
contains a root of f ′. Hence f ′ has n− 1 roots, and its (n− 1)-th derivative has a
root. But the (n− 1)-th derivative of f ′ is the n-th derivative of f . �

Theorem 4.1.9 (Newton Interpolation Formula). Let f be an n + 1 times
differentiable function on I ⊃ [0, n]. Then for any x ∈ I there is ξ ∈ I such that

f(x) =
n∑
k=0

δkf(0)
k!

x
k +

f (k+1)(ξ)
(k + 1)!

x
k+1

.

Proof. The formula holds for x ∈ {0, 1, . . . n} and any ξ, due to Lemma 4.1.5,
because xn+1 = 0 for such x. For other x one has xn+1 6= 0, hence there is C such
that f(x) =

∑n
k=0

δkf(0)
k! x

k +Cx
k+1. The function F (y) = f(y)−

∑n
k=0

δkf(0)
k! x

k−
Cy

k+1 has roots 0, 1, . . . , n, x. Hence its (n + 1)-th derivative has a root ξ ∈ I.
Since

∑n
k=0

δkf(0)
k! x

k is a polynomial of degree n its (n+ 1)-th derivative is 0. And
the (n + 1)-th derivatives of Cxn+1 and Cxn+1 coincide, because their difference
is a polynomial of degree n. Hence 0 = F (n+1)(ξ) = f (n+1)(ξ) − C(n + 1)! and
C = f(n+1)(ξ)

(n+1)! . �

Binomial series. The series
∑∞
k=0

δkf(0)
k! x

k is called the Newton series of a
function f . The Newton series coincides with the function at all natural points.
And sometimes it converges to the function. The most important example of such
convergence is given by the so-called binomial series.

Consider the function (1 + x)y. This is a function of two variables. Fix x and
evaluate its difference with respect to y. One has δy(1+x)y = (1+x)y+1−(1+x)y =
(1+x)y(1+x−1) = x(1+x)y. This simple formula allows us immediately to evaluate
δky (1 + x)y = xk(1 + x)y. Hence the Newton series for (1 + x)y as function of y is

(4.1.2) (1 + x)y =
∞∑
k=0

xky
k

k!
.

For fixed y and variable x, the formula (4.1.2) represents the famous Newton bino-
mial series. Our proof is not correct. We applied Newton’s interpolation formula,
proved only for polynomials, to an exponential function. But Newton’s original
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proof was essentially of the same nature. Instead of interpolation of the whole
function, he interpolated coefficients of its power series expansion. Newton consid-
ered the discovery of the binomial series as one of his greatest discoveries. And the
role of the binomial series in further developments is very important.

For example, Newton expands into a power series arcsinx in the following
way. One finds the derivative of arcsinx by differentiating identity sin arcsinx = x.
This differentiation gives cos(arcsinx) arcsin′ x = 1. Hence arcsin′ x = 1

cos arcsin x =
(1− x2)−

1
2 . Since

(4.1.3) (1− x2)−
1
2 =

∞∑
k=0

(−x2)k(− 1
2 )k

k!
=
∞∑
k=0

(2k − 1)!!
2k!!

x2k,

one gets the series for arcsin by termwise integration of (4.1.3). The result is

arcsinx =
∞∑
k=0

(2k − 1)!!
2k!!

x2k+1

2k + 1
.

It was more than a hundred years after the discovery Newton’s Binomial The-
orem that it was first completely proved by Abel.

Theorem 4.1.10. For any complex z and ζ such that |z| < 1, the series∑∞
k=0

zkζk

k! absolutely converges to (1 + z)ζ = exp (ζ ln(1 + z)).

Proof. The analytic function exp ζ ln(1 + z) of variable z has no singular
points in the disk |z| < 1, hence its Taylor series converges to it. The derivative
of (1 + z)ζ by z is ζ(1 + z)ζ−1. The k-th derivative is ζk(1 + z)ζ−k. In particular,
the value of k-th derivative for z = 0 is equal to ζk. Hence the Taylor series of the
function is

∑∞
k=0

ζkzk

k! . �

On the boundary of convergence. Since (1+z)ζ has its only singular point
on the circle |z| = 1, and this point is −1, the binomial series for all z on the circle
has (1 + z)ζ as its Abel’s sum. In particular, for z = 1 one gets

∞∑
k=0

x
k

k!
= 2x.

The series on the left-hand side converges for x > 0. Indeed, the series becomes
alternating starting with k > x. The ratio k−x

k+1 of modules of terms next to each
other is less then one. Hence the moduli of the terms form a monotone decreasing
sequence onward k > x. And to apply the Leibniz Theorem 2.4.3, one needs only
to prove that limn→∞

xn

n! = 0. Transform this limit into limn→∞
x
n

∏n−1
k=1(xk − 1).

The product
∏n−1
k=1(xk − 1) contains at most x terms which have moduli greater

than 1, and all terms of the product do not exceed x. Hence the absolute value
of this product does not exceed xx. And our sequence {x

n

n! } is majorized by an
infinitesimally small {x

x+1

n }. Hence it is infinitesimally small.

Plain binomial theorem. For a natural exponent the binomial series contains
only finitely many nonzero terms. In this case it turns into (1 + x)n =

∑n
k=0

nkxk

k! .
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Because (a+ b)n = an(1 + b
a )n, one gets the following famous formula

(a+ b)n =
n+1∑
k=0

n
k

k!
akbn−k.

This is the formula that is usually called Newton’s Binomial Theorem. But this
simple formula was known before Newton. In Europe it was proved by Pascal in
. Newton’s discovery concerns the case of non integer exponents.

Symbolic calculus. One defines the shift operation Sa for a function f by
the formula Saf(x) = f(x+a). Denote by 1 the identity operation and by S = S1.
Hence S0 = 1. The composition of two operations is written as a product. So, for
any a and b one has the following sum formula SaSb = Sa+b.

We will consider only so-called linear operations. An operationO is called linear
if O(f+g) = O(f)+O(g) for all f, g and O(kf) = kO(f) for any constant k. Define
the sum A+B of operations A and B by the formula (A+B)f = Af+Bf . Further,
define the product of an operation A by a number k as (kA)f = k(Af). For linear
operations O, U , V one has the distributivity law O(U + V ) = OU + OV . If the
operations under consideration commute UV = V U , (for example, all iterations
of the same operation commute) then they obey all usual numeric laws, and all
identities which hold for numbers extend to operations. For example, U2 − V 2 =
(U − V )(U + V ), or the plain binomial theorem.

Let us say that an operation O is decreasing if for any polynomial P the degree
of O(P ) is less than the degree of P . For example, the operation of difference
δ = S − 1 and the operation D of differentiation Df(x) = f ′(x) are decreasing.
For a decreasing operation O, any power series

∑∞
k=0 akO

k defines an operation
at least on polynomials, because this series applied to a polynomial contains only
finitely many terms. Thus we can apply analytic functions to operations.

For example, the binomial series (1 + δ)y =
∑∞
k=0

δkyk

k! represents Sy. And the

equality Sy =
∑∞
k=0

δkyk

k! , which is in fact the Newton Polynomial Interpolation
Formula, is a direct consequence of binomial theorem. Another example, consider
δn = S

x
n − 1. Then S

x
n = 1 + δn and Sx = (1 + δn)n. Further, Sx =

∑n
k=0

nkδkn
k! =∑∞

k=0
nk

nk
(nδn)k

k! . Now we follow Euler’s method to “substitute n = ∞”. Then
nδn converts into xD, and nk

nk
turns into 1. As result we get the Taylor formula

Sx =
∑∞
k=0

xkDk

k! . Our proof is copied from the Euler proof in his Introductio of
limn→∞(1 + x

n )n =
∑∞
k=0

xk

k! . This substitution of infinity means passing to the
limit. This proof is sufficient for decreasing operations on polynomials because the
series contains only finitely many nonzero terms. In the general case problems of
convergence arise.

The binomial theorem was the main tool for the expansion of functions into
power series in Euler’s times. Euler also applied it to get power expansions for
trigonometric functions.

The Taylor expansion for x = 1 gives a symbolic equality S = exp D. Hence
D = ln S = ln(1+δ) =

∑∞
k=1(−1)k+1 δk

k . We get a formula for numerical differenti-
ation. Symbolic calculations produce formulas which hold at least for polynomials.
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Problems.
1. Prove (x+ y)n =

∑n
k=0

nkxkyn−k

k! .
2. Evaluate

∑n
k=0

nk

k! 2n−k.
3. Prove: If p is prime, then pk

k! is divisible by p.
4. Prove: nk

k! = nn−k

(n−k)! .
5. Deduce the plain binomial theorem from multiplication of series for exponenta.
6. One defines the Catalan number cn as the number of correct placement of

brackets in the sum a1 + a2 + · · · + an. Prove that Catalan numbers satisfy
the following recursion equation cn =

∑n−1
k=0 ckcn−k and deduce a formula for

Catalan numbers.
7. Prove that ∆kx

n
x
m = 0 for x = 0 and k < n.

8. Prove that
∑n
k=0(−1)k n

k

k! = 0.
9. Get a differential equation for the binomial series and solve it.

10. Prove (a+ b)n =
∑n
k=0

nk

k! a
k
b
n−k.

11. Prove: A sequence {ak} such that ∆2ak ≥ 0 satisfies the inequality max{a1, . . . , an} ≥
ak for any k between 1 and n.

12. Prove
∑∞
k=0(−1)k x

2k

2k! = 2x/2 cos xπ4 .
13. Prove

∑∞
k=0(−1)k x2k+1

(2k+1)! = 2x/2 sin xπ
4 .

14. Prove ∆n0p is divisible by p!.
∗15. Prove that ∆n0p =

∑n−1
k=0(−1)n−k n

k

k! k
p.

16. Prove cos2 x+ sin2 x = 1 via power series.



4.2. Bernoulli Numbers

On the contents of the lecture. In this lecture we give explicit formulas
for telescoping powers. These formulas involve a remarkable sequence of numbers,
which were discovered by Jacob Bernoulli. They will appear in formulas for sums
of series of reciprocal powers. In particular, we will see that π2

6 , the sum of Euler
series, contains the second Bernoulli number 1

6 .

Summation Polynomials. Jacob Bernoulli found a general formula for the
sum

∑n
k=1 k

q. To be precise he discovered that there is a sequence of numbers
B0, B1, B2, . . . , Bn, . . . such that

(4.2.1)
n∑
k=1

kq =
q+1∑
k=0

Bk
q
k−1

nq+1−k

k!
.

The first 11 of the Bernoulli numbers are 1,− 1
2 ,

1
6 , 0,−

1
30 , 0,

1
42 , 0,−

1
30 , 0,

5
66 . The

right-hand side of (4.2.1) is a polynomial of degree q + 1 in n. Let us denote this
polynomial by ψq+1(n). It has the following remarkable property: δψq+1(x) =
(1 + x)q. Indeed the latter equality holds for any natural value n of the variable,
hence it holds for all x, because two polynomials coinciding in infinitely many
points coincide. Replacing in (4.2.1) q + 1 by m, n by x and reversing the order of
summation, one gets the following:

ψm(x) =
m∑
k=0

Bm−k
(m− 1)m−k−1

(m− k)!
xk

=
m∑
k=0

Bm−k
(m− 1)!
k!(m− k)!

xk

=
m∑
k=0

Bm−k
(m− 1)k−1

k!
xk.

Today’s lecture is devoted to the proof of this Bernoulli theorem.

Telescoping powers. Newton’s Formula represents xm as a factorial poly-
nomial

∑n
k=0

δk0m

k! x
k, where ∆k0m denotes the value of δkxm at x = 0. Since

δx
k = kx

k−1, one immediately gets a formula for a polynomial φm+1(x) which
telescopes xm in the form

φm+1(x) =
∞∑
k=0

∆k0m

(k + 1)!
x
k+1

This polynomial has the property φm+1(n) =
∑n−1
k=0 k

m for all n.
The polynomials φm(x), as follows from Lemma 4.1.2, are characterized by two

conditions:
∆φm(x) = xm−1, φm(1) = 0.

Lemma 4.2.1 (on differentiation). φ′m+1(x) = φ′m+1(0) +mφm(x).

Proof. Differentiation of ∆φm+1(x) = xm gives ∆φ′m+1(x) = mxm−1. The
polynomial mφm has the same differences, hence ∆(φ′m+1(x) −mφm(x)) = 0. By
Lemma 4.1.2 this implies that φ′m+1(x)−mφm(x) is constant. Therefore, φ′m+1(x)−

102



4.2 bernoulli numbers 103

mφm(x) = φ′m+1(0) −mφm(0). But φm(1) = 0 and φm(0) = φm(1) − δφm(0) =
0− 0m−1 = 0. �

Bernoulli polynomials. Let us introduce the m-th Bernoulli number Bm
as φ′m+1(0), and define the Bernoulli polynomial of degree m > 0 as Bm(x) =
mφm(x)+Bm. The Bernoulli polynomial B0(x) of degree 0 is defined as identically
equal to 1. Consequently Bm(0) = Bm and B′m+1(0) = (m+ 1)Bm.

The Bernoulli polynomials satisfy the following condition:

∆Bm(x) = mxm−1 (m > 0).

In particular, ∆Bm(0) = 0 for m > 1, and therefore we get the following boundary
conditions for Bernoulli polynomials:

Bm(0) = Bm(1) = Bm for m > 1, and

B1(0) = −B1(1) = B1.

The Bernoulli polynomials, in contrast to φm(x), are normed : their leading
coefficient is equal to 1 and they have a simpler rule for differentiation:

B′m(x) = mBm−1(x)

Indeed, B′m(x) = mφ′m(x) = m((m−1)φm−1(x)+φ′m(0)) = mBm−1(x), by Lemma
4.2.1.

Differentiating Bm(x) at 0, k times, we get B(k)
m (0) = m

k−1
B′m−k+1(0) =

m
k−1(m − k + 1)Bm−k = m

k
Bm−k. Hence the Taylor formula gives the following

representation of the Bernoulli polynomial:

Bm(x) =
m∑
k=0

m
k
Bm−k
k!

xk.

Characterization theorem. The following important property of Bernoulli
polynomials will be called the Balance property :

(4.2.2)
∫ 1

0

Bm(x) dx = 0 (m > 0).

Indeed,
∫ 1

0
Bm(x) dx =

∫ 1

0
(m+ 1)B′m+1(x) dx = ∆Bm+1(0) = 0.

The Balance property and the Differentiation rule allow us to evaluate Bernoulli
polynomials recursively. Thus, B1(x) has 1 as leading coefficient and zero integral
on [0, 1]; this allows us to identify B1(x) with x − 1/2. Integration of B1(x) gives
B2(x) = x2 − x + C, where C is defined by (4.2.2) as −

∫ 1

0
x

2
dx = 1

6 . Integrating
B2(x) we get B3(x) modulo a constant which we find by (4.2.2) and so on. Thus
we obtain the following theorem:

Theorem 4.2.2 (characterization). If a sequence of polynomials {Pn(x)} sat-
isfies the following conditions:

• P0(x) = 1,
•
∫ 1

0
Pn(x) dx = 0 for n > 0,

• P ′n(x) = nPn−1(x) for n > 0,

then Pn(x) = Bn(x) for all n.
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Analytic properties.

Lemma 4.2.3 (on reflection). Bn(x) = (−1)nBn(1− x) for any n.

Proof. We prove that the sequence Tn(x) = (−1)nBn(1 − x) satisfies all the
conditions of Theorem 4.2.2. Indeed, T0 = B0 = 1,∫ 1

0

Tn(x) dx = (−1)n
∫ 0

1

Bn(x) dx = 0

and
Tn(x)′ = (−1)nB′n(1− x)

= (−1)nnBn−1(1− x)(1− x)′

= (−1)n+1nBn−1(x)

= nTn−1(x).

�

Lemma 4.2.4 (on roots). For any odd n > 1 the polynomial Bn(x) has on [0, 1]
just three roots: 0, 1

2 , 1.

Proof. For odd n, the reflection Lemma 4.2.3 implies that Bn( 1
2 ) = −Bn( 1

2 ),
that is Bn( 1

2 ) = 0. Furthermore, for n > 1 one has Bn(1) − Bn(0) = n0n−1 = 0.
Hence Bn(1) = Bn(0) for any Bernoulli polynomial of degree n > 1. By the
reflection formula for an odd n one obtains Bn(0) = −Bn(1). Thus any Bernoulli
polynomial of odd degree greater than 1 has roots 0, 1

2 , 1.
The proof that there are no more roots is by contradiction. In the opposite

case consider Bn(x), of the least odd degree > 1 which has a root α different from
the above mentioned numbers. Say α < 1

2 . By Rolle’s Theorem 4.1.7 B′n(x) has
at least three roots β1 < β2 < β3 in (0, 1). To be precise, β1 ∈ (0, α), β2 ∈ (α, 1

2 ),
β3 ∈ ( 1

2 , 1). Then Bn−1(x) has the same roots. By Rolle’s Theorem B′n−1(x) has
at least two roots in (0, 1). Then at least one of them differs from 1

2 and is a root
of Bn−2(x). By the minimality of n one concludes n− 2 = 1. However, B1(x) has
the only root 1

2 . This is a contradiction. �

Theorem 4.2.5. Bn = 0 for any odd n > 1. For n = 2k, the sign of Bn
is (−1)k+1. For any even n one has either Bn = maxx∈[0,1]Bn(x) or Bn =
minx∈[0,1]Bn(x). The first occurs for positive Bn, the second for negative.

Proof. B2k+1 = B2k+1(0) = 0 for k > 0 by Lemma 4.2.4. Above we have
found that B2 = 1

6 . Suppose we have established that B2k > 0 and that this is
the maximal value for B2k(x) on [0, 1]. Let us prove that B2k+2 < 0 and it is
the minimal value for B2k+2(x) on [0, 1]. The derivative of B2k+1 in this case is
positive at the ends of [0, 1], hence B2k+1(x) is positive for 0 < x < 1

2 and negative
for 1

2 < x < 1, by Lemma 4.2.4 on roots and the Theorem on Intermediate Values.
Hence, B′2k+2(x) > 0 for x < 1

2 and B′2k+2(x) < 0 for x > 1
2 . Therefore, B2k+2(x)

takes the maximal value in the middle of [0, 1] and takes the minimal values at
the ends of [0, 1]. Since the integral of the polynomial along [0, 1] is zero and
the polynomial is not constant, its minimal value has to be negative. The same
arguments prove that if B2k is negative and minimal, then B2k+2 is positive and
maximal. �
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Lemma 4.2.6 (Lagrange Formula). If f is a differentiable function on [a, b],
then there is a ξ ∈ (a, b), such that

(4.2.3) f(b) = f(a) + f ′(ξ)
f(b)− f(a)

b− a
.

Proof. The function g(x) = f(x) − (x − a) f(b)−f(a)
b−a is differentiable on [a, b]

and g(b) = g(a) = 0. By Rolle’s Theorem g′(ξ) = 0 for some ξ ∈ [a, b]. Hence
f ′(ξ) = f(b)−f(a)

b−a . Substitution of this value of f ′(ξ) in (4.2.3) gives the equality. �

Generating function. The following function of two variables is called the
generating function of Bernoulli polynomials.

(4.2.4) B(x, t) =
∞∑
k=0

Bk(x)
tk

k!

Since Bk ≤ k!
2k

, the series on the right-hand side converges for t < 2 for any x. Let us
differentiate it termwise as a function of x, for a fixed t. We get

∑∞
k=0 kBk−1(x) t

k

k! =

tB(x, t). Consequently (lnB(x, t))′x = B′x(x,t)
B(x,t) = t and lnB(x, t) = xt+ c(t), where

the constant c(t) depends on t. It follows that B(x, t) = exp(xt)k(t), where k(t) =
exp(c(t)). For x = 0 we get B(0, t) = k(t) =

∑∞
k=0Bk

tk

k! . To find k(t) consider
the difference B(x + 1, t) − B(x, t). It is equal to exp(xt + t)k(t) − exp(xt). On
the other hand the difference is

∑∞
k=0 ∆Bk(x) t

k

k! =
∑∞
k=0 kBk−1(x) t

k

k! = tB(x, t).
Comparing these expressions we get explicit formulas for the generating functions
of Bernoulli numbers:

k(t) =
t

exp t− 1
=
∞∑
k=0

Bk
k!
tk,

and Bernoulli polynomials:

B(x, t) =
0−1∑
k=+

Bk(x)
tk

k!
=
t exp(tx)
exp t− 1

.

From (4.2.4) one gets t = (exp t − 1)
∑∞
k=0Bk

tk

k! . Substituting exp t − 1 =∑∞
k=1

tk

k! in this equality, by the Uniqueness Theorem 3.6.9, one gets the equalities
for the coefficients of the power series

n∑
k=1

Bn−k
(n− k)!k!

= 0 for n > 1.

Add Bn
n! to both sides of this equality and multiply both sides by n! to get

(4.2.5) Bn =
n∑
k=0

Bkn
k

k!
for n > 1.

The latter equality one memorizes via the formula Bn = (B + 1)n, where after
expansion of the right hand side, one should move down all the exponents at B
turning the powers of B into Bernoulli numbers.

Now we are ready to prove that

(4.2.6) φm(1 + x) =
Bm(x+ 1)

m
− Bm

m
=

m∑
k=0

Bm−k
(m− 1)k−1

k!
xk = ψm(x).
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Putting x = 0 in the right hand side one gets ψm(0) = Bm(m − 1)−1 = Bm
m . The

left-hand side takes the same value at x = 0, because Bm(1) = Bm(0) = Bm. It
remains to prove the equality of the coefficients in (4.2.6) for positive degrees.

Bm(x+ 1)
m

=
1
m

m∑
k=0

m
k
Bm−k
k!

(1 + x)k

=
1
m

m∑
k=0

m
k
Bm−k
k!

k∑
j=0

k
j
xj

j!

Now let us change the summation order and change the summation index of the
interior sum by i = m− k.

=
1
m

m∑
j=0

xj

j!

m∑
k=j

m
k
Bm−k
k!

k
j

=
1
m

m∑
j=0

xj

j!

m−j∑
i=0

m
m−i

Bi
(m− i)!

(m− i)j

Now we change mm−i(m−i)j
(m−i)! by (m−j)imj

i! and apply the identity (4.2.5).

=
m∑
j=0

xjm
j

mj!

m−j∑
i=0

Bi(m− j)i

i!

=
m∑
j=0

(m− 1)j−1
xj

j!
Bm−j .

Problems.
1. Evaluate

∫ 1

0
Bn(x) sin 2πx dx.

2. Expand x4 − 3x2 + 2x− 1 as a polynomial in (x− 2).
3. Calculate the first 20 Bernoulli numbers.
4. Prove the inequality |Bn(x)| ≤ |Bn| for even n.
5. Prove the inequality |Bn(x)| ≤ n

4 |Bn−1| for odd n.
6. Prove that f(0)+f(1)

2 =
∫ 1

0
f(x) dx+

∫ 1

0
f ′(x)B1(x) dx.

7. Prove that f(0)+f(1)
2 =

∫ 1

0
f(x) dx+ ∆f ′(0)

2 −
∫ 1

0
f ′′(x)B2(x) dx.

8. Deduce ∆Bn(x) = nxn−1 from the balance property and the differentiation
rule.

9. Prove that Bn(x) = Bn(1− x), using the generating function.
10. Prove that B2n+1 = 0, using the generating function.
11. Prove that Bm(nx) = nm−1

∑n−1
k=0 Bm

(
x+ k

n

)
.

12. Evaluate Bn( 1
2 ).

13. Prove that B2k(x) = P (B2(x)), where P (x) is a polynomial with positive coef-
ficient (Jacobi Theorem).

14. Prove that Bn =
∑∞
k=0(−1)k∆k0n

k+1 .
∗15. Prove thatBm+

∑
1
k+1 [k + 1 is prime and k is divisor of m] is an integer (Staudt

Theorem).



4.3. Euler-Maclaurin Formula

On the contents of the lecture. From this lecture we will learn how Euler
managed to calculate eighteen digit places of the sum

∑∞
k=0

1
k2 .

Symbolic derivation. Taylor expansion of a function f at point x gives

f(x+ 1) =
∞∑
k=0

f (k)(x)
k!

.

Hence

δf(x) =
∞∑
k=1

Dkf(x)
k!

,

where D is the operation of differentiation. One expresses this equality symbolically
as

(4.3.1) δ = exp D− 1.

We are searching for F such that F (n) =
∑n−1
k=1 f(k) for all n. Then δF (x) = f(x),

or symbolically F = δ−1f . So we have to invert the operation of the difference.
From (4.3.1), the inversion is given formally by the formula (exp D − 1)−1. This
function has a singularity at 0 and cannot be expanded into a power series in D.
However we know the expansion

t

exp t− 1
=
∞∑
k=0

Bk
k!
tk.

This allows us to give a symbolic solution of our problem in the form

δ−1 = D−1 D
exp D− 1

=
∞∑
k=0

Bk
k!

Dk−1 = D−1 − 1
2
1 +

∞∑
k=1

B2k

2k!
D2k−1.

Here we take into account that B0 = 1, B1 = − 1
2 and B2k+1 = 0 for k > 0.

Since
∑n−1
k=1 f(k) = F (n) − F (1), the latter symbolic formula gives the following

summation formula:

(4.3.2)
n−1∑
k=1

f(k) =
∫ n

1

f(x) dx− f(n)− f(1)
2

+
∞∑
k=1

B2k

(2k)!
(f (2k−1)(n)− f (2k−1)(1)).

For f(x) = xm this formula gives the Bernoulli polynomial φm+1.

Euler’s estimate. Euler applied this formula to f(x) = 1
(x+9)2 and estimated

the sum
∑∞
k=10

1
k2 . In this case the k-th derivative of 1

(x+9)2 at 1 has absolute

value (k+1)!
10k+2 . Hence the module of the k-th term of the summation formula does

not exceed Bk
k10k+2 . For an accuracy of eighteen digit places it is sufficient to sum

up the first fourteen terms of the series, only eight of them do not vanish. Euler
conjectured, and we will prove, that the value of error does not exceed of the value of
the first rejected term, which is B16

16·1018 . Since B16 = − 3617
510 this gives the promised

accuracy.
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B1 B2 B4 B6 B8 B10 B12 B14 B16 B18 B20

− 1
2

1
6
− 1

30
1
42

− 1
30

5
66

− 691
2730

7
6

− 3617
510

43867
798

− 174611
330

Figure 4.3.1. Bernoulli numbers

We see from the table (Figure 4.3.1) that increasing of the number of considered
terms does not improve accuracy noticeably.

Summation formula with remainder. In this lecture we assume that all
functions under consideration are differentiable as many times as needed.

Lemma 4.3.1. For any function f(x) on [0, 1] one has

1
2

(f(1) + f(0)) =
∫ 1

0

f(x) dx−
∫ 1

0

f ′(x)B1(x) dx.

Proof. Recall that B1(x) = x− 1
2 , hence

∫ 1

0
f ′(x)B1(x) dx =

∫ 1

0
(x− 1

2 ) df(x).
Now, integration by parts gives∫ 1

0

(x− 1
2

) df(x) =
1
2

(f(1) + f(0))−
∫ 1

0

f(x) dx.

�

Consider the periodic Bernoulli polynomials Bm{x} = Bm(x − [x]). Then
B′m{x} = mBm−1{x} for non integer x.

Let us denote by
∑n
m ak the sum 1

2am +
∑n−1
k=m+1 ak + 1

2an.

Lemma 4.3.2. For any natural p, q and any function f(x) one has

q∑
p

f(k) =
∫ q

p

f(x) dx−
∫ q

p

f ′(x)B1{x} dx.

Proof. Applying Lemma 4.3.1 to f(x+ k) one gets

1
2

(f(k + 1) + f(k)) =
∫ 1

0

f(x+ k) dx+
∫ 1

0

f ′(x+ k)B1(x) dx

=
∫ k+1

k

f(x) dx+
∫ k+1

k

f ′(x)B1{x} dx.

Summing up these equalities for k from p to q, one proves the lemma. �

Lemma 4.3.3. For m > 0 and a function f one has

(4.3.3)
∫ q

p

f(x)Bm{x} dx =
Bm+1

m+ 1
(f(q)− f(p))−

∫ q

p

f ′(x)Bm+1{x} dx.

Proof. Since Bm{x}dx = dBm+1{x}
m+1 and Bm+1{k} = Bm+1 for any natural

k, the formula (4.3.3) is obtained by a simple integration by parts. �
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Theorem 4.3.4. For any function f and natural numbers n and m one has:

(4.3.4)
n∑
1

f(k) =
∫ n

1

f(x) dx+
m−1∑
k=1

Bk+1

(k + 1)!

(
f (k)(n)− f (k)(1)

)
+

(−1)m+1

m!

∫ n

1

f (m)(x)Bm{x} dx.

Proof. The proof is by induction on m. For m = 1, formula (4.3.4) is just
given by Lemma 4.3.2. Suppose (4.3.4) is proved for m. The remainder

(−1)m+1

m!

∫ n

1

f (m)(x)Bm{x} dx

can be transformed by virtue of Lemma 4.3.3 into

(−1)m+1Bm+1

(m+ 1)!
(f (m)(n)− f (m)(1)) +

(−1)m+2

(m+ 1)!

∫ n

1

Bm+1{x}f (m+1)(x) dx.

Since odd Bernoulli numbers vanish, (−1)m+1Bm+1 = Bm+1 for m > 0. �

Estimation of the remainder. For m = ∞, (4.3.4) turns into (4.3.2). De-
note

Rm =
(−1)m+1

m!

∫ n

1

f (m)(x)Bm{x} dx.

This is the so-called remainder of Euler-Maclaurin formula.

Lemma 4.3.5. R2m = R2m+1 for any m > 1.

Proof. Because B2m+1 = 0, the only thing which changes in (4.3.4) when
one passes from 2m to 2m + 1 is the remainder. Hence its value does not change
either. �

Lemma 4.3.6. If f(x) is monotone on [0, 1] then

sgn
∫ 1

0

f(x)B2m+1(x) dx = sgn(f(1)− f(0)) sgnB2m.

Proof. Since B2m+1(x) = −B2m+1(1− x), the change x → 1− x transforms
the integral

∫ 1

0.5
f(x)B2m+1(x) dx to −

∫ 0.5

0
f(1− x)B2m+1(x) dx:∫ 1

0

f(x)B2m+1(x) dx =
∫ 0.5

0

f(x)B2m+1(x) dx+
∫ 1

0.5

f(x)B2m+1(x) dx

=
∫ 0.5

0

(f(x)− f(1− x))B2m+1(x) dx.

B2m+1(x) is equal to 0 at the end-points of [0, 0.5] and has constant sign on (0, 0.5),
hence its sign on the interval coincides with the sign of its derivative at 0, that is,
it is equal to sgnB2m. The difference f(x) − f(1 − x) also has constant sign as
x < 1 − x on (0, 0.5) and its sign is sgn(f(1) − f(0)). Hence the integrand has
constant sign. Consequently the integral itself has the same sign as the integrand
has. �

Lemma 4.3.7. If f (2m+1)(x) and f (2m+3)(x) are comonotone for x ≥ 1 then

R2m = θm
B2m+2

(2m+ 2)!
(f (2m+1)(n)− f (2m+1)(1)), 0 ≤ θm ≤ 1.
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Proof. The signs of R2m+1 and R2m+3 are opposite. Indeed, by Lemma 4.2.5
sgnB2m = − sgnB2m+2, and sgn(f (2m+1)(n) − f (2m+1)(1)) = sgn(f (2m+3)(n) −
f (2m+3)(1) due to the comonotonity condition. Hence sgnR2m+1 = − sgnR2m+3

by Lemma 4.3.6.
Set

T2m+2 =
B2m+2

(2m+ 2)!
(f (2m+1)(n)− f (2m+1)(1)).

Then T2m+2 = R2m+1−R2m+2. By Lemma 4.3.5, T2m+2 = R2m+1−R2m+3. Since
R2m+3 and R2m+1 have opposite signs, it follows that sgnT2m+2 = sgnR2m+1 and
|T2m+2| ≥ |R2m+1|. Hence θm = R2m+1

T2m+2
= R2m

T2m+2
belongs to [0, 1]. �

Theorem 4.3.8. If f (k) and f (k+2) are comonotone for any k > 1, then∣∣∣∣∣
n∑
1

f(k)−
∫ n

1

f(x) dx−
m∑
k=1

B2k

(2k)!

(
f (2k−1)(n)− f (2k−1)(1)

)∣∣∣∣∣
≤
∣∣∣∣ B2m+2

(2m+ 2)!

(
f (2m+1)(n)− f (2m+1)(1)

)∣∣∣∣ .
Hence the value of the error which gives the summation formula (4.3.2) with

m terms has the same sign as the first rejected term, and its absolute value does
not exceed the absolute value of the term.

Theorem 4.3.9. Suppose that
∫∞

1
|f (k)(x)| dx <∞, lim

x→∞
f (k)(x) = 0 and f (k)

is comonotone with f (k+2) for all k ≥ K for some K. Then there is a constant C
such that for any m > K for some θm ∈ [0, 1]

(4.3.5)
n∑
k=1

f(k) = C +
f(n)

2
+
∫ n

1

f(x) dx+
m∑
k=1

B2k

(2k)!
f (2k−1)(n)

+ θm
B2m+2

(2m+ 2)!
f (2m+1)(n).

Lemma 4.3.10. Under the condition of the theorem, for any m ≥ K,

(4.3.6)
(−1)m

m!

∫ ∞
p

f (m)(x)Bm{x} dx = −θm
B2m+2

(2m+ 2)!
f (2m+1)(p).

Proof. By Lemma 4.3.7,

(−1)m+1

m!

∫ q

p

f (m)(x)Bm{x} dx = θm
B2m+2

(2m+ 2)!
(f (2m+1)(q)− f (2m+1)(p)).

To get (4.3.6), pass to the limit as q tends to infinity. �

Proof of Theorem 4.3.9. To get (4.3.5) we change the form of the remain-
der RK for (4.3.4). Since∫ n

1

BK{x}f (K) dx =
∫ ∞

1

BK{x}f (K)(x) dx−
∫ ∞
n

BK{x}f (K)(x) dx,
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applying the equality (4.3.3) to the interval [n,∞), one gets

− (−1)k+1Bk
k!

∫ ∞
n

Bk{x}f (k)(x) dx

=
(−1)k+1Bk+1

(k + 1)!
f (k)(n)− (−1)k+2Bk+1

(k + 1)!

∫ ∞
n

Bk+1{x}f (k+1)(x) dx.

Iterating this formula one gets

RK =
∫ ∞

1

BK{x}f (K) dx+
m∑

k=K

Bk+1

(k + 1)!
f (k)(n)

+
(−1)m

m!

∫ ∞
n

Bm{x}f (m)(x) dx.

Here we take into account the equalities (−1)kBk = Bk and (−1)m+2 = (−1)m.
Now we substitute this expression of RK into (4.3.4) and set

(4.3.7) C = (−1)K+1

∫ ∞
1

BK{x}f (K)(x) dx− f(1)
2
−
K−1∑
k=1

Bk+1

(k + 1)!
f (k)(1).

�

Stirling formula. The logarithm satisfies all the conditions of Theorem 4.3.9
with K = 2. Its k-th derivative at n is equal to (−1)k+1(k−1)!

nk
. Thus (4.3.5) for the

logarithm turns into
n∑
k=1

ln k = n lnn− n+ σ +
lnn
2

+
m∑
k=1

B2k

2k(2k − 1)n2k−1
+

θmB2m+2

(2m+ 2)(2m+ 1)n2k−1
.

By (4.3.7), the constant is

σ =
∫ ∞

1

B2{x}
x2

dx− B2

2
.

But we already know this constant as σ = 1
2 ln 2π. For m = 0, the above formula

gives the most common form of Stirling formula:

n! =
√

2πnnne−n+ Θ
12n .

Problems.
1. Write the Euler-Maclaurin series telescoping 1

x .
2. Prove the uniqueness of the constant in Euler-Maclaurin formula.
3. Calculate ten digit places of

∑∞
k=1

1
n3 .

4. Calculate eight digit places of
∑1000000
k=1

1
k .

5. Evaluate ln 1000! with accuracy 10−4.



4.4. Gamma Function

On the contents of the lecture. Euler’s Gamma-function is the function
responsible for infinite products. An infinite product whose terms are values of
a rational function at integers is expressed in terms of the Gamma-function. In
particular it will help us prove Euler’s factorization of sin.

Telescoping problem. Given a function f(x), find a function F (x) such that
δF = f . This is the telescoping problem for functions. In particular, for f = 0
any periodic function of period 1 is a solution. In the general case, to any solution
of the problem we can add a 1-periodic function and get another solution. The
general solution has the form F (x) + k(t) where F (x) is a particular solution and
k(t) is a 1-periodic function, called the periodic constant.

The Euler-Maclaurin formula gives a formal solution of the problem, but the
Euler-Maclaurin series rarely converges. Another formal solution is

(4.4.1) F (x) = −
∞∑
k=0

f(x+ k).

Trigamma. Now let us try to telescope the Euler series. The series (4.4.1)
converges for f(x) = 1

xm provided m ≥ 2 and x 6= −n for natural n > 1. In
particular, the function

(4.4.2) Γ (x) =
∞∑
k=1

1
(x+ k)2

is analytic; it is called the trigamma function and it telescopes − 1
(1+x)2 . Its value

Γ (0) is just the sum of the Euler series.
This function is distinguished among others functions telescoping − 1

(1+x)2 by
its finite variation.

Theorem 4.4.1. There is a unique function Γ (x) such that δΓ (x) = − 1
(1+x)2 ,

varΓ [0,∞] <∞ and Γ (0) =
∑∞
k=1

1
k2 .

Proof. Since Γ is monotone, one has varΓ [0,∞] =
∑∞
k=0 |δΓ | =

∑∞
k=1

1
k2 <

∞. Suppose f(x) is another function of finite variation telescoping 1
(1+x)2 . Then

f(x) − Γ (x) is a periodic function of finite variation. It is obvious that such a
function is constant, and this constant is 0 if f(1) = Γ (1). �

Digamma. The series −
∑∞
k=0

1
x+k , which formally telescopes 1

x , is divergent.

However the series −
∑∞
k=0

(
1

x+k −
1
k [k 6= 0]

)
is convergent and it telescopes 1

x ,
because adding a constant does not affect the differences. Indeed,

−
∞∑
k=0

(
1

x+1+k −
1
k [k 6= 0]

)
+
∞∑
k=0

(
1

x+k −
1
k [k 6= 0]

)
= −

∞∑
k=0

δ 1
x+k = 1

x .

The function

(4.4.3) z(x) = −γ +
∞∑
k=1

(
1
k
− 1
x+ k

)
112
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is called thedigamma function. Here γ is the Euler constant. The digamma func-
tion is an analytic function, whose derivative is the trigamma function, and whose
difference is 1

1+x .
Monotonicity distinguishes z among others function telescoping 1

1+x .

Theorem 4.4.2. There is a unique monotone function z(x) such that δz(x) =
1

1+x and z(0) = −γ.

Proof. Suppose f(x) is a monotone function telescoping 1
1+x . Denote by v the

variation of f−z on [0, 1]. Then the variation of f−z over [1, n] is nv. On the other
hand, varf [1, n] =

∑n
k=1

1
k < lnn+ γ. Hence the variation of f(x)−z(x) on [1, n]

is less than 2(γ + lnn). Hence v for any n satisfies the inequality nv ≤ 2(γ + lnn).
Since limn→∞

lnn
n = 0, we get v = 0. Hence f − z is constant, and it is zero if

f(1) = z(1). �

Lemma 4.4.3. z
′ = Γ .

Proof. To prove that z′(x) = Γ (x), consider F (x) =
∫ x

1
Γ (t) dt. This func-

tion is monotone, because F ′(x) = Γ (x) ≥ 0. Further (δF )′ = δF ′ = δΓ (x) =
− 1

(1+x)2 . It follows that δF = 1
1+x + c, where c is a constant. By Theorem 4.4.2 it

follows that F (x+ 1)− cx− γ = z(x). Hence z(x)′ = F ′(x+ 1) + c = Γ (x). This
proves that z′ is differentiable and has finite variation. As δz(x) = 1

1+x it follows
that δz′(x) = − 1

(1+x)2 . We get that z′(x) = Γ (x) by Theorem 4.4.1. �

Telescoping the logarithm. To telescope the logarithm, we start with the
formal solution −

∑∞
k=0 ln(x+k). To decrease the divergence, add

∑∞
k=1 ln k term-

wise. We get− lnx−
∑∞
k=1(ln(x+k)−ln k) = − lnx−

∑∞
k=1 ln(1+ x

k ). We know that
ln(1+x) is close to x, but the series still diverges. Now convergence can be reached
by the subtraction of xk from the k-th term of the series. This substraction changes
the difference. Let us evaluate the difference of F (x) = − lnx−

∑∞
k=1(ln(1+ x

k )− x
k ).

The difference of the n-th term of the series is(
ln
(
1 + x+1

k

)
− x+1

k

)
−
(
ln
(
1 + x

k

)
− x

k

)
=
(
ln(x+ k + 1)− ln k − x+1

k

)
−
(
ln(x+ k)− ln k − x

k

)
= δ ln(x+ k)− 1

k .

Hence
δF (x) = −δ lnx−

∑∞
k=1

(
δ ln(x+ k)− 1

k

)
= limn→∞

(
−δ lnx−

∑n−1
k=1

(
δ ln(x+ k)− 1

k

))
= limn→∞

(
lnx− ln(n+ x) +

∑n−1
k=1

1
k

)
= lnx+ limn→∞(ln(n)− ln(n+ x)) + limn→∞

(∑n−1
k=1

1
k − lnn

)
= lnx+ γ.

As a result, we get the following formula for a function, which telescopes the
logarithm:

(4.4.4) Θ(x) = −γx− lnx−
∞∑
k=1

(
ln
(

1 +
x

k

)
− x

k

)
.
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Theorem 4.4.4. The series (4.4.4) converges absolutely for all x except nega-
tive integers. It presents a function Θ(x) such that Θ(1) = 0 and δΘ(x) = lnx.

Proof. The inequality x
1+x ≤ ln(1 + x) ≤ x implies

(4.4.5) | ln(1 + x)− x| ≤
∣∣∣∣ x

1 + x
− x
∣∣∣∣ =

∣∣∣∣ x2

1 + x

∣∣∣∣ .
Denote by ε the distance from x to the closest negative integer. Then due to
(4.4.5), the series

∑∞
k=1 ln

((
1 + y

k

)
− y

k

)
is termwise majorized by the convergent

series
∑∞
k=1

x2

εk2 . This proves the absolute convergence of (4.4.4).
Since limn→∞

∑n−1
k=1(ln(1 + 1

k )− 1
k ) = limn→∞(lnn−

∑n−1
k=1

1
k ) = −γ, one gets

Θ(1) = 0. �

Convexity. There are a lot of functions that telescope the logarithm. The
property which distinguishes Θ among others is convexity.

Throughout the lecture θ and θ are nonnegative and complementary to each
other, that is θ+ θ = 1. The function f is called convex if, for any x, y, it satisfies
the inequality:

(4.4.6) f(θx+ θy) ≤ θf(x) + θf(y) ∀θ ∈ [0, 1].

Immediately from the definition it follows that

Lemma 4.4.5. Any linear function ax+ b is convex.

Lemma 4.4.6. Any sum (even infinite) of convex functions is a convex function.
The product of a convex function by a positive constant is a convex function.

Lemma 4.4.7. If f(p) = f(q) = 0 and f is convex, then f(x) ≥ 0 for all
x /∈ [p, q].

Proof. If x > q then q = xθ+ pθ for θ = q−p
x−p . Hence f(q) ≤ f(x)θ+ f(p)θ =

f(x), and it follows that f(x) ≥ f(q) = 0. For x < p one has p = xθ + qθ for
θ = q−p

q−x . Hence 0 = f(p) ≤ f(x)θ + f(q)θ = f(x). �

Lemma 4.4.8. If f ′′ is nonnegative then f is convex.

Proof. Consider the function F (t) = f(l(t)), where l(t) = xθ + yθ. Newton’s
formula for F (t) with nodes 0, 1 gives F (t) = F (0) + δF (0)t + 1

2F
′′(ξ)t2. Since

F ′′(ξ) = (y − x)2f ′′(ξ) > 0, and t
2 = t(t − 1) < 0 we get the inequality F (t) ≤

F (0)θ+ tF (1). Since F (θ) = f(xθ+ yθ) this is just the inequality of convexity. �

Lemma 4.4.9. If f is convex, then 0 ≤ f(a) + θδf(a)− f(a+ θ) ≤ δ2f(a− 1)
for any a and any θ ∈ [0, 1]

Proof. Since a + θ = θa + θ(a + 1) we get f(a + θ) ≤ f(a)θ + f(a + 1)θ =
f(a)+θδf(a). On the other hand, the convex function f(a+x)−f(a)−xδf(a−1)
has roots −1 and 0. By Lemma 4.4.7 it is nonnegative for x > 0. Hence f(a+ θ) ≥
f(a) + θδf(a−1). It follows that f(a) + θδf(a)−f(a+ θ) ≥ f(a) + θδf(a)−f(a)−
θδf(a− 1) = θδ2f(a− 1). �

Theorem 4.4.10. Θ(x) is the unique convex function that telescopes lnx and
satisfies Θ(1) = 1.
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Proof. Convexity of Θ follows from the convexity of the summands of its
series. The summands are convex because their second derivatives are nonnegative.

Suppose there is another convex function f(x) which telescopes the logarithm
too. Then φ(x) = f(x) − Θ(x) is a periodic function, δφ = 0. Let us prove that
φ(x) is convex. Consider a pair c, d, such that |c−d| ≤ 1. Since f(cθ+dθ)−θf(c)−
θf(d) ≤ 0, as f is convex, one has

φ(cθ + dθ)− θφ(c)− θφ(d) = (f(cθ + dθ)− θf(c)− θf(d))

− (Θ(cθ + dθ)− θΘ(c)− θΘ(d))

≤ θΘ(c) + θΘ(d)−Θ(cθ + dθ).

First, prove that φ satisfies the following ε-relaxed inequality of convexity:

(4.4.7) φ(cθ + dθ) ≤ θφ(c) + θφ(d) + ε.

Increasing c and d by 1, we do not change the inequality as δφ = 0. Due to this
fact, we can increase c and d to satisfy 1

c−1 <
ε
3 . Set L(x) = Θ(c) + (x− c) ln c. By

Lemma 4.4.9 for x ∈ [c, c+ 1] one has |Θx−L(x)| ≤ δ2Θ(c− 1) = ln c− ln(c− 1) =
ln(1 + 1

c−1 ) ≤ 1
c−1 <

ε
3 . Since |Θ(x) − L(x)| < ε

3 for x = c, d, c+d2 , it follows that
θΘ(c) + θΘ(d) − Θ(cθ + dθ) differs from θL(c) + θL(d) − L(cθ + dθ) = 0 by less
than by ε. The inequality (4.4.7) is proved. Passing to the limit as ε tends to 0,
one eliminates ε.

Hence φ(x) is convex on any interval of length 1 and has period 1. Then φ(x)
is constant. Indeed, consider a pair a, b with condition b − 1 < a < b. Then
a = (b− 1)θ + bθ for θ = b− a. Hence f(a) ≤ f(b)θ + f(b− 1)θ = f(b). �

Lemma 4.4.11. Θ′′(1 + x) = Γ (x).

Proof. The function F (x) =
∫ x

1
z(t) dt is convex because its second derivative

is Γ . The difference of F ′ = z is 1
1+x . Hence δF (x) = ln(x+1)+c, where c is some

constant. It follows that F (x− 1)− cx+ c = Θ(x). Hence Θ is twice differentiable
and its second derivative is Γ . �

Gamma function. Now we define Euler’s gamma function Γ(x) as exp(Θ(x)),
where Θ(x) is the function telescoping the logarithm. Exponentiating (4.4.4) gives
a representation of the Gamma function in so-called canonical Weierstrass form:

(4.4.8) Γ(x) =
e−γx

x

∞∏
k=1

(
1 +

x

k

)−1

e
x
k .

Since δ ln Γ(x) = lnx, one gets the following characteristic equation of the Gamma
function

(4.4.9) Γ(x+ 1) = xΓ(x).

Since Θ(1) = 0, according to (4.4.4), one proves by induction that Γ(n) = (n− 1)!
using (4.4.9).

A nonnegative function f is called logarithmically convex if ln f(x) is convex.

Theorem 4.4.12 (characterization). Γ(x) is the unique logarithmically convex
function defined for x > 0, which satisfies equation (4.4.9) for all x > 0 and takes
the value 1 at 1.



116 4.4 gamma function

Proof. Logarithmical convexity of Γ(x) follows from the convexity of Θ(x).
Further Γ(1) = exp Θ(1) = 1. If f is a logarithmically convex function satisfying
the gamma-equation, then ln f satisfies all the conditions of Theorem 4.4.4. Hence,
ln f(x) = Θ(x) and f(x) = Γ(x). �

Theorem 4.4.13 (Euler). For any x ≥ 0 one has Γ(x) =
∫∞

0
tx−1e−t dt.

Let us check that the integral satisfies all the conditions of Theorem 4.4.12.
For x = 1 the integral gives

∫∞
0
e−t dt = −e−t |∞0 = 1. The integration by parts∫∞

0
txe−t dt = −

∫∞
0
tx de−t = −txe−t |∞0 +

∫∞
0
e−txtx−1 dx proves that it satis-

fies the gamma-equation (4.4.9). It remains to prove logarithmic convexity of the
integral.

Lemma 4.4.14 (mean criterium). If f is a monotone function which satisfies
the following mean inequality 2f(x+y

2 ) ≤ f(x) + f(y) for all x, y then f is convex.

Proof. We have to prove the inequality f(xθ+yθ) ≤ θf(x)+θf(y) = L(θ) for
all θ, x and y. Set F (t) = f(x+(y−x)t); than F also satisfies the mean inequality.
And to prove our lemma it is sufficient to prove that F (t) ≤ L(t) for all t ∈ [0, 1].

First we prove this inequality only for all binary rational numbers t, that is
for numbers of the type m

2n , m ≤ 2n. The proof is by induction on n, the degree
of the denominator. If n = 0, the statement is true. Suppose the inequality
F (t) ≤ L(t) is already proved for fractions with denominators of degree ≤ n.
Consider r = m

2n+1 , with odd m = 2k + 1. Set r− = k
2n , r+ = k+1

2n . By the
induction hypothesis F (r±) ≤ L(r±). Since r = r++r−

2 , by the mean inequality

one has F (r) ≤ f(r+)+f(r−)
2 ≤ L(r+)+L(r−)

2 = L( r
++r−

2 ) = L(r).
Thus our inequality is proved for all binary rational t. Suppose F (t) > L(t)

for some t. Consider two binary rational numbers p, q such that t ∈ [p, q] and
|q−p| < F (t)−L(t)

|f(y)−f(x)| . In this case |L(p)−L(t)| ≤ |p− t||f(y)− f(x)| < |F (t)−L(t)|.
Therefore F (p) ≤ L(p) < F (t). The same arguments give F (q) < F (t). This is
a contradiction, because t is between p and q and its image under a monotone
mapping has to be between images of p and q. �

Lemma 4.4.15 (Cauchy-Bunyakovski-Schwarz).

(4.4.10)

(∫ b

a

f(x)g(x) dx

)2

≤
∫ b

a

f2(x) dx
∫ b

a

g2(x) dx.

Proof. Since
∫ b
a

(f(x) + tg(x))2 dx ≥ 0 for all t, the discriminant of the fol-
lowing quadratic equation is non-negative:

(4.4.11) t2
∫ b

a

g2(x) dx+ 2t
∫ b

a

f(x)g(x) dx+
∫ b

a

f2(x) dx = 0.

This discriminant is 4
(∫ b

a
f(x)g(x) dx

)2

− 4
∫ b
a
f2(x) dx

∫ b
a
g2(x) dx. �

Now we are ready to prove the logarithmic convexity of the Euler integral.
The integral is obviously an increasing function, hence by the mean criterion it is
sufficient to prove the following inequality:

(4.4.12)
(∫ ∞

0

t
x+y

2 −1e−t dt

)2

≤
∫ ∞

0

tx−1e−t dt

∫ ∞
0

ty−1e−t dt.
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This inequality turns into the Cauchy-Bunyakovski-Schwarz inequality (4.4.10) for
f(x) = t

x−1
2 e−t/2 and g(t) = t

y−1
2 e−t/2.

Evaluation of products. From the canonical Weierstrass form it follows that
∞∏
n=1

{(1− x/n) exp(x/n)} =
−eγx

xΓ(−x)
,(4.4.13)

∞∏
n=1

{(1 + x/n) exp(−x/n)} =
e−γx

xΓ(x)
.

One can evaluate a lot of products by splitting them into parts which have this
canonical form (4.4.13). For example, consider the product

∏∞
k=1

(
1− x2

k2

)
. Divi-

sion by n2 transforms it into
∏∞
k=1 (1− 1

2n )−1(1 + 1
2n )−1. Introducing multipliers

e
1

2n and e−
1

2n , one gets a canonical form

(4.4.14)
∞∏
n=1

{(
1− 1

2n

)
e

1
2n

}−1 ∞∏
n=1

{(
1 +

1
2n

)
e−

1
2n

}−1

.

Now we can apply (4.4.13) for x = 1
2 . The first product of (4.4.14) is equal to

− 1
2Γ(−1/2)e−γ/2, and the second one is 1

2Γ(1/2)eγ/2. Since according to the char-
acteristic equation for Γ-function, Γ(1/2) = − 1

2Γ(1/2), one gets Γ(1/2)2/2 as the
value of Wallis product. Since the Wallis product is π

2 , we get Γ(1/2) =
√
π.

Problems.
1. Evaluate the product

∏∞
n=1

(
1 + x

n

) (
1 + 2x

n

) (
1− 3x

n

)
.

2. Evaluate the product
∏∞
k=1

k(5+k)
(3+k)(2+k) .

3. Prove: The sum of logarithmically convex functions is logarithmically convex.
4. Prove Γ(x) = limn→∞

n!nxx−n

x .
5. Prove

∏∞
k=1

k
x+k

(
k+1
k

)x
= Γ(x+ 1).

6. Prove Legendre’s doubling formula Γ(2x)Γ(0.5) = 22x−1Γ(x+ 0.5)Γ(x).



4.5. The Cotangent

On the contents of the lecture. In this lecture we perform what was
promised at the beginning: we sum up the Euler series and expand sinx into
the product. We will see that sums of series of reciprocal powers are expressed via
Bernoulli numbers. And we will see that the function responsible for the summation
of the series is the cotangent.

. An ingenious idea, which led Euler to finding the sum
∑∞
k=1

1
k2 , is the following.

One can consider sinx as a polynomial of infinite degree. This polynomial has as
roots all points of the type kπ. Any ordinary polynomial can be expanded into a
product

∏
(x−xk) where xk are its roots. By analogy, Euler conjectured that sinx

can be expanded into the product

sinx =
∞∏

k=−∞

(x− kπ).

This product diverges, but can be modified to a convergent one by division of the
n-th term by −nπ. The division does not change the roots. The modified product
is

(4.5.1)
∞∏

k=−∞

(
1− x

kπ

)
= x

∞∏
k=1

(
1− x2

k2π2

)
.

Two polynomials with the same roots can differ by a multiplicative constant. To
find the constant, consider x = π

2 . In this case we get the inverse to the Wallis
product in (4.5.1) multiplied by x = π

2 . Hence the value of (4.5.1) is 1, which
coincides with sin π

2 . Thus it is natural to expect that sinx coincides with the
product (4.5.1).

There is another way to tame
∏∞
k=−∞(x − kπ). Taking the logarithm, we

get a divergent series
∑∞
k=−∞ ln(x − kπ), but achieve convergence by termwise

differentiation. Since the derivative of ln sinx is cotx, it is natural to expect that
cotx coincides with the following function

(4.5.2) ctg(x) =
∞∑

k=−∞

1
x− kπ

=
1
x

+
∞∑
k=1

2x
x2 − k2π2

.

Cotangent expansion. The expansion z
ez−1 =

∑∞
k=0

Bk
k! z

k allows us to get a
power expansion for cot z. Indeed, representing cot z by Euler’s formula one gets

i
eiz + e−iz

eiz − e−iz
= i

e2iz + 1
e2iz − 1

= i+
2i

e2iz − 1
= i+

1
z

2iz
e2iz − 1

= i+
1
z

∞∑
k=0

Bk
k!

(2iz)k.

The term of the last series corresponding to k = 1 is 2izB1 = −iz. Multiplied by
1
z , it turns into −i, which eliminates the first i. The summand corresponding to
k = 0 is 1. Taking into account that B2k+1 = 0 for k > 0, we get

cot z =
1
z

+
∞∑
k=1

(−1)k
4kB2k

(2k)!
z2k−1.

118
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Power expansion of ctg(z). Substituting

1
z2 − n2π2

= − 1
n2π2

1
1− z2

n2π2

= −
∞∑
k=0

z2k

(nπ)2k+2

into (4.5.2) and changing the order of summation, one gets:
∞∑
n=1

∞∑
k=0

z2k

(nπ)2k+2
=
∞∑
k=0

z2k

π2k+2

∞∑
n=1

1
n2k+2

.

The change of summation order is legitimate in the disk |z| < 1, because the series
absolutely converges there. This proves the following:

Lemma 4.5.1. ctg(z)− 1
z is an analytic function in the disk |z| < 1. The n-th

coefficient of the Taylor series of ctg(z) − 1
z at 0 is equal to 0 for even n and is

equal to 1
πn+1

∑∞
k=1

1
kn+1 for any odd n.

Thus the equality cot z = ctg(z) would imply the following remarkable equality:

(−1)n
4nB2n

2n!
= − 1

π2n

∞∑
k=1

1
k2n

In particular, for n = 1 it gives the sum of Euler series as π2

6 .

Exploring the cotangent.

Lemma 4.5.2. | cot z| ≤ 2 provided | Im z| ≥ 1.

Proof. Set z = x + iy. Then |eiz| = |eix−y| = e−y. Therefore if y ≥ 1, then
|e2iz| = e−2y ≤ 1

e2 <
1
3 . Hence |e2iz + 1| ≤ 1

e2 + 1 < 4
3 and |e2iz − 1| ≥ 1− 1

e2 >
2
3 .

Thus the absolute value of

cot z = i
eiz + e−iz

eiz − e−iz
= i

e2iz + 1
e2iz − 1

is less than 2. For y ≥ 1 the same arguments work for the representation of cot z
as i 1+e−2iz

1−e−2iz . �

Lemma 4.5.3. | cot(π/2 + iy)| ≤ 4 for all y.

Proof. cot(π/2 + iy) = cos(π/2+iy)
sin(π/2+iy) = − sin iy

cos iy = et−e−t
et+e−t . The module of the

numerator of this fraction does not exceed e− e−1 for t ∈ [−1, 1] and the denomi-
nator is greater than 1. This proves the inequality for y ∈ [−1, 1]. For other y this
is the previous lemma. �

Let us denote by πZ the set {kπ | k ∈ Z} of π-integers.

Lemma 4.5.4. The set of singular points of cot z is πZ. All these points are
simple poles with residue 1.

Proof. The singular points of cot z coincide with the roots of sin z. The roots
of sin z are roots of the equation eiz = e−iz which is equivalent to e2iz = 1. Since
|e2iz| = |e−2 Im z| one gets Im z = 0. Hence sin z has no roots beyond the real
line. And all its real roots as we know have the form {kπ}. Since limz→0 z cot z =
limz→0

z cos z
sin z = limz→0

z
sin z = 1

sin′ 0 = 1, we get that 0 is a simple pole of cot z
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with residue 1 and the other poles have the same residue because of periodicity of
cot z. �

Lemma 4.5.5. Let f(z) be an analytic function on a domain D. Suppose that
f has in D finitely many singular points, they are not π-integers and D has no
π-integer point on its boundary. Then∮

∂D

f(ζ) cot ζdζ = 2πi
∞∑

k=−∞

f(kπ)[kπ ∈ D]

+ 2πi
∑
z∈D

resz(f(z) cot z)[z /∈ πZ].

Proof. In our situation every singular point of f(z) cot z in D is either a
π-integer or a singular point of f(z). Since resz=kπ cot z = 1, it follows that
resz=kπ f(z) cot z = f(kπ). Hence the conclusion of the lemma is a direct con-
sequence of Residue Theory. �

Exploring ctg(z).

Lemma 4.5.6. ctg(z + π) = ctg(z) for any z.

Proof.

ctg(z + π) = lim
n→∞

n∑
k=−n

1
z + π − kπ

= lim
n→∞

n−1∑
k=−n−1

1
z + kπ

= lim
n→∞

1
z − (n+ 1)π

+ lim
n→∞

1
z − nπ

+ lim
n→∞

(n−1)∑
k=−(n−1)

1
z + π − kπ

= 0 + 0 + ctg(z).

�

Lemma 4.5.7. The series representing ctg(z) converges for any z which is not
a π-integer. | ctg(z)| ≤ 2 for all z such that | Im z| > π.

Proof. For any z one has |z2 − k2π2| ≥ k2 for k > |z|. This provides the
convergence of the series. Since ctg(z) has period π, it is sufficient to prove the
inequality of the lemma in the case x ∈ [0, π], where z = x + iy. In this case
|y| ≥ |x| and Re z2 = x2 − y2 ≤ 0. Then Re(z2 − k2π2) ≤ −k2π2. It follows that
|z2−k2π2| ≥ k2π2. Hence | ctg(z)| is termwise majorized by 1

π+
∑∞
k=1

1
k2π2 < 2. �

Lemma 4.5.8. | ctg(z)| ≤ 3 for any z with Re z = π
2 .

Proof. In this case Re(z2 − k2π2) = π2

4 − y
2 − k2π2 ≤ −k2 for all k ≥ 1.

Hence |C(z)| ≤ 2
π +

∑∞
k=1

1
k2 ≤ 1 + 2 = 3. �

Lemma 4.5.9. For any z 6= kπ and domain D which contains z and whose
boundary does not contain π-integers, one has

(4.5.3)
∮
∂D

ctg(ζ)
ζ − z

dζ = 2πi ctg(z) + 2πi
∞∑

k=−∞

1
kπ − z

[kπ ∈ D].
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Proof. As was proved in Lecture 3.6, the series
∑∞
k=−∞

1
(ζ−z)(ζ−kπ) admits

termwise integration. The residues of 1
(ζ−z)(ζ−kπ) are 1

kπ−z at kπ and 1
z−kπ at z.

Hence ∮
∂D

1
(ζ − z)(ζ − kπ)

dζ =

{
2πi 1

z−kπ for kπ /∈ D,
0 if kπ ∈ D.

It follows that ∮
∂D

ctg(ζ)
ζ − z

dζ = 2πi
∞∑

k=−∞

1
z − kπ

[kπ /∈ D]

= 2πi ctg(z)−
∞∑

k=−∞

1
z − kπ

[kπ ∈ D].

�

Lemma 4.5.10. ctg(z) is an analytic function defined on the whole plane, having
all π-integers as its singular points, where it has residues 1.

Proof. Consider a point z /∈ πZ. Consider a disk D, not containing π-integers
with center at z. Then formula (4.5.3) transforms to the Cauchy Integral Formula.
And our assertion is proved by termwise integration of the power expansion of 1

ζ−z
just with the same arguments as was applied there. The same formula (4.5.3) allows
us to evaluate the residues. �

Theorem 4.5.11. cot z = 1
z +

∑∞
k=1

2z
z2−k2π2 .

Proof. Consider the difference R(z) = cot z − ctg(z). This is an analytic
function which has π-integers as singular points and has residues 0 in all of these.
Hence R(z) = 1

2πi

∮
∂D

R(ζ)
ζ−z dζ for any z /∈ πZ. We will prove that R(z) is constant.

Let z0 and ζ be a pair of different points not belonging to πZ. Then for any D such
that ∂D ∩ πZ = ∅ one has

R(z)−R(z0) =
1

2πi

∮
∂D

R(ζ)
(

1
ζ − z

− 1
ζ − z0

)
dζ

=
1

2πi

∮
∂D

R(z)(z − z0)
(ζ − z)(ζ − z0)

.

(4.5.4)

Let us define Dn for a natural n > 3 as the rectangle bounded by the lines Re z =
±(π/2 − nπ), Im z = ±nπ. Since |R(z)| ≤ 7 by Lemmas 4.5.2, 4.5.3, 4.5.7, and
4.5.8 the integrand of (4.5.4) eventually is bounded by 7|z−z0|

n2 . The contour of
integration consists of four monotone curves of diameter < 2nπ. By the Estimation
Lemma 3.5.4, the integral can be estimated from above by 32πn7|z−z0|

n2 . Hence the
limit of our integral as n tends to infinity is 0. This implies R(z) = R(z0). Hence
R(z) is constant and the value of the constant we find by putting z = π/2. As
cotπ/2 = 0, the value of the constant is

ctg(π/2) = lim
n→∞

n∑
k=−n

1
π/2− kπ

=
2
π

lim
n→∞

n∑
k=−n

1
1− 2k

.
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This limit is zero because
n∑

k=−n

1
1− 2k

=
0∑

k=−n

1
1− 2k

+
n∑
k=1

1
1− 2k

=
n∑
k=0

1
2k + 1

+
n∑
k=1

− 1
2k − 1

=
1

2n+ 1
.

�

Summation of series by cot z.

Theorem 4.5.12. For any rational function R(z), which is not singular in
integers and has degree ≤ −2, one has

∑∞
k=−∞R(n) = −

∑
z resπ cot(πz)R(z).

Proof. In this case the integral limn→∞
∮
∂Dn/pi

R(z)π cotπz = 0. Hence
the sum of all residues of R(z)π cotπz is zero. The residues at π-integers gives∑∞
k=−∞R(k). The rest gives −

∑
z resπ cot(πz)R(z). �

Factorization of sinx. Theorem 4.5.11 with πz substituted for z gives the se-
ries π cotπz =

∑∞
k=−∞

1
z−k . The half of the series on the right-hand side consisting

of terms with nonnegative indices represents a function, which formally telescopes
− 1
z . The negative half telescopes 1

z . Let us bisect the series into nonnegative and
negative halves and add

∑∞
k=−∞

1
k [k 6= 0] to provide convergence:

−1∑
k=−∞

(
1

z − k
+

1
k

)
+
∞∑
k=0

(
1

z − k
+

1
k + 1

)

=
∞∑
k=1

(
−1
k

+
1

z + k

)
+
∞∑
k=1

(
1

z + 1− k
+

1
k

)
.

The first of the series on the right-hand side represents −z(z) − γ, the second is
z(−z+1)+γ. We get the following complement formula for the digamma function:

−z(z) +z(1− z) = π cotπz.

Since Θ′′(z+1) = z
′(z) = Γ (z) (Lemma 4.4.11) it follows that Θ′(1+z) = z(z)+c

and Θ′(−z) = −(z(1−z)+c). Therefore Θ′(1+z)+Θ′(−z) = π cotπz. Integration
of the latter equality gives −Θ(1 + z)−Θ(−z) = ln sinπz + c. Changing z by −z
we get Θ(1 − z) + Θ(z) = − ln sinπz + c. Exponentiating gives Γ(1 − z)Γ(−z) =

1
sinπz c. One defines the constant by putting z = 1

2 . On the left-hand side one gets
Γ( 1

2 )2 = π, on the right-hand side, c. Finally we get the complement formula for
the Gamma-function:

(4.5.5) Γ(1− z)Γ(z) =
π

sinπz
.

Now consider the product
∏∞
k=1(1− x2

k2 ). Its canonical form is

(4.5.6)
∞∏
n=1

{(
1− x

n

)
e
x
n

}−1 ∞∏
n=1

{(
1 +

x

n

)
e−

x
n

}−1

.

The first product of (4.5.6) is equal to − eγx

xΓ(−x) , and the second one is e−γx

xΓ(−x) .
Therefore the whole product is − 1

x2Γ(x)Γ(−x) . Since Γ(1 − x) = −xΓ(−x) we get
the following result

1
Γ(x)Γ(1− x)

= x
∞∏
k=1

(
1− x2

k2

)
.
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Comparing this to (4.5.5) and substituting πx for x we get the Euler formula:

sinx = x
∞∏
k=1

(
1− x2

π2k2

)
.

Problems.
1. Expand tan z into a power series.
2. Evaluate

∑∞
k=1

1
1+k2 .

3. Evaluate
∑∞
k=1

1
1+k4 .



4.6. Divergent Series

On the contents of the lecture. “Divergent series is a pure handiwork of
Diable. It is a full nonsense to say that 12n − 22n + 32n − · · · = 0. Do you keep
to die laughing about this?” (N.H. Abel letter to . . . ). The twist of fate: now one
says that that the above mentioned equality holds in Abel’s sense.

The earliest analysts thought that any series, convergent or divergent, has a
sum given by God and the only problem is to find it correctly. Sometimes they
disagreed what is the correct answer. In the nineteenth century divergent series
were expelled from mathematics as a “handiwork of Diable” (N.H. Abel). Later
they were rehabilitated (see G.H. Hardy’s book Divergent Series1). Euler remains
the unsurpassed master of divergent series. For example, with the help of divergent
series he discovered Riemann’s functional equation of the ζ-function a hundred
years before Riemann.

Evaluations with divergent series. Euler wrote: “My pen is clever than
myself.” Before we develop a theory let us simply follow to Euler’s pen. The
fundamental equality is

(4.6.1) 1 + x+ x2 + x3 + · · · = 1
1− x

.

Now we, following Euler, suppose that this equality holds for all x 6= 1. In the
second lecture we were confused by some unexpected properties of divergent series.
But now in contrast with the second lecture we do not hurry up to land. Let us
look around.

Substituting x = −ey in (4.6.1) one gets

1− ey + e2y − e3y + · · · = 1
1 + ey

.

On the other hand

(4.6.2)
1

1 + ey
=

1
ey − 1

− 2
e2y − 1

.

Since

(4.6.3)
z

ez − 1
=
∞∑
k=0

Bk
k!
zk.

One derives from (4.6.2) via (4.6.3)

(4.6.4)
1

ey + 1
=
∞∑
k=1

Bk(1− 2k)
k!

yk−1.

Let us differentiate repeatedly n-times the equality (6) by y. The left-hand side
gives

∑∞
k=0(−1)kkneky. In particular for y = 0 we get

∑∞
k=0(−1)kkn. We get on

the right-hand side by virtue of (4.6.4) the following(
d

dy

)n 1
1 + ey

=
Bn+1(1− 2n+1)

n+ 1
.

Combining these results we get the following equality

(4.6.5) 1n − 2n + 3n − 4n + · · · = Bn+1(2n+1 − 1)
n+ 1

.

1G.H. Hardy, Divergent Series, Oxford University Press, .
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Since odd Bernoulli numbers vanish, we get

12n − 22n + 32n − 42n + · · · = 0.

Consider an even analytic function f(x), such that f(0) = 0. In this case f(x)
is presented by a power series a1x

2 + a2x
4 + a3x

6 + . . . , then
∞∑
k=1

(−1)k−1 f(kx)
k2

=
∞∑
k=1

(−1)k−1

k2

∞∑
n=1

anx
2nk2n

=
∞∑
n=1

anx
2n
∞∑
k=1

(−1)k−1k2n−2

= a1x
2(1− 1 + 1− 1 + . . . )

=
a1x

2

2
.

In particular, for f(x) = 1− cosx this equality turns into

(4.6.6)
∞∑
k=1

(−1)k−1 1− cos kx
k2

=
x2

4
.

For x = π the equality (4.6.6) gives

1 +
1
32

+
1
52

+
1
72

+ · · · = π2

8
.

Since
∞∑
k=0

1
(2k + 1)2

=
∞∑
k=1

1
k2
−
∞∑
k=1

1
(2k)2

=
(

1− 1
4

) ∞∑
k=1

1
k2

one derives the sum of the Euler series:
∞∑
k=1

1
k2

=
π2

6
.

We see that calculations with divergent series sometimes give brilliant results.
But sometimes they give the wrong result. Indeed the equality (4.6.6) generally is
untrue, because on the left-hand side we have a periodic function and on the right-
hand side a non-periodic one. But it is true for x ∈ [−π, π]. Termwise differentiation
of (4.6.6) gives the true equality (3.4.2), which we know from Lecture 3.4.

Euler’s sum of a divergent series. Now we develop a theory justifying
the above evaluations. Euler writes that the value of an infinite expression (in
particular the sum of a divergent series) is equal to the value of a finite expression
whose expansion gives this infinite expression. Hence, numerical equalities arise by
substituting a numerical value for a variable in a generating functional identity. To
evaluate the sum of a series

∑∞
k=0 ak Euler usually considers its power generating

function g(z) represented by the power series
∑∞
k=0 akz

k, and supposes that the
sum of the series is equal to g(1).

To be precise suppose that the power series
∑∞
k=0 akz

k converges in a neighbor-
hood of 0 and there is an analytic function g(z) defined in a domain U containing
a path p from 0 to 1 and such that g(z) =

∑∞
k=0 akz

k for z sufficiently close to 0
and 1 is a regular point of g. Then the series

∑∞
k=0 ak is called Euler summable

and the value g(1) is called its analytic Euler sum with respect to p. And we will
use a special sign ' to denote the analytical sum.
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By the Uniqueness Theorem 3.6.9 the value of analytic sum of a series is
uniquely defined for a fixed p. But this value generally speaking depends on the
path. For example, let us consider the function

√
1 + x. Its binomial series for

x = −2 turns into

−1 + 1− 1
2!
− 1 · 3

3!
− 1 · 3 · 5

4!
− · · · − (2k − 1)!!

(k + 1)!
− . . . .

For p(t) = eiπt one sums up this series to i, because it is generated by the function
exp ln(1+z)

2 defined in the upper half-plane. And along p(t) = e−iπt this series is
summable to −i by exp − ln(1+z)

2 defined in the lower half-plane.
For a fixed path the analytic Euler sum evidently satisfies the Shift, Multipli-

cation and Addition Formulas of the first lecture. But we see that the analytic sum
of a real series may be purely imaginary. Hence the rule Im

∑∞
k=0 ak '

∑∞
k=0 Im ak

fails for the analytic sum. The Euler sum along [0, 1] coincides with the Abel sum
of the series in the case when both of them exist.

In above evaluations we apply termwise differentiation to functional series. If
the Euler sum

∑∞
k=1 fk(z) is equal to F (z) for all z in a domain this does not

guarantee the possibility of termwise differentiation. To guarantee it we suppose
that the function generating the equality

∑∞
k=1 fk(z) ' F (z) analytically depends

on z. To formalize the last condition we have to introduce analytic functions of two
variables.

Power series of two variables. A power series of two variables z, w is defined
as a formal unordered sum

∑
k,m akmz

kwm, over N × N — the set of all pairs of
nonnegative integers.

For a function of two variables f(z, w) one defines its partial derivative ∂f(z0,w0)
∂z

with respect to z at the point (z0, w0) as the limit of f(z0+∆z,w0)−f(z0,w0)
∆z as ∆z

tends to 0.

Lemma 4.6.1. If
∑
akmz

k
1w

m
1 absolutely converges, then both

∑
akmz

kwm and∑
makmz

kwm−1 absolutely converge provided |z| < |z1|, |w| < |w1|. And for any
fixed z, such that |z| < |z1| the function

∑
makz

kwm−1 is the partial derivative of∑
akmz

kwm with respect to w.

Proof. Since
∑
|akm||z1|k|w1|m <∞ the same is true for

∑
|akm||z|k|w|m for

|z| < |z1|, |w| < |w1|. By the Sum Partition Theorem we get the equality∑
akmz

kwm =
∞∑
m=0

wm
∞∑
k=0

akmz
k.

For any fixed z the right-hand side of this equality is a power series with respect to
w as the variable. By Theorem 3.3.9 its derivative by w, which coincides with the
partial derivative of the left-hand side, is equal to

∞∑
m=0

mwm−1
∞∑
k=0

akmz
k =

∑
makmw

m−1zk.

�

Analytic functions of two variables. A function of two variables F (z, w)
is called analytic at the point (z0, w0) if for (z, w) sufficiently close to (z0, w0) it
can be presented as a sum of a power series of two variables.
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Theorem 4.6.2.

(1) If f(z, w) and g(z, w) are analytic functions, then f+g and fg are analytic
functions.

(2) If f1(z), f2(z) and g(z, w) are analytic functions, then g(f1(z), f2(w)) and
f1(g(z, w)) are analytic functions.

(3) The partial derivative of any analytic function is an analytic function.

Proof. The third statement follows from Lemma 4.6.1. The proofs of the first
and the second statements are straightforward and we leave them to the reader. �

Functional analytical sum. Let us say that a series
∑∞
k=1 fk(z) of analytic

functions is analytically summable to a function F (z) in a domain U ⊂ C along
a path p in C × C, such that p(0) ∈ U × 0 and p(1) ∈ U × 1, if there exists an
analytic function of two variables F (z, w), defined on a domain W containing p,
U × 0, U × 1, such that for any z0 ∈ U the following two conditions are satisfied:

(1) F (z0, 1) = F (z0).

(2) F (z, w) =
∑ f(k)

m (z0)
k! (z − z0)kwm for sufficiently small |w| and |z − z0|.

Let us remark that the analytic sum does not change if we change p keeping it
inside W . That is why one says that the sum is evaluated along the domain W .

To denote the functional analytical sum we use the sign ∼=. And we will write
also ∼=W and ∼=p to specify the domain or the path of summation.

The function F (z, w) will be called the generating function for the analytical
equality

∑∞
k=1 fk(z) ∼= F (z).

Lemma 4.6.3. If f(z) is an analytic function in a domain U containing 0, such
that f(z) =

∑∞
k=0 akz

k for sufficiently small |z|, then f(z) ∼=W

∑∞
k=0 akz

k in U
for W = {(z, w) | wz ∈ U}.

Proof. The generating function of this analytical equality is f((z−z0)w). �

Lemma 4.6.4 (on substitution). If F (z) ∼=p

∑∞
k=0 fk(z) in U and g(z) is an

analytic function, then F (g(z)) ∼=g(p)

∑∞
k=0 fk(g(z)) in g−1(U).

Proof. Indeed, if F (z, w) generates F (z) ∼=p

∑∞
k=0 fk(z), then F (g(z), w))

generates F (g(z)) ∼=g(p)

∑∞
k=0 fk(g(z)). �

N. H. Abel was the first to have some doubts about the legality of termwise
differentiation of functional series. The following theorem justifies this operation
for analytic functions.

Theorem 4.6.5. If
∑∞
k=1 fk(z) ∼=p F (z) in U then

∑∞
k=1 f

′
k(z) ∼=p F

′(z) in U .

Proof. Let F (z, w) be a generating function for
∑∞
k=1 fk(z) ∼=p F (z). We

demonstrate that its partial derivative by z (denoted F ′(z, w)) is the generating
function for

∑∞
k=1 f

′
k(z) ∼=p F

′(z). Indeed, locally in a neighborhood of (z0, 0) one

has F (z, w) =
∑ f(k)

m (z0)
k! wm(z− z0)k. By virtue of Lemma 4.6.1 its derivative by z

is F ′(z, w) =
∑ f(k)

m (z0)
(k−1)! w

m(z − z0)k−1 =
∑ f ′(k)

m (z0)
k! wm(z − z0)k. �

The dual theorem on termwise integration is the following one.

Theorem 4.6.6. Let
∑∞
k=1 fk

∼= F be generated by F (z, w) defined on W =
U × V . Then for any path q in U one has

∫
q
F (z) dz '

∑∞
k=1

∫
q
fk(z) dz.
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Proof. The generating function for integrals is defined as
∫
q
F (z, w) dz. �

The proof of the following theorem is left to the reader.

Theorem 4.6.7. If
∑∞
k=0 fk

∼=p F and
∑∞
k=0 gk

∼=p G then
∑∞
k=0(fk + gk) ∼=p

F +G,
∑∞
k=1 fk

∼=p F − f0,
∑∞
k=0 cfk

∼=p cF

Revision of evaluations. Now we are ready to revise the above evaluation
equipped with the theory of analytic sums. Since all considered generating functions
in this paragraph are single valued, the results do not depend on the choice of the
path of summation. That is why we drop the indications of path below.

The equality (4.6.1) is the analytical equivalence generated by 1
1−tx . The next

equality (4.6.7) is the analytical equivalence by Lemma 4.6.4. The equality (4.6.3)
is analytical equivalence due to Lemma 4.6.3. Termwise differentiation of (4.6.7) is
correct by virtue of Theorem 4.6.5. Therefore the equality (4.6.5) is obtained by the
restriction of an analytical equivalence. Hence the Euler sum of

∑∞
k=1(−1)kk2n is

equal to 0. Since the series
∑∞
k=1(−1)kk2nzk converges for |z| < 1 its value coincides

with the value of the generating function. And the limit lim
z→1−0

∑∞
k=1(−1)kk2nzk

gives the Euler sum, which is zero. Hence as a result of our calculations we have
found Abel’s sum

∑∞
k=1(−1)kk2n = 0.

Now we choose another way to evaluate the Euler series. Substituting x = e±iθ

in (4.6.1) for 0 < θ < 2π one gets

1 + eiθ + e2iθ + e3iθ + . . . ∼=
1

1− eiθ
,

1 + e−iθ + e−2iθ + e−3iθ + . . . ∼=
1

1− e−iθ
.

(4.6.7)

Termwise addition of the above lines gives for θ ∈ (0, 2π) the following equality

(4.6.8) cos θ + cos 2θ + cos 3θ + · · · ∼= −
1
2
.

Integration of (4.6.8) from π to x with subsequent replacement of x by θ gives
by Theorem 4.6.6:

∞∑
k=1

sin kθ
k
∼=
π − θ

2
(0 < θ < 2π).

A second integration of the same type gives
∞∑
k=1

cos kθ − (−1)k

k2
∼=

(π − θ)2

4
.

Putting θ = π
2 we get

∞∑
k=1

(−1)k+1

k2
− 1

4

∞∑
k=1

(−1)k+1

k2
' π2

16
.

Therefore
∞∑
k=1

(−1)k+1

k2
=
π2

12
.
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Since
∞∑
k=1

1
k2

=
∞∑
k=1

(−1)k+1

k2
+ 2

∞∑
k=1

1
(2k)2

one gets
∞∑
k=1

1
k2

=
1
2

∞∑
k=1

(−1)k+1

k2
=
π2

6
.

Problems.
1. Prove that the analytic sum of convolution of two series is equal to the product

of analytic sums of the series.
2. Suppose that for all n ∈ N one has An '

∑∞
k=0 an,k and Bn '

∑∞
k=0 ak,n.

Prove that the equality
∑∞
k=0Ak =

∑∞
k=0Bk holds provided there is an analytic

function F (z, w) coinciding with
∑
ak,nz

kwn for sufficiently small |w|,|z| which
is defined on a domain containing a path joining (0, 0) with (1, 1) analytically
extended to (1, 1) (i.e., (1, 1) is a regular point of F (z, w)).
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