CHAPTER 4

Differences
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4.1. Newton Series

On the contents of the lecture. The formula with the binomial series was
engraved on Newton’s gravestone in 1727 at Westminster Abbey.

Interpolation problem. Suppose we know the values of a function f at some
points called interpolation nodes and we would like to interpolate the value of f at
some point, not contained in the data. This is the so-called interpolation problem.
Interpolation was applied in the computation of logarithms, maritime navigation,
astronomical observations and in a lot of other things.

A natural idea is to construct a polynomial which takes given values at the
interpolation nodes and consider its value at the point of interest as the interpola-
tion. Values at n + 1 points define a unique polynomial of degree n, which takes
just these values at these points. In 1676 Newton discovered a formula for this
polynomial, which is now called Newton’s interpolation formula.

Consider the case, when interpolation nodes are natural numbers. Recall that
the difference of a function f is the function denoted df and defined by df(z) =
f(xz + 1) — f(z). Define iterated differences 6* f by induction: §°f = f, 6*t1f =
5(6% ). Recall that 2% denotes the k-th factorial power 2% = z(z—1) ... (x—k+1).

LEMMA 4.1.1. For any polynomial P(x), its difference AP(z) is a polynomial
of degree one less.

PRrOOF. The proof is by induction on the degree of P(x). The difference is
constant for any polynomial of degree 1. Indeed, d(ax + b) = a. Suppose the

lemma is proved for polynomials of degree < n and let P(x) = Zi& arz® be a

polynomial of degree n + 1. Then P(z) — app12™ = Q(z) is a polynomial of
degree < n. AP(z) = Aaz™™ + AQ(x). By the induction hypothesis, AQ(x) has

degree < n —1 and, as we know, Az"™ = (n 4+ 1)z™ has degree n. O

LemMA 4.1.2. If AP(x) =0, and P(x) is a polynomial, then P(x) is constant.

Proor. If AP(x) = 0, then degree of P(x) cannot be positive by Lemma 4.1.1,
hence P(x) is constant. O

LeEmMA 4.1.3 (Newton Polynomial Interpolation Formula). For any polynomial
P(x)

o0
A*P(0) x
(4.1.1) P(z) =) PR
k=0
PROOF. If P(z) = ax + b, then A°P(0) = b, A'P(0) = a and 6*P(z) = 0 for
k > 1. Hence the Newton series (4.1.1) turns into b+ ax. This proves our assertion
for polynomials of degree < 1. Suppose it is proved for polynomials of degree n.

Consider P(z) of degree n + 1. Then AP(z) = > 2, Ak,i(o) 2% by the induction
hypothesis. Denote by @Q(z) the Newton series Y 7, Akf!(o) 2 for P(x).
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Then
AQ(z) = i A’“Z(O) (z + 1)E — i A’“Z(O) z*
k=0 ) k=0 '
— AFP(0
_ Z Akp k=1
AFP(0) =
B kZ:O &—1)" '
_ 56O
!
= AP(z).
Hence A(P(z) — Q(z)) = 0 and P(z) = Q(z) + ¢. Since P(0) = Q(0), one gets
¢ = 0. This proves P(z) = Q(z). O

LEMMA 4.1.4 (Lagrange Formula). For any sequence {yi}}_,, the polynomial
n4l
Ly(z) = ZZZQ(—l)”_kyi’“ﬁ has the property Ln(k) =y, for 0 <k <n.

El(n—k)! o—k
Proor. For xk: k, all terms of the sum ZZZO(—l)”*’“WnkLk)' L but the
k-th vanish, and —— is equal to k!(n — k)!(=1)"*. 0

LEmMmA 4.1.5. For any function f and for any natural number m < n one has
flm) = 5y “HOmt

Proor. Consider the Lagrange polynomial L,, such that L, (k) = f(k) for
k < n. Then 6*L,(0) = §*f(0) for all k& < n and 6kL ( ) = 0 for k > n,

because the degree of Ly, is n. Hence, Ly(z) = Yo, TH 04k = ZZ—O : e .
by Lemma 4.1.3. Putting z = m in the latter equality, one gets fim) =L,(m) =

k
Yo SR x

We see that the Newton polynomial gives a solution for the interpolation prob-
lem and our next goal is to estimate the interpolation error.

Theorem on extremal values. The least upper bound of a set of numbers
A is called the supremum of A and denoted by sup A. In particular, the ultimate
sum of a positive series is the supremum of its partial sums. And the variation of
a function on an interval is the supremum of its partial variations.

Dually, the greatest lower bound of a set A is called the infinum and denoted
by inf A.

THEOREM 4.1.6 (Weierstrass). If a function f is continuous on an interval
[a,b], then it takes mazimal and minimal values on [a,b].

PROOF. The function f is bounded by Lemma 3.6.3. Denote by B the supre-
mum of the set of values of f on [a,b]. If f does not take the maximum value, then
f(x) # B for all z € [a,b]. In this case B+f($) is a continuous function on [a, b].
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Hence it is bounded by Lemma 3.6.3. But the difference B — f(z) takes arbitrarily
small values, because B — ¢ does not bound f(z). Therefore B+f($) is not bounded.
This is in contradiction to Lemma 3.6.3, which states that a locally bounded func-

tion is bounded. The same arguments prove that f(z) takes its minimal value on
[a, b]. O

THEOREM 4.1.7 (Rolle). If a function f is continuous on the interval [a,b],
differentiable in interval (a,b) and f(a) = f(b), then f'(c) =0 for some c € (a,b).

PRrOOF. If the function f is not constant on [a, b] then either its maximal value
or its minimal value differs from f(a) = f(b). Hence at least one of its extremal
values is taken in some point ¢ € (a,b). Then f'(¢) =0 by Lemma 3.2.1. O

LeEmMMA 4.1.8. If an n-times differentiable function f(x) has n+ 1 roots in the
interval [a,b], then £ (&) =0 for some & € (a,b).

PrOOF. The proof is by induction. For n = 1 this is Rolle’s theorem. Let
{zr}}_o be a sequence of roots of f. By Rolle’s theorem any interval (z;, ;1)
contains a root of f'. Hence f’ has n — 1 roots, and its (n — 1)-th derivative has a
root. But the (n — 1)-th derivative of f' is the n-th derivative of f. O

THEOREM 4.1.9 (Newton Interpolation Formula). Let f be an n + 1 times
differentiable function on I D [0,n]. Then for any x € I there is £ € I such that

nosk (k+1)

k=0

PRrOOF. The formula holds for z € {0,1,...n} and any £, due to Lemma 4.1.5,
because 2 =0 for such . For other z one has z™+ # 0, hence there is C' such

that f( ) =D 0 , 2* + 2", The function F(y) = f(y) — > 0‘5 f,(o) k_
Cy* has roots 0, 1, LN, T Hence its (n 4+ 1)-th derivative has a root & € I.

Since > p_ 0 (0) isa polynomlal of degree n its (n + 1)-th derivative is 0. And

the (n + 1)-th derlvatlves of Ca™ and Cz™t! coincide, because their difference
is a polynomial of degree n. Hence 0 = F("t1(¢) = f(”H)(f) C(n + 1)! and
c=100 0

k
Binomial series. The series .-, 2 i,(o) 2 is called the Newton series of a

function f. The Newton series coincides with the function at all natural points.
And sometimes it converges to the function. The most important example of such
convergence is given by the so-called binomial series.

Consider the function (1 4+ x)¥. This is a function of two variables. Fix x and
evaluate its difference with respect to y. One has §, (1+z)¥ = (1+z)?™ —(1+z)¥ =
(14+2)Y(1+z—1) = z(1+x)¥. This simple formula allows us immediately to evaluate
65(1+ x)¥ = 2¥(1 + 2)¥. Hence the Newton series for (1 + z)¥ as function of y is

b
K

(4.1.2) (1+z)¥ =
k=0

For fixed y and variable z, the formula (4.1.2) represents the famous Newton bino-

mial series. Our proof is not correct. We applied Newton’s interpolation formula,

proved only for polynomials, to an exponential function. But Newton’s original
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proof was essentially of the same nature. Instead of interpolation of the whole
function, he interpolated coefficients of its power series expansion. Newton consid-
ered the discovery of the binomial series as one of his greatest discoveries. And the
role of the binomial series in further developments is very important.

For example, Newton expands into a power series arcsinz in the following
way. One finds the derivative of arcsinz by differentiating identity sinarcsinz = .

This differentiation gives cos(arcsin z) arcsin’ # = 1. Hence arcsin’z = —L-— =

1 COoSs arcsin @
(1 —2?)~2. Since

—l - % N 2"?_1 22k
(4.1.3) (1—2?)"2 Z Z Sal :

k=0 =i

one gets the series for arcsin by termwise integration of (4.1.3). The result is

= (2 = 1)l gRAL

It was more than a hundred years after the discovery Newton’s Binomial The-
orem that it was first completely proved by Abel.

THEOREM 4.1.10. For any complex z and ¢ such that |z| < 1, the series
h
Yo T absolutely converges to (1 + 2)¢ = exp ((In(1 + 2)).

ProOF. The analytic function exp (ln(1 + z) of variable z has no singular
pomts in the disk |z| < 1, hence its Taylor series converges to it. The derivative
of (14 2)¢ by zis ¢(1 + z)C 1. The k-th derlvatlve is ¢&(1 4 2)¢=*. In particular,
the value of k-th derivative for z = 0 is equal to C—. Hence the Taylor series of the

k_k
function is Y5, S5 O

On the boundary of convergence. Since (1+2)¢ has its only singular point
on the circle |z| = 1, and this point is —1, the binomial series for all z on the circle
has (1 + 2)¢ as its Abel’s sum. In particular, for z = 1 one gets

> _k

The series on the left-hand side converges for x > 0. Indeed, the series becomes
alternating starting with £ > z. The ratio ’Zﬁ of modules of terms next to each
other is less then one. Hence the moduli of the terms form a monotone decreasing

sequence onward k > z. And to apply the Leibniz Theorem 2.4.3, one needs only

I

“r = 0. Transform this limit into lim, . £ [TpZ 11(E -1).

The product Hz;ll(% — 1) contains at most x terms which have moduli greater
than 1, and all terms of the product do not exceed x. Hence the absolute value

of this product does not exceed z¥. And our sequence {wi} is majorized by an

to prove that lim,,

infinitesimally small {m

} Hence it is infinitesimally small.

Plain binomial theorem. For a natural exponent the binomial series contains
only finitely many nonzero terms. In this case it turns into (14 2)" = >} _, ~ o
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Because (a +b)" = a™(1 + £)", one gets the following famous formula

n+1 n&
n _ kin—k
(a+b)" = Z e b v,
k=0

This is the formula that is usually called Newton’s Binomial Theorem. But this
simple formula was known before Newton. In Europe it was proved by Pascal in
1654. Newton’s discovery concerns the case of non integer exponents.

Symbolic calculus. One defines the shift operation S* for a function f by
the formula S®f(x) = f(z + a). Denote by 1 the identity operation and by S = S!.
Hence S° = 1. The composition of two operations is written as a product. So, for
any a and b one has the following sum formula S?S? = Se+b,

We will consider only so-called linear operations. An operation O is called linear
if O(f+g) =O(f)+0(g) for all f,g and O(kf) = kEO(f) for any constant k. Define
the sum A+ B of operations A and B by the formula (A+B)f = Af+ Bf. Further,
define the product of an operation A by a number k as (kA)f = k(Af). For linear
operations O, U, V one has the distributivity law O(U + V) = OU + OV. If the
operations under consideration commute UV = VU, (for example, all iterations
of the same operation commute) then they obey all usual numeric laws, and all
identities which hold for numbers extend to operations. For example, U? — V? =
(U—=V)({U + V), or the plain binomial theorem.

Let us say that an operation O is decreasing if for any polynomial P the degree
of O(P) is less than the degree of P. For example, the operation of difference
d = S — 1 and the operation D of differentiation Df(z) = f'(z) are decreasing.
For a decreasing operation O, any power series Z;’;O arOF defines an operation
at least on polynomials, because this series applied to a polynomial contains only
finitely many terms. Thus we can apply analytic functions to operations.

For example, the binomial series (1+8)¥ = > .2, (Skk—?!’h represents SY. And the

ko ke
equality SY = .2, 61«—‘1!/’ which is in fact the Newton Polynomial Interpolation

Formula, is a direct consequence of binomial theorem. Another example, consider
> = k sk
8, =S% —1. Then S% =1 +6, and S* = (1 +J,)". Further, 8% = Y}_, 0= =

k. k
o %("‘Z‘) . Now we follow Euler’s method to “substitute n = oo”. Then
’ k

nd, converts into zD, and % turns into 1. As result we get the Taylor formula

ST = EZ":O ”’kk]!)k. Our proof is copied from the Euler proof in his Introductio of

lim,, oo (1 4+ £)" = 307, “Z—I,c This substitution of infinity means passing to the
limit. This proof is sufficient for decreasing operations on polynomials because the
series contains only finitely many nonzero terms. In the general case problems of
convergence arise.

The binomial theorem was the main tool for the expansion of functions into
power series in Euler’s times. FEuler also applied it to get power expansions for
trigonometric functions.

The Taylor expansion for z = 1 gives a symbolic equality S = exp D. Hence
D=InS=In(1+4) = o (—1)**! %. We get a formula for numerical differenti-
ation. Symbolic calculations produce formulas which hold at least for polynomials.
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Problems.

n&z&yn_k

Prove (z + y)™ :kzzzo .

n n“on—k
Evaluate ), _ 772" ".

k
Prove: If p is prime, then % is divisible by p.
n";

Prove: 77 = =0k

Deduce the plain binomial theorem from multiplication of series for exponenta.
One defines the Catalan number ¢, as the number of correct placement of
brackets in the sum a; + a2 + -+ + a,. Prove that Catalan numbers satisfy
the following recursion equation ¢,, = ZZ;S CrCn—p and deduce a formula for
Catalan numbers.

Prove that A¥z"z™ =0 for z = 0 and k < n.

n le
. Prove that Y ;_,(-1)*% =0.

&

. Get a differential equation for the binomial series and solve it.
10.
11.

Prove (a +b)" = >} _, z—?aﬁbu.

Prove: A sequence {ay,} such that A%a;, > 0 satisfies the inequality max{a,...,a,} >
ay, for any k betwee;i 1 and n.
Prove > o (—1)k %ﬁ 2¢/2 cos LT
Prove Zk:O(_l)kék—Jrl)! = 22/2gin 2T,
Prove A™0? is divisible by p!. .
Prove that A0P = Y320 (—1)" k2 kp.

Prove cos? z + sin? = 1 via power series.



4.2. Bernoulli Numbers

On the contents of the lecture. In this lecture we give explicit formulas
for telescoping powers. These formulas involve a remarkable sequence of numbers,
which were discovered by Jacob Bernoulli. They will appear in formulas for sums
of series of reciprocal powers. In particular, we will see that %2, the sum of Euler
series, contains the second Bernoulli number %.

Summation Polynomials. Jacob Bernoulli found a general formula for the
sum EZ:1 k?. To be precise he discovered that there is a sequence of numbers
Bo,Bl, BQ, - ,Bn, ... such that

g+1 k 1
nq—i-l k

(4.2.1) qu ZBk
0,2,0,—%,0,2. The

The first 11 of the Bernoulli numbers are 1, — 2, 6,O 30, )13 30, )56
right-hand side of (4.2.1) is a polynomial of degree ¢ + 1 in n. Let us denote this
polynomial by ¢,+1(n). It has the following remarkable property: dt,41(z) =
(1 + 2)?. Indeed the latter equality holds for any natural value n of the variable,
hence it holds for all x, because two polynomials coinciding in infinitely many
points coincide. Replacing in (4.2.1) ¢ + 1 by m, n by z and reversing the order of
summation, one gets the following:

B m (’ITL— 1)m k—1
VY (z) = kZ:OBm,k el 2k
- m — 1)!
- kZOBm_kk(!(m - i)c)'f”k
R (m —1)*=t
= kZ:OBm_k %l .’L'k

Today’s lecture is devoted to the proof of this Bernoulli theorem.

Telescoping powers. Newton’s Formula represents x™ as a factorial poly-

nomlal Z/S_ ‘skko,m 2%, where A*0™ denotes the value of 6¥z™ at = = 0. Since
sa% = ka™, one immediately gets a formula for a polynomial ¢4 (z) which

telescopes = in the form

o kam
bin(@) = Y

!
P k+1)!
This polynomial has the property ¢pn,41(n) = > ,_ é k™ for all n.

The polynomials ¢,,,(x), as follows from Lemma 4.1.2, are characterized by two
conditions:

Agp(z) =™ 1, dm(1) = 0.
LEMMA 4.2.1 (on differentiation). ¢, (z) = ¢},,1(0) + md,,(z).

Proor. Differentiation of Adp41(z) = 2™ gives Al . (z) = ma™ . The
polynomial me,, has the same differences, hence A(¢}, ., (x) — m¢y,(z)) = 0. By
Lemma 4.1.2 this implies that ¢, | () —me,, () is constant. Therefore, ¢;, ., ()~

102



4.2 BERNOULLI NUMBERS 103

m¢m($) = ¢;n+1(0) - m¢m(0)' But ¢m(1) = 0 and ¢m(0) = ¢m(1) - 6¢m(0)
0—-0m"1=0.

o

Bernoulli polynomials. Let us introduce the m-th Bernoulli number B,
as ¢;,,1(0), and define the Bernoulli polynomial of degree m > 0 as By, (z) =
mom (z) + By, The Bernoulli polynomial By(z) of degree 0 is defined as identically
equal to 1. Consequently B,,(0) = By, and B}, ,(0) = (m + 1)B,,.

The Bernoulli polynomials satisfy the following condition:

ABy(z) = maz™™'  (m > 0).

In particular, AB,,(0) = 0 for m > 1, and therefore we get the following boundary
conditions for Bernoulli polynomials:

B,,(0) = B,,(1) = B,,, for m > 1, and
B1(0) = —Bi(1) = By.

The Bernoulli polynomials, in contrast to ¢,,(x), are normed: their leading
coefficient is equal to 1 and they have a simpler rule for differentiation:

Bl () = mBy,_1(2)

Indeed, B}, (z) = m¢!, () = m((m—1)¢pm—1(x)+¢,,(0)) = mBy,—1(x), by Lemma
4.2.1.

Differentiating By, (z) at 0, k times, we get By (0) = mE =Bl . (0) =
mk;l(m —k+ 1By = mEBm,k. Hence the Taylor formula gives the following
representation of the Bernoulli polynomial:

’ITLEB —k
B,,(z) = Z Taz’“.
k=0 ’

Characterization theorem. The following important property of Bernoulli
polynomials will be called the Balance property:

(4.2.2) /01 By (z)dx =0 (m >0).

Indeed, [ By (z)de = [, (m + 1)Bl,,,(z) dz = AByyi1(0) = 0.

The Balance property and the Differentiation rule allow us to evaluate Bernoulli
polynomials recursively. Thus, B (z) has 1 as leading coefficient and zero integral
on [0,1]; this allows us to identify B;(z) with  — 1/2. Integration of B;(z) gives
By(z) = 22 — x + C, where C is defined by (4.2.2) as — fol a?dr = L. Integrating
By () we get Bs(x) modulo a constant which we find by (4.2.2) and so on. Thus
we obtain the following theorem:

THEOREM 4.2.2 (characterization). If a sequence of polynomials {P,(z)} sat-
isfies the following conditions:
e Py(z) =1,
. fol P,(xz)dx =0 for n >0,
e P/ (z) =nP,_1(x) forn >0,
then P, (xz) = B, (z) for all n.
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Analytic properties.
LeEMMA 4.2.3 (on reflection). By (z) = (=1)"By(1 —z) for any n.

Proor. We prove that the sequence T,,(z) = (—1)"By(1 — ) satisfies all the
conditions of Theorem 4.2.2. Indeed, Ty = By =1,

/01 T (z) dz = (—1)" /10 By (x) dz = 0

and

To(@)' 1)"B, (1 —x)
)*nBpn_1(1 —z)(1 — )’
)" B, (x)

nTn_1 (:E)

1
1

(_
(_
(_

O

LEMMA 4.2.4 (on roots). For any odd n > 1 the polynomial By (z) has on [0,1]
just three roots: 0, %, 1.

ProOF. For odd n, the reflection Lemma 4.2.3 implies that B, (3) = —Bn(3),
that is By(3) = 0. Furthermore, for n > 1 one has By (1) — B,(0) = n0"~! = 0.
Hence B,(1) = B,(0) for any Bernoulli polynomial of degree n > 1. By the
reflection formula for an odd n one obtains B, (0) = —By(1). Thus any Bernoulli
polynomial of odd degree greater than 1 has roots 0, %, 1.

The proof that there are no more roots is by contradiction. In the opposite
case consider B, (x), of the least odd degree > 1 which has a root « different from
the above mentioned numbers. Say o < 3. By Rolle’s Theorem 4.1.7 B/, () has
at least three roots 8, < B2 < B3 in (0,1). To be precise, 81 € (0,a), B2 € (a,1),
B3 € (3,1). Then Bj,_1(z) has the same roots. By Rolle’s Theorem B],_,(z) has
at least two roots in (0,1). Then at least one of them differs from % and is a root
of B,,_2(z). By the minimality of n one concludes n — 2 = 1. However, B;(x) has

the only root % This is a contradiction. d

THEOREM 4.2.5. B, = 0 for any odd n > 1. For n = 2k, the sign of B,
is (=1)**1. For any even n one has either B, = max,cjo1]Bn(z) or B, =
min,cpo,1) Bn(z). The first occurs for positive B, the second for negative.

PROOF. Bogt1 = Bay1(0) = 0 for & > 0 by Lemma 4.2.4. Above we have
found that By = %. Suppose we have established that B, > 0 and that this is
the maximal value for Bs(z) on [0,1]. Let us prove that Bagio < 0 and it is
the minimal value for Bajy2(x) on [0,1]. The derivative of Bag41 in this case is
positive at the ends of [0, 1], hence Bag41(z) is positive for 0 < z < % and negative
for % < x < 1, by Lemma 4.2.4 on roots and the Theorem on Intermediate Values.
Hence, B, ,(x) > 0 for z < 1 and B}, ,(z) < 0 for # > . Therefore, Byj12(x)
takes the maximal value in the middle of [0,1] and takes the minimal values at
the ends of [0,1]. Since the integral of the polynomial along [0,1] is zero and
the polynomial is not constant, its minimal value has to be negative. The same
arguments prove that if By is negative and minimal, then Bsg.o is positive and
maximal. |
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LeEMMA 4.2.6 (Lagrange Formula). If f is a differentiable function on [a,b],
then there is a £ € (a,b), such that

(4.2.3) f(b) = f(a) + f'(f)M_

b—a

ProOF. The function g(z) = f(z) — (x — a)%ﬁ(a) is differentiable on [a, b]
and g(b) = g(a) = 0. By Rolle’s Theorem ¢'(¢§) = 0 for some & € [a,b]. Hence

' = W Substitution of this value of f'(£) in (4.2.3) gives the equality. O

Generating function. The following function of two variables is called the
generating function of Bernoulli polynomials.

o0 k
(4.2.4) Bla,t) =Y Bk(:v)%
k=0 ’

Since By, < f—,i, the series on the right-hand side converges for ¢t < 2 for any z. Let us

differentiate it termwise as a function of z, for a fixed t. We get > p- , kBj—1(z) tk—k, =
tB(z,t). Consequently (In B(z,t))!, = IBB;”((;’;)) =t and In B(z,t) = ot + ¢(t), where
the constant ¢(t) depends on t. It follows that B(z,t) = exp(xt)k(t), where k(t) =
exp(c(t)). For z = 0 we get B(0,t) = k(t) = X4y Bk%. To find k(t) consider
the difference B(z + 1,t) — B(x,t). It is equal to exp(at + t)k(t) — exp(xt). On
the other hand the difference is Y -, ABk(:c)% =3 k:Bk_l(:c)% = tB(z,t).
Comparing these expressions we get explicit formulas for the generating functions
of Bernoulli numbers:

and Bernoulli polynomials:

0-—-1 k
t texp(tz)
k=+

From (4.2.4) one gets t = (expt — 1) > o, Bk%. Substituting expt — 1 =
Zzozl Z—k, in this equality, by the Uniqueness Theorem 3.6.9, one gets the equalities
for the coefficients of the power series

n

ank _
Z m =0 for n > 1.
k=1

Add % to both sides of this equality and multiply both sides by n! to get

n k
B v
(4.2.5) B, = ’;:

forn > 1.
k=0
The latter equality one memorizes via the formula B™ = (B + 1)", where after
expansion of the right hand side, one should move down all the exponents at B
turning the powers of B into Bernoulli numbers.
Now we are ready to prove that

m k-1
(42.6)  ém(l+az)= w - i—m = ZBm—k%xk = P ().
k=0 ’
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Putting z = 0 in the right hand side one gets 1,,,(0) = By, (m — 1) = BW'". The
left-hand side takes the same value at & = 0, because By, (1) = Bp(0) = By,. It
remains to prove the equality of the coefficients in (4.2.6) for positive de grees

B (x+1) 1 m_Bm—k &
_—_— = — _— ]_
- E (1+x)

m k!
k=0

:_Zm Bm kzk:kj‘xj

!
=0 7

Now let us change the summation order and change the summation index of the
interior sum by ¢ = m — k.

Il

|p—n
3
S S
™
ST
oy

3

i

ol

f

Now we change mm(i;z(_”.%i)i by (mf?:)imi and apply the identity (4.2.5).

Problems.

1. Evaluate fol B,,(z) sin 27z dz.

2. Expand z* — 32 + 2z — 1 as a polynomial in (z — 2).

3. Calculate the first 20 Bernoulli numbers.

4. Prove the inequality |By(z)| < |Bn| for even n.

5. Prove the inequality | B, ( )| < §1Bn-1] for odd n.

6. Prove that LW — & £ d:v-i—fol () By () da.

7. Prove that £ +f(1) f flz)do + 2LO f f"(x)Bs(z) dz.

8. Deduce AB, ( ) = nz" ! from the balance property and the differentiation
rule.

9. Prove that B, (z) = B,,(1 — z), using the generating function.

10. Prove that Ba,1 = 0, using the generating function.

11. Prove that By, (nz) = n™ ' Y170 By, (z + ).

12. Evaluate B, (3).

13. Prove that Ba(z) = P(Bs(z)), where P(z) is a polynomial with positive coef-
ficient (Jacobi Theorem).

14. Prove that B, = Z,ﬁo(—l)kiioln.

*15. Prove that By, +)" 55 [k + 1 is prime and k is divisor of /] is an integer (Staudt

Theorem).




4.3. Euler-Maclaurin Formula

On the contents of the lecture. From this lecture we will learn how Euler
managed to calculate eighteen digit places of the sum -, k%

Symbolic derivation. Taylor expansion of a function f at point z gives

Hence

k=1
where D is the operation of differentiation. One expresses this equality symbolically
as

(4.3.1) d=expD —1.

We are searching for F' such that F(n) = Ez;ll f(k) for all n. Then 0F(z) = f(z),
or symbolically F' = 6 'f. So we have to invert the operation of the difference.
From (4.3.1), the inversion is given formally by the formula (expD — 1)~!. This
function has a singularity at 0 and cannot be expanded into a power series in D.
However we know the expansion

t = By .
- = g
expt—1 Z k
k=0
This allows us to give a symbolic solution of our problem in the form

1 B
5-1=p! _ Dk 1_p1_21 2k 22k y2k-1
expD -1 Z 2 + I; 2k!
Here we take into account that By = 1, B = —% and Byp11 = 0 for k£ > 0.
Since 22;11 (k) = F(n) — F(1), the latter symbolic formula gives the following
summation formula:

k=1 1

+ Z B”“ (FZD () — FEE (1)),

For f(x) = 2™ this formula gives the Bernoulli polynomial ¢,41.-

Euler’s estimate. Euler applied this formula to f(z) = > and estimated

- (x+9)
the sum » ;7 kiz In this case the k-th derivative of (E==)e )2 at 1 has absolute

value g’%‘,til’ Hence the module of the k-th term of the summation formula does

not exceed k10k+2 For an accuracy of eighteen digit places it is sufficient to sum
up the first fourteen terms of the series, only eight of them do not vanish. Euler
conjectured, and we will prove, that the value of error does not exceed of the value of
the first rejected term, which is ;2% Since Big = — 35T this gives the promised
accuracy.
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FIGURE 4.3.1. Bernoulli numbers

We see from the table (Figure 4.3.1) that increasing of the number of considered
terms does not improve accuracy noticeably.

Summation formula with remainder. In this lecture we assume that all
functions under consideration are differentiable as many times as needed.

LEMMA 4.3.1. For any function f(z) on [0,1] one has

S+ /f d:c—/f \Bi(«

PROOF. Recall that By (z) = z — %, hence fo 7)B; (z)dr = fo 1) df (z).
Now, integration by parts gives

| @-pa@=300+0)- [ @

O

Consider the periodic Bernoulli polynomials Bp{x} = Bp(z — [z]). Then
B; {z} = mBp,_1{z} for non integer x.

Let us denote by Y. aj the sum 1a,, + Zz;lmrl ak + 2an.

LEMMA 4.3.2. For any natural p, g and any function f(x) one has

:/qu(:v)dx—/qu'(x)Bl{x}dx.

PROOF. Applying Lemma 4.3.1 to f(z + k) one gets
1
(f(k+1)+f /fx+k d$+/fx+kB1()d

E+1 k41
:/ () dm+/ f'(x)Bi{z} dx.
k k

Summing up these equalities for k£ from p to ¢, one proves the lemma. a

LEMMA 4.3.3. For m > 0 and a function f one has

q

@33 [ @)Butey e = 22 ~ £0) — [ @B o) da.

4

PROOF. Since By, {z}dzx = dB",‘n*ijiw} and By, t1{k} = Bp41 for any natural

k, the formula (4.3.3) is obtained by a simple integration by parts. O
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THEOREM 4.3.4. For any function f and natural numbers n and m one has:

m—1

(4.3.4) / flz dm+k2 ka11 (r9m) - 19 )

+ % / £ (2) By {z} da.

PRrROOF. The proof is by induction on m. For m = 1, formula (4.3.4) is just
given by Lemma 4.3.2. Suppose (4.3.4) is proved for m. The remainder

_1\ym+1 n
% /1 £ (@) By fa} da

can be transformed by virtue of Lemma 4.3.3 into

CUE Bt i) — 1) + S [ B (b ) o

Since odd Bernoulli numbers vanish, (—1 )m“BmH = By 41 for m > 0. a

Estimation of the remainder. For m = oo, (4.3.4) turns into (4.3.2). De-
note

R, = ﬂ/nf(m)(w)B {z}dzx

m m! 1 m )

This is the so-called remainder of Euler-Maclaurin formula.
LEMMA 4.3.5. Ry, = Rom1 for any m > 1.

PRrROOF. Because Bap+1 = 0, the only thing which changes in (4.3.4) when
one passes from 2m to 2m + 1 is the remainder. Hence its value does not change
either. O

LEMMA 4.3.6. If f(z) is monotone on [0, 1] then

sen / F(&) Bom 1 () dz = sgn(f (1) — £(0)) sgn Bam.

PROOF. Since Boyt1(x) = —Bapmy1(1 — ), the change © — 1 — x transforms
the integral fo 5 f(@)Bamy1(7) do to — 00'5 f(1 = 2)Bayt1(z) da:
0.5 1
[ #@Bam@yde = [ 1) Banis@ e+ [ 0B a)
0 0 0.5

- / (F(@) = F(1 = ) Bas (v) d.

Bam+1(z) is equal to 0 at the end-points of [0,0.5] and has constant sign on (0, 0.5),
hence its sign on the interval coincides with the sign of its derivative at 0, that is,
it is equal to sgn Bs,,. The difference f(z) — f(1 — x) also has constant sign as
x < 1—a2 on (0,0.5) and its sign is sgn(f(1) — f(0)). Hence the integrand has
constant sign. Consequently the integral itself has the same sign as the integrand
has. O

LeEMMA 4.3.7. If ™D (z) and f*™3)(z) are comonotone for x > 1 then

B m 2m 2m
Rom = b gty (FO7 0 () = £ (1), 06 <1
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Proor. The signs of Ra;41 and Rap3 are opposite. Indeed, by Lemma 4.2.5

sgn By, = —sgh Boyyo, and sgn(fCm ) (n) — fCmHU(1)) = sgn(fPm+3) (n) —
f@mH3)(1) due to the comonotonity condition. Hence sgn Ropi+1 = — sgn Rop i3
by Lemma 4.3.6.

Set

Tomio = %(f(zmﬂ)(n) _ f(2m+1)(1))_

Then T2m+2 = R2m+1 - R2m+2. By Lemma 435, T2m+2 = R2m+1 - R2m+3. Since

Ropt3 and Rap,1 have opposite signs, it follows that sgn T, 12 = sgn Ropy1 and

|Tom+2| > |R2m+1|. Hence 6, = 1;227’:3 = Tf“ belongs to [0, 1]. O

THEOREM 4.3.8. If f*) and f*+2) are comonotone for any k > 1, then

/ @ daz— (le)c (f(zk D(n )_f(%l)(l))‘

Hence the value of the error which gives the summation formula (4.3.2) with
m terms has the same sign as the first rejected term, and its absolute value does
not exceed the absolute value of the term.

THEOREM 4.3.9. Suppose that [~ |f¥)(z)|dz < oo, lim f*)(z) =0 and f*
Tr—r00

is comonotone with f**2) for all k > K for some K. Then there is a constant C
such that for any m > K for some 6, € [0,1]

(4.3.5) Zf /f )dz + 2

2k 1) )

Bomi2  c2m1)
+9m(2m+2)!f ().

LEMMA 4.3.10. Under the condition of the theorem, for any m > K,

(_]‘)m > m _ B2m 2 2m4-1
4s0) I [ @B s = <, e ),

Proor. By Lemma 4.3.7,

_1\ym+1 q 3
o [ £ @Bt e = 00 R () — O ),

To get (4.3.6), pass to the limit as ¢ tends to infinity. O

PRrROOF OF THEOREM 4.3.9. To get (4.3.5) we change the form of the remain-
der Rg for (4.3.4). Since

/n By {z} f5) dz = /Oo By {z} f5) () dx — /Oo BiA{z} fY () dx
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applying the equality (4.3.3) to the interval [n, 00), one gets

_1\k+1 00
_%/n Bk{x}f(’“)(x) dr

k4l _1\k+2 %
_ %Jc(k)(n) _ %/ﬂ Beyr {a} £+ () da.

Iterating this formula one gets

Y (K) — Bi L
Rk = /1 Br{z} f' do + k:EK i + 1)!f (n)

Tl LmBm{x}ow)dw.

Here we take into account the equalities (—1)*By = By, and (—1)™*2 = (-1)™.
Now we substitute this expression of Ry into (4.3.4) and set

© K-1
4.37) O = (—1)K+1/ Br{a} 5 (2) dz — @ -y %f(’“)(l)-
1 k=1 ’
O

Stirling formula. The logarithm satisfies all the conditions of Theorem 4.3.9

with K = 2. Its k-th derivative at n is equal to % Thus (4.3.5) for the
logarithm turns into
< Inn < Boy, 0 Boynyo
Ink=nlon - — .
kz:; ph=nmnontot oot kz;: 2E(2k — V)nZF-1 | (2m + 2)(2m + Ln2F1

By (4.3.7), the constant is

> B B
o= 2{2:6} dr — =2,
1 €T 2
But we already know this constant as ¢ = %ln 2w. For m = 0, the above formula
gives the most common form of Stirling formula:

O
n! =v2mnnte "1,

Problems.

Write the Euler-Maclaurin series telescoping %
Prove the uniqueness of the constant in Euler-Maclaurin formula.

Calculate ten digit places of Y ;~ #

Calculate eight digit places of Z}gO:OlOOOO %

Evaluate In 1000! with accuracy 10~%.

U W=



4.4. Gamma Function

On the contents of the lecture. Euler’s Gamma-function is the function
responsible for infinite products. An infinite product whose terms are values of
a rational function at integers is expressed in terms of the Gamma-function. In
particular it will help us prove Euler’s factorization of sin.

Telescoping problem. Given a function f(x), find a function F(z) such that
0F = f. This is the telescoping problem for functions. In particular, for f = 0
any periodic function of period 1 is a solution. In the general case, to any solution
of the problem we can add a l-periodic function and get another solution. The
general solution has the form F'(z) + k(t) where F'(z) is a particular solution and
k(t) is a 1-periodic function, called the periodic constant.

The Euler-Maclaurin formula gives a formal solution of the problem, but the
Euler-Maclaurin series rarely converges. Another formal solution is

(4.4.1) F(z) ==Y flz+k).

Trigamma. Now let us try to telescope the Euler series. The series (4.4.1)
converges for f(x) = —& provided m > 2 and & # —n for natural n > 1. In
particular, the function

(4.4.2) Iz)=>Y m

k=1
is analytic; it is called the trigamma function and it telescopes —m. Its value
I'(0) is just the sum of the Euler series.
This function is distinguished among others functions telescoping —m by
its finite variation.
THEOREM 4.4.1. There is a unique function I'(x) such that 0I'(z) = —m,

varp[0,00] < 0o and I'(0) = 377 75.

PROOF. Since I" is monotone, one has varp[0,00] = 337 [61'] = > 17, % <

00. Suppose f(zx) is another function of finite variation telescoping m Then
f(z) — I'(z) is a periodic function of finite variation. It is obvious that such a
function is constant, and this constant is 0 if f(1) = I'(1). O

Digamma. The series — Y2 | =, which formally telescopes £, is divergent.

However the series — > .2 (xlﬂ —zlk # 0]) is convergent and it telescopes 1,

because adding a constant does not affect the differences. Indeed,

_Z(z+1+k__[k7é0]) Z( ,1616750]) Z%MZE_

k=0

The function

(4.4.3) F(m):_7+§:<%_azik>

112
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is called thedigamma function. Here «y is the Euler constant. The digamma func-
tion is an analytic function, whose derivative is the trigamma function, and whose
difference is F

Monotonicity distinguishes F among others function telescoping H—Lz

THEOREM 4.4.2. There is a unique monotone function F (z) such that 0F (z) =
and F(0) = —v.

1+z

PRrOOF. Suppose f(z) is a monotone function telescoping Hﬁ Denote by v the
variation of f—F on [0, 1]. Then the variation of f—F over [1,n] is nv. On the other
hand, vary[1,n] =3 _, + < Inn+~. Hence the variation of f(z) — F (z) on [1,n]
is less than 2(y + Inn). Hence v for any n satisfies the inequality nv < 2(y + lnn).

Inn

Since lim, o =% = 0, we get v = 0. Hence f — F is constant, and it is zero if
f)=rQ). O

LEMMA 4.4.3. ' =1T.

Proor. To prove that F'(z) = I'(z), consider F(z) = [," I'(t)dt. This func-
tion is monotone, because F'(z) = I'(z) > 0. Further (0F) = 6F’ = 0l(z) =
(1+I) It follows that 0F = liaz + ¢, where c is a constant. By Theorem 4.4.2 it
follows that F(z + 1) — cx — v = F (z). Hence F (z)) = F'(z + 1) + ¢ = I'(z). This
proves that F' is differentiable and has finite variation. As 0F (z) = H% it follows

that 0F'(z) = — 7552 We get that F'(z) = I'(z) by Theorem 4.4.1. O

Telescoping the logarithm. To telescope the logarithm, we start with the
formal solution — Y7, In(z + k). To decrease the divergence, add ) .-, Ink term-
wise. We get —Inz—) " (In(z+k)—Ink) = —lnz—)_ 7, In(1+%). We know that
In(1+z) is close to z, but the series still diverges. Now convergence can be reached
by the subtraction of £ from the k-th term of the series. This substraction changes
the difference. Let us evaluate the difference of F(z) = —Inz—)_ ;7 (In(1+%£)—%£).
The difference of the n-th term of the series is

(i (1+ 5£1) ~ 2£1) — (14 ) - )
= (n(@+k+1)—Ink—22) — (ln(z + k) — Ink — £)
=dln(z+k)— 1.
Hence
6F(z) = —0lnz— Y7, (0ln(z+k) — 1)
= limy 500 (_(an - 2;11 (51H(:U + k) N %))
= lim, 00 (lnx —In(n+a)+ 35 %)

=1Inz + lim, oo (In(n) —In(n + x)) + lim, 0 ( R n)
=lnx+7.
As a result, we get the following formula for a function, which telescopes the

logarithm:

o0

(4.4.4) O(z) = —yz —Inz — Z (ln (1 + %) - %) .

k=1
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THEOREM 4.4.4. The series (4.4.4) converges absolutely for all x except nega-
tive integers. It presents a function ©(x) such that ©(1) =0 and 60(z) = lnx.

PrOOF. The inequality {7 < In(1 + z) < z implies

T
— =
14+

2

(4.4.5) |In(1+2z) —z| < ‘

x
1+
Denote by e the distance from 2 to the closest negative integer. Then due to
(4.4.5), the series 37 In ((1 4 %) — %) is termwise majorized by the convergent

k) Tk
series oo, % This proves the absolute convergence of (4.4.4).
Since im0 S p—y (In(1+ 2) — 1) = lim, oo (lnn — Y37} L) = —7, one gets
O(1) =0. O

Convexity. There are a lot of functions that telescope the logarithm. The
property which distinguishes © among others is convexity.

Throughout the lecture # and @ are nonnegative and complementary to each
other, that is § + 8 = 1. The function f is called convez if, for any z, y, it satisfies
the inequality:

(4.4.6) f0z +0y) <Of(x)+0f(y) VO e€[0,1].
Immediately from the definition it follows that
LEMMA 4.4.5. Any linear function ax + b is convex.

LEMMA 4.4.6. Any sum (even infinite) of convex functions is a convez function.
The product of a convex function by a positive constant is a conver function.

LemMA 4.4.7. If f(p) = f(¢) = 0 and f is convex, then f(x) > 0 for all
z ¢ [pq]-

PrROOF. If 2 > ¢ then ¢ = x6 + pf for § = %. Hence f(q) < f(z)0 + f(p)f =

f(z), and it follows that f(z) > f(q) = 0. For z < p one has p = z6 + qf for
6= 12, Hence 0 = f(p) < f(2)0 + f(0)F = f(z). 0

q—

LEMMA 4.4.8. If f" is nonnegative then f is conver.

ProOF. Consider the function F(t) = f(I(t)), where [(t) = 28 + yf. Newton’s
formula for F(t) with nodes 0, 1 gives F/(t) = F(0) + 6F(0)t + LF"(£)t* Since
F'(€) = (y—x)2f"(€) > 0, and t* = t(t — 1) < 0 we get the inequality F(t) <
F(0)+tF(1). Since F(8) = f(xf + y6) this is just the inequality of convexity. [

LEMMA 4.4.9. If f is convex, then 0 < f(a) +05f(a) — f(a+6) <5’ f(a—1)
for any a and any 6 € [0, 1]

PROOF. Since a + 6 = fa +0(a + 1) we get f(a+6) < f(a)f + f(a+ 1)8 =
f(a)+6df(a). On the other hand, the convex function f(a+x) — f(a) —zdf(a—1)
has roots —1 and 0. By Lemma 4.4.7 it is nonnegative for > 0. Hence f(a +6) >
fla)+66f(a—1). It follows that f(a)+80df(a) — f(a+6) > f(a) +00f(a) — f(a) —
05f(a—1)=662f(a—1). O

THEOREM 4.4.10. O(x) is the unique convex function that telescopes Inz and
satisfies ©(1) = 1.
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Proor. Convexity of © follows from the convexity of the summands of its
series. The summands are convex because their second derivatives are nonnegative.

Suppose there is another convex function f(z) which telescopes the logarithm
too. Then ¢(x) = f(z) — O(z) is a periodic function, d¢ = 0. Let us prove that
#(z) is convex. Consider a pair ¢, d, such that |c—d| < 1. Since f(cf+df)—0f(c)—
Af(d) <0, as f is convex, one has

¢(ct + df) — 0(c) — 06(d) = (f(ct + db) — 0f(c) — 0f(d))
— (O(cf + df) — 00(c) — 80(d))
< 60(c) + 00(d) — O(ch + db).
First, prove that ¢ satisfies the following e-relaxed inequality of convexity:
(4.4.7) d(ch + df) < 0¢(c) + 0¢(d) + e.

Increasing ¢ and d by 1, we do not change the inequality as d¢ = 0. Due to this
fact, we can increase ¢ and d to satisfy 5 < £. Set L(z) = ©(c) + (v — ¢)Inc. By
Lemma 4.4.9 for = € [¢,c+ 1] one has |@x — L(z)| < §°O(c—1) =lnc—In(c—1) =
In(1+ =25) < 24 < £. Since |O(z) — L(z)| < § for z = ¢,d, <t¢, it follows that
00 (c) + 00(d) — O(ch + df) differs from OL(c) + OL(d) — L(ch + df) = 0 by less
than by e. The inequality (4.4.7) is proved. Passing to the limit as ¢ tends to 0,
one eliminates €.

Hence ¢(z) is convex on any interval of length 1 and has period 1. Then ¢(z)
is constant. Indeed, consider a pair a,b with condition b — 1 < a < b. Then
a=(b—1)0+ b0 for § =b—a. Hence f(a) < f(b)0 + f(b—1)8 = f(b). O

LeMMA 4.4.11. ©"(1 +z) = I'(z).

ProoF. The function F(z) = [° F (t) dt is convex because its second derivative
is I'. The difference of F' = F is IJ%E Hence 0F(z) = In(z 4+ 1) 4 ¢, where ¢ is some
constant. It follows that F'(z — 1) — cx + ¢ = ©(z). Hence O is twice differentiable
and its second derivative is I". O

Gamma function. Now we define Euler’s gamma function T'(x) as exp(O(x)),
where ©(x) is the function telescoping the logarithm. Exponentiating (4.4.4) gives
a representation of the Gamma function in so-called canonical Weierstrass form:

(4.4.8) D) = ﬁ (1+ %)_1e%.

k=1
Since d InI'(x) = Inx, one gets the following characteristic equation of the Gamma
function
(4.4.9) [(z+1) =2l'(z).

Since ©(1) = 0, according to (4.4.4), one proves by induction that I'(n) = (n — 1)!
using (4.4.9).
A nonnegative function f is called logarithmically convez if ln f(z) is convex.

THEOREM 4.4.12 (characterization). ['(z) is the unique logarithmically convex
function defined for x > 0, which satisfies equation (4.4.9) for all x > 0 and takes
the value 1 at 1.
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PRrOOF. Logarithmical convexity of I'(z) follows from the convexity of O(x).
Further T'(1) = exp©(1) = 1. If f is a logarithmically convex function satisfying
the gamma-equation, then In f satisfies all the conditions of Theorem 4.4.4. Hence,
In f(z) = ©(x) and f(z) =T'(x). O

THEOREM 4.4.13 (Euler). For any x > 0 one has ['(z) = [~ t*"le ! dt.

Let us check that the integral satisfies all the conditions of Theorem 4.4.12.
For z = 1 the integral gives [~ e~tdt = —e~!|;” = 1. The integration by parts
S tretdt = — [Cttde™t = —te ! |7+ [ e tat* ! dx proves that it satis-
fies the gamma-equation (4.4.9). It remains to prove logarithmic convexity of the
integral.

LEMMA 4.4.14 (mean criterium). If f is a monotone function which satisfies
the following mean inequality 2f($T+y) < f(x) + f(y) for all x,y then f is convex.

PROOF. We have to prove the inequality f(zf+yf) < 0f(z)+6f(y) = L(9) for
all 8, z and y. Set F(t) = f(z+ (y — x)t); than F also satisfies the mean inequality.
And to prove our lemma it is sufficient to prove that F(t) < L(¢) for all ¢ € [0, 1].

First we prove this inequality only for all binary rational numbers ¢, that is
for numbers of the type 3%, mm < 2". The proof is by induction on n, the degree
of the denominator. If n = 0, the statement is true. Suppose the inequality
F(t) < L(t) is already proved for fractions with denominators of degree < n.

Consider r = 5%, with odd m = 2k + 1. Set r— = J& r© = Etl By the

induction hypothesJirs F(r¥) < L(Ii). Since r = ”+;”_, by the mean inequality
one has F(r) < £ );f(r ) < L );L(r ) — L(”+;”_) = L(r).

Thus our inequality is proved for all binary rational ¢. Suppose F(¢) > L(t)
for some t. Consider two binary rational numbers p, ¢ such that ¢ € [p,q] and
la—p| < [HA=F. In this case |L(p) = L(t)| < [p—#|f(y) — £ (2)] < |F(t) = L(1)|.
Therefore F(p) < L(p) < F(t). The same arguments give F'(q) < F(t). This is
a contradiction, because t is between p and ¢ and its image under a monotone
mapping has to be between images of p and q. d

LeEmMA 4.4.15 (Cauchy-Bunyakovski-Schwarz).

(4.4.10) (/ f(z :U) < /ab fA(z)dx /ab g*(z) de.

PRrROOF. Since f ) + tg(x))?dx > 0 for all ¢, the discriminant of the fol-
lowing quadratic equatlon is non-negative:

b b b
(4.4.11) t2/ g*(x) da:+2t/ f(x)g(x) d:U—l—/ fA(z)dz = 0.

This discriminant is 4 (f f(x dm) - 4f; f?(z)dx f; g% () du. O

Now we are ready to prove the logarithmic convexity of the Euler integral.
The integral is obviously an increasing function, hence by the mean criterion it is
sufficient to prove the following inequality:

0o 2 0o 0o
(4.4.12) (/ Ea > g/ t“le’tdt/ vl t gt
0 0 0
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This inequality turns into the Cauchy-Bunyakovski-Schwarz inequality (4.4.10) for
flz) =t e~t/2 and g(t) = t*= e~ /2
Evaluation of products. From the canonical Weierstrass form it follows that

—e7T

(4.4.13) [1{—2/n)exp(z/n)} = (=)’

e

[T +a/nyesp(-o/m) = s

One can evaluate a lot of products by splitting them into parts which have this

canonical form (4.4.13). For example, consider the product [~ (1 - g—z) Divi-
sion by n? transforms it into [T~ (1 — 5=) (1 + 5-)~'. Introducing multipliers
ez and e’ﬁ, one gets a canonical form

(4.4.14) ﬁ{(l—%) ei}_lﬁ {<1+%> e—%}_l.

n=1 n=1
Now we can apply (4.4.13) for ¢ = % The first product of (4.4.14) is equal to
—1D(~1/2)e™/2, and the second one is $T'(1/2)e?/2. Since according to the char-
acteristic equation for I-function, I'(1/2) = —$I'(1/2), one gets ['(1/2)?/2 as the
value of Wallis product. Since the Wallis product is 7, we get I'(1/2) = /7.

Problems.

Evaluate the product [To7, (14 £) (1 + 22) (1 — 32).

Evaluate the product [T, %

Prove: The sum of logillr;tm};rinically convex functions is logarithmically convex.

Prove I'(z) = lim;, 0o ———.

Prove [[52, £ (B2)" =T(z + 1).
Prove Legendre’s doubling formula ['(2z)T'(0.5) = 22*7!T'(z + 0.5)['(z).

S UL R W N =



4.5. The Cotangent

On the contents of the lecture. In this lecture we perform what was
promised at the beginning: we sum up the Euler series and expand sinz into
the product. We will see that sums of series of reciprocal powers are expressed via
Bernoulli numbers. And we will see that the function responsible for the summation
of the series is the cotangent.

An ingenious idea, which led Euler to finding the sum Y .- 1%27 is the follow-
ing. One can consider sin z as a polynomial of infinite degree. This polynomial has
as roots all points of the type kw. Any ordinary polynomial can be expanded into
a product [[(z — zx) where xj are its roots. By analogy, Euler conjectured that
sinz can be expanded into the product

o0

sinz = H (x — k).

k=—00

This product diverges, but can be modified to a convergent one by division of the
n-th term by —nm. The division does not change the roots. The modified product
is

(4.5.1) ﬁ ( ——)-xH( kw).

Two polynomials with the same roots can differ by a multiplicative constant. To

find the constant, consider z = 7. In this case we get the inverse to the Wallis

product in (4.5.1) multiplied by » = 7. Hence the value of (4.5.1) is 1, which
coincides with sin §. Thus it is natural to expect that sinz coincides with the
product (4.5.1).

There is another way to tame [[,~ _ (z — kx). Taking the logarithm, we
get a divergent series >~ _ In(xz — km), but achieve convergence by termwise
differentiation. Since the derivative of Insin z is cot x, it is natural to expect that

cot  coincides with the following function

(oo} 1 (oo}
4.5.2 t =
(45.2) o) = ¥ e = 2_) =
Cotangent expansion. The expansion = =30 }i:“ z" allows us to get a

power expansion for cot z. Indeed, representlng cot z by Euler’s formula one gets

eF e M4l 2 .1 2z 1 ok
Ve —eiz oy 'Tor_y 'tTrme_71 ‘T3 ﬂ(m'z)‘

The term of the last series corresponding to k = 1 is 2izB; = —iz. Multiplied by
%, it turns into —i, which eliminates the first i. The summand corresponding to
k =01is 1. Taking into account that Bag+1 = 0 for k > 0, we get

1 - k4 B2k 52k—1
cotz = — +

118
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Power expansion of ctg(z). Substituting

: : 2
22 _ n27r2 - n27r2 1 2 = ’nﬂ' 2k+2

into (4.5.2) and changing the order of summation, one gets:

oo 2k oo 1

ZZ >
— L mr 2k+2 - r2k+2 n2k+2”

k=0 n=1

The change of summation order is legitimate in the disk |z| < 1, because the series
absolutely converges there. This proves the following:

LEMMA 4.5.1. ctg(z) — L is an analytic function in the disk |z| < 1. The n-th
coefficient of the Taylor series of ctg(z) — % at 0 is equal to O for even n and is
1 co 1
equal to —51 > 0~ T for any odd n.

Thus the equality cot z = ctg(z) would imply the following remarkable equality:
4" By, 1 &1
(D)5 = D
k=1

In particular, for n = 1 it gives the sum of Euler series as %2

Exploring the cotangent.
LEMMA 4.5.2. |cot z| < 2 provided |Im z| > 1.

PROOF. Set z = i + iy. Then |e¥*| = |e””_y| = e_y Therefore if y > 1, then
e =7 < & < L Hence [e?* + 1| < % +1< % and [e** — 1] >1—— > 2
Thus the absolute value of

eiz + efiz eZiz +1
cot z = i— — = —
etz _ e—iz etz _ 1
is less than 2. For y > 1 the same arguments work for the representation of cot z
14+e” 2iz
as ¢ . (|

1_e—2iz

LEMMA 4.5.3. |cot(m/2 4+ iy)| < 4 for all y.

PROOF. cot(m/2 + iy) = (;frfé:;;j_:z)) = _Czlsnl;y = zz;z: The module of the
numerator of this fraction does not exceed e — e~! for ¢t € [—1, 1] and the denomi-
nator is greater than 1. This proves the inequality for y € [—1, 1]. For other y this
is the previous lemma. O

Let us denote by 7Z the set {kr | k € Z} of m-integers.

LEMMA 4.5.4. The set of singular points of cot z is wZ. All these points are
simple poles with residue 1.

ProOOF. The singular points of cot z coincide with the roots of sin z. The roots

of sin z are roots of the equation e** = e~% which is equivalent to e?** = 1. Since
le?*#| = |e=21m#| one gets Imz = 0. Hence sinz has no roots beyond the real
line. And all its real roots as we know have the form {kn}. Since lim, ,ozcotz =
lim, 0 5057 = lim, 0 5oy = ﬁ = 1, we get that 0 is a simple pole of cot z
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with residue 1 and the other poles have the same residue because of periodicity of
cot z. d

LEMMA 4.5.5. Let f(z) be an analytic function on a domain D. Suppose that
f has in D finitely many singular points, they are not w-integers and D has no
w-integer point on its boundary. Then

ng f(Q)cot¢d¢ = 2mi Y f(km)[km € D]

k=—o0

+ 2mi Z res,(f(z) cot z)[z ¢ ©Z].

zeD

ProOF. In our situation every singular point of f(z)cotz in D is either a

w-integer or a singular point of f(z). Since res,—grcotz = 1, it follows that
res,—r f(z)cotz = f(km). Hence the conclusion of the lemma is a direct con-
sequence of Residue Theory. d

Exploring ctg(z).
LEMMA 4.5.6. ctg(z + 7) = ctg(z) for any z.

PRrRoOF.
” 1
t = li _—
ctg(z + ) Jim Z popp— -
k=—n
n—1 1

(n—1) 1

—_— lim E —_—
n—oo z — (n+ )& n%ooz—nﬂ'_'_n%ook 0 1)Z+7T—k7r
=—(n—

=0+ 0+ ctg(z).
a

LEMMA 4.5.7. The series representing ctg(z) converges for any z which is not
a w-integer. | ctg(z)| < 2 for all z such that |Imz| > .

ProoF. For any z one has |22 — k?72| > k? for k > |z|. This provides the
convergence of the series. Since ctg(z) has period =, it is sufficient to prove the
inequality of the lemma in the case x € [0,7], where z = z + iy. In this case
ly| > |z| and Rez? = 22 — y* < 0. Then Re(z? — k*n?) < —k*n?. It follows that
|2 —k?m?| > k*x%. Hence | ctg(z)| is termwise majorized by £+ 17 | 5 < 2. O

LeEMMA 4.5.8. |ctg(z)| < 3 for any z with Rez = T
PRrOOF. In this case Re(z? — k?n?) = ”TZ —y? — k?r? < —k? for all k > 1.
Hence |C(z)| < 2 +307, H <1+2=3. O

LEMMA 4.5.9. For any z # km and domain D which contains z and whose
boundary does not contain w-integers, one has

(4.5.3) ?{i Ctg—(OdC = 2mi ctg(z) + 2mi i
k=—

1
p (—z _Oolmr—z

[km € D).
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PROOF. As was proved in Lecture 3.6, the series Zzozfoo m admits

termwise integration. The residues of (C—Z)(lC— ) are —— at kr and —— at z.

Hence

271'7/# for kr ¢ D,

1
- =
f{ap C—aC—Fm {0 if kr € D.
It follows that

7( &) g = 9 i lk lkr ¢ D)
) OOZ_ m

p(—2 [
oo

= 2mictg(z) — Z

=—00

D].
Z_lm[km'e ]

O

LeEMMA 4.5.10. ctg(z) is an analytic function defined on the whole plane, having
all w-integers as its singular points, where it has residues 1.

Proor. Counsider a point z ¢ wZ. Consider a disk D, not containing m-integers
with center at z. Then formula (4.5.3) transforms to the Cauchy Integral Formula.
And our assertion is proved by termwise integration of the power expansion of —:

¢(—=z
just with the same arguments as was applied there. The same formula (4.5.3) allows
us to evaluate the residues. O

THEOREM 4.5.11. cotz =1+ 377 2.

Proor. Consider the difference R(z) = cotz — ctg(z). This is an analytic
function which has m-integers as singular points and has residues 0 in all of these.
Hence R(z) = 5 $,, ?(fz) d( for any z ¢ nZ. We will prove that R(z) is constant.
Let zp and ¢ be a pair of different points not belonging to 7Z. Then for any D such
that 0D N 7Z = & one has

R(z) — R(z0) = % b R(¢) <<—iz o C—l,Zo) d¢
(4.5.4) 1 R(z)(z — z0)

" 20 Jop (C—2) (- 20)

Let us define D,, for a natural n > 3 as the rectangle bounded by the lines Rez =
+(m/2 — nw), Imz = £nxw. Since |R(z)| < 7 by Lemmas 4.5.2, 4.5.3, 4.5.7, and
4.5.8 the integrand of (4.5.4) eventually is bounded by % The contour of
integration consists of four monotone curves of diameter < 2n7. By the Estimation
Lemma 3.5.4, the integral can be estimated from above by %‘2’2_“‘ Hence the
limit of our integral as n tends to infinity is 0. This implies R(z) = R(z0). Hence
R(z) is constant and the value of the constant we find by putting z = 7/2. As
cot /2 = 0, the value of the constant is

I T SO
- m = — m A
i n—oo w[2—km  wn—ooo 1-2k

k=—n k=—n
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This limit is zero because

n 0 n n

1 1 1 1 1 1
Y TTHmT Tt T m T G it oI T T

k=—n k=—n = =0 =

Summation of series by cot z.

THEOREM 4.5.12. For any rational function R(z), which is not singular in
integers and has degree < —2, one has > . __ R(n) = — Y reswcot(rz)R(z).

PRrROOF. In this case the integral lim, faD /m.R(z)w cotmz = 0. Hence

the sum of all residues of R(z)wcotwz is zero. The residues at m-integers gives
Yore o R(k). The rest gives — Y resw cot(rz)R(z). ad

Factorization of sinz. Theorem 4.5.11 with 7z substituted for z gives the se-
ries ot mz = Yo —. The half of the series on the right-hand side consisting
of terms with nonnegative indices represents a function, which formally telescopes
—%. The negative half telescopes % Let us bisect the series into nonnegative and

negative halves and add -2 +[k # 0] to provide convergence:

-1 oS}
1 1 1 1
Z <z—k+E>+Z<z—k+k+1>
00 k=0

k=—
o0 o0
1 1 1 1
=2 (—z+z+—k>+,§(m+z>-
The first of the series on the right-hand side represents —F (z) — 7, the second is
F (—z+1)+~. We get the following complement formula for the digamma function:

—F(z)+ F(1—2) =ncotmz.

Since @"(z2+1) = F'(z) = I'(z) (Lemma 4.4.11) it follows that @'(1+2) = F (2) +¢
and ©'(—z) = —(F (1—z)+c). Therefore O'(1+2)+0'(—z) = 7 cot mz. Integration
of the latter equality gives —O(1 + z) — ©(—z) = Insinmz + ¢. Changing z by —z
we get O(1 — 2) + O(z) = —Insinwz + ¢. Exponentiating gives I'(1 — 2)['(—z) =
—L—c. One defines the constant by putting z = 1. On the left-hand side one gets

F(%)2 = 7, on the right-hand side, c¢. Finally we get the complement formula for
the Gamma-function:

(4.5.5) [(1 - 2)0(z) =

™

sinwz’

Now consider the product [T;~, (1 — 2"—2) Its canonical form is

(459) T{(- )} {0+ 2)e

The first product of (4.5.6) is equal to —%, and the second one is %

Therefore the whole product is —m. Since I'(1 — z) = —a'(—z) we get
the following result



4.5 THE COTANGENT

Comparing this to (4.5.5) and substituting 7z for x we get the Euler formula:

. o z?
smx:xkl:[l (1— 71'2]92)'

Problems.
1. Expand tan z into a power series.
. Evaluate )77 | 1=
3. Evaluate ) ;2| 1=

N
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4.6. Divergent Series

On the contents of the lecture. “Divergent series is a pure handiwork of
Diable. It is a full nonsense to say that 12* — 22" 4 327 — ... = 0. Do you keep
to die laughing about this?” (N.H. Abel letter to ...). The twist of fate: now one
says that that the above mentioned equality holds in Abel’s sense.

The earliest analysts thought that any series, convergent or divergent, has a
sum given by God and the only problem is to find it correctly. Sometimes they
disagreed what is the correct answer. In the nineteenth century divergent series
were expelled from mathematics as a “handiwork of Diable” (N.H. Abel). Later
they were rehabilitated (see G.H. Hardy’s book Divergent Series'). Euler remains
the unsurpassed master of divergent series. For example, with the help of divergent
series he discovered Riemann’s functional equation of the (-function a hundred
years before Riemann.

Evaluations with divergent series. Euler wrote: “My pen is clever than
myself.” Before we develop a theory let us simply follow to Euler’s pen. The
fundamental equality is

(4.6.1) 1+:c+:c2+:c3+---:11w.
Now we, following Euler, suppose that this equality holds for all  # 1. In the
second lecture we were confused by some unexpected properties of divergent series.
But now in contrast with the second lecture we do not hurry up to land. Let us
look around.

Substituting z = —e¥ in (4.6.1) one gets

. 1
1—eY 2y _ 3 .= .
e’ +e e’ + 1+ ov
On the other hand
1 1 2
4.6.2 = — .
(4.6.2) 1+ev ev—-1 e-1
Since
o0
z o Bk k
k=0

One derives from (4.6.2) via (4.6.3)

1 > Bp(1-2%) , |
4.6.4 = A A .
(4.6.4) | k§:1 Y

Let us differentiate repeatedly n-times the equality (4.6) by y. The left-hand side
gives > po  (—1)Fkme*¥. In particular for y = 0 we get Y, (—1)*k™. We get on
the right-hand side by virtue of (4.6.4) the following
d\" 1 Bpa(1—2"1)
dy) 1+ev n+1 '
Combining these results we get the following equality
By (201 — 1)
n+1 '

(4.6.5) 1" —2" 43" 4" ... =

en:s Hardy, Divergent Series, Oxford University Press, 1949.
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Since odd Bernoulli numbers vanish, we get

12n_22n+32n_42n+‘_‘:0'
Consider an even analytic function f(z), such that f(O) = 0. In this case f(z)
is presented by a power series a;z? + asz* + a3x6 +..., then
o0 o0
_1 f (k) )<t
St L S S e
k=1 k=1
— Z anxQn Z 1)k—1k2n—2
k=1
=az’(1-1+1-1+...)
_ a1x2
2
In particular, for f(x) = 1 — cosz this equality turns into
= 1—coskzr 22
4.6. B
(4.6.6) > v 1
k=1
For x = 7 the equality (4.6.6) gives
14 +3 L =+ L .-
32 72 -8

Since

= 1\ o— 1
_ =(1=2
e D By e (B Doy
one derives the sum of the Euler series:

—2 = —.
— k 6
We see that calculations with divergent series sometimes give brilliant results.
But sometimes they give the wrong result. Indeed the equality (4.6.6) generally is
untrue, because on the left-hand side we have a periodic function and on the right-

hand side a non-periodic one. But it is true for € [—7, 7]. Termwise differentiation
of (4.6.6) gives the true equality (3.4.2), which we know from Lecture 3.4.

Euler’s sum of a divergent series. Now we develop a theory justifying
the above evaluations. Euler writes that the value of an infinite expression (in
particular the sum of a divergent series) is equal to the value of a finite expression
whose expansion gives this infinite expression. Hence, numerical equalities arise by
substituting a numerical value for a variable in a generating functional identity. To
evaluate the sum of a series Y .- a; Euler usually considers its power generating
function g(z) represented by the power series >, axz*, and supposes that the
sum of the series is equal to g(1).

To be precise suppose that the power series 220:0 arz* converges in a neighbor-
hood of 0 and there is an analytic function g(z) defined in a domain U containing
a path p from 0 to 1 and such that g(z) = Yo, axz" for z sufficiently close to 0
and 1 is a regular point of g. Then the series Y- a is called Euler summable
and the value g(1) is called its analytic Euler sum with respect to p. And we will
use a special sign ~ to denote the analytical sum.
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By the Uniqueness Theorem 3.6.9 the value of analytic sum of a series is
uniquely defined for a fixed p. But this value generally speaking depends on the
path. For example, let us consider the function /1 + z. Its binomial series for
z = —2 turns into

1 1 —
g L L3 135 k-
21 3! 4! (k+1)!
For p(t) = €™ one sums up this series to i, because it is generated by the function
exp M defined in the upper half-plane. And along p(t) = e~ ™ this series is

summable to —i by exp w defined in the lower half-plane.

For a fixed path the analytic Euler sum evidently satisfies the Shift, Multipli-
cation and Addition Formulas of the first lecture. But we see that the analytic sum
of a real series may be purely imaginary. Hence the rule Im >~.7 j ar ~ > 1o, Imay,
fails for the analytic sum. The Euler sum along [0, 1] coincides with the Abel sum
of the series in the case when both of them exist.

In above evaluations we apply termwise differentiation to functional series. If
the Euler sum .7, fi(z) is equal to F(z) for all z in a domain this does not
guarantee the possibility of termwise differentiation. To guarantee it we suppose
that the function generating the equality Y-, fx(z) ~ F(z) analytically depends
on z. To formalize the last condition we have to introduce analytic functions of two
variables.

Power series of two variables. A power series of two variables z, w is defined
as a formal unordered sum Zk,m agmz*w™, over N x N — the set of all pairs of
nonnegative integers.

For a function of two variables f(z,w) one defines its partial derivative W

with respect to z at the point (zg,wp) as the limit of ﬂzﬁAz’“&),_f(zo’wo) as Az
tends to 0.

LEMMA 4.6.1. If 3" agmzfw!™ absolutely converges, then both " apmzFw™ and
> magmz*w™ 1 absolutely converge provided |z| < |z1|, |w| < |wi|. And for any
fized z, such that |z| < |z1| the function Y magz¥w™ 1 is the partial derivative of
> agmzFw™ with respect to w.

PROOF. Since Y |agm||z1|¥|w1|™ < oo the same is true for > |agm||z|*|w|™ for
|z| < |z1], lw| < |wy]. By the Sum Partition Theorem we get the equality

oo oo
E apm 2t w™ = E wmz apmzt.
m=0 k=0

For any fixed z the right-hand side of this equality is a power series with respect to
w as the variable. By Theorem 3.3.9 its derivative by w, which coincides with the
partial derivative of the left-hand side, is equal to

oo oo
Z mw™ ! Z pm 2" = Zmakmwm_lzk.
m=0 k=0
O

Analytic functions of two variables. A function of two variables F(z,w)
is called analytic at the point (zo,wy) if for (z,w) sufficiently close to (zo,wp) it
can be presented as a sum of a power series of two variables.
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THEOREM 4.6.2.
(1) If f(z,w) and g(z,w) are analytic functions, then f+g and fg are analytic
functions.

(2) If fi1(2), f2(z) and g(z,w) are analytic functions, then g(f1(z), f2(w)) and
fi(g(z,w)) are analytic functions.
(3) The partial derivative of any analytic function is an analytic function.

PRrOOF. The third statement follows from Lemma 4.6.1. The proofs of the first
and the second statements are straightforward and we leave them to the reader. O

Functional analytical sum. Let us say that a series )~ | fi(2) of analytic
functions is analytically summable to a function F(z) in a domain U C C along
a path p in C x C, such that p(0) € U x 0 and p(1) € U x 1, if there exists an
analytic function of two variables F'(z,w), defined on a domain W containing p,
U x 0, U x 1, such that for any zo € U the following two conditions are satisfied:

(1) F(z0,1) = F(zyp).

(2) F(z,w) =Y, W(z — z0)*w™ for sufficiently small |w| and |z — 2o
Let us remark that the analytic sum does not change if we change p keeping it
inside W. That is why one says that the sum is evaluated along the domain W.

To denote the functional analytical sum we use the sign . And we will write
also =y and =, to specify the domain or the path of summation.

The function F(z,w) will be called the generating function for the analytical

equality Y7, fi(z) = F(2).
LEMMA 4.6.3. If f(z) is an analytic function in a domain U containing 0, such

that f(z) = Y peoarz® for sufficiently small |z|, then f(z) Zw Y pegarz® in U
for W ={(z,w) | wz € U}.

ProOF. The generating function of this analytical equality is f((z —zo)w). O

LEMMA 4.6.4 (on substitution). If F(z) 22, Y2, fr(z) in U and g(z) is an
analytic function, then F(g(z)) =) Yo peo fr(9(2)) in g~ (U).

PRrOOF. Indeed, if F(z,w) generates F(z) =, > 7, fr(z), then F(g(z),w))
generates F(g(2)) =) Y i fr(9(2))- .

N. H. Abel was the first to have some doubts about the legality of termwise
differentiation of functional series. The following theorem justifies this operation
for analytic functions.

THEOREM 4.6.5. If 3.7 | fu(z) =, F(2) in U then Y | fi(2) =, F'(2) in U.

PROOF. Let F(z,w) be a generating function for > 27, fu(z) = F(z). We
demonstrate that its partial derivative by z (denoted F'(z,w)) is the generating
function for )~ fk( ) =p F'(2). Indeed, locally in a neighborhood of (zp,0) one

has F(z,w) =3 Lo ZO) m(z — zp)*. By virtue of Lemma 4.6.1 its derivative by z
is F'(z,w) = ¥ I 20) Mz = z)tt = Y Lu G0y gk, 0

The dual theorem on termwise integration is the following one.

THEOREM 4.6.6. Let > po fr = F be generated by F(z,w) defined on W =
U x V. Then for any path q in U one has [ F(z)dz ~ 377, [, fr(2)dz
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PRrROOF. The generating function for integrals is defined as fq F(z,w)dz. O

The proof of the following theorem is left to the reader.

THEOREM 4.6.7. If > 00 fr =p F and Y 1oy gk =p G then > po o (fr + 9k) =
F+G’ EZOZI fk gp F_f07 E?;Oka Ep CF

Revision of evaluations. Now we are ready to revise the above evaluation
equipped with the theory of analytic sums. Since all considered generating functions
in this paragraph are single valued, the results do not depend on the choice of the
path of summation. That is why we drop the indications of path below.

The equality (4.6.1) is the analytical equivalence generated by . The next
equality (4.6.7) is the analytical equivalence by Lemma 4.6.4. The equality (4.6.3)
is analytical equivalence due to Lemma 4.6.3. Termwise differentiation of (4.6.7) is
correct by virtue of Theorem 4.6.5. Therefore the equality (4.6.5) is obtained by the
restriction of an analytical equivalence. Hence the Euler sum of Y, (—1)*k*" is
equal to 0. Since the series Y2, (—1)*k*"z¥ converges for |z| < 1 its value coincides
with the value of the generating function. And the limit ZLirlnoz,;“;l(—l)kkmzk
gives the Euler sum, which is zero. Hence as a result of our calculations we have
found Abel’s sum >, (—=1)Fk>" = 0.

Now we choose another way to evaluate the Euler series. Substituting z = e
in (4.6.1) for 0 < € < 27 one gets

+if

14+ ei0 + 621'9 + 631'9 + ~ 1
= T
(4.6.7) boe
—i0 —2i0 —3i0 ~
]. + e +e +e +...= m

Termwise addition of the above lines gives for 8 € (0,27) the following equality

1
(4.6.8) cos(9+cos20—|—c0s39+---%—§.

Integration of (4.6.8) from 7 to & with subsequent replacement of x by 6 gives
by Theorem 4.6.6:
>, sin k6 LT

> 2m).
A 5 (0< 0 <2m)

k=1
A second integration of the same type gives

i coskf — (—1)* _ (7 —0)?
k2 4
k=1

Putting 6 = 5 we get

Therefore



4.6 DIVERGENT SERIES

Since

o0 (o] o0
1 (_1)k+1 1

Zﬁzz k2 +QZ(2k)z
k=1 k=1 k=1

one gets
— 1 Ix(=DkFL g2
DEREPIEL depl.e
k=1 k=1

Problems.

1. Prove that the analytic sum of convolution of two series is equal to the product

of analytic sums of the series.

2. Suppose that for all n € N one has A, ~ Y 77 ank and B, ~ Y07 ak p.
Prove that the equality >~ Ay = > 5oy Bi holds provided there is an analytic
function F(z,w) coinciding with Y ay ,,2¥w™ for sufficiently small |w|,|z| which
is defined on a domain containing a path joining (0,0) with (1,1) analytically
extended to (1,1) (i-e., (1,1) is a regular point of F(z,w)).



