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4.1. Newton SeriesOn the 
ontents of the le
ture. The formula with the binomial series wasengraved on Newton's gravestone in 1727 at Westminster Abbey.Interpolation problem. Suppose we know the values of a fun
tion f at somepoints 
alled interpolation nodes and we would like to interpolate the value of f atsome point, not 
ontained in the data. This is the so-
alled interpolation problem.Interpolation was applied in the 
omputation of logarithms, maritime navigation,astronomi
al observations and in a lot of other things.A natural idea is to 
onstru
t a polynomial whi
h takes given values at theinterpolation nodes and 
onsider its value at the point of interest as the interpola-tion. Values at n + 1 points de�ne a unique polynomial of degree n, whi
h takesjust these values at these points. In 1676 Newton dis
overed a formula for thispolynomial, whi
h is now 
alled Newton's interpolation formula.Consider the 
ase, when interpolation nodes are natural numbers. Re
all thatthe di�eren
e of a fun
tion f is the fun
tion denoted Æf and de�ned by Æf(x) =f(x + 1) � f(x). De�ne iterated di�eren
es Ækf by indu
tion: Æ0f = f , Æk+1f =Æ(Ækf). Re
all that xk denotes the k-th fa
torial power xk = x(x�1) : : : (x�k+1).Lemma 4.1.1. For any polynomial P (x), its di�eren
e �P (x) is a polynomialof degree one less.Proof. The proof is by indu
tion on the degree of P (x). The di�eren
e is
onstant for any polynomial of degree 1. Indeed, Æ(ax + b) = a. Suppose thelemma is proved for polynomials of degree � n and let P (x) = Pn+1k=0 akxk be apolynomial of degree n + 1. Then P (x) � an+1xn+1 = Q(x) is a polynomial ofdegree � n. �P (x) = �axn+1 +�Q(x). By the indu
tion hypothesis, �Q(x) hasdegree � n� 1 and, as we know, �xn+1 = (n+ 1)xn has degree n. �Lemma 4.1.2. If �P (x) = 0, and P (x) is a polynomial, then P (x) is 
onstant.Proof. If �P (x) = 0, then degree of P (x) 
annot be positive by Lemma 4.1.1,hen
e P (x) is 
onstant. �Lemma 4.1.3 (Newton Polynomial Interpolation Formula). For any polynomialP (x)(4.1.1) P (x) = 1Xk=0 �kP (0)k! xk:Proof. If P (x) = ax + b, then �0P (0) = b, �1P (0) = a and ÆkP (x) = 0 fork > 1. Hen
e the Newton series (4.1.1) turns into b+ax. This proves our assertionfor polynomials of degree � 1. Suppose it is proved for polynomials of degree n.Consider P (x) of degree n + 1. Then �P (x) = P1k=1 �kP (0)k! xk by the indu
tionhypothesis. Denote by Q(x) the Newton series P1k=0 �kP (0)k! xk for P (x).96



4.1 newton series 97Then �Q(x) = 1Xk=0 �kP (0)k! (x+ 1)k � 1Xk=0 �kP (0)k! xk= 1Xk=0 �kP (0)k! �xk= 1Xk=0 �kP (0)k! kxk�1= 1Xk=0 �kP (0)(k � 1)!xk�1= 1Xk=0 Æk(ÆP (0))k! xk= �P (x):Hen
e �(P (x) � Q(x)) = 0 and P (x) = Q(x) + 
. Sin
e P (0) = Q(0), one gets
 = 0. This proves P (x) = Q(x). �Lemma 4.1.4 (Lagrange Formula). For any sequen
e fykgnk=0, the polynomialLn(x) =Pnk=0(�1)n�k ykk!(n�k)! xn+1x�k has the property Ln(k) = yk for 0 � k � n.Proof. For x = k, all terms of the sum Pnk=0(�1)n�k ykk!(n�k)! xn+1x�k but thek-th vanish, and xkx�k is equal to k!(n� k)!(�1)n�k. �Lemma 4.1.5. For any fun
tion f and for any natural number m � n one hasf(m) =Pnk=0 Ækf(0)k! mk.Proof. Consider the Lagrange polynomial Ln su
h that Ln(k) = f(k) fork � n. Then ÆkLn(0) = Ækf(0) for all k � n and ÆkLn(0) = 0 for k > n,be
ause the degree of Ln is n. Hen
e, Ln(x) = P1k=0 Ækf(0)k! xk = Pnk=0 Ækf(0)k! xkby Lemma 4.1.3. Putting x = m in the latter equality, one gets f(m) = Ln(m) =Pnk=0 Ækf(0)k! mk. �We see that the Newton polynomial gives a solution for the interpolation prob-lem and our next goal is to estimate the interpolation error.Theorem on extremal values. The least upper bound of a set of numbersA is 
alled the supremum of A and denoted by supA. In parti
ular, the ultimatesum of a positive series is the supremum of its partial sums. And the variation ofa fun
tion on an interval is the supremum of its partial variations.Dually, the greatest lower bound of a set A is 
alled the in�num and denotedby inf A.Theorem 4.1.6 (Weierstrass). If a fun
tion f is 
ontinuous on an interval[a; b℄, then it takes maximal and minimal values on [a; b℄.Proof. The fun
tion f is bounded by Lemma 3.6.3. Denote by B the supre-mum of the set of values of f on [a; b℄. If f does not take the maximum value, thenf(x) 6= B for all x 2 [a; b℄. In this 
ase 1B�f(x) is a 
ontinuous fun
tion on [a; b℄.



98 4.1 newton seriesHen
e it is bounded by Lemma 3.6.3. But the di�eren
e B� f(x) takes arbitrarilysmall values, be
ause B�" does not bound f(x). Therefore 1B�f(x) is not bounded.This is in 
ontradi
tion to Lemma 3.6.3, whi
h states that a lo
ally bounded fun
-tion is bounded. The same arguments prove that f(x) takes its minimal value on[a; b℄. �Theorem 4.1.7 (Rolle). If a fun
tion f is 
ontinuous on the interval [a; b℄,di�erentiable in interval (a; b) and f(a) = f(b), then f 0(
) = 0 for some 
 2 (a; b).Proof. If the fun
tion f is not 
onstant on [a; b℄ then either its maximal valueor its minimal value di�ers from f(a) = f(b). Hen
e at least one of its extremalvalues is taken in some point 
 2 (a; b). Then f 0(
) = 0 by Lemma 3.2.1. �Lemma 4.1.8. If an n-times di�erentiable fun
tion f(x) has n+1 roots in theinterval [a; b℄, then f (n)(�) = 0 for some � 2 (a; b).Proof. The proof is by indu
tion. For n = 1 this is Rolle's theorem. Letfxkgnk=0 be a sequen
e of roots of f . By Rolle's theorem any interval (xi; xi+1)
ontains a root of f 0. Hen
e f 0 has n� 1 roots, and its (n� 1)-th derivative has aroot. But the (n� 1)-th derivative of f 0 is the n-th derivative of f . �Theorem 4.1.9 (Newton Interpolation Formula). Let f be an n + 1 timesdi�erentiable fun
tion on I � [0; n℄. Then for any x 2 I there is � 2 I su
h thatf(x) = nXk=0 Ækf(0)k! xk + f (k+1)(�)(k + 1)! xk+1:Proof. The formula holds for x 2 f0; 1; : : : ng and any �, due to Lemma 4.1.5,be
ause xn+1 = 0 for su
h x. For other x one has xn+1 6= 0, hen
e there is C su
hthat f(x) =Pnk=0 Ækf(0)k! xk+Cxk+1. The fun
tion F (y) = f(y)�Pnk=0 Ækf(0)k! xk�Cyk+1 has roots 0; 1; : : : ; n; x. Hen
e its (n + 1)-th derivative has a root � 2 I .Sin
ePnk=0 Ækf(0)k! xk is a polynomial of degree n its (n+1)-th derivative is 0. Andthe (n + 1)-th derivatives of Cxn+1 and Cxn+1 
oin
ide, be
ause their di�eren
eis a polynomial of degree n. Hen
e 0 = F (n+1)(�) = f (n+1)(�) � C(n + 1)! andC = f (n+1)(�)(n+1)! . �Binomial series. The series P1k=0 Ækf(0)k! xk is 
alled the Newton series of afun
tion f . The Newton series 
oin
ides with the fun
tion at all natural points.And sometimes it 
onverges to the fun
tion. The most important example of su
h
onvergen
e is given by the so-
alled binomial series.Consider the fun
tion (1 + x)y . This is a fun
tion of two variables. Fix x andevaluate its di�eren
e with respe
t to y. One has Æy(1+x)y = (1+x)y+1�(1+x)y =(1+x)y(1+x�1) = x(1+x)y. This simple formula allows us immediately to evaluateÆky (1 + x)y = xk(1 + x)y . Hen
e the Newton series for (1 + x)y as fun
tion of y is(4.1.2) (1 + x)y = 1Xk=0 xkykk! :For �xed y and variable x, the formula (4.1.2) represents the famous Newton bino-mial series. Our proof is not 
orre
t. We applied Newton's interpolation formula,proved only for polynomials, to an exponential fun
tion. But Newton's original



4.1 newton series 99proof was essentially of the same nature. Instead of interpolation of the wholefun
tion, he interpolated 
oeÆ
ients of its power series expansion. Newton 
onsid-ered the dis
overy of the binomial series as one of his greatest dis
overies. And therole of the binomial series in further developments is very important.For example, Newton expands into a power series ar
sinx in the followingway. One �nds the derivative of ar
sinx by di�erentiating identity sin ar
sinx = x.This di�erentiation gives 
os(ar
sinx) ar
sin0 x = 1. Hen
e ar
sin0 x = 1
os ar
sinx =(1� x2)� 12 . Sin
e(4.1.3) (1� x2)� 12 = 1Xk=0 (�x2)k(� 12 )kk! = 1Xk=0 (2k � 1)!!2k!! x2k;one gets the series for ar
sin by termwise integration of (4.1.3). The result isar
sinx = 1Xk=0 (2k � 1)!!2k!! x2k+12k + 1 :It was more than a hundred years after the dis
overy Newton's Binomial The-orem that it was �rst 
ompletely proved by Abel.Theorem 4.1.10. For any 
omplex z and � su
h that jzj < 1, the seriesP1k=0 zk�kk! absolutely 
onverges to (1 + z)� = exp (� ln(1 + z)).Proof. The analyti
 fun
tion exp � ln(1 + z) of variable z has no singularpoints in the disk jzj < 1, hen
e its Taylor series 
onverges to it. The derivativeof (1 + z)� by z is �(1 + z)��1. The k-th derivative is �k(1 + z)��k. In parti
ular,the value of k-th derivative for z = 0 is equal to �k. Hen
e the Taylor series of thefun
tion is P1k=0 �kzkk! . �On the boundary of 
onvergen
e. Sin
e (1+z)� has its only singular pointon the 
ir
le jzj = 1, and this point is �1, the binomial series for all z on the 
ir
lehas (1 + z)� as its Abel's sum. In parti
ular, for z = 1 one gets1Xk=0 xkk! = 2x:The series on the left-hand side 
onverges for x > 0. Indeed, the series be
omesalternating starting with k > x. The ratio k�xk+1 of modules of terms next to ea
hother is less then one. Hen
e the moduli of the terms form a monotone de
reasingsequen
e onward k > x. And to apply the Leibniz Theorem 2.4.3, one needs onlyto prove that limn!1 xnn! = 0. Transform this limit into limn!1 xn Qn�1k=1 (xk � 1).The produ
t Qn�1k=1 (xk � 1) 
ontains at most x terms whi
h have moduli greaterthan 1, and all terms of the produ
t do not ex
eed x. Hen
e the absolute valueof this produ
t does not ex
eed xx. And our sequen
e fxnn! g is majorized by anin�nitesimally small fxx+1n g. Hen
e it is in�nitesimally small.Plain binomial theorem. For a natural exponent the binomial series 
ontainsonly �nitely many nonzero terms. In this 
ase it turns into (1 + x)n =Pnk=0 nkxkk! .



100 4.1 newton seriesBe
ause (a+ b)n = an(1 + ba )n, one gets the following famous formula(a+ b)n = n+1Xk=0 nkk! akbn�k:This is the formula that is usually 
alled Newton's Binomial Theorem. But thissimple formula was known before Newton. In Europe it was proved by Pas
al in1654. Newton's dis
overy 
on
erns the 
ase of non integer exponents.Symboli
 
al
ulus. One de�nes the shift operation Sa for a fun
tion f bythe formula Saf(x) = f(x+a). Denote by 1 the identity operation and by S = S1.Hen
e S0 = 1. The 
omposition of two operations is written as a produ
t. So, forany a and b one has the following sum formula SaSb = Sa+b.We will 
onsider only so-
alled linear operations. An operationO is 
alled linearif O(f+g) = O(f)+O(g) for all f; g and O(kf) = kO(f) for any 
onstant k. De�nethe sum A+B of operations A and B by the formula (A+B)f = Af+Bf . Further,de�ne the produ
t of an operation A by a number k as (kA)f = k(Af). For linearoperations O, U , V one has the distributivity law O(U + V ) = OU + OV . If theoperations under 
onsideration 
ommute UV = V U , (for example, all iterationsof the same operation 
ommute) then they obey all usual numeri
 laws, and allidentities whi
h hold for numbers extend to operations. For example, U2 � V 2 =(U � V )(U + V ), or the plain binomial theorem.Let us say that an operation O is de
reasing if for any polynomial P the degreeof O(P ) is less than the degree of P . For example, the operation of di�eren
eÆ = S � 1 and the operation D of di�erentiation Df(x) = f 0(x) are de
reasing.For a de
reasing operation O, any power series P1k=0 akOk de�nes an operationat least on polynomials, be
ause this series applied to a polynomial 
ontains only�nitely many terms. Thus we 
an apply analyti
 fun
tions to operations.For example, the binomial series (1+ Æ)y =P1k=0 Ækykk! represents Sy. And theequality Sy = P1k=0 Ækykk! , whi
h is in fa
t the Newton Polynomial InterpolationFormula, is a dire
t 
onsequen
e of binomial theorem. Another example, 
onsiderÆn = S xn � 1. Then S xn = 1+ Æn and Sx = (1+ Æn)n. Further, Sx =Pnk=0 nkÆknk! =P1k=0 nknk (nÆn)kk! . Now we follow Euler's method to \substitute n = 1". ThennÆn 
onverts into xD, and nknk turns into 1. As result we get the Taylor formulaSx = P1k=0 xkDkk! . Our proof is 
opied from the Euler proof in his Introdu
tio oflimn!1(1 + xn )n = P1k=0 xkk! . This substitution of in�nity means passing to thelimit. This proof is suÆ
ient for de
reasing operations on polynomials be
ause theseries 
ontains only �nitely many nonzero terms. In the general 
ase problems of
onvergen
e arise.The binomial theorem was the main tool for the expansion of fun
tions intopower series in Euler's times. Euler also applied it to get power expansions fortrigonometri
 fun
tions.The Taylor expansion for x = 1 gives a symboli
 equality S = expD. Hen
eD = lnS = ln(1+Æ) =P1k=1(�1)k+1 Ækk . We get a formula for numeri
al di�erenti-ation. Symboli
 
al
ulations produ
e formulas whi
h hold at least for polynomials.



4.1 newton series 101Problems.1. Prove (x+ y)n =Pnk=0 nkxkyn�kk! .2. Evaluate Pnk=0 nkk! 2n�k.3. Prove: If p is prime, then pkk! is divisible by p.4. Prove: nkk! = nn�k(n�k)! .5. Dedu
e the plain binomial theorem from multipli
ation of series for exponenta.6. One de�nes the Catalan number 
n as the number of 
orre
t pla
ement ofbra
kets in the sum a1 + a2 + � � � + an. Prove that Catalan numbers satisfythe following re
ursion equation 
n = Pn�1k=0 
k
n�k and dedu
e a formula forCatalan numbers.7. Prove that �kxnxm = 0 for x = 0 and k < n.8. Prove that Pnk=0(�1)k nkk! = 0.9. Get a di�erential equation for the binomial series and solve it.10. Prove (a+ b)n =Pnk=0 nkk! akbn�k.11. Prove: A sequen
e fakg su
h that �2ak � 0 satis�es the inequality maxfa1; : : : ; ang �ak for any k between 1 and n.12. ProveP1k=0(�1)k x2k2k! = 2x=2 
os x�4 .13. ProveP1k=0(�1)k x2k+1(2k+1)! = 2x=2 sin x�4 .14. Prove �n0p is divisible by p!.�15. Prove that �n0p =Pn�1k=0 (�1)n�k nkk! kp.16. Prove 
os2 x+ sin2 x = 1 via power series.



4.2. Bernoulli NumbersOn the 
ontents of the le
ture. In this le
ture we give expli
it formulasfor teles
oping powers. These formulas involve a remarkable sequen
e of numbers,whi
h were dis
overed by Ja
ob Bernoulli. They will appear in formulas for sumsof series of re
ipro
al powers. In parti
ular, we will see that �26 , the sum of Eulerseries, 
ontains the se
ond Bernoulli number 16 .Summation Polynomials. Ja
ob Bernoulli found a general formula for thesum Pnk=1 kq . To be pre
ise he dis
overed that there is a sequen
e of numbersB0; B1; B2; : : : ; Bn; : : : su
h that(4.2.1) nXk=1 kq = q+1Xk=0Bk qk�1nq+1�kk! :The �rst 11 of the Bernoulli numbers are 1;� 12 ; 16 ; 0;� 130 ; 0; 142 ; 0;� 130 ; 0; 566 . Theright-hand side of (4.2.1) is a polynomial of degree q + 1 in n. Let us denote thispolynomial by  q+1(n). It has the following remarkable property: Æ q+1(x) =(1 + x)q . Indeed the latter equality holds for any natural value n of the variable,hen
e it holds for all x, be
ause two polynomials 
oin
iding in in�nitely manypoints 
oin
ide. Repla
ing in (4.2.1) q +1 by m, n by x and reversing the order ofsummation, one gets the following: m(x) = mXk=0Bm�k (m� 1)m�k�1(m� k)! xk= mXk=0Bm�k (m� 1)!k!(m� k)!xk= mXk=0Bm�k (m� 1)k�1k! xk :Today's le
ture is devoted to the proof of this Bernoulli theorem.Teles
oping powers. Newton's Formula represents xm as a fa
torial poly-nomial Pnk=0 Æk0mk! xk , where �k0m denotes the value of Ækxm at x = 0. Sin
eÆxk = kxk�1, one immediately gets a formula for a polynomial �m+1(x) whi
hteles
opes xm in the form �m+1(x) = 1Xk=0 �k0m(k + 1)!xk+1This polynomial has the property �m+1(n) =Pn�1k=0 km for all n.The polynomials �m(x), as follows from Lemma 4.1.2, are 
hara
terized by two
onditions: ��m(x) = xm�1; �m(1) = 0:Lemma 4.2.1 (on di�erentiation). �0m+1(x) = �0m+1(0) +m�m(x).Proof. Di�erentiation of ��m+1(x) = xm gives ��0m+1(x) = mxm�1. Thepolynomial m�m has the same di�eren
es, hen
e �(�0m+1(x) �m�m(x)) = 0. ByLemma 4.1.2 this implies that �0m+1(x)�m�m(x) is 
onstant. Therefore, �0m+1(x)�102



4.2 bernoulli numbers 103m�m(x) = �0m+1(0) �m�m(0). But �m(1) = 0 and �m(0) = �m(1) � Æ�m(0) =0� 0m�1 = 0. �Bernoulli polynomials. Let us introdu
e the m-th Bernoulli number Bmas �0m+1(0), and de�ne the Bernoulli polynomial of degree m > 0 as Bm(x) =m�m(x)+Bm. The Bernoulli polynomial B0(x) of degree 0 is de�ned as identi
allyequal to 1. Consequently Bm(0) = Bm and B0m+1(0) = (m+ 1)Bm.The Bernoulli polynomials satisfy the following 
ondition:�Bm(x) = mxm�1 (m > 0):In parti
ular, �Bm(0) = 0 for m > 1, and therefore we get the following boundary
onditions for Bernoulli polynomials:Bm(0) = Bm(1) = Bm for m > 1, andB1(0) = �B1(1) = B1:The Bernoulli polynomials, in 
ontrast to �m(x), are normed : their leading
oeÆ
ient is equal to 1 and they have a simpler rule for di�erentiation:B0m(x) = mBm�1(x)Indeed, B0m(x) = m�0m(x) = m((m�1)�m�1(x)+�0m(0)) = mBm�1(x), by Lemma4.2.1.Di�erentiating Bm(x) at 0, k times, we get B(k)m (0) = mk�1B0m�k+1(0) =mk�1(m� k + 1)Bm�k = mkBm�k. Hen
e the Taylor formula gives the followingrepresentation of the Bernoulli polynomial:Bm(x) = mXk=0 mkBm�kk! xk :Chara
terization theorem. The following important property of Bernoullipolynomials will be 
alled the Balan
e property :(4.2.2) Z 10 Bm(x) dx = 0 (m > 0):Indeed, R 10 Bm(x) dx = R 10 (m+ 1)B0m+1(x) dx = �Bm+1(0) = 0.The Balan
e property and the Di�erentiation rule allow us to evaluate Bernoullipolynomials re
ursively. Thus, B1(x) has 1 as leading 
oeÆ
ient and zero integralon [0; 1℄; this allows us to identify B1(x) with x � 1=2. Integration of B1(x) givesB2(x) = x2 � x + C, where C is de�ned by (4.2.2) as � R 10 x2 dx = 16 . IntegratingB2(x) we get B3(x) modulo a 
onstant whi
h we �nd by (4.2.2) and so on. Thuswe obtain the following theorem:Theorem 4.2.2 (
hara
terization). If a sequen
e of polynomials fPn(x)g sat-is�es the following 
onditions:� P0(x) = 1,� R 10 Pn(x) dx = 0 for n > 0,� P 0n(x) = nPn�1(x) for n > 0,then Pn(x) = Bn(x) for all n.



104 4.2 bernoulli numbersAnalyti
 properties.Lemma 4.2.3 (on re
e
tion). Bn(x) = (�1)nBn(1� x) for any n.Proof. We prove that the sequen
e Tn(x) = (�1)nBn(1 � x) satis�es all the
onditions of Theorem 4.2.2. Indeed, T0 = B0 = 1,Z 10 Tn(x) dx = (�1)n Z 01 Bn(x) dx = 0and Tn(x)0 = (�1)nB0n(1� x)= (�1)nnBn�1(1� x)(1� x)0= (�1)n+1nBn�1(x)= nTn�1(x): �Lemma 4.2.4 (on roots). For any odd n > 1 the polynomial Bn(x) has on [0; 1℄just three roots: 0; 12 ; 1.Proof. For odd n, the re
e
tion Lemma 4.2.3 implies that Bn( 12 ) = �Bn( 12 ),that is Bn( 12 ) = 0. Furthermore, for n > 1 one has Bn(1) � Bn(0) = n0n�1 = 0.Hen
e Bn(1) = Bn(0) for any Bernoulli polynomial of degree n > 1. By there
e
tion formula for an odd n one obtains Bn(0) = �Bn(1). Thus any Bernoullipolynomial of odd degree greater than 1 has roots 0; 12 ; 1.The proof that there are no more roots is by 
ontradi
tion. In the opposite
ase 
onsider Bn(x), of the least odd degree > 1 whi
h has a root � di�erent fromthe above mentioned numbers. Say � < 12 . By Rolle's Theorem 4.1.7 B0n(x) hasat least three roots �1 < �2 < �3 in (0; 1). To be pre
ise, �1 2 (0; �), �2 2 (�; 12 ),�3 2 ( 12 ; 1). Then Bn�1(x) has the same roots. By Rolle's Theorem B0n�1(x) hasat least two roots in (0; 1). Then at least one of them di�ers from 12 and is a rootof Bn�2(x). By the minimality of n one 
on
ludes n� 2 = 1. However, B1(x) hasthe only root 12 . This is a 
ontradi
tion. �Theorem 4.2.5. Bn = 0 for any odd n > 1. For n = 2k, the sign of Bnis (�1)k+1. For any even n one has either Bn = maxx2[0;1℄Bn(x) or Bn =minx2[0;1℄Bn(x). The �rst o

urs for positive Bn, the se
ond for negative.Proof. B2k+1 = B2k+1(0) = 0 for k > 0 by Lemma 4.2.4. Above we havefound that B2 = 16 . Suppose we have established that B2k > 0 and that this isthe maximal value for B2k(x) on [0; 1℄. Let us prove that B2k+2 < 0 and it isthe minimal value for B2k+2(x) on [0; 1℄. The derivative of B2k+1 in this 
ase ispositive at the ends of [0; 1℄, hen
e B2k+1(x) is positive for 0 < x < 12 and negativefor 12 < x < 1, by Lemma 4.2.4 on roots and the Theorem on Intermediate Values.Hen
e, B02k+2(x) > 0 for x < 12 and B02k+2(x) < 0 for x > 12 . Therefore, B2k+2(x)takes the maximal value in the middle of [0; 1℄ and takes the minimal values atthe ends of [0; 1℄. Sin
e the integral of the polynomial along [0; 1℄ is zero andthe polynomial is not 
onstant, its minimal value has to be negative. The samearguments prove that if B2k is negative and minimal, then B2k+2 is positive andmaximal. �



4.2 bernoulli numbers 105Lemma 4.2.6 (Lagrange Formula). If f is a di�erentiable fun
tion on [a; b℄,then there is a � 2 (a; b), su
h that(4.2.3) f(b) = f(a) + f 0(�)f(b)� f(a)b� a :Proof. The fun
tion g(x) = f(x) � (x � a) f(b)�f(a)b�a is di�erentiable on [a; b℄and g(b) = g(a) = 0. By Rolle's Theorem g0(�) = 0 for some � 2 [a; b℄. Hen
ef 0(�) = f(b)�f(a)b�a . Substitution of this value of f 0(�) in (4.2.3) gives the equality. �Generating fun
tion. The following fun
tion of two variables is 
alled thegenerating fun
tion of Bernoulli polynomials.(4.2.4) B(x; t) = 1Xk=0Bk(x) tkk!Sin
e Bk � k!2k , the series on the right-hand side 
onverges for t < 2 for any x. Let usdi�erentiate it termwise as a fun
tion of x, for a �xed t. We getP1k=0 kBk�1(x) tkk! =tB(x; t). Consequently (lnB(x; t))0x = B0x(x;t)B(x;t) = t and lnB(x; t) = xt+ 
(t), wherethe 
onstant 
(t) depends on t. It follows that B(x; t) = exp(xt)k(t), where k(t) =exp(
(t)). For x = 0 we get B(0; t) = k(t) = P1k=0 Bk tkk! . To �nd k(t) 
onsiderthe di�eren
e B(x + 1; t) � B(x; t). It is equal to exp(xt + t)k(t) � exp(xt). Onthe other hand the di�eren
e is P1k=0�Bk(x) tkk! = P1k=0 kBk�1(x) tkk! = tB(x; t).Comparing these expressions we get expli
it formulas for the generating fun
tionsof Bernoulli numbers: k(t) = texp t� 1 = 1Xk=0 Bkk! tk;and Bernoulli polynomials:B(x; t) = 0�1Xk=+Bk(x) tkk! = t exp(tx)exp t� 1 :From (4.2.4) one gets t = (exp t � 1)P1k=0 Bk tkk! . Substituting exp t � 1 =P1k=1 tkk! in this equality, by the Uniqueness Theorem 3.6.9, one gets the equalitiesfor the 
oeÆ
ients of the power seriesnXk=1 Bn�k(n� k)!k! = 0 for n > 1.Add Bnn! to both sides of this equality and multiply both sides by n! to get(4.2.5) Bn = nXk=0 Bknkk! for n > 1.The latter equality one memorizes via the formula Bn = (B + 1)n, where afterexpansion of the right hand side, one should move down all the exponents at Bturning the powers of B into Bernoulli numbers.Now we are ready to prove that(4.2.6) �m(1 + x) = Bm(x+ 1)m � Bmm = mXk=0Bm�k (m� 1)k�1k! xk =  m(x):



106 4.2 bernoulli numbersPutting x = 0 in the right hand side one gets  m(0) = Bm(m � 1)�1 = Bmm . Theleft-hand side takes the same value at x = 0, be
ause Bm(1) = Bm(0) = Bm. Itremains to prove the equality of the 
oeÆ
ients in (4.2.6) for positive degrees.Bm(x+ 1)m = 1m mXk=0 mkBm�kk! (1 + x)k= 1m mXk=0 mkBm�kk! kXj=0 kjxjj!Now let us 
hange the summation order and 
hange the summation index of theinterior sum by i = m� k. = 1m mXj=0 xjj! mXk=j mkBm�kk! kj= 1m mXj=0 xjj! m�jXi=0 mm�iBi(m� i)! (m� i)jNow we 
hange mm�i(m�i)j(m�i)! by (m�j)imji! and apply the identity (4.2.5).= mXj=0 xjmjmj! m�jXi=0 Bi(m� j)ii!= mXj=0 (m� 1)j�1xjj! Bm�j :Problems.1. Evaluate R 10 Bn(x) sin 2�x dx.2. Expand x4 � 3x2 + 2x� 1 as a polynomial in (x� 2).3. Cal
ulate the �rst 20 Bernoulli numbers.4. Prove the inequality jBn(x)j � jBnj for even n.5. Prove the inequality jBn(x)j � n4 jBn�1j for odd n.6. Prove that f(0)+f(1)2 = R 10 f(x) dx + R 10 f 0(x)B1(x) dx.7. Prove that f(0)+f(1)2 = R 10 f(x) dx + �f 0(0)2 � R 10 f 00(x)B2(x) dx.8. Dedu
e �Bn(x) = nxn�1 from the balan
e property and the di�erentiationrule.9. Prove that Bn(x) = Bn(1� x), using the generating fun
tion.10. Prove that B2n+1 = 0, using the generating fun
tion.11. Prove that Bm(nx) = nm�1Pn�1k=0 Bm �x+ kn�.12. Evaluate Bn( 12 ).13. Prove that B2k(x) = P (B2(x)), where P (x) is a polynomial with positive 
oef-�
ient (Ja
obi Theorem).14. Prove that Bn =P1k=0(�1)k�k0nk+1 .�15. Prove that Bm+P 1k+1 [k + 1 is prime and k is divisor of m℄ is an integer (StaudtTheorem).



4.3. Euler-Ma
laurin FormulaOn the 
ontents of the le
ture. From this le
ture we will learn how Eulermanaged to 
al
ulate eighteen digit pla
es of the sum P1k=0 1k2 .Symboli
 derivation. Taylor expansion of a fun
tion f at point x givesf(x+ 1) = 1Xk=0 f (k)(x)k! :Hen
e Æf(x) = 1Xk=1 Dkf(x)k! ;whereD is the operation of di�erentiation. One expresses this equality symboli
allyas(4.3.1) Æ = expD� 1:We are sear
hing for F su
h that F (n) =Pn�1k=1 f(k) for all n. Then ÆF (x) = f(x),or symboli
ally F = Æ�1f . So we have to invert the operation of the di�eren
e.From (4.3.1), the inversion is given formally by the formula (expD � 1)�1. Thisfun
tion has a singularity at 0 and 
annot be expanded into a power series in D.However we know the expansion texp t� 1 = 1Xk=0 Bkk! tk:This allows us to give a symboli
 solution of our problem in the formÆ�1 = D�1 DexpD� 1 = 1Xk=0 Bkk! Dk�1 = D�1 � 121+ 1Xk=1 B2k2k! D2k�1:Here we take into a

ount that B0 = 1, B1 = � 12 and B2k+1 = 0 for k > 0.Sin
e Pn�1k=1 f(k) = F (n) � F (1), the latter symboli
 formula gives the followingsummation formula:(4.3.2) n�1Xk=1 f(k) = Z n1 f(x) dx� f(n)� f(1)2 + 1Xk=1 B2k(2k)! (f (2k�1)(n)� f (2k�1)(1)):For f(x) = xm this formula gives the Bernoulli polynomial �m+1.Euler's estimate. Euler applied this formula to f(x) = 1(x+9)2 and estimatedthe sum P1k=10 1k2 . In this 
ase the k-th derivative of 1(x+9)2 at 1 has absolutevalue (k+1)!10k+2 . Hen
e the module of the k-th term of the summation formula doesnot ex
eed Bkk10k+2 . For an a

ura
y of eighteen digit pla
es it is suÆ
ient to sumup the �rst fourteen terms of the series, only eight of them do not vanish. Euler
onje
tured, and we will prove, that the value of error does not ex
eed of the value ofthe �rst reje
ted term, whi
h is B1616�1018 . Sin
e B16 = � 3617510 this gives the promiseda

ura
y. 107



108 4.3 euler-ma
laurin formulaB1 B2 B4 B6 B8 B10 B12 B14 B16 B18 B20� 12 16 � 130 142 � 130 566 � 6912730 76 � 3617510 43867798 � 174611330Figure 4.3.1. Bernoulli numbersWe see from the table (Figure 4.3.1) that in
reasing of the number of 
onsideredterms does not improve a

ura
y noti
eably.Summation formula with remainder. In this le
ture we assume that allfun
tions under 
onsideration are di�erentiable as many times as needed.Lemma 4.3.1. For any fun
tion f(x) on [0; 1℄ one has12(f(1) + f(0)) = Z 10 f(x) dx� Z 10 f 0(x)B1(x) dx:Proof. Re
all that B1(x) = x� 12 , hen
e R 10 f 0(x)B1(x) dx = R 10 (x� 12 ) df(x).Now, integration by parts givesZ 10 (x � 12) df(x) = 12(f(1) + f(0))� Z 10 f(x) dx: �Consider the periodi
 Bernoulli polynomials Bmfxg = Bm(x � [x℄). ThenB0mfxg = mBm�1fxg for non integer x.Let us denote by Pnm ak the sum 12am +Pn�1k=m+1 ak + 12an.Lemma 4.3.2. For any natural p, q and any fun
tion f(x) one hasqXp f(k) = Z qp f(x) dx � Z qp f 0(x)B1fxg dx:Proof. Applying Lemma 4.3.1 to f(x+ k) one gets12(f(k + 1) + f(k)) = Z 10 f(x+ k) dx+ Z 10 f 0(x+ k)B1(x) dx= Z k+1k f(x) dx+ Z k+1k f 0(x)B1fxg dx:Summing up these equalities for k from p to q, one proves the lemma. �Lemma 4.3.3. For m > 0 and a fun
tion f one has(4.3.3) Z qp f(x)Bmfxg dx = Bm+1m+ 1(f(q)� f(p))� Z qp f 0(x)Bm+1fxg dx:Proof. Sin
e Bmfxgdx = dBm+1fxgm+1 and Bm+1fkg = Bm+1 for any naturalk, the formula (4.3.3) is obtained by a simple integration by parts. �



4.3 euler-ma
laurin formula 109Theorem 4.3.4. For any fun
tion f and natural numbers n and m one has:(4.3.4) nX1 f(k) = Z n1 f(x) dx+ m�1Xk=1 Bk+1(k + 1)! �f (k)(n)� f (k)(1)�+ (�1)m+1m! Z n1 f (m)(x)Bmfxg dx:Proof. The proof is by indu
tion on m. For m = 1, formula (4.3.4) is justgiven by Lemma 4.3.2. Suppose (4.3.4) is proved for m. The remainder(�1)m+1m! Z n1 f (m)(x)Bmfxg dx
an be transformed by virtue of Lemma 4.3.3 into(�1)m+1Bm+1(m+ 1)! (f (m)(n)� f (m)(1)) + (�1)m+2(m+ 1)! Z n1 Bm+1fxgf (m+1)(x) dx:Sin
e odd Bernoulli numbers vanish, (�1)m+1Bm+1 = Bm+1 for m > 0. �Estimation of the remainder. For m = 1, (4.3.4) turns into (4.3.2). De-note Rm = (�1)m+1m! Z n1 f (m)(x)Bmfxg dx:This is the so-
alled remainder of Euler-Ma
laurin formula.Lemma 4.3.5. R2m = R2m+1 for any m > 1.Proof. Be
ause B2m+1 = 0, the only thing whi
h 
hanges in (4.3.4) whenone passes from 2m to 2m + 1 is the remainder. Hen
e its value does not 
hangeeither. �Lemma 4.3.6. If f(x) is monotone on [0; 1℄ thensgnZ 10 f(x)B2m+1(x) dx = sgn(f(1)� f(0)) sgnB2m:Proof. Sin
e B2m+1(x) = �B2m+1(1� x), the 
hange x ! 1� x transformsthe integral R 10:5 f(x)B2m+1(x) dx to � R 0:50 f(1� x)B2m+1(x) dx:Z 10 f(x)B2m+1(x) dx = Z 0:50 f(x)B2m+1(x) dx + Z 10:5 f(x)B2m+1(x) dx= Z 0:50 (f(x)� f(1� x))B2m+1(x) dx:B2m+1(x) is equal to 0 at the end-points of [0; 0:5℄ and has 
onstant sign on (0; 0:5),hen
e its sign on the interval 
oin
ides with the sign of its derivative at 0, that is,it is equal to sgnB2m. The di�eren
e f(x) � f(1 � x) also has 
onstant sign asx < 1 � x on (0; 0:5) and its sign is sgn(f(1) � f(0)). Hen
e the integrand has
onstant sign. Consequently the integral itself has the same sign as the integrandhas. �Lemma 4.3.7. If f (2m+1)(x) and f (2m+3)(x) are 
omonotone for x � 1 thenR2m = �m B2m+2(2m+ 2)! (f (2m+1)(n)� f (2m+1)(1)); 0 � �m � 1:



110 4.3 euler-ma
laurin formulaProof. The signs of R2m+1 and R2m+3 are opposite. Indeed, by Lemma 4.2.5sgnB2m = � sgnB2m+2, and sgn(f (2m+1)(n) � f (2m+1)(1)) = sgn(f (2m+3)(n) �f (2m+3)(1) due to the 
omonotonity 
ondition. Hen
e sgnR2m+1 = � sgnR2m+3by Lemma 4.3.6.Set T2m+2 = B2m+2(2m+ 2)! (f (2m+1)(n)� f (2m+1)(1)):Then T2m+2 = R2m+1�R2m+2. By Lemma 4.3.5, T2m+2 = R2m+1�R2m+3. Sin
eR2m+3 and R2m+1 have opposite signs, it follows that sgnT2m+2 = sgnR2m+1 andjT2m+2j � jR2m+1j. Hen
e �m = R2m+1T2m+2 = R2mT2m+2 belongs to [0; 1℄. �Theorem 4.3.8. If f (k) and f (k+2) are 
omonotone for any k > 1, then����� nX1 f(k)� Z n1 f(x) dx� mXk=1 B2k(2k)! �f (2k�1)(n)� f (2k�1)(1)������� ���� B2m+2(2m+ 2)! �f (2m+1)(n)� f (2m+1)(1)����� :Hen
e the value of the error whi
h gives the summation formula (4.3.2) withm terms has the same sign as the �rst reje
ted term, and its absolute value doesnot ex
eed the absolute value of the term.Theorem 4.3.9. Suppose that R11 jf (k)(x)j dx <1, limx!1 f (k)(x) = 0 and f (k)is 
omonotone with f (k+2) for all k � K for some K. Then there is a 
onstant Csu
h that for any m > K for some �m 2 [0; 1℄(4.3.5) nXk=1 f(k) = C + f(n)2 + Z n1 f(x) dx + mXk=1 B2k(2k)!f (2k�1)(n)+ �m B2m+2(2m+ 2)!f (2m+1)(n):Lemma 4.3.10. Under the 
ondition of the theorem, for any m � K,(4.3.6) (�1)mm! Z 1p f (m)(x)Bmfxg dx = ��m B2m+2(2m+ 2)!f (2m+1)(p):Proof. By Lemma 4.3.7,(�1)m+1m! Z qp f (m)(x)Bmfxg dx = �m B2m+2(2m+ 2)! (f (2m+1)(q)� f (2m+1)(p)):To get (4.3.6), pass to the limit as q tends to in�nity. �Proof of Theorem 4.3.9. To get (4.3.5) we 
hange the form of the remain-der RK for (4.3.4). Sin
eZ n1 BKfxgf (K) dx = Z 11 BKfxgf (K)(x) dx � Z 1n BKfxgf (K)(x) dx;



4.3 euler-ma
laurin formula 111applying the equality (4.3.3) to the interval [n;1), one gets� (�1)k+1Bkk! Z 1n Bkfxgf (k)(x) dx= (�1)k+1Bk+1(k + 1)! f (k)(n)� (�1)k+2Bk+1(k + 1)! Z 1n Bk+1fxgf (k+1)(x) dx:Iterating this formula one getsRK = Z 11 BKfxgf (K) dx+ mXk=K Bk+1(k + 1)!f (k)(n)+ (�1)mm! Z 1n Bmfxgf (m)(x) dx:Here we take into a

ount the equalities (�1)kBk = Bk and (�1)m+2 = (�1)m.Now we substitute this expression of RK into (4.3.4) and set(4.3.7) C = (�1)K+1 Z 11 BKfxgf (K)(x) dx � f(1)2 � K�1Xk=1 Bk+1(k + 1)!f (k)(1): �Stirling formula. The logarithm satis�es all the 
onditions of Theorem 4.3.9with K = 2. Its k-th derivative at n is equal to (�1)k+1(k�1)!nk . Thus (4.3.5) for thelogarithm turns intonXk=1 ln k = n lnn� n+ � + ln n2 + mXk=1 B2k2k(2k � 1)n2k�1 + �mB2m+2(2m+ 2)(2m+ 1)n2k�1 :By (4.3.7), the 
onstant is � = Z 11 B2fxgx2 dx� B22 :But we already know this 
onstant as � = 12 ln 2�. For m = 0, the above formulagives the most 
ommon form of Stirling formula:n! = p2�nnne�n+ �12n :Problems.1. Write the Euler-Ma
laurin series teles
oping 1x .2. Prove the uniqueness of the 
onstant in Euler-Ma
laurin formula.3. Cal
ulate ten digit pla
es of P1k=1 1n3 .4. Cal
ulate eight digit pla
es of P1000000k=1 1k .5. Evaluate ln 1000! with a

ura
y 10�4.



4.4. Gamma Fun
tionOn the 
ontents of the le
ture. Euler's Gamma-fun
tion is the fun
tionresponsible for in�nite produ
ts. An in�nite produ
t whose terms are values ofa rational fun
tion at integers is expressed in terms of the Gamma-fun
tion. Inparti
ular it will help us prove Euler's fa
torization of sin.Teles
oping problem. Given a fun
tion f(x), �nd a fun
tion F (x) su
h thatÆF = f . This is the teles
oping problem for fun
tions. In parti
ular, for f = 0any periodi
 fun
tion of period 1 is a solution. In the general 
ase, to any solutionof the problem we 
an add a 1-periodi
 fun
tion and get another solution. Thegeneral solution has the form F (x) + k(t) where F (x) is a parti
ular solution andk(t) is a 1-periodi
 fun
tion, 
alled the periodi
 
onstant.The Euler-Ma
laurin formula gives a formal solution of the problem, but theEuler-Ma
laurin series rarely 
onverges. Another formal solution is(4.4.1) F (x) = � 1Xk=0 f(x+ k):Trigamma. Now let us try to teles
ope the Euler series. The series (4.4.1)
onverges for f(x) = 1xm provided m � 2 and x 6= �n for natural n > 1. Inparti
ular, the fun
tion(4.4.2) � (x) = 1Xk=1 1(x+ k)2is analyti
; it is 
alled the trigamma fun
tion and it teles
opes � 1(1+x)2 . Its value� (0) is just the sum of the Euler series.This fun
tion is distinguished among others fun
tions teles
oping � 1(1+x)2 byits �nite variation.Theorem 4.4.1. There is a unique fun
tion � (x) su
h that Æ� (x) = � 1(1+x)2 ,var� [0;1℄ <1 and � (0) =P1k=1 1k2 .Proof. Sin
e � is monotone, one has var� [0;1℄ = P1k=0 jÆ� j = P1k=1 1k2 <1. Suppose f(x) is another fun
tion of �nite variation teles
oping 1(1+x)2 . Thenf(x) � � (x) is a periodi
 fun
tion of �nite variation. It is obvious that su
h afun
tion is 
onstant, and this 
onstant is 0 if f(1) = � (1). �Digamma. The series �P1k=0 1x+k , whi
h formally teles
opes 1x , is divergent.However the series �P1k=0 � 1x+k � 1k [k 6= 0℄� is 
onvergent and it teles
opes 1x ,be
ause adding a 
onstant does not a�e
t the di�eren
es. Indeed,� 1Xk=0� 1x+1+k � 1k [k 6= 0℄�+ 1Xk=0 � 1x+k � 1k [k 6= 0℄� = � 1Xk=0 Æ 1x+k = 1x :The fun
tion(4.4.3) z(x) = �
 + 1Xk=1�1k � 1x+ k�112



4.4 gamma fun
tion 113is 
alled thedigamma fun
tion. Here 
 is the Euler 
onstant. The digamma fun
-tion is an analyti
 fun
tion, whose derivative is the trigamma fun
tion, and whosedi�eren
e is 11+x .Monotoni
ity distinguishes z among others fun
tion teles
oping 11+x .Theorem 4.4.2. There is a unique monotone fun
tion z(x) su
h that Æz(x) =11+x and z(0) = �
.Proof. Suppose f(x) is a monotone fun
tion teles
oping 11+x . Denote by v thevariation of f�z on [0; 1℄. Then the variation of f�z over [1; n℄ is nv. On the otherhand, varf [1; n℄ =Pnk=1 1k < lnn+ 
. Hen
e the variation of f(x)�z(x) on [1; n℄is less than 2(
 + lnn). Hen
e v for any n satis�es the inequality nv � 2(
 + lnn).Sin
e limn!1 lnnn = 0, we get v = 0. Hen
e f � z is 
onstant, and it is zero iff(1) = z(1). �Lemma 4.4.3. z0 = � .Proof. To prove that z0(x) = � (x), 
onsider F (x) = R x1 � (t) dt. This fun
-tion is monotone, be
ause F 0(x) = � (x) � 0. Further (ÆF )0 = ÆF 0 = Æ� (x) =� 1(1+x)2 . It follows that ÆF = 11+x + 
, where 
 is a 
onstant. By Theorem 4.4.2 itfollows that F (x+ 1)� 
x� 
 = z(x). Hen
e z(x)0 = F 0(x+ 1) + 
 = � (x). Thisproves that z0 is di�erentiable and has �nite variation. As Æz(x) = 11+x it followsthat Æz0(x) = � 1(1+x)2 . We get that z0(x) = � (x) by Theorem 4.4.1. �Teles
oping the logarithm. To teles
ope the logarithm, we start with theformal solution �P1k=0 ln(x+k). To de
rease the divergen
e, addP1k=1 ln k term-wise. We get� lnx�P1k=1(ln(x+k)�ln k) = � lnx�P1k=1 ln(1+ xk ). We know thatln(1+x) is 
lose to x, but the series still diverges. Now 
onvergen
e 
an be rea
hedby the subtra
tion of xk from the k-th term of the series. This substra
tion 
hangesthe di�eren
e. Let us evaluate the di�eren
e of F (x) = � lnx�P1k=1(ln(1+ xk )� xk ).The di�eren
e of the n-th term of the series is�ln �1 + x+1k �� x+1k �� �ln �1 + xk �� xk �= �ln(x+ k + 1)� ln k � x+1k �� �ln(x+ k)� ln k � xk �= Æ ln(x+ k)� 1k :Hen
eÆF (x) = �Æ lnx�P1k=1 �Æ ln(x+ k)� 1k �= limn!1 ��Æ lnx�Pn�1k=1 �Æ ln(x+ k)� 1k ��= limn!1 �lnx� ln(n+ x) +Pn�1k=1 1k�= lnx+ limn!1(ln(n)� ln(n+ x)) + limn!1 �Pn�1k=1 1k � lnn�= lnx+ 
:As a result, we get the following formula for a fun
tion, whi
h teles
opes thelogarithm:(4.4.4) �(x) = �
x� lnx� 1Xk=1 �ln�1 + xk�� xk� :



114 4.4 gamma fun
tionTheorem 4.4.4. The series (4.4.4) 
onverges absolutely for all x ex
ept nega-tive integers. It presents a fun
tion �(x) su
h that �(1) = 0 and Æ�(x) = lnx.Proof. The inequality x1+x � ln(1 + x) � x implies(4.4.5) j ln(1 + x)� xj � ���� x1 + x � x���� = ���� x21 + x ���� :Denote by " the distan
e from x to the 
losest negative integer. Then due to(4.4.5), the series P1k=1 ln ��1 + yk �� yk � is termwise majorized by the 
onvergentseriesP1k=1 x2"k2 . This proves the absolute 
onvergen
e of (4.4.4).Sin
e limn!1Pn�1k=1 (ln(1 + 1k )� 1k ) = limn!1(lnn�Pn�1k=1 1k ) = �
, one gets�(1) = 0. �Convexity. There are a lot of fun
tions that teles
ope the logarithm. Theproperty whi
h distinguishes � among others is 
onvexity.Throughout the le
ture � and � are nonnegative and 
omplementary to ea
hother, that is �+ � = 1. The fun
tion f is 
alled 
onvex if, for any x, y, it satis�esthe inequality:(4.4.6) f(�x+ �y) � �f(x) + �f(y) 8� 2 [0; 1℄:Immediately from the de�nition it follows thatLemma 4.4.5. Any linear fun
tion ax+ b is 
onvex.Lemma 4.4.6. Any sum (even in�nite) of 
onvex fun
tions is a 
onvex fun
tion.The produ
t of a 
onvex fun
tion by a positive 
onstant is a 
onvex fun
tion.Lemma 4.4.7. If f(p) = f(q) = 0 and f is 
onvex, then f(x) � 0 for allx =2 [p; q℄.Proof. If x > q then q = x�+ p� for � = q�px�p . Hen
e f(q) � f(x)�+ f(p)� =f(x), and it follows that f(x) � f(q) = 0. For x < p one has p = x� + q� for� = q�pq�x . Hen
e 0 = f(p) � f(x)� + f(q)� = f(x). �Lemma 4.4.8. If f 00 is nonnegative then f is 
onvex.Proof. Consider the fun
tion F (t) = f(l(t)), where l(t) = x� + y�. Newton'sformula for F (t) with nodes 0, 1 gives F (t) = F (0) + ÆF (0)t + 12F 00(�)t2. Sin
eF 00(�) = (y � x)2f 00(�) > 0, and t2 = t(t � 1) < 0 we get the inequality F (t) �F (0)�+ tF (1). Sin
e F (�) = f(x�+ y�) this is just the inequality of 
onvexity. �Lemma 4.4.9. If f is 
onvex, then 0 � f(a) + �Æf(a)� f(a+ �) � Æ2f(a� 1)for any a and any � 2 [0; 1℄Proof. Sin
e a + � = �a + �(a + 1) we get f(a + �) � f(a)� + f(a + 1)� =f(a)+�Æf(a). On the other hand, the 
onvex fun
tion f(a+x)�f(a)�xÆf(a�1)has roots �1 and 0. By Lemma 4.4.7 it is nonnegative for x > 0. Hen
e f(a+ �) �f(a)+ �Æf(a�1). It follows that f(a)+ �Æf(a)�f(a+ �) � f(a)+ �Æf(a)�f(a)��Æf(a� 1) = �Æ2f(a� 1). �Theorem 4.4.10. �(x) is the unique 
onvex fun
tion that teles
opes lnx andsatis�es �(1) = 1.



4.4 gamma fun
tion 115Proof. Convexity of � follows from the 
onvexity of the summands of itsseries. The summands are 
onvex be
ause their se
ond derivatives are nonnegative.Suppose there is another 
onvex fun
tion f(x) whi
h teles
opes the logarithmtoo. Then �(x) = f(x) � �(x) is a periodi
 fun
tion, Æ� = 0. Let us prove that�(x) is 
onvex. Consider a pair 
; d, su
h that j
�dj � 1. Sin
e f(
�+d�)��f(
)��f(d) � 0, as f is 
onvex, one has�(
� + d�)� ��(
) � ��(d) = (f(
� + d�)� �f(
)� �f(d))� (�(
� + d�)� ��(
)� ��(d))� ��(
) + ��(d)��(
� + d�):First, prove that � satis�es the following "-relaxed inequality of 
onvexity:(4.4.7) �(
� + d�) � ��(
) + ��(d) + ":In
reasing 
 and d by 1, we do not 
hange the inequality as Æ� = 0. Due to thisfa
t, we 
an in
rease 
 and d to satisfy 1
�1 < "3 . Set L(x) = �(
) + (x� 
) ln 
. ByLemma 4.4.9 for x 2 [
; 
+1℄ one has j�x�L(x)j � Æ2�(
� 1) = ln 
� ln(
� 1) =ln(1 + 1
�1 ) � 1
�1 < "3 . Sin
e j�(x) � L(x)j < "3 for x = 
; d; 
+d2 , it follows that��(
) + ��(d) � �(
� + d�) di�ers from �L(
) + �L(d) � L(
� + d�) = 0 by lessthan by ". The inequality (4.4.7) is proved. Passing to the limit as " tends to 0,one eliminates ".Hen
e �(x) is 
onvex on any interval of length 1 and has period 1. Then �(x)is 
onstant. Indeed, 
onsider a pair a; b with 
ondition b � 1 < a < b. Thena = (b� 1)� + b� for � = b� a. Hen
e f(a) � f(b)� + f(b� 1)� = f(b). �Lemma 4.4.11. �00(1 + x) = � (x).Proof. The fun
tion F (x) = R x1 z(t) dt is 
onvex be
ause its se
ond derivativeis � . The di�eren
e of F 0 = z is 11+x . Hen
e ÆF (x) = ln(x+1)+
, where 
 is some
onstant. It follows that F (x� 1)� 
x+ 
 = �(x). Hen
e � is twi
e di�erentiableand its se
ond derivative is � . �Gamma fun
tion. Now we de�ne Euler's gamma fun
tion �(x) as exp(�(x)),where �(x) is the fun
tion teles
oping the logarithm. Exponentiating (4.4.4) givesa representation of the Gamma fun
tion in so-
alled 
anoni
al Weierstrass form:(4.4.8) �(x) = e�
xx 1Yk=1 �1 + xk��1 e xk :Sin
e Æ ln �(x) = lnx, one gets the following 
hara
teristi
 equation of the Gammafun
tion(4.4.9) �(x+ 1) = x�(x):Sin
e �(1) = 0, a

ording to (4.4.4), one proves by indu
tion that �(n) = (n� 1)!using (4.4.9).A nonnegative fun
tion f is 
alled logarithmi
ally 
onvex if ln f(x) is 
onvex.Theorem 4.4.12 (
hara
terization). �(x) is the unique logarithmi
ally 
onvexfun
tion de�ned for x > 0, whi
h satis�es equation (4.4.9) for all x > 0 and takesthe value 1 at 1.
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tionProof. Logarithmi
al 
onvexity of �(x) follows from the 
onvexity of �(x).Further �(1) = exp�(1) = 1. If f is a logarithmi
ally 
onvex fun
tion satisfyingthe gamma-equation, then ln f satis�es all the 
onditions of Theorem 4.4.4. Hen
e,ln f(x) = �(x) and f(x) = �(x). �Theorem 4.4.13 (Euler). For any x � 0 one has �(x) = R10 tx�1e�t dt.Let us 
he
k that the integral satis�es all the 
onditions of Theorem 4.4.12.For x = 1 the integral gives R10 e�t dt = �e�t j10 = 1. The integration by partsR10 txe�t dt = � R10 tx de�t = �txe�t j10 + R10 e�txtx�1 dx proves that it satis-�es the gamma-equation (4.4.9). It remains to prove logarithmi
 
onvexity of theintegral.Lemma 4.4.14 (mean 
riterium). If f is a monotone fun
tion whi
h satis�esthe following mean inequality 2f(x+y2 ) � f(x) + f(y) for all x; y then f is 
onvex.Proof. We have to prove the inequality f(x�+y�) � �f(x)+�f(y) = L(�) forall �, x and y. Set F (t) = f(x+(y�x)t); than F also satis�es the mean inequality.And to prove our lemma it is suÆ
ient to prove that F (t) � L(t) for all t 2 [0; 1℄.First we prove this inequality only for all binary rational numbers t, that isfor numbers of the type m2n , m � 2n. The proof is by indu
tion on n, the degreeof the denominator. If n = 0, the statement is true. Suppose the inequalityF (t) � L(t) is already proved for fra
tions with denominators of degree � n.Consider r = m2n+1 , with odd m = 2k + 1. Set r� = k2n , r+ = k+12n . By theindu
tion hypothesis F (r�) � L(r�). Sin
e r = r++r�2 , by the mean inequalityone has F (r) � f(r+)+f(r�)2 � L(r+)+L(r�)2 = L( r++r�2 ) = L(r).Thus our inequality is proved for all binary rational t. Suppose F (t) > L(t)for some t. Consider two binary rational numbers p, q su
h that t 2 [p; q℄ andjq� pj < F (t)�L(t)jf(y)�f(x)j . In this 
ase jL(p)�L(t)j � jp� tjjf(y)� f(x)j < jF (t)�L(t)j.Therefore F (p) � L(p) < F (t). The same arguments give F (q) < F (t). This isa 
ontradi
tion, be
ause t is between p and q and its image under a monotonemapping has to be between images of p and q. �Lemma 4.4.15 (Cau
hy-Bunyakovski-S
hwarz).(4.4.10)  Z ba f(x)g(x) dx!2 � Z ba f2(x) dx Z ba g2(x) dx:Proof. Sin
e R ba (f(x) + tg(x))2 dx � 0 for all t, the dis
riminant of the fol-lowing quadrati
 equation is non-negative:(4.4.11) t2 Z ba g2(x) dx + 2t Z ba f(x)g(x) dx + Z ba f2(x) dx = 0:This dis
riminant is 4�R ba f(x)g(x) dx�2 � 4 R ba f2(x) dx R ba g2(x) dx. �Now we are ready to prove the logarithmi
 
onvexity of the Euler integral.The integral is obviously an in
reasing fun
tion, hen
e by the mean 
riterion it issuÆ
ient to prove the following inequality:(4.4.12) �Z 10 t x+y2 �1e�t dt�2 � Z 10 tx�1e�t dt Z 10 ty�1e�t dt:



4.4 gamma fun
tion 117This inequality turns into the Cau
hy-Bunyakovski-S
hwarz inequality (4.4.10) forf(x) = t x�12 e�t=2 and g(t) = t y�12 e�t=2.Evaluation of produ
ts. From the 
anoni
al Weierstrass form it follows that1Yn=1f(1� x=n) exp(x=n)g = �e
xx�(�x) ;(4.4.13) 1Yn=1f(1 + x=n) exp(�x=n)g = e�
xx�(x) :One 
an evaluate a lot of produ
ts by splitting them into parts whi
h have this
anoni
al form (4.4.13). For example, 
onsider the produ
t Q1k=1 �1� x2k2 �. Divi-sion by n2 transforms it into Q1k=1 (1� 12n )�1(1 + 12n )�1. Introdu
ing multiplierse 12n and e� 12n , one gets a 
anoni
al form(4.4.14) 1Yn=1��1� 12n� e 12n��1 1Yn=1��1 + 12n� e� 12n��1 :Now we 
an apply (4.4.13) for x = 12 . The �rst produ
t of (4.4.14) is equal to� 12�(�1=2)e�
=2, and the se
ond one is 12�(1=2)e
=2. Sin
e a

ording to the 
har-a
teristi
 equation for �-fun
tion, �(1=2) = � 12�(1=2), one gets �(1=2)2=2 as thevalue of Wallis produ
t. Sin
e the Wallis produ
t is �2 , we get �(1=2) = p�.Problems.1. Evaluate the produ
t Q1n=1 �1 + xn� �1 + 2xn � �1� 3xn �.2. Evaluate the produ
t Q1k=1 k(5+k)(3+k)(2+k) .3. Prove: The sum of logarithmi
ally 
onvex fun
tions is logarithmi
ally 
onvex.4. Prove �(x) = limn!1 n!nxx�nx .5. Prove Q1k=1 kx+k �k+1k �x = �(x+ 1).6. Prove Legendre's doubling formula �(2x)�(0:5) = 22x�1�(x+ 0:5)�(x).



4.5. The CotangentOn the 
ontents of the le
ture. In this le
ture we perform what waspromised at the beginning: we sum up the Euler series and expand sinx intothe produ
t. We will see that sums of series of re
ipro
al powers are expressed viaBernoulli numbers. And we will see that the fun
tion responsible for the summationof the series is the 
otangent.An ingenious idea, whi
h led Euler to �nding the sumP1k=1 1k2 , is the follow-ing. One 
an 
onsider sinx as a polynomial of in�nite degree. This polynomial hasas roots all points of the type k�. Any ordinary polynomial 
an be expanded intoa produ
t Q(x � xk) where xk are its roots. By analogy, Euler 
onje
tured thatsinx 
an be expanded into the produ
tsinx = 1Yk=�1(x� k�):This produ
t diverges, but 
an be modi�ed to a 
onvergent one by division of then-th term by �n�. The division does not 
hange the roots. The modi�ed produ
tis(4.5.1) 1Yk=�1�1� xk�� = x 1Yk=1�1� x2k2�2� :Two polynomials with the same roots 
an di�er by a multipli
ative 
onstant. To�nd the 
onstant, 
onsider x = �2 . In this 
ase we get the inverse to the Wallisprodu
t in (4.5.1) multiplied by x = �2 . Hen
e the value of (4.5.1) is 1, whi
h
oin
ides with sin �2 . Thus it is natural to expe
t that sinx 
oin
ides with theprodu
t (4.5.1).There is another way to tame Q1k=�1(x � k�). Taking the logarithm, weget a divergent series P1k=�1 ln(x � k�), but a
hieve 
onvergen
e by termwisedi�erentiation. Sin
e the derivative of ln sinx is 
otx, it is natural to expe
t that
otx 
oin
ides with the following fun
tion(4.5.2) 
tg(x) = 1Xk=�1 1x� k� = 1x + 1Xk=1 2xx2 � k2�2 :Cotangent expansion. The expansion zez�1 =P1k=0 Bkk! zk allows us to get apower expansion for 
ot z. Indeed, representing 
ot z by Euler's formula one getsieiz + e�izeiz � e�iz = ie2iz + 1e2iz � 1 = i+ 2ie2iz � 1 = i+ 1z 2ize2iz � 1 = i+ 1z 1Xk=0 Bkk! (2iz)k:The term of the last series 
orresponding to k = 1 is 2izB1 = �iz. Multiplied by1z , it turns into �i, whi
h eliminates the �rst i. The summand 
orresponding tok = 0 is 1. Taking into a

ount that B2k+1 = 0 for k > 0, we get
ot z = 1z + 1Xk=1(�1)k 4kB2k(2k)! z2k�1:118



4.5 the 
otangent 119Power expansion of 
tg(z). Substituting1z2 � n2�2 = � 1n2�2 11� z2n2�2 = � 1Xk=0 z2k(n�)2k+2into (4.5.2) and 
hanging the order of summation, one gets:1Xn=1 1Xk=0 z2k(n�)2k+2 = 1Xk=0 z2k�2k+2 1Xn=1 1n2k+2 :The 
hange of summation order is legitimate in the disk jzj < 1, be
ause the seriesabsolutely 
onverges there. This proves the following:Lemma 4.5.1. 
tg(z)� 1z is an analyti
 fun
tion in the disk jzj < 1. The n-th
oeÆ
ient of the Taylor series of 
tg(z) � 1z at 0 is equal to 0 for even n and isequal to 1�n+1 P1k=1 1kn+1 for any odd n.Thus the equality 
ot z = 
tg(z) would imply the following remarkable equality:(�1)n 4nB2n2n! = � 1�2n 1Xk=1 1k2nIn parti
ular, for n = 1 it gives the sum of Euler series as �26 .Exploring the 
otangent.Lemma 4.5.2. j 
ot zj � 2 provided j Im zj � 1.Proof. Set z = x + iy. Then jeizj = jeix�yj = e�y. Therefore if y � 1, thenje2izj = e�2y � 1e2 < 13 . Hen
e je2iz + 1j � 1e2 + 1 < 43 and je2iz � 1j � 1� 1e2 > 23 .Thus the absolute value of
ot z = ieiz + e�izeiz � e�iz = ie2iz + 1e2iz � 1is less than 2. For y � 1 the same arguments work for the representation of 
ot zas i 1+e�2iz1�e�2iz . �Lemma 4.5.3. j 
ot(�=2 + iy)j � 4 for all y.Proof. 
ot(�=2 + iy) = 
os(�=2+iy)sin(�=2+iy) = � sin iy
os iy = et�e�tet+e�t . The module of thenumerator of this fra
tion does not ex
eed e� e�1 for t 2 [�1; 1℄ and the denomi-nator is greater than 1. This proves the inequality for y 2 [�1; 1℄. For other y thisis the previous lemma. �Let us denote by �Z the set fk� j k 2 Zg of �-integers.Lemma 4.5.4. The set of singular points of 
ot z is �Z. All these points aresimple poles with residue 1.Proof. The singular points of 
ot z 
oin
ide with the roots of sin z. The rootsof sin z are roots of the equation eiz = e�iz whi
h is equivalent to e2iz = 1. Sin
eje2izj = je�2 Im zj one gets Im z = 0. Hen
e sin z has no roots beyond the realline. And all its real roots as we know have the form fk�g. Sin
e limz!0 z 
ot z =limz!0 z 
os zsin z = limz!0 zsin z = 1sin0 0 = 1, we get that 0 is a simple pole of 
ot z



120 4.5 the 
otangentwith residue 1 and the other poles have the same residue be
ause of periodi
ity of
ot z. �Lemma 4.5.5. Let f(z) be an analyti
 fun
tion on a domain D. Suppose thatf has in D �nitely many singular points, they are not �-integers and D has no�-integer point on its boundary. ThenI�D f(�) 
ot �d� = 2�i 1Xk=�1 f(k�)[k� 2 D℄+ 2�iXz2D resz(f(z) 
ot z)[z =2 �Z℄:Proof. In our situation every singular point of f(z) 
ot z in D is either a�-integer or a singular point of f(z). Sin
e resz=k� 
ot z = 1, it follows thatresz=k� f(z) 
ot z = f(k�). Hen
e the 
on
lusion of the lemma is a dire
t 
on-sequen
e of Residue Theory. �Exploring 
tg(z).Lemma 4.5.6. 
tg(z + �) = 
tg(z) for any z.Proof.
tg(z + �) = limn!1 nXk=�n 1z + � � k�= limn!1 n�1Xk=�n�1 1z + k�= limn!1 1z � (n+ 1)� + limn!1 1z � n� + limn!1 (n�1)Xk=�(n�1) 1z + � � k�= 0+ 0+ 
tg(z): �Lemma 4.5.7. The series representing 
tg(z) 
onverges for any z whi
h is nota �-integer. j 
tg(z)j � 2 for all z su
h that j Im zj > �.Proof. For any z one has jz2 � k2�2j � k2 for k > jzj. This provides the
onvergen
e of the series. Sin
e 
tg(z) has period �, it is suÆ
ient to prove theinequality of the lemma in the 
ase x 2 [0; �℄, where z = x + iy. In this 
asejyj � jxj and Re z2 = x2 � y2 � 0. Then Re(z2 � k2�2) � �k2�2. It follows thatjz2�k2�2j � k2�2. Hen
e j 
tg(z)j is termwise majorized by 1�+P1k=1 1k2�2 < 2. �Lemma 4.5.8. j 
tg(z)j � 3 for any z with Re z = �2 .Proof. In this 
ase Re(z2 � k2�2) = �24 � y2 � k2�2 � �k2 for all k � 1.Hen
e jC(z)j � 2� +P1k=1 1k2 � 1 + 2 = 3. �Lemma 4.5.9. For any z 6= k� and domain D whi
h 
ontains z and whoseboundary does not 
ontain �-integers, one has(4.5.3) I�D 
tg(�)� � z d� = 2�i 
tg(z) + 2�i 1Xk=�1 1k� � z [k� 2 D℄:
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otangent 121Proof. As was proved in Le
ture 3.6, the series P1k=�1 1(��z)(��k�) admitstermwise integration. The residues of 1(��z)(��k�) are 1k��z at k� and 1z�k� at z.Hen
e I�D 1(� � z)(� � k�)d� = (2�i 1z�k� for k� =2 D,0 if k� 2 D.It follows that I�D 
tg(�)� � z d� = 2�i 1Xk=�1 1z � k� [k� =2 D℄= 2�i 
tg(z)� 1Xk=�1 1z � k� [k� 2 D℄: �Lemma 4.5.10. 
tg(z) is an analyti
 fun
tion de�ned on the whole plane, havingall �-integers as its singular points, where it has residues 1.Proof. Consider a point z =2 �Z. Consider a disk D, not 
ontaining �-integerswith 
enter at z. Then formula (4.5.3) transforms to the Cau
hy Integral Formula.And our assertion is proved by termwise integration of the power expansion of 1��zjust with the same arguments as was applied there. The same formula (4.5.3) allowsus to evaluate the residues. �Theorem 4.5.11. 
ot z = 1z +P1k=1 2zz2�k2�2 .Proof. Consider the di�eren
e R(z) = 
ot z � 
tg(z). This is an analyti
fun
tion whi
h has �-integers as singular points and has residues 0 in all of these.Hen
e R(z) = 12�i H�D R(�)��z d� for any z =2 �Z. We will prove that R(z) is 
onstant.Let z0 and � be a pair of di�erent points not belonging to �Z. Then for any D su
hthat �D \ �Z= ? one hasR(z)�R(z0) = 12�i I�D R(�)� 1� � z � 1� � z0� d�= 12�i I�D R(z)(z � z0)(� � z)(� � z0) :(4.5.4)Let us de�ne Dn for a natural n > 3 as the re
tangle bounded by the lines Re z =�(�=2 � n�), Im z = �n�. Sin
e jR(z)j � 7 by Lemmas 4.5.2, 4.5.3, 4.5.7, and4.5.8 the integrand of (4.5.4) eventually is bounded by 7jz�z0jn2 . The 
ontour ofintegration 
onsists of four monotone 
urves of diameter < 2n�. By the EstimationLemma 3.5.4, the integral 
an be estimated from above by 32�n7jz�z0jn2 . Hen
e thelimit of our integral as n tends to in�nity is 0. This implies R(z) = R(z0). Hen
eR(z) is 
onstant and the value of the 
onstant we �nd by putting z = �=2. As
ot�=2 = 0, the value of the 
onstant is
tg(�=2) = limn!1 nXk=�n 1�=2� k� = 2� limn!1 nXk=�n 11� 2k :
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otangentThis limit is zero be
ausenXk=�n 11� 2k = 0Xk=�n 11� 2k + nXk=1 11� 2k = nXk=0 12k + 1 + nXk=1� 12k � 1 = 12n+ 1 :�Summation of series by 
ot z.Theorem 4.5.12. For any rational fun
tion R(z), whi
h is not singular inintegers and has degree � �2, one has P1k=�1R(n) = �Pz res� 
ot(�z)R(z).Proof. In this 
ase the integral limn!1 H�Dn=pi R(z)� 
ot�z = 0. Hen
ethe sum of all residues of R(z)� 
ot�z is zero. The residues at �-integers givesP1k=�1R(k). The rest gives �Pz res� 
ot(�z)R(z). �Fa
torization of sinx. Theorem 4.5.11 with �z substituted for z gives the se-ries � 
ot�z =P1k=�1 1z�k . The half of the series on the right-hand side 
onsistingof terms with nonnegative indi
es represents a fun
tion, whi
h formally teles
opes� 1z . The negative half teles
opes 1z . Let us bise
t the series into nonnegative andnegative halves and add P1k=�1 1k [k 6= 0℄ to provide 
onvergen
e:�1Xk=�1� 1z � k + 1k�+ 1Xk=0� 1z � k + 1k + 1�= 1Xk=1��1k + 1z + k�+ 1Xk=1� 1z + 1� k + 1k� :The �rst of the series on the right-hand side represents �z(z) � 
, the se
ond isz(�z+1)+
. We get the following 
omplement formula for the digamma fun
tion:�z(z) +z(1� z) = � 
ot�z:Sin
e �00(z+1) = z0(z) = � (z) (Lemma 4.4.11) it follows that �0(1+z) = z(z)+
and �0(�z) = �(z(1�z)+
). Therefore �0(1+z)+�0(�z) = � 
ot�z. Integrationof the latter equality gives ��(1 + z)��(�z) = ln sin�z + 
. Changing z by �zwe get �(1 � z) + �(z) = � ln sin�z + 
. Exponentiating gives �(1 � z)�(�z) =1sin�z 
. One de�nes the 
onstant by putting z = 12 . On the left-hand side one gets�( 12 )2 = �, on the right-hand side, 
. Finally we get the 
omplement formula forthe Gamma-fun
tion:(4.5.5) �(1� z)�(z) = �sin�z :Now 
onsider the produ
t Q1k=1(1� x2k2 ). Its 
anoni
al form is(4.5.6) 1Yn=1n�1� xn� e xno�1 1Yn=1n�1 + xn� e� xno�1 :The �rst produ
t of (4.5.6) is equal to � e
xx�(�x) , and the se
ond one is e�
xx�(�x) .Therefore the whole produ
t is � 1x2�(x)�(�x) . Sin
e �(1 � x) = �x�(�x) we getthe following result 1�(x)�(1� x) = x 1Yk=1�1� x2k2� :



4.5 the 
otangent 123Comparing this to (4.5.5) and substituting �x for x we get the Euler formula:sinx = x 1Yk=1�1� x2�2k2� :Problems.1. Expand tan z into a power series.2. Evaluate P1k=1 11+k2 .3. Evaluate P1k=1 11+k4 .



4.6. Divergent SeriesOn the 
ontents of the le
ture. \Divergent series is a pure handiwork ofDiable. It is a full nonsense to say that 12n � 22n + 32n � � � � = 0. Do you keepto die laughing about this?" (N.H. Abel letter to . . . ). The twist of fate: now onesays that that the above mentioned equality holds in Abel's sense.The earliest analysts thought that any series, 
onvergent or divergent, has asum given by God and the only problem is to �nd it 
orre
tly. Sometimes theydisagreed what is the 
orre
t answer. In the nineteenth 
entury divergent serieswere expelled from mathemati
s as a \handiwork of Diable" (N.H. Abel). Laterthey were rehabilitated (see G.H. Hardy's book Divergent Series1). Euler remainsthe unsurpassed master of divergent series. For example, with the help of divergentseries he dis
overed Riemann's fun
tional equation of the �-fun
tion a hundredyears before Riemann.Evaluations with divergent series. Euler wrote: \My pen is 
lever thanmyself." Before we develop a theory let us simply follow to Euler's pen. Thefundamental equality is(4.6.1) 1 + x+ x2 + x3 + � � � = 11� x :Now we, following Euler, suppose that this equality holds for all x 6= 1. In these
ond le
ture we were 
onfused by some unexpe
ted properties of divergent series.But now in 
ontrast with the se
ond le
ture we do not hurry up to land. Let uslook around.Substituting x = �ey in (4.6.1) one gets1� ey + e2y � e3y + � � � = 11 + ey :On the other hand(4.6.2) 11 + ey = 1ey � 1 � 2e2y � 1 :Sin
e(4.6.3) zez � 1 = 1Xk=0 Bkk! zk:One derives from (4.6.2) via (4.6.3)(4.6.4) 1ey + 1 = 1Xk=1 Bk(1� 2k)k! yk�1:Let us di�erentiate repeatedly n-times the equality (4.6) by y. The left-hand sidegives P1k=0(�1)kkneky . In parti
ular for y = 0 we get P1k=0(�1)kkn. We get onthe right-hand side by virtue of (4.6.4) the following� ddy�n 11 + ey = Bn+1(1� 2n+1)n+ 1 :Combining these results we get the following equality(4.6.5) 1n � 2n + 3n � 4n + � � � = Bn+1(2n+1 � 1)n+ 1 :1G.H. Hardy, Divergent Series, Oxford University Press, 1949.124



4.6 divergent series 125Sin
e odd Bernoulli numbers vanish, we get12n � 22n + 32n � 42n + � � � = 0:Consider an even analyti
 fun
tion f(x), su
h that f(0) = 0. In this 
ase f(x)is presented by a power series a1x2 + a2x4 + a3x6 + : : : , then1Xk=1(�1)k�1 f(kx)k2 = 1Xk=1 (�1)k�1k2 1Xn=1 anx2nk2n= 1Xn=1 anx2n 1Xk=1(�1)k�1k2n�2= a1x2(1� 1 + 1� 1 + : : : )= a1x22 :In parti
ular, for f(x) = 1� 
osx this equality turns into(4.6.6) 1Xk=1(�1)k�1 1� 
os kxk2 = x24 :For x = � the equality (4.6.6) gives1 + 132 + 152 + 172 + � � � = �28 :Sin
e 1Xk=0 1(2k + 1)2 = 1Xk=1 1k2 � 1Xk=1 1(2k)2 = �1� 14� 1Xk=1 1k2one derives the sum of the Euler series:1Xk=1 1k2 = �26 :We see that 
al
ulations with divergent series sometimes give brilliant results.But sometimes they give the wrong result. Indeed the equality (4.6.6) generally isuntrue, be
ause on the left-hand side we have a periodi
 fun
tion and on the right-hand side a non-periodi
 one. But it is true for x 2 [��; �℄. Termwise di�erentiationof (4.6.6) gives the true equality (3.4.2), whi
h we know from Le
ture 3.4.Euler's sum of a divergent series. Now we develop a theory justifyingthe above evaluations. Euler writes that the value of an in�nite expression (inparti
ular the sum of a divergent series) is equal to the value of a �nite expressionwhose expansion gives this in�nite expression. Hen
e, numeri
al equalities arise bysubstituting a numeri
al value for a variable in a generating fun
tional identity. Toevaluate the sum of a series P1k=0 ak Euler usually 
onsiders its power generatingfun
tion g(z) represented by the power series P1k=0 akzk, and supposes that thesum of the series is equal to g(1).To be pre
ise suppose that the power seriesP1k=0 akzk 
onverges in a neighbor-hood of 0 and there is an analyti
 fun
tion g(z) de�ned in a domain U 
ontaininga path p from 0 to 1 and su
h that g(z) = P1k=0 akzk for z suÆ
iently 
lose to 0and 1 is a regular point of g. Then the series P1k=0 ak is 
alled Euler summableand the value g(1) is 
alled its analyti
 Euler sum with respe
t to p. And we willuse a spe
ial sign ' to denote the analyti
al sum.



126 4.6 divergent seriesBy the Uniqueness Theorem 3.6.9 the value of analyti
 sum of a series isuniquely de�ned for a �xed p. But this value generally speaking depends on thepath. For example, let us 
onsider the fun
tion p1 + x. Its binomial series forx = �2 turns into�1 + 1� 12! � 1 � 33! � 1 � 3 � 54! � � � � � (2k � 1)!!(k + 1)! � : : : :For p(t) = ei�t one sums up this series to i, be
ause it is generated by the fun
tionexp ln(1+z)2 de�ned in the upper half-plane. And along p(t) = e�i�t this series issummable to �i by exp � ln(1+z)2 de�ned in the lower half-plane.For a �xed path the analyti
 Euler sum evidently satis�es the Shift, Multipli-
ation and Addition Formulas of the �rst le
ture. But we see that the analyti
 sumof a real series may be purely imaginary. Hen
e the rule ImP1k=0 ak 'P1k=0 Im akfails for the analyti
 sum. The Euler sum along [0; 1℄ 
oin
ides with the Abel sumof the series in the 
ase when both of them exist.In above evaluations we apply termwise di�erentiation to fun
tional series. Ifthe Euler sum P1k=1 fk(z) is equal to F (z) for all z in a domain this does notguarantee the possibility of termwise di�erentiation. To guarantee it we supposethat the fun
tion generating the equality P1k=1 fk(z) ' F (z) analyti
ally dependson z. To formalize the last 
ondition we have to introdu
e analyti
 fun
tions of twovariables.Power series of two variables. A power series of two variables z; w is de�nedas a formal unordered sum Pk;m akmzkwm, over N � N | the set of all pairs ofnonnegative integers.For a fun
tion of two variables f(z; w) one de�nes its partial derivative �f(z0;w0)�zwith respe
t to z at the point (z0; w0) as the limit of f(z0+�z;w0)�f(z0;w0)�z as �ztends to 0.Lemma 4.6.1. If P akmzk1wm1 absolutely 
onverges, then both Pakmzkwm andPmakmzkwm�1 absolutely 
onverge provided jzj < jz1j, jwj < jw1j. And for any�xed z, su
h that jzj < jz1j the fun
tion Pmakzkwm�1 is the partial derivative ofPakmzkwm with respe
t to w.Proof. Sin
eP jakmjjz1jkjw1jm <1 the same is true forP jakmjjzjkjwjm forjzj < jz1j, jwj < jw1j. By the Sum Partition Theorem we get the equalityX akmzkwm = 1Xm=0wm 1Xk=0 akmzk:For any �xed z the right-hand side of this equality is a power series with respe
t tow as the variable. By Theorem 3.3.9 its derivative by w, whi
h 
oin
ides with thepartial derivative of the left-hand side, is equal to1Xm=0mwm�1 1Xk=0 akmzk =Xmakmwm�1zk: �Analyti
 fun
tions of two variables. A fun
tion of two variables F (z; w)is 
alled analyti
 at the point (z0; w0) if for (z; w) suÆ
iently 
lose to (z0; w0) it
an be presented as a sum of a power series of two variables.



4.6 divergent series 127Theorem 4.6.2.(1) If f(z; w) and g(z; w) are analyti
 fun
tions, then f+g and fg are analyti
fun
tions.(2) If f1(z); f2(z) and g(z; w) are analyti
 fun
tions, then g(f1(z); f2(w)) andf1(g(z; w)) are analyti
 fun
tions.(3) The partial derivative of any analyti
 fun
tion is an analyti
 fun
tion.Proof. The third statement follows from Lemma 4.6.1. The proofs of the �rstand the se
ond statements are straightforward and we leave them to the reader. �Fun
tional analyti
al sum. Let us say that a series P1k=1 fk(z) of analyti
fun
tions is analyti
ally summable to a fun
tion F (z) in a domain U � C alonga path p in C � C , su
h that p(0) 2 U � 0 and p(1) 2 U � 1, if there exists ananalyti
 fun
tion of two variables F (z; w), de�ned on a domain W 
ontaining p,U � 0, U � 1, su
h that for any z0 2 U the following two 
onditions are satis�ed:(1) F (z0; 1) = F (z0).(2) F (z; w) =P f (k)m (z0)k! (z � z0)kwm for suÆ
iently small jwj and jz � z0j.Let us remark that the analyti
 sum does not 
hange if we 
hange p keeping itinside W . That is why one says that the sum is evaluated along the domain W .To denote the fun
tional analyti
al sum we use the sign �=. And we will writealso �=W and �=p to spe
ify the domain or the path of summation.The fun
tion F (z; w) will be 
alled the generating fun
tion for the analyti
alequality P1k=1 fk(z) �= F (z).Lemma 4.6.3. If f(z) is an analyti
 fun
tion in a domain U 
ontaining 0, su
hthat f(z) = P1k=0 akzk for suÆ
iently small jzj, then f(z) �=W P1k=0 akzk in Ufor W = f(z; w) j wz 2 Ug.Proof. The generating fun
tion of this analyti
al equality is f((z�z0)w). �Lemma 4.6.4 (on substitution). If F (z) �=p P1k=0 fk(z) in U and g(z) is ananalyti
 fun
tion, then F (g(z)) �=g(p) P1k=0 fk(g(z)) in g�1(U).Proof. Indeed, if F (z; w) generates F (z) �=p P1k=0 fk(z), then F (g(z); w))generates F (g(z)) �=g(p) P1k=0 fk(g(z)). �N. H. Abel was the �rst to have some doubts about the legality of termwisedi�erentiation of fun
tional series. The following theorem justi�es this operationfor analyti
 fun
tions.Theorem 4.6.5. If P1k=1 fk(z) �=p F (z) in U then P1k=1 f 0k(z) �=p F 0(z) in U .Proof. Let F (z; w) be a generating fun
tion for P1k=1 fk(z) �=p F (z). Wedemonstrate that its partial derivative by z (denoted F 0(z; w)) is the generatingfun
tion for P1k=1 f 0k(z) �=p F 0(z). Indeed, lo
ally in a neighborhood of (z0; 0) onehas F (z; w) =P f (k)m (z0)k! wm(z� z0)k. By virtue of Lemma 4.6.1 its derivative by zis F 0(z; w) =P f (k)m (z0)(k�1)! wm(z � z0)k�1 =P f 0(k)m (z0)k! wm(z � z0)k. �The dual theorem on termwise integration is the following one.Theorem 4.6.6. Let P1k=1 fk �= F be generated by F (z; w) de�ned on W =U � V . Then for any path q in U one has Rq F (z) dz 'P1k=1 Rq fk(z) dz.



128 4.6 divergent seriesProof. The generating fun
tion for integrals is de�ned as Rq F (z; w) dz. �The proof of the following theorem is left to the reader.Theorem 4.6.7. If P1k=0 fk �=p F and P1k=0 gk �=p G then P1k=0(fk + gk) �=pF +G, P1k=1 fk �=p F � f0, P1k=0 
fk �=p 
FRevision of evaluations. Now we are ready to revise the above evaluationequipped with the theory of analyti
 sums. Sin
e all 
onsidered generating fun
tionsin this paragraph are single valued, the results do not depend on the 
hoi
e of thepath of summation. That is why we drop the indi
ations of path below.The equality (4.6.1) is the analyti
al equivalen
e generated by 11�tx . The nextequality (4.6.7) is the analyti
al equivalen
e by Lemma 4.6.4. The equality (4.6.3)is analyti
al equivalen
e due to Lemma 4.6.3. Termwise di�erentiation of (4.6.7) is
orre
t by virtue of Theorem 4.6.5. Therefore the equality (4.6.5) is obtained by therestri
tion of an analyti
al equivalen
e. Hen
e the Euler sum of P1k=1(�1)kk2n isequal to 0. Sin
e the seriesP1k=1(�1)kk2nzk 
onverges for jzj < 1 its value 
oin
ideswith the value of the generating fun
tion. And the limit limz!1�0P1k=1(�1)kk2nzkgives the Euler sum, whi
h is zero. Hen
e as a result of our 
al
ulations we havefound Abel's sum P1k=1(�1)kk2n = 0.Now we 
hoose another way to evaluate the Euler series. Substituting x = e�i�in (4.6.1) for 0 < � < 2� one gets1 + ei� + e2i� + e3i� + : : : �= 11� ei� ;1 + e�i� + e�2i� + e�3i� + : : : �= 11� e�i� :(4.6.7)Termwise addition of the above lines gives for � 2 (0; 2�) the following equality(4.6.8) 
os � + 
os 2� + 
os 3� + � � � �= �12 :Integration of (4.6.8) from � to x with subsequent repla
ement of x by � givesby Theorem 4.6.6: 1Xk=1 sin k�k �= � � �2 (0 < � < 2�):A se
ond integration of the same type gives1Xk=1 
os k� � (�1)kk2 �= (� � �)24 :Putting � = �2 we get 1Xk=1 (�1)k+1k2 � 14 1Xk=1 (�1)k+1k2 ' �216 :Therefore 1Xk=1 (�1)k+1k2 = �212 :



4.6 divergent series 129Sin
e 1Xk=1 1k2 = 1Xk=1 (�1)k+1k2 + 2 1Xk=1 1(2k)2one gets 1Xk=1 1k2 = 12 1Xk=1 (�1)k+1k2 = �26 :Problems.1. Prove that the analyti
 sum of 
onvolution of two series is equal to the produ
tof analyti
 sums of the series.2. Suppose that for all n 2 N one has An ' P1k=0 an;k and Bn ' P1k=0 ak;n.Prove that the equalityP1k=0 Ak =P1k=0 Bk holds provided there is an analyti
fun
tion F (z; w) 
oin
iding withP ak;nzkwn for suÆ
iently small jwj,jzj whi
his de�ned on a domain 
ontaining a path joining (0; 0) with (1; 1) analyti
allyextended to (1; 1) (i.e., (1; 1) is a regular point of F (z; w)).


