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3.1. Newton-Leibniz FormulaOn the 
ontents of the le
ture. In this le
ture appears the 
elebratedNewton-Leibniz formula | the main tool in the evaluation of integrals. It is a

om-panied with su
h fundamental 
on
epts as the derivative, the limit of a fun
tionand 
ontinuity.Motivation. Consider the following problem: for a given fun
tion F �nd afun
tion f su
h that dF (x) = f(x) dx, over [a; b℄, that is, R d
 f(t) dt = F (d)� F (
)for any subinterval [
; d℄ of [a; b℄.Suppose that su
h an f exists. Sin
e the value of f at a single point does nota�e
ts the integral, we 
annot say anything about the value of f at any given point.But if f is 
ontinuous at a point x0, its value is uniquely de�ned by F .To be pre
ise, the di�eren
e quotient F (x)�F (x0)x�x0 tends to f(x0) as x tends tox0. Indeed, F (x) = F (x0) + R xx0 f(t) dt. Furthermore, R xx0 f(t) dt = f(x0)(x�x0) +R xx0(f(t)� f(x0)) dt. Also, j R xx0(f(t)� f(x0) dtj � varf [x0; x℄jx�x0j. Consequently(3.1.1) ����F (x) � F (x0)x� x0 � f(x0)���� � varf [x; x0℄:However, varf [x; x0℄ 
an be made arbitrarily small by 
hoosing x suÆ
iently 
loseto x0, sin
e varf x0 = 0.In�nitesimally small fun
tions. A set is 
alled a neighborhood of a point xif it 
ontains all points suÆ
iently 
lose to x, that is, all points y su
h that jy � xjis less then a positive number ".We will say that a fun
tion f is lo
ally bounded (above) by a 
onstant C at apoint x, if f(x) � C for all y suÆ
iently 
lose to x.A fun
tion o(x) is 
alled in�nitesimally small at x0, if jo(x)j is lo
ally boundedat x0 by any " > 0.Lemma 3.1.1. If the fun
tions o and ! are in�nitesimally small at x0 then o�!are in�nitesimally small at x0.Proof. Let " > 0. Let O1 be a neighborhood of x0 where jo(x)j < "=2,and let O2 be a neighborhood of x0 where j!(x)j < "=2. Then O1 \ O2 is aneighborhood where both inequalities hold. Hen
e for all x 2 O1 \ O2 one hasjo(x) � !(x)j < "=2 + "=2 = ". �Lemma 3.1.2. If o(x) is in�nitesimally small at x0 and f(x) is lo
ally boundedat x0, then f(x)o(x) is in�nitesimally small at x0.Proof. The neighborhood where jf(x)o(x)j is bounded by a given " > 0 
anbe 
onstru
ted as the interse
tion of a neighborhood U , where jf(x)j is boundedby a 
onstant C, and a neighborhood V , where jo(x)j is bounded by "=C. �Definition. One says that a fun
tion f(x) tends to A as x tends to x0 andwrites limx!x0 f(x) = A, if f(x) = A+ o(x) on the 
omplement of x0, where o(x)is in�nitesimally small at x0.Corollary 3.1.3. If both the limits limx!x0 f(x) and limx!x0 g(x) exist, thenthe limit limx!x0 (f(x) + g(x)) also exists and limx!x0 (f(x) + g(x)) = limx!x0 f(x)+limx!x0 g(x). 64



3.1 newton-leibniz formula 65Proof. This follows immediately from Lemma 3.1.1. �Lemma 3.1.4. If the limits limx!x0 f(x) and limx!x0 g(x) exist, then alsolimx!x0 f(x)g(x) exists and limx!x0 f(x)g(x) = limx!x0 f(x) limx!x0 g(x).Proof. If f(x) = A+o(x) and g(x) = B+!(x), then f(x)g(x) = AB+A!(x)+Bo(x) + !(x)o(x), where A!(x), Bo(x) and !(x)o(x) all are in�nitesimally smallat x0 by Lemma 3.1.2, and their sum is in�nitesimally small by Lemma 3.1.1. �Definition. A fun
tion f is 
alled 
ontinuous at x0, if limx!x0 f(x) = f(x0).A fun
tion is said to be 
ontinuous (without mentioning a point), if it is 
on-tinuous at all points under 
onsideration.The following lemma gives a lot of examples of 
ontinuous fun
tions.Lemma 3.1.5. If f is a monotone fun
tion on [a; b℄ su
h that f [a; b℄ = [f(a);f(b)℄ then f is 
ontinuous.Proof. Suppose f is nonde
reasing. Suppose a positive " is given. For agiven point x denote by x" = f�1(f(x) + ") and x" = f�1(f(x)� "). Then [x"; x"℄
ontains a neighborhood of x, and for any y 2 [x"; x"℄ one has f(x) + " = f(x") �f(y) � f(x") = f(x) + ". Hen
e the inequality jf(y)� f(x)j < " holds lo
ally at xfor any ". �The following theorem immediately follows from Corollary 3.1.3 and Lemma3.1.4.Theorem 3.1.6. If the fun
tions f and g are 
ontinuous at x0, then f + g andfg are 
ontinuous at x0.The following property of 
ontinuous fun
tions is very important.Theorem 3.1.7. If f is 
ontinuous at x0 and g is 
ontinuous at f(x0), theng(f(x)) is 
ontinuous at x0.Proof. Given " > 0, we have to �nd a neighborhood U of x0, su
h thatjg(f(x)) � g(f(x0))j < " for x 2 U . As limy!f(x0) g(y) = g(f(x0)), there exists aneighborhood V of f(x0) su
h that jg(y)�g(y0)j < " for y 2 V . Thus it is suÆ
ientto �nd a U su
h that f(U) � V . And we 
an do this. Indeed, by the de�nition ofneighborhood there is Æ > 0 su
h that V 
ontains VÆ = fy j jy� f(x0)j < Æg. Sin
elimx!x0 f(x) = f(x0), there is a neighborhood U of x0 su
h that jf(x)�f(x0)j < Æfor all x 2 U . Then f(U) � VÆ � V . �Definition. A fun
tion f is 
alled di�erentiable at a point x0 if the di�eren
equotient f(x)�(f0)x�x0 has a limit as x tends to x0. This limit is 
alled the derivativeof the fun
tion F at the point x0, and denoted f 0(x0) = limx!x0 f(x)�f(x0)x�x0 .Immediately from the de�nition one evaluates the derivative of linear fun
tion(3.1.2) (ax+ b)0 = aThe following lemma is a dire
t 
onsequen
e of Lemma 3.1.3.Lemma 3.1.8. If f and g are di�erentiable at x0, then f + g is di�erentiableat x0 and (f + g)0(x0) = f 0(x0) + g0(x0).



66 3.1 newton-leibniz formulaLinearization. Let f be di�erentiable at x0. Denote by o(x) the di�eren
ef(x)�f(x0)x�x0 � f 0(x0). Then(3.1.3) f(x) = f(x0) + f 0(x0)(x� x0) + o(x)(x � x0);where o(x) is in�nitesimally small at x0. We will 
all su
h a representation alinearization of f(x).Lemma 3.1.9. If f is di�erentiable at x0, then it is 
ontinuous at x0.Proof. All summands but f(x0) on the right-hand side of (3.1.3) are in�nites-imally small at x0; hen
e limx!x0 f(x) = f(x0). �Lemma 3.1.10 (on uniqueness of linearization). If f(x) = a + b(x � x0) +o(x)(x� x0), where limx!x0 o(x) = 0, then f is di�erentiable at x0 and a = f(x0),b = f 0(x0).Proof. The di�eren
e f(x)� f(x0) is in�nitesimally small at x0 be
ause f is
ontinuous at x0 and the di�eren
e f(x)� a = b(x�x0) + o(x)(x�x0) is in�nites-imally small by the de�nition of linearization. Hen
e f(x0) � a is in�nitesimallysmall. But it is 
onstant, hen
e f(x0)� a = 0. Thus we established a = f(x0).The di�eren
e f(x)�ax�x0 � b = o(x) is in�nitesimally small as well as f(x)�f(x0)x�x0 �f 0(x0). But f(x)�f(x0)x�x0 = f(x)�ax�x0 . Therefore b�f 0(x0) is in�nitesimally small. Thatis b = f 0(x0). �Lemma 3.1.11. If f and g are di�erentiable at x0, then fg is di�erentiable atx0 and (fg)0(x0) = f 0(x0)g(x0) + g0(x0)f(x0).Proof. Consider lineariations f(x0)+f 0(x0)(x�x0)+o(x)(x�x0) and g(x0)+g0(x0)(x � x0) + !(x)(x � x0). Their produ
t is f(x0)g(x0) + (f 0(x0)g(x0) +f(x0)g0(x0))(x� x0) + (f(x)!(x) + f(x0)o(x))(x� x0). This is the linearization off(x)g(x) at x0, be
ause f! and go are in�nitesimally small at x0. �Theorem 3.1.12. If f is di�erentiable at x0, and g is di�erentiable at f(x0)then g(f(x)) is di�erentiable at x0 and (g(f(x0)))0 = g0(f(x0))f 0(x0).Proof. Denote f(x0) by y0 and substitute into the linearization g(y) = g(y0)+g0(y0)(y � y0) + o(y)(y � y0) another linearization y = f(x0) + f 0(x0)(x � x0) +!(x)(x� x0). Sin
e y � y0 = f 0(x0)(x� x0) + !(x)(x� x0), we get g(y) = g(y0) +g0(y0)f 0(x0)(x�x0) + g0(y0)(x�x0)!(x) + o(f(x))(x�x0). Due to Lemma 3.1.10,it is suÆ
ient to prove that g0(y0)!(x) + o(f(x)) is in�nitesimally small at x0. The�rst summand is obviously in�nitesimally small. To prove that the se
ond one alsois in�nitesimally small, we remark that o(f(x0) = 0 and o(y) is 
ontinuous at f(x0)and that f(x) is 
ontinuous at x0 due to Lemma 3.1.9. Hen
e by Theorem 3.1.6the 
omposition is 
ontinuous at x0 and in�nitesimally small. �Theorem 3.1.13. Let f be a virtually monotone fun
tion on [a; b℄. ThenF (x) = R xa f(t) dt is virtually monotone and 
ontinuous on [a; b℄. It is di�eren-tiable at any point x0 where f is 
ontinuous, and F 0(x0) = f(x0).Proof. If f has a 
onstant sign, then F is monotone. So, if f = f1 + f2 is amonotonization of f , then R xa f1(x) dx + R xa f1(x) dx is a monotonization of F (x).This proves that F (x) is virtually monotone.



3.1 newton-leibniz formula 67To prove 
ontinuity of F (x) at x0, �x a 
onstant C whi
h bounds f in someneighborhood U of x0. Then for x 2 U one proves that jF (x)� F (x0)j is in�nites-imally small via the inequalities jF (x) � F (x0)j = j R xx0 f(x) dxj � j R xx0 C dxj =Cjx� x0j.Now suppose f is 
ontinuous at x0. Then o(x) = f(x0) � f(x) is in�nitesi-mally small at x0. Therefore limx!x0 1x�x0 R xx0 o(x) dx = 0. Indeed for any " > 0the inequality jo(x)j � " holds over [x"; x0℄ for some x". Hen
e j R xx0 o(x) dxj �j R xx0 " dxj = "jx� x0j for any x 2 [x0; x"℄.Then F (x) = F (x0)+f(x0)(x�x0)+( 1x�x0 R xx0 o(t) dt)(x�x0) is a linearizationof F (x) at x0. �Corollary 3.1.14. The fun
tions ln, sin, 
os are di�erentiable and ln0(x) = 1x ,sin0 = 
os, 
os0 = � sin.Proof. Sin
e d sinx = 
osx dx, d 
osx = � sinx dx, due to Theorem 3.1.13both sinx and 
osx are 
ontinuous, and, as they are 
ontinuous, the result followsfrom Theorem 3.1.13. And ln0 x = 1x , by Theorem 3.1.13, follows from the 
ontinuityof 1x . The 
ontinuity follows from Lemma 3.1.5. �Sin
e sin0(0) = 
os 0 = 1 and sin 0 = 0, the linearization of sinx at 0 is x+xo(x).This implies the following very important equality(3.1.4) limx!0 sinxx = 1:Lemma 3.1.15. If f 0(x) > 0 for all x 2 [a; b℄, then f(b) > f(a)j.Proof. Suppose f(a) � f(b). We 
onstru
t a sequen
e of intervals [a; b℄ �[a1; b1℄ � [a2; b2℄ � : : : su
h that their lengths tend to 0 and f(ak) � f(bk). Allsteps of 
onstru
tion are the same. The general step is: let m be the middle pointof [ak; bk℄. If f(m) � f(ak) we set [ak+1; bk+1℄ = [ak;m℄, otherwise f(m) > f(ak) �f(bk) and we set [ak+1; bk+1℄ = [m; bk℄.Now 
onsider a point x belonging to all [ak; bk℄. Let f(y) = f(x) + (f 0(x) +o(x))(y � x) be the linearization of f at x. Let U be neighborhood where jo(x)j <f 0(x). Then sgn(f(y) � f(x)) = sgn(y � x) for all y 2 U . However for some nwe get [an; bn℄ � U . If an � x < bn we get f(an) � f(x) < f(bn) else an < xand f(an) < f(x) � f(bn). In the both 
ases we get f(an) < f(bn). This is a
ontradi
tion with our 
onstru
tion of the sequen
e of intervals. �Theorem 3.1.16. If f 0(x) = 0 for all x 2 [a; b℄, then f(x) is 
onstant.Proof. Set k = f(b)�f(a)b�a . If k < 0 then g(x) = f(x) � kx=2 has derivativeg0(x) = f 0(x) � k=2 > 0 for all x. Hen
e by Lemma 3.1.15 g(b) > g(a) and furtherf(b) � f(a) > k(b � a)=2. This 
ontradi
ts the de�nition of k. If k > 0 then onegets the same 
ontradi
tion 
onsidering g(x) = �f(x) + kx=2. �Theorem 3.1.17 (Newton-Leibniz). If f 0(x) is a 
ontinuous virtually monotonefun
tion on an interval [a; b℄, then R ba f 0(x) dx = f(b)� f(a).Proof. Due to Theorem 3.1.13, the derivative of the di�eren
e R xa f 0(t) dt �f(x) is zero. Hen
e the di�eren
e is 
onstant by Theorem 3.1.16. Substituting



68 3.1 newton-leibniz formulax = a we �nd the 
onstant whi
h is f(a). Consequently, R xa f 0(t) dt � f(x) = f(a)for all x. In parti
ular, for x = b we get the Newton-Leibniz formula. �Problems.1. Evaluate (1=x)0, px0, (psinx2)0.2. Evaluate exp0 x.3. Evaluate ar
tg0 x, tan0 x.4. Evaluate jxj0, Re z0.5. Prove: f 0(x) � 1 if and only if f(x) = x+ 
onst.6. Evaluate �R x2x sin tt dt�0 as a fun
tion of x.7. Evaluate p1� x20.8. Evaluate (R 10 sin ktt dt)0 as a fun
tion of k.9. Prove: If f is 
ontinuous at a and limn!1 xn = a then limn!1 f(xn) = f(a).10. Evaluate �R y0 [x℄ dx�0y.11. Evaluate ar
sin0 x.12. Evaluate R dx2+3x2 .13. Prove: If f 0(x) < 0 for all x < m and f 0(x) > 0 for all x > m then f 0(m) = 0.14. Prove: If f 0(x) is bounded on [a; b℄ then f is virtually monotone on [a; b℄.



3.2. Exponential Fun
tionsOn the 
ontents of the le
ture. We solve the prin
ipal di�erential equationy0 = y. Its solution, the exponential fun
tion, is expanded into a power series. Webe
ome a
quainted with hyperboli
 fun
tions. And, �nally, we prove the irrational-ity of e.Debeaune's problem. In 1638 F. Debeaune posed Des
artes the followinggeometri
al problem: �nd a 
urve y(x) su
h that for ea
h point P the distan
esbetween V and T , the points where the verti
al and the tangent lines 
ut the x-axis, are always equal to a given 
onstant a. Despite the e�orts of Des
artes andFermat, this problem remained unsolved for nearly 50 years. In 1684 Leibniz solvedthe problem via in�nitesimal analysis of this 
urve: let x, y be a given point P (seethe pi
ture). Then in
rease x by a small in
rement of b, so that y in
reases almostby yb=a. Indeed, in small the 
urve is 
onsidered as the line. Hen
e the point P 0 ofthe 
urve with verti
al proje
tion V 0, one 
onsiders as lying on the line TP . Hen
ethe triangle TP 0V 0 is similar to TPV . As TV = a, TV 0 = b+a this similarity givesthe equality a+by+Æy = ay whi
h gives Æy = yb=a.Repeating we obtain a sequen
e of valuesy; y(1 + ba ); y(1 + ba )2; y(1 + ba )3; : : : :We see that \in small" y(x) transforms an arithmeti
 progression into a geometri
one. This is the inverse to what the logarithm does. And the solution is a fun
tionwhi
h is the inverse to a logarithmi
 fun
tion. Su
h fun
tions are 
alled exponential.
T  V

P

a b
 V’

P’

T’Figure 3.2.1. Debeaune's problemTangent line and derivative. A tangent line to a smooth 
onvex 
urve at apoint x is de�ned as a straight line su
h that the line interse
ts the 
urve just at xand the whole 
urve lies on one side of the line.We state that the equation of the tangent line to the graph of fun
tion f at apoint x0 is just the prin
ipal part of linearization of f(x) at x0. In other words,the equation is y = f(x0) + (x� x0)f 0(x0).First, 
onsider the 
ase of a horizontal tangent line. In this 
ase f(x0) is eithermaximal or minimal value of f(x). 69



70 3.2 exponential fun
tionsLemma 3.2.1. If a fun
tion f(x) is di�erentiable at an extremal point x0, thenf 0(x0) = 0.Proof. Consider the linearization f(x) = f(x0)+f 0(x0)(x�x0)+o(x))(x�x0).Denote x�x0 by Æx, and f(x)�f(x0) by Æf(x). If we suppose that f 0(x0) 6= 0, then,for suÆ
iently small Æx, we get jo(x�Æx)j < jf 0(x)j, hen
e sgn(f 0(x0)+o(x0+Æx)) =sgn(f 0(x0)+o(x0�Æx)), and sgn Æf(x) = sgn Æx. Therefore the sign of Æf(x) 
hangeswhenever the sign of Æx 
hanges. The sign of Æf(x) 
annot be positive if f(x0) isthe maximal value of f(x), and it 
annot be negative if f(x0) is the minimal value.This is the 
ontradi
tion. �Theorem 3.2.2. If a fun
tion f(x) is di�erentiable at x0 and its graph is
onvex, then the tangent line to the graph of f(x) at x0 is y = f(x0)+f 0(x0)(x�x0).Proof. Let y = ax+ b be the equation of a tangent line to the graph y = f(x)at the point x0. Sin
e ax+ b passes through x0, one has ax0+ b = f(x0), thereforeb = f(x0)� ax0, and it remains to prove that a = f 0(x0). If the tangent line ax+ bis not horizontal, 
onsider the fun
tion g(x) = f(x) � ax. At x0 it takes either amaximal or a minimal value and g0(x0) = 0 by Lemma 3.2.1. On the other hand,g0(x0) = f 0(x0)� a. �Di�erential equation. The Debeaune problem leads to a so-
alled di�eren-tial equation on y(x). To be pre
ise, the equation of the tangent line to y(x) atx0 is y = y(x0) + y0(x0)(x � x0). So the x-
oordinate of the point T 
an be foundfrom the equation 0 = y(x0) + y0(x0)(x � x0). The solution is x = x0 � y(x0)y0(x0) .The x-
oordinate of V is just x0. Hen
e TV is equal to y(x0)y0(x0) . And Debeaune'srequirement is y(x0)y0(x0) = a. Or ay0 = y. Equations that in
lude derivatives offun
tions are 
alled di�erential equations. The equation above is the simplest dif-ferential equation. Its solution takes one line. Indeed passing to di�erentials onegets ay0 dx = y dx, further ady = y dx, then adyy = dx and a d ln y = dx. Hen
ea ln y = x+
 and �nally y(x) = exp(
+ xa ), where expx denotes the fun
tion inverseto the natural logarithm and 
 is an arbitrary 
onstant.Exponenta. The fun
tion inverse to the natural logarithm is 
alled the ex-ponential fun
tion. We shall 
all it the exponenta to distinguish it from otherexponential fun
tions.Theorem 3.2.3. The exponenta is the unique solution of the di�erential equa-tion y0 = y su
h that y0(0) = 1.Proof. Di�erentiation of the equality ln expx = x gives exp0 xexpx = 1. Hen
eexpx satis�es the di�erential equation y0 = y. For x = 0 this equation givesexp0(0) = exp 0. But exp 0 = 1 as ln 1 = 0.For the 
onverse, let y(x) be a solution of y0 = y. The derivative of ln y is y0y = 1.Hen
e the derivative of ln y(x) � x is zero. By Theorem 3.1.16 from the previousle
ture, this implies ln y(x)�x = 
 for some 
onstant 
. If y0(0) = 1, then y(0) = 1and 
 = ln 1� 0 = 0. Therefore ln y(x) = x and y(x) = exp ln y(x) = expx. �



3.2 exponential fun
tions 71Exponential series. Our next goal is to prove that(3.2.1) expx = 1 + x+ x22 + x32 � 3 + � � �+ xkk! + � � � = 1Xn=0 xnn! ;where 0! = 1. This series is absolutely 
onvergent for any x. Indeed, the ratio ofits subsequent terms is xn and tends to 0, hen
e it is eventually majorized by anygeometri
 series.Hyperboli
 fun
tions. To prove that the fun
tion presented by series (3.2.1)is virtually monotone, 
onsider its odd and even parts. These parts represent theso-
alled hyperboli
 fun
tions : hyperboli
 sine shx, and hyperboli
 
osine 
hx.sh(x) = 1Xk=0 x2k+1(2k + 1)! ; 
h(x) = 1Xk=0 x2k(2k)! :The hyperboli
 sine is an in
reasing fun
tion, as all odd powers are in
reasingover the whole line. The hyperboli
 
osine is in
reasing for positive x and de
reasingfor negative. Hen
e both are virtually monotone; and so is their sum.Consider the integral R x0 sh t dt. As all terms of the series representing sh arein
reasing, we 
an integrate the series termwise. This integration gives 
hx. Asshx is lo
ally bounded, 
hx is 
ontinuous by Theorem 3.1.13. Consider the integralR x0 
h t dt; here we also 
an integrate the series representing 
h termwise, be
ause forpositive x all the terms are in
reasing, and for negative x, de
reasing. Integrationgives shx, sin
e the 
ontinuity of 
hx was already proved. Further, by Theorem3.1.13 we get that shx is di�erentiable and sh0 x = 
hx. Now returning to theequality 
hx = R x0 sh t dt we get 
h0 x = shx, as shx is 
ontinuous.Therefore (shx+
hx)0 = 
hx+shx. And sh 0+ 
h 0 = 0+1 = 1. Now by theabove Theorem 3.2.3 one gets expx = 
hx+ shx.Other exponential fun
tions. The exponenta as a fun
tion inverse to thelogarithm transforms sums into produ
ts. That is, for all x and y one hasexp(x+ y) = expx exp y:A fun
tion whi
h has this property (i.e., transform sums into produ
ts) is 
alledexponential.Theorem 3.2.4. For any positive a there is a unique di�erentiable fun
tiondenoted by ax 
alled the exponential fun
tion to base a, su
h that a1 = a andax+y = axay for any x, y. This fun
tion is de�ned by the formula expa lnx.Proof. Consider l(x) = ln ax. This fun
tion has the property l(x+y) = l(x)+l(y). Therefore its derivative at any point is the same: it is equal to k = limx!0 l(x)x .Hen
e the fun
tion l(x)� kx is 
onstant, be
ause its derivative is 0. This 
onstantis equal to l(0), whi
h is 0. Indeed l(0) = l(0 + 0) = l(0) + l(0). Thus ln ax = kx.Substituting x = 1 one gets k = ln a. Hen
e ax = exp(x ln a). So if a di�erentiableexponential fun
tion with base a exists, it 
oin
ides with exp(x ln a). On the otherhand it is easy to see that exp(x ln a) satis�es all the requirements for an exponentialfun
tion to base a, that is exp(1 lna) = a, exp((x+y) ln a) = exp(x ln a) exp(y ln a);and it is di�erentiable as 
omposition of di�erentiable fun
tions. �



72 3.2 exponential fun
tionsPowers. Hen
e for any positive a and any real b, one de�nes the number ab asab = exp(b ln a)a is 
alled the base, and b is 
alled the exponent. For rational b this de�nitionagrees with the old de�nition. Indeed if b = pq then the properties of the exponentaand the logarithm imply a pq = qpap.Earlier, we have de�ned logarithms to base b as the number 
, and 
alled thelogarithm of b to base a, if a
 = b and denoted 
 = loga b.The basi
 properties of powers are 
olle
ted here.Theorem 3.2.5.(ab)
 = a(b
); ab+
 = aba
; (ab)
 = a
b
; loga b = log blog a:Power fun
tions. The power operation allows us to de�ne the power fun
tion x�for any real degree �. Now we 
an prove the equality (x�)0 = �x��1 in its full value.Indeed, (x�)0 = (exp(� lnx))0 = exp0(� ln x)(� lnx)0 = exp(� lnx)�x = �x��1.In�nite produ
ts via the Logarithm.Lemma 3.2.6. Let f(x) be a fun
tion 
ontinuous at x0. Then for any sequen
efxng su
h that limn!1 xn = x0 one has limn!1 f(xn) = f(x0).Proof. For any given " > 0 there is a neighborhood U of x0 su
h that jf(x)�f(x0)j � " for x 2 U . As limn!1 xn = x0, eventually xn 2 U . Hen
e eventuallyjf(xn)� f(x0)j < ". �As we already have remarked, in�nite sums and in�nite produ
ts are limits ofpartial produ
ts.Theorem 3.2.7. lnQ1k=1 pk =P1k=1 ln pk.Proof. exp(P1k=1 ln pk) = exp(limn!1Pnk=1 ln pk)= limn!1 exp(Pnk=1 ln pk)= limn!1Qnk=1 pk=Q1k=1 pk:Now take logarithms of both sides of the equation. �Symmetri
 arguments prove the following: expP1k=1 ak =Q1k=1 expak.Irrationality of e. The expansion of the exponenta into a power series givesan expansion into a series for e whi
h is exp 1.Lemma 3.2.8. For any natural n one has 1n+1 < en!� [en!℄ < 1n .Proof. en! = P1k=0 n!k! . The partial sum Pnk=0 n!k! is an integer. The tailP1k=n+1 n!k! is termwise majorized by the geometri
 series P1k=1 1(n+1)k = 1n . Onthe other hand the �rst summand of the tail is 1n+1 . Consequently the tail has itssum between 1n+1 and 1n . �Theorem 3.2.9. The number e is irrational.



3.2 exponential fun
tions 73Proof. Suppose e = pq where p and q are natural. Then eq! is a naturalnumber. But it is not an integer by Lemma 3.2.8. �Problems.1. Prove the inequalities 1 + x � expx � 11�x .2. Prove the inequalities x1+x � ln(1 + x) � x.3. Evaluate limn!1 �1� 1n�n.4. Evaluate limn!1 �1 + 2n�n.5. Evaluate limn!1 �1 + 1n2 �n.6. Find the derivative of xx.7. Prove: x > y implies expx > exp y.8. Express via e: exp 2, exp(1=2), exp(2=3), exp(�1).9. Prove that exp(m=n) = emn .10. Prove that expx > 0 for any x.11. Prove the addition formulas 
h(x+ y) = 
h(x) 
h(y) + sh(x) sh(y), sh(x+ y) =sh(x) 
h(y) + sh(y) 
h(x).12. Prove that � sh(x � 0:5) = sh 0:5 
h(x), � 
h(x� 0:5) = sh 0:5 sh(x).13. Prove sh 2x = 2 shx 
hx.14. Prove 
h2(x)� sh2(x) = 1.15. Solve the equation shx = 4=5.16. Express via e the sum P1k=1 k=k!.17. Express via e the sum P1k=1 k2=k!.18. Prove that f expkkn g is unbounded.19. Prove: The produ
t Q(1 + pn) 
onverges if and only if the sum P pn (pn � 0)
onverges.20. Determine the 
onvergen
e of Q e1=n1+ 1n .21. Does Qn(e1=n � 1) 
onverges?22. Prove the divergen
e of P1k=1 [k�prime℄k .23. Expand ax into a power series.24. Determine the geometri
al sense of shx and 
hx.25. Evaluate limn!1 sin�en!.26. Does the series P1k=1 sin�ek! 
onverge?�27. Prove the irrationality of e2.



3.3. Euler FormulaOn the 
ontents of the le
ture. The reader be
omes a
quainted with themost famous Euler formula. Its spe
ial 
ase ei� = �1 symbolizes the unity ofmathemati
s: here e represents Analysis, i represents Algebra, and � representsGeometry. As a dire
t 
onsequen
e of the Euler formula we get power series for sinand 
os, whi
h we need to sum up the Euler series.Complex Newton-Leibniz. For a fun
tion of a 
omplex variable f(z) thederivative is de�ned by the same formula f 0(z0) = limz!z0 f(z)�f(z0)z�z0 . We willdenote it also by df(z)dz , to distinguish from derivatives of paths: 
omplex valuedfun
tions of real variable. For a path p(t) its derivative will be denoted either p0(t)or dp(t)dt . The Newton-Leibniz formula for real fun
tions 
an be expressed by theequality df(t)dt dt = df(t). Now we extend this formula to 
omplex fun
tions.The linearization of a 
omplex fun
tion f(z) at z0 has the same form f(z0) +f 0(z0)(z � z0) + o(z)(z � z0), where o(z) is an in�nitesimally small fun
tion of
omplex variable. The same arguments as for real numbers prove the basi
 rules ofdi�erentiation: the derivative of sums, produ
ts and 
ompositions.Theorem 3.3.1. dzndz = nzn�1.Proof. dzdz = 1 one gets immediately from the de�nition of the derivative.Suppose the equality dzndz = nzn�1 is proved for n. Then dzn+1dz = dzzndz = z dzndz +zn dzdz = znzn�1 + zn = (n+ 1)zndz. And the theorem is proved by indu
tion. �A smooth path is a di�erentiable mapping p : [a; b℄ ! C with a 
ontinuousbounded derivative. A fun
tion f(z) of a 
omplex variable is 
alled virtually mono-tone if for any smooth path p(t) the fun
tions Re f(p(t)) and Im f(p(t)) are virtuallymonotone.Lemma 3.3.2. If f 0(z) is bounded, then f(z) is virtually monotone.Proof. Consider a smooth path p. Then df(p(t))dt = f 0(p(t))p0(t) is bounded bysome K. Due to Lemma 3.1.15 one has jf(p(t))� f(p(t0))j � Kjt� t0j. Hen
e anypartial variation of f(p(t)) does not ex
eed K(b � a). Therefore varf(p(t))[a; b℄ �K. �Theorem 3.3.3. If a 
omplex fun
tion f(z) has a bounded virtually monotone
ontinuous 
omplex derivative over the image of a smooth path p : [a; b℄! C , thenRp f 0(z) dz = f(p(b))� f(p(a)).Proof. df(p(t))dt = f 0(p(t))p0(t) = dRe f(p(t))dt + id Im f(p(t))dt . All fun
tions hereare 
ontinuous and virtually monotone by hypothesis. Passing to di�erential formsone gets df(p(t))dt dt = dRe f(p(t))dt dt+ i d Im f(p(t))dt dt= d(Re f(p(t))) + i d(Im f(p(t)))= d(Re f(p(t)) + i Im f(p(t)))= d(f(p(t)):Hen
e Rp f 0(z) dz = Rp df(z). �74



3.3 euler formula 75Corollary 3.3.4. If f 0(z) = 0 then f(z) is 
onstant.Proof. Consider p(t) = z0+(z�z0)t, then f(z)�f(z0) = Rp f 0(�) d� = 0. �Di�erentiation of series. Let us say that a 
omplex seriesP1k=1 ak majorizes(eventually) another su
h series P1k=1 bk if jbkj � jakj for all k (resp. for k beyondsome n).The seriesP1k=1 k
k(z�z0)k�1 is 
alled a formal derivative ofP1k=0 
k(z�z0)k.Lemma 3.3.5. Any power series P1k=0 
k(z� z0)k eventually majorizes its for-mal derivative P1k=0 k
k(z1 � z0)k�1 if jz1 � z0j < jz � z0j.Proof. The ratio of the n-th term of the derivative to the n-th term of theseries tends to 0 as n tends to in�nity. Indeed, this ratio is k(z1�z0)k(z�z0)k = kqk, wherejqj < 1 sin
e jz1 � z0j < jz � z0j. The fa
t that limn!1 nqn = 0 follows fromthe 
onvergen
e of P1k=1 kqk whi
h we already have proved before. This series iseventually majorized by any geometri
 series P1k=0AQk with Q > q. �A path p(t) is 
alled monotone if both Re p(t) and Im p(t) are monotone.Lemma 3.3.6. Let p : [a; b℄ ! C be a smooth monotone path, and let f(z) bevirtually monotone. If jf(p(t))j � 
 for t 2 [a; b℄ then ���Rp f(z) dz��� � 4
jp(b)� p(a)j.Proof. Integration of the inequalities �
 � Re f(p(t)) � 
 against dRe zalong the path gives j RpRe f(z) dRezj � 
jRe p(b)�Re p(a)j � 
jp(b)� p(a)j. Thesame arguments prove j Rp Im f(z) d Imzj � 
j Im p(b) � Im p(a)j � 
jp(b) � p(a)j.The sum of these inequalities gives jRe Rp f(z) dzj � 2
jRe p(b) � Re p(a)j. Thesame arguments yields j Im Rp f(z) dzj � 2
jRe p(b)�Re p(a)j. And the addition ofthe two last inequalities allows us to a

omplish the proof of the Lemma be
ausej Rp f(z) dzj � jRe Rp f(z) dzj+ j Rp f(z) dzj. �Lemma 3.3.7. jzn � �nj � njz � �jmaxfjzn�1j; j�n�1jg.Proof. (zn � �n) = (z � �)Pn�1k=0 zk�n�k�1 and jzk�n�k�1j � maxfjzn�1j;j�n�1jg. �A linear path from z0 to z1 is de�ned as a linear mapping p : [a; b℄ ! C , su
hthat p(a) = z0 and p(b) = z1, that is p(t) = z0(t� a) + (z1 � z0)(t� a)=(b� a).We denote by R ba f(z) dz the integral along the linear path from a to b.Lemma 3.3.8. For any 
omplex z, � and natural n > 0 one has(3.3.1) jzn � zn0 � nzn�10 (z � z0)j � 2n(n� 1)jz � z0j2maxfjzjn�2; jz0jn�2g:Proof. By the Newton-Leibniz formula, zn � zn0 = R zz0 n�n�1 d�. Further,Z zz0 n�n�1 d� = Z zz0 nzn�10 d� + Z zz0 n(�n�1 � zn�10 ) d�= nzn�10 + Z zz0 n(�n�1 � zn�10 ) d�:Consequently, the left-hand side of (3.3.1) is equal to ���R zz0 n(�n�1 � zn�10 ) d����. Dueto Lemma 3.3.7 the absolute value of the integrand along the linear path does not



76 3.3 euler formulaex
eed (n � 1)jz � z0jmaxfjzn�2j; jzn�20 jg. Now the estimation of the integral byLemma 3.3.6 gives just the inequality (3.3.1). �Theorem 3.3.9. If P1k=0 
k(z1 � z0)k 
onverges absolutely, then P1k=0 
k(z �z0)k and P1k=1 k
k(z � z0)k�1 absolutely 
onverge provided by jz � z0j < jz1 � z0j,and the fun
tionP1k=1 k
k(z�z0)k�1 is the 
omplex derivative of P1k=0 
k(z�z0)k.Proof. The series P1k=0 
k(z � z0)k and its formal derivative are eventuallymajorized by P1k=0 
k(z1 � z0)k if jz � z0j � jz1 � z0j by the Lemma 3.3.5. Hen
ethey absolutely 
onverge in the 
ir
le jz � z0j � jz1 � z0j. ConsiderR(z) = 1Xk=0 
k(z � z0)k � 1Xk=0 
k(� � z0)k � (z � �) 1Xk=1 k
k(� � z0)k�1:To prove that the formal derivative is the derivative of P1k=0 
k(z � z0)k at � it issuÆ
ient to prove that R(z) = o(z)(z � �), where o(z) is in�nitesimally small at �.One has R(z) = P1k=1 
k �(z � z0)k � (� � z0)k � k(� � z0)k�1�. By Lemma 3.3.8one gets the following estimate: jR(z)j � P1k=1 2j
kjk(k � 1)jz � �j2jz2 � z0jn�2,where jz2 � z0j = maxfjz � z0j; j� � z0jg. Hen
e all we need now is to prove thatP1k=1 2k(k � 1)j
kjjz2 � z0jk�2jz � �j is in�nitesimally small at �. And this in itsturn follows from the 
onvergen
e of P1k=1 2k(k � 1)j
kjjz2 � z0jk�2. The lattermay be dedu
ed from Lemma 3.3.5. Indeed, 
onsider z3, su
h that jz2 � z0j <jz3 � z0j < jz1 � z0j. The 
onvergen
e of P1k=1 kj
kjjz3 � z0jk�1 follows fromthe 
onvergen
e of P1k=0 j
kjjz1 � z0jk by Lemma 3.3.5. And the 
onvergen
e ofP1k=2 k(k�1)j
kjjz2�z0jk�2 follows from the 
onvergen
e ofP1k=1 kj
kjjz3�z0jk�1by the same lemma. �Corollary 3.3.10. Let f(z) =P1k=0 
kzk 
onverge absolutely for jzj < r, andlet a; b have absolute values less then r. Then R ba f(z) dz =P1k=0 
kk+1 (bk+1�ak+1).Proof. Consider F (z) = P1k=0 
kzk+1k+1 . This series is termwise majorized bythe series of f(z), hen
e it 
onverges absolutely for jzj < r. By Theorem 3.3.9 f(z)is its derivative for jzj < r. In our 
ase f(z) is di�erentiable and its derivative isbounded by P1k=0 kj
kjrk0 , where r0 = maxfjaj; jbjg. Hen
e f(z) is 
ontinuous andvirtually monotone and our result now follows from Theorem 3.3.3. �Exponenta in C . The exponenta for any 
omplex number z is de�ned asexp z = P1k=0 zkk! . The de�nition works be
ause the series P1k=0 zkk! absolutely
onverges for any z 2 C .Theorem 3.3.11. The exponenta is a di�erentiable fun
tion of a 
omplex vari-able with derivative exp0 z = exp z, su
h that for all 
omplex z, � the followingaddition formula holds: exp(z + �) = exp z exp �.Proof. The derivative of the exponenta 
an be evaluated termwise by Theo-rem 3.3.9. And this evaluation gives exp0 z = exp z. To prove the addition formula
onsider the following fun
tion r(z) = exp(z+�)exp z . Di�erentiation of the equalityr(z) exp z = exp(z+ �) gives r0(z) exp z+ r(z) exp z = exp(z+ �). Division by exp zgives r0(z) + r(z) = r(z). Hen
e r(z) is 
onstant. This 
onstant is determined bysubstitution z = 0 as r(z) = exp �. This proves the addition formula. �



3.3 euler formula 77Lemma 3.3.12. Let p : [a; b℄! C be a smooth path 
ontained in the 
omplementof a neighborhood of 0. Then exp Rp 1� d� = p(b)p(a) .Proof. First 
onsider the 
ase when p is 
ontained in a 
ir
le jz � z0j < jz0jwith 
enter z0 6= 0. In this 
ir
le, 1z expands in a power series:1� = 1z0 � (z0 � �) = 1z0 11� z0��z0 = 1Xk=0 (z0 � �)kzk+10 :Integration of this series is possible to do termwise due to Corollary 3.3.10. Hen
ethe result of the integration does not depend on the path. And Theorem 3.3.9provides di�erentiability of the termwise integral and the possibility of its termwisedi�erentiation. Su
h di�erentiation simply gives the original series, whi
h represents1z in this 
ir
le.Consider the fun
tion l(z) = R zz0 1� d�. Then l0(z) = 1z . The derivative ofthe 
omposition exp l(z) is exp l(z)z . Hen
e the 
omposition satis�es the di�erentialequation y0z = y. We sear
h for a solution of this equation in the form y = zw.Then y0 = w +w0z and our equation turns into wz +w0z2 = wz. Therefore w0 = 0and w is 
onstant. To �nd this 
onstant substitute z = z0 and get 1 = exp0 =exp l(z0) = wz0. Hen
e w = 1z0 and exp l(z) = zz0 .To prove the general 
ase 
onsider a partition fxkgnk=0 of [a; b℄. Denote bypk the restri
tion of p over [xk; xk+1℄. Choose the partition so small that jp(x) �p(xk)j < jp(xk)j for all x 2 [xk ; xk+1℄. Then any pk satis�es the requirement ofthe above 
onsidered 
ase. Hen
e exp Rpk 1� d� = p(xk+1)p(xk) . Further exp Rp 1� d� =expPn�1k=0 Rpk 1� d� =Qn�1k=0 p(xk+1)p(xk) = p(b)=p(a). �Theorem 3.3.13 (Euler Formula). For any real � one hasexp i� = 
os�+ i sin�Proof. In Le
ture 2.5 we have evaluated Rp 1z dz = i� for p(t) = 
os t+ i sin t,t 2 [0; �℄. Hen
e Lemma 3.3.12 applied to p(t) immediately gives the Euler formula.�Trigonometri
 fun
tions in C . The Euler formula gives power series expan-sions for sinx and 
osx:sinx = 1Xk=0(�1)k x2k+1(2k + 1)! ; 
osx = 1Xk=0(�1)k x2k(2k)! :These expansions are used to de�ne trigonometri
 fun
tions for 
omplex vari-able. On the other hand the Euler formula allows us to express trigonometri
fun
tions via the exponenta:sin z = exp(iz)� exp(�iz)2i ; 
os z = exp(iz) + exp(�iz)2 :The other trigonometri
 fun
tions tan, 
ot, se
, 
ose
 are de�ned for 
omplex vari-ables by the usual formulas via sin and 
os.



78 3.3 euler formulaProblems.1. Evaluate P1k=1 sin kk! .2. Prove the formula of Joh. Bernoulli R 10 xx dx =P1k=1 (�1)k+1kk .3. Find ln(�1).4. Solve the equation exp z = i.5. Evaluate ii.6. Prove sin z = eiz�e�iz2i , 
os z = eiz+e�iz2 .7. Prove the identity sin2 z + 
os2 z = 1.8. Solve the equation sin z = 5=3.9. Solve the equation 
os z = 2.10. Evaluate P1k=0 
os kk! .11. Evaluate Hjzj=1 dzz2 .12. Evaluate P1k=1 qk sin kxk .13. Expand into a power series ex 
osx.



3.4. Abel's TheoremOn the 
ontents of the le
ture. The expansion of the logarithm into powerseries will be extended to the 
omplex 
ase. We learn the very important Abel'stransformation of sum. This transformation is a dis
rete analogue of integrations byparts. Abel's theorem on the limit of power series will be applied to the evaluationof trigonometri
 series related to the logarithm. The 
on
ept of Abel's sum of adivergent series will be introdu
ed.Prin
ipal bran
h of the Logarithm. Sin
e exp(x+ iy) = ex(
os y+ i sin y),one gets the following formula for the logarithm: Log z = ln jzj + iArg z, whereArg z = arg z + 2�k. We see that the logarithm is a multi-valued fun
tion, that iswhy one usually 
hooses a bran
h of the logarithm to work. For our purposes it issuÆ
ient to 
onsider the prin
ipal bran
h of the logarithm:ln z = ln jzj+ i arg z; �� < arg z � �:The prin
ipal bran
h of the logarithm is a di�erentiable fun
tion of a 
omplex vari-able with derivative 1z , inverse to exp z. This bran
h is not 
ontinuous at negativenumbers. However its restri
tion on the upper half-plane is 
ontinuous and evendi�erentiable at negative numbers.Lemma 3.4.1. For any nonnegative z one has R z1 1� d� = ln z.Proof. If Im z 6= 0, the segment [0; z℄ is 
ontained in the 
ir
le j� � z0j <jz0j for z0 = jzj2Im z . In this 
ir
le 1� expands into a power series, whi
h one 
anintegrate termwise. Sin
e for zk the result of integration depends only on the endsof path of integration, the same is true for power series. Hen
e, we 
an 
hangethe path of integration without 
hanging the result. Consider the following path:p(t) = 
os t + i sin t, t 2 [0; arg z℄. We know the integral Rp 1� d� = i arg z. Thispath terminates at zjzj . Continue this path by the linear path to z. The integralsatis�es R zz=jzj 1� d� = R jzj1 1z=jzjt dtz=jzj = R jzj1 1t dt = ln jzj. Therefore R z1 1� d� =Rp 1� d� + R zz=jzj 1� d� = i arg z + ln jzj. �Logarithmi
 series. In parti
ular for j1� zj < 1 termwise integration of theseries 1� =P1k=0 (1� �)k gives the 
omplex Mer
ator series:(3.4.1) ln(1 + z) = 1Xk=1(�1)k+1 zkk :Substitute in this series �z for z and subtra
t the obtained series from (3.4.1) toget the 
omplex Gregory series:12 ln 1 + z1� z = 1Xk=0(�1)k z2k+12k + 1 :In parti
ular for z = ix, one has ��� 1+ix1�ix ��� = 1 and arg 1+ix1�ix = 2ar
tgx. Thereforeone gets ar
tgx = 1Xk=0(�1)k x2k+12k + 1 :79



80 3.4 abel's theoremSin
e arg(1 + ei�) = ar
tg sin�1+
os � = ar
tg tan(�=2) = �2 , the substitution ofexp(i�) for z in the Mer
ator series ln(1 + ei�) = P1k=1(�1)k+1 eik�k gives for theimaginary parts:(3.4.2) 1Xk=0(�1)k+1 sin k�k = �2 :However the last substitution is not 
orre
t, be
ause jei�j = 1 and (3.4.1) is provedonly for jzj < 1. To justify it we will prove a general theorem, due to Abel.Summation by parts. Consider two sequen
es fakgnk=1, fbkgnk=1. The dif-feren
e of their produ
t Æakbk = ak+1bk+1 � akbk 
an be presented asÆ(akbk) = ak+1Æbk + bkÆak:Summation of these equalities givesanbn � a1b1 = n�1Xk=1 ak+1Æbk + n�1Xk=1 bkÆak:A permutation of the latter equality gives the so-
alled Abel's transformation ofsums n�1Xk=1 bk�ak = anbn � a1b1 � n�1Xk=1 ak+1�bk:Abel's theorem. One writes x ! a � 0 instead of x ! a and x < a, andx! a+ 0 means x > a and x! a.Theorem 3.4.2 (Abel).If 1Xk=0 ak 
onverges, then limx!1�0 1Xk=0 akxk = 1Xk=0 ak:Proof. P1k=0 akxk 
onverges absolutely for jxj < 1, be
ause of the bounded-ness of fakg.Suppose " > 0. Set A(n;m) =Pmk=n ak, A(n;m)(x) =Pmk=n akxk. Choose Nso large that(3.4.3) jA(0; n)�A(0;1)j < "9 ; 8n > N:Applying the Abel transformation for any m > n one getsA(n;m)�A(n;m)(x) = mXk=n ak(1� xk)= (1� x) mXk=n ÆA(n� 1; k � 1) k�1Xj=0 xj= (1� x)hA(n� 1;m) mXj=0 xj �A(n� 1; n) nXj=0 xj � mXk=nA(n� 1; k)xki:By (3.4.3) for n > N , one gets jA(n � 1;m)j = j(A(0;m) � A) + (A � A(0; n))j �"=9+ "=9 = 2"=9. Hen
e, we 
an estimate from above by 2"=31�x the absolute value of



3.4 abel's theorem 81the expression in the bra
kets of the previous equation for A(n;m) � A(n;m)(x).As a result we get(3.4.4) jA(n;m)�A(n;m)(x)j � 2"3 ; 8m � n > N;8x:Sin
e limx!1�0A(0; N)(x) = A(0; N) one 
hooses Æ so small that for x > 1�Æ thefollowing inequality holds: jA(0; N)�A(0; N)(x)j < "3 :Summing up this inequality with (3.4.4) for n = N + 1 one gets:jA(0;m)�A(0;m)(x)j < "; 8m > N; j1� xj < Æ:Passing to limits as m tends to in�nity the latter inequality givesjA(0;1)�A(0;1)(x)j � "; for j1� xj < Æ: �Leibniz series. As the �rst appli
ation of the Abel Theorem we evaluate theLeibniz seriesP1k=0 (�1)k2k+1 . This series 
onverges by the Leibniz Theorem 2.4.3. Bythe Abel Theorem its sum islimx!1�0 1Xk=0 (�1)kxk2k + 1 = limx!1�0 ar
tgx = ar
tg 1 = �4 :We get the following remarkable equality:�4 = 1� 13 + 15 � 17 + 19 � : : : :Abel sum of a series. One de�nes the Abel sum of a series P1k=0 ak asthe limit limx!1�0P1k=0 akxk . The series whi
h have an Abel sum are 
alled Abelsummable. The Abel Theorem shows that all 
onvergent series have Abel sums
oin
iding with their usual sums. However there are a lot of series, whi
h have anAbel sum, but do not 
onverge.Abel's inequality. Consider a seriesP1k=1 akbk, where the partial sums An =Pn�1k=1 ak are bounded by some 
onstantA and the sequen
e fbkg is monotone. ThenPn�1k=1 akbk = Pn�1k=1 bkÆAk = Anbn � A1b1 +Pn�1k=1 Ak+1Æbk. Sin
e Pn�1k=1 jÆbkj =jbn � b1j, one gets the following inequality:�����n�1Xk=1 akbk����� � 3Amaxfjbkjg:Convergen
e test.Theorem 3.4.3. Let the sequen
e of partial sums Pn�1k=1 ak be bounded, and letfbkg be non-in
reasing and in�nitesimally small. Then P1k=1 akbk 
onverges to itsAbel sum, if the latter exists.Proof. The di�eren
e between a partial sum Pn�1k=1 akbk and the Abel sum isequal to limx!1�0 n�1Xk=1 akbk(1� xk) + limx!1�0 1Xk=n akbkxk :



82 3.4 abel's theoremThe �rst limit is zero, the se
ond limit 
an be estimated by Abel's inequality fromabove by 3Abn. It tends to 0 as n tends to in�nity. �Appli
ation. Now we are ready to prove the equality (3.4.2). The seriesP1k=1(�1)k+1 sin kxk has an Abel sum. Indeed,limq!1�0 1Xk=1(�1)k+1 qk sin kxk = Im limq!1�0 1Xk=1(�1)k+1 (qeix)kk= Im limq!1�0 ln(1 + qeix)= Im ln(1 + eix):The sums Pn�1k=1 sin kx = ImPn�1k=1 eikx = Im 1�einx1�eix are bounded. And 1k is de-
reasing and in�nitesimally small. Hen
e we 
an apply Theorem 3.4.3.Problems.1. Evaluate 1 + 12 � 13 � 14 + 15 + 16 � 17 � 18 + : : : .2. Evaluate P1k=1 sin 2kk .3. P1k=1 
os k�k = � ln j2 sin �2 j, (0 < j�j � �).4. P1k=1 sin k�k = ���2 , (0 < � < 2�).5. P1k=0 
os(2k+1)�2k+1 = 12 ln j2 
ot �2 j, (0 < j�j < �)6. P1k=0 sin(2k+1)�2k+1 = �4 , (0 < � < �)7. P1k=1(�1)k+1 
os k�k = ln�2 
os �2�, (�� < � < �)8. Find the Abel sum of 1� 1 + 1� 1 + : : : .9. Find the Abel sum of 1� 1 + 0 + 1� 1 + 0 + : : : .10. Prove: A periodi
 series, su
h that the sum of the period is zero, has an Abelsum.11. Teles
ope P1k=1 k22k .12. Evaluate Pn�1k=0 k 
os kx.13. Estimate from above P1k=n sin kxk2 .�14. Prove: If P1k=0 ak, P1k=0 bk and their 
onvolution P1k=0 
k 
onverge, thenP1k=0 
k =P1k=0 akP1k=0 bk.



3.5. Residue TheoryOn the 
ontents of the le
ture. At last, the reader learns something, whi
hEuler did not know, and whi
h he would highly appre
iate. Residue theory allowsone to evaluate a lot of integrals whi
h were not a

essible by the Newton-Leibnizformula.Monotone 
urve. A monotone 
urve � is de�ned as a subset of the 
omplexplane whi
h is the image of a monotone path. Nonempty interse
tions of verti
aland horizontal lines with a monotone 
urve are either points or 
losed intervals.The points of the monotone 
urve whi
h have an extremal sum of real andimaginary parts are 
alled its endpoints, the other points of the 
urve are 
alled itsinterior points.A 
ontinuous inje
tive monotone path p whose image 
oin
ides with � is 
alleda parametrization of �.Lemma 3.5.1. Let p1 : [a; b℄! C and p2 : [
; d℄! C be two parametrizations ofthe same monotone 
urve �. Then p�11 p2 : [
; d℄ ! [a; b℄ is a 
ontinuous monotonebije
tion.Proof. Set Pi(t) = Re pi(t) + Im pi(t). Then P1 and P2 are 
ontinuous andstri
tly monotone. And p1(t) = p2(�) if and only if P1(t) = P2(�). Hen
e p�11 p2 =P�11 P2. Sin
e P�11 and P2 are monotone 
ontinuous, the 
omposition P�11 P2 ismonotone 
ontinuous. �Orientation. One says that two parametrizations p1 and p2 of a monotone
urve � have the same orientation, if p�11 p2 is in
reasing, and one says that theyhave opposite orientations, if p�11 p2 is de
reasing.Orientation divides all parametrizations of a 
urve into two 
lasses. All elementsof one orientation 
lass have the same orientation and all elements of the other 
lasshave the opposite orientation.An oriented 
urve is a 
urve with �xed 
ir
ulation dire
tion. A 
hoi
e of orien-tation means distinguishing one of the orientation 
lasses as positive, 
orrespondingto the oriented 
urve. For a monotone 
urve, to spe
ify its orientation, it is suÆ-
ient to indi
ate whi
h of its endpoints is its beginning and whi
h is the end. Thenall positively oriented parametrizations start with its beginning and �nish at itsend, and negatively oriented parametrizations do the opposite.If an oriented 
urve is denoted by �, then its body, the 
urve without orientation,is denoted j�j and the 
urve with the same body but with opposite orientation isdenoted ��.If �0 is a monotone 
urve whi
h is 
ontained in an oriented 
urve �, then onede�nes the indu
ed orientation on �0 by � as the orientation of a parametrizationof �0 whi
h extends to a positive parametrization of �.Line integral. One de�nes the integral R� f(z) dg(z) along a oriented mono-tone 
urve � as the integral Rp f(z) dg(z), where p is a positively oriented parametr-ization of �. This de�nition does not depend on the 
hoi
e of p, be
ause di�erentparametrizations are obtained from ea
h other by an in
reasing 
hange of variable(Lemma 3.5.1).One de�nes a partition of a 
urve � by a point x as a pair of monotone 
urves�1, �2, su
h that � = �1[�2 and �1\�2 = x. And we write in this 
ase � = �1+�2.83



84 3.5 residue theoryThe Partition Rule for the line integral is(3.5.1) Z�1+�2 f(z) dg(z) = Z�1 f(z) dg(z) + Z�2 f(z) dg(z);where the orientations on �i are indu
ed by an orientation of �. To prove thePartition Rule 
onsider a positive parametrization p : [a; b℄! �. Then the restri
-tions of p over [a; p�1(x)℄ and [p�1(x); b℄ give positive parametrizations of �1 and�2. Hen
e the equality (3.5.1) follows from R p�1(x)a f(z) dg(z)+R bp�1(x) f(z) dg(z) =R ba f(z) dg(z).A sequen
e of oriented monotone 
urves f�kgnk=1 with disjoint interiors is 
alleda 
hain of monotone 
urves and denoted by Pnk=1 �k. The body of a 
hain C =Pnk=1 �k is de�ned as Snk=1 j�kj and denoted by jCj. The interior of the 
hain isde�ned as the union of interiors of its elements.The integral of a form f dg along the 
hain is de�ned as RPnk=1 �k f dg =Pnk=1 R�k f dg.One says that two 
hains Pnk=1 �k and Pmk=1 �0k have the same orientation, ifthe orientations indu
ed by �k and �0j on �k \�0j 
oin
ide in the 
ase when �k \�0jhas a nonempty interior. Two 
hains with the same body and orientation are 
alledequivalent.Lemma 3.5.2. If two 
hains C = Pnk=1 �k and C 0 = Pmk=1 �0k are equivalentthen the integrals along these 
hains 
oin
ide for any form fdg.Proof. For any interior point x of the 
hain C, one de�nes the subdivisionof C by x as �+j + ��j +Pnk=1 �k[k 6= j℄, where �j is the 
urve 
ontaining x and�+j + ��j is the partition of � by x. The subdivision does not 
hange the integralalong the 
hain due to the Partition Rule.Hen
e we 
an subdivide C step by step by endpoints of C 0 to 
onstru
t a 
hainQ whose endpoints in
lude all endpoints of P 0. And the integral along Q is thesame as along P . Another possibility to 
onstru
t Q is to subdivide C 0 by endpointsof C. This 
onstru
tion shows that the integral along Q 
oin
ides with the integralalong C 0. Hen
e the integrals along C and C 0 
oin
ide. �Due to this lemma, one 
an introdu
e the integral of a di�erential form alongany oriented pie
ewise monotone 
urve �. To do this one 
onsiders a monotonepartition of � into a sequen
e f�kgnk=1 of monotone 
urves with disjoint interiorsand equip all �k with the indu
ed orientation. One gets a 
hain and the integralalong this 
hain does not depend on the partition.Contour integral. A domain D is de�ned as a 
onne
ted bounded part ofthe plane with pie
ewise monotone boundary. The boundary of D denoted �D isthe union of �nitely many monotone 
urves. And we suppose that �D � D, thatis we 
onsider a 
losed domain.For a monotone 
urve �, whi
h is 
ontained in the boundary of a domainD, onede�nes the indu
ed orientation of � by D as the orientation of a parametrizationwhi
h leaves D on the left during the movement along � around D.One introdu
es the integral H�D f(z)dg(z) as the integral along any 
hain whosebody 
oin
ides with �D and whose orientations of 
urves are indu
ed by D.Due to Lemma 3.5.2 the 
hoi
e of 
hain does not a�e
t the integral.



3.5 residue theory 85
D

Figure 3.5.1. Contour integralLemma 3.5.3. Let D be a domain and l be either a verti
al or a horizontal line,whi
h bise
ts D into two parts: D0 and D00 lying on the di�erent sides of l. ThenH�D f(z)dz = H�D0 f(z)dz + H�D00 f(z)dz.Proof. The line l interse
ts the boundary of D in a �nite sequen
e of pointsand intervals fJkgmk=1.Set �0D = �D \ �D0 and �00D = �D \ �D00. The interse
tion �0D \ �00D
onsists of �nitely many points. Indeed, the interior points of Jk do not belong tothis interse
tion, be
ause their small neighborhoods have points of D only from oneside of l. Hen
e Z�0D f(z) dz + Z�00D f(z) dz = I�D f(z)dz:The boundary of D0 
onsists of �0D and some number of intervals. And theboundary of D00 
onsists of �00D and the same intervals, but with opposite orien-tation. Therefore L = Zl\�D0 f(z) dz = � Zl\�D00 f(z) dz:On the other handI�D0 f(z)dz = Z�0D f(z) dz + L andI�D00 f(z)dz = Z�00D f(z) dz � L;hen
eI�D0 f(z)dz + I�D00 f(z)dz = Z�0D f(z) dz + Z�00D f(z) dz = I�D f(z)dz: �Lemma 3.5.4 (Estimation). If jf(z)j � B for any z from a body of a 
hainC =Pnk=1 �k, then ��RC f(z) dz�� � 4Bn diam jCj.Proof. By Lemma 3.3.6 for any k one has ���R�k f(z) dz��� � 4BjAk � Bkj �4B diam jCj where Ak and Bk are endpoints of �k. The summation of these in-equalities proves the lemma. �Theorem 3.5.5 (Cau
hy). If a fun
tion f is 
omplex di�erentiable in a domainD then H�D f(z)dz = 0.



86 3.5 residue theoryProof. Fix a re
tangle R with sides parallel to the 
oordinate axis whi
h
ontains D and denote by jRj its area and by P its perimeter.The proof is by 
ontradi
tion. Suppose ��H�D f(z) dz�� 6= 0. Denote by 
 the ratioof ��H�D f(z) dz��=jRj. We will 
onstru
t a nested sequen
e of re
tangles fRkg1k=0su
h that� R0 = R, Rk+1 � Rk;� R2k is similar to R;� j H�(Rk\D) f(z) dzj � 
jRkj, where jRkj is the area of Rk.The indu
tion step: Suppose Rk is already 
onstru
ted. Divide Rk in two equalre
tanges R0k and R00k by drawing either a verti
al, if k is even, or a horizontal, if kis odd, interval joining the middles of the opposite sides of Rk. Set Dk = D \ Rk,D0 = D\R0k, D00 = D\R00k . We state that at least one of the following inequalitiesholds:(3.5.2) ����I�D0 f(z)dz���� � 
jR0kj; ����I�D00 f(z)dz���� � 
jR00k j:Indeed, in the opposite 
ase one gets����I�D0 f(z)dz + I�D00 f(z)dz���� < 
jR0kj+ 
jR0kj = 
jRkj:Sin
e H�D0 f(z)dz + H�D00 f(z)dz = H�Dk f(z)dz by Lemma 3.5.3 we get a 
ontra-di
tion with the hypothesis j Rpk f(z) dzj � 
jRkj. Hen
e, one of the inequalities(3.5.2) holds. If the �rst inequality holds we set Rk+1 = R0k else we set Rk+1 = R00k .After 
onstru
ting the sequen
e fRkg, 
onsider a point z0 belonging toT1k=1 Rk.This point belongs to D, be
ause all its neighborhoods 
ontain points of D. Con-sider the linearization f(z) = f(z0)+f 0(z0)(z�z0)+o(z)(z�z0). Sin
e H�Dk (f(z0)+f 0(z0)(z � z0))dz = 0 one gets(3.5.3) ����I�Dk o(z)(z � z0)dz���� = ����I�Dk f(z)dz���� � 
jRkj:The boundary of Dk is 
ontained in the union �Rk [ Rk \ �D. Consider amonotone partition �D =Pnk=1 �k. Sin
e the interse
tion of Rk with a monotone
urve is a monotone 
urve, one 
on
ludes that �D \ Rk is a union of at most nmonotone 
urves. As �Rk 
onsists of 4 monotone 
urves we get that �Dk is as abody of a 
hain with at most 4 + n monotone 
urves.Denote by Pk the perimeter of Rk. And suppose that o(x) is bounded in Rkby a 
onstant ok. Then jo(x)(z � z0)j � Pkok for all z 2 Rk.Sin
e diam �Dk � Pk2 by the Estimation Lemma 3.5.4, we get the followinginequality:(3.5.4) ����I�Dk o(z)(z � z0)dz���� � 4(4 + n)Pkok Pk2 = 2(4 + n)okP 2k :The ratio P 2k =jRkj is 
onstant for even k. Therefore the inequalities (3.5.3) and(3.5.4) 
ontradi
t ea
h other for ok < 
jRkj2(4+n)P 2k = 
jRj2(4+n)P 2 . However the inequalityjo(x)j < 
jRj2(4+n)P 2 holds for some neighborhood V of z0 as o(x) is in�nitesimallysmall at z0. This is a 
ontradi
tion, be
ause V 
ontains some R2k. �



3.5 residue theory 87Residues. By H rz0 f(z) dz we denote the integral along the boundary of thedisk fjz � z0j � rg.Lemma 3.5.6. Suppose a fun
tion f(z) is 
omplex di�erentiable in the domainD with the ex
eption of a �nite set of points fzkgnk=1. ThenI�D f(z)dz = nXk=1 I rzk f(z) dz;where r is so small that all disks jz � zkj < r are 
ontained in D and disjoint.Proof. Denote by D0 the 
omplement of the union of the disks in D. Then�D0 is the union of �D and the boundary 
ir
les of the disks. By the Cau
hyTheorem 3.5.5, H�D0 f(z)dz = 0. On the other hand this integral is equal to thesum H�D f(z)dz and the sum of integrals along boundaries of the 
ir
les. Theorientation indu
ed by D0 onto the boundaries of these 
ir
les is opposite to theorientation indu
ed from the 
ir
les. Hen
e0 = I�D0 f(z)dz = I�D f(z)dz � nXk=1 I rzk f(z) dz: �A singular point of a 
omplex fun
tion is de�ned as a point where either thefun
tion or its derivative are not de�ned. A singular point is 
alled isolated, if ithas a neighborhood, where it is the only singular point. A point is 
alled a regularpoint if it not a singular point.One de�nes the residue of f at a point z0 and denotes it as resz0 f as thelimit limr!0 12�i H rz0 f(z)dz. The above lemma shows that this limit exists for anyisolated singular point and moreover, that all integrals along suÆ
iently small 
ir-
umferen
es in this 
ase are the same.Sin
e in all regular points the residues are 0 the 
on
lusion of Lemma 3.5.6 fora fun
tion with �nitely many singular points 
an be presented in the form:(3.5.5) I�D f(z)dz = 2�iXz2D resz f:An isolated singular point z0 is 
alled a simple pole of a fun
tion f(z) if thereexists a nonzero limit limz!z0 f(z)(z � z0).Lemma 3.5.7. If z0 is a simple pole of f(z) then resz0 f = limz!z0(z�z0)f(z).Proof. Set L = limz!z0(z � z0)f(z). Then f(z) = L+ o(z)(z�z0) , where o(z) isin�nitesimally small at z0. Hen
e(3.5.6) I rz0 o(z) dzz � z0 = I rz0 f(z) dz � I rz0 Lz � z0 dz:Sin
e the se
ond integral from the right-hand side of (3.5.6) is equal to 2L�i andthe other one is equal to 2�i resz0 f for suÆ
iently small r, we 
on
lude that theintegral from the left-hand side also is 
onstant for suÆ
iently small r. To prove thatL = resz0 f we have to prove that this 
onstant 
 = limr!0 H rz0 o(z)z�z0 dz is 0. Indeed,assume that j
j > 0. Then there is a neighborhood U of z0 su
h that jo(z)j � j
j32



88 3.5 residue theoryfor all z 2 U . Then one gets a 
ontradi
tion by estimation of ���H rz0 o(z) dzz�z0 ��� (whi
h isequal to j
j for suÆ
iently small r) from above by j
jp2 for r less than the radius ofU . Indeed, the integrand is bounded by j
j32r and the path of integration (the 
ir
le)
an be divided into four monotone 
urves of diameter rp2: quarters of the 
ir
le.Hen
e by the Estimation Lemma 3.5.4 one gets ���H rz0 o(z) dzz�z0 ��� � 16p2 j
j32 = j
jp2 . �Remark 3.5.8. Denote by �(r; �; z0) an ar
 of the 
ir
le jz � z0j = r, whoseangle measure is �. Under the hypothesis of Lemma 3.5.7 the same arguments provethe following limr!0 Z�(�;r;0z) f(z) dz = i� limz!z0 f(z)(z � z0):Problems.1. Evaluate H 11 dz1+z4 .2. Evaluate H 10 dzsin z .3. Evaluate H 10 dzez�1 .4. Evaluate H 10 dzz2 .5. Evaluate H 10 sin 1z dz.6. Evaluate H 10 ze 1z dz.7. Evaluate H 5=20 z2 
ot�z dz.8. Evaluate H 122 z dz(z�1)(z�2)2 .9. Evaluate R +��� d�5+3 
os� .10. Evaluate R +��� d�(1+
os2 �)2 .11. Evaluate R 2�0 d�(1+
os�)2 .12. Evaluate R +1�1 dx1+x4 .13. Evaluate R +10 dx(1+x2)(4+x2) .14. Evaluate R +1�1 1+x21+x4 .15. Evaluate R +1�1 x31+x6 dx.



3.6. Analyti
 Fun
tionsOn the 
ontents of the le
ture. This le
ture introdu
es the reader intothe phantasti
ally beautiful world of analyti
 fun
tions. Integral Cau
hy formula,Taylor series, Fundamental Theorem of Algebra. The reader will see all of thesetreasures in a single le
ture.Theorem 3.6.1 (Integral Cau
hy Formula). If fun
tion f is 
omplex di�eren-tiable in the domain D, then for any interior point z 2 D one has:f(z) = 12�i I�D f(�) dz� � zProof. The fun
tion f(z)z�z0 has its only singular point inside the 
ir
le. Thisis z0, whi
h is a simple pole. The residue of f(z)z�z0 by Lemma 3.5.7 is equal tolimz!z0(z � z0) f(z)z�z0 = limz!z0 f(z) = f(z0). And by the formula (3.5.5) theintegral is equal to 2�if(z0). �Lemma 3.6.2. LetP1k=1 fk be a series of virtually monotone 
omplex fun
tions,whi
h is termwise majorized by a 
onvergent positive series P1k=1 
k on a monotone
urve � (that is jfk(z)j � 
k for natural k and z 2 �) and su
h that F (z) =P1k=1 fk(z) is virtually monotone. Then(3.6.1) 1Xk=1 Z� fk(z) dz = Z� 1Xk=1 fk(z) dz:Proof. By the Estimation Lemma 3.5.4 one has the following inequalities:(3.6.2) ����Z� fk(z) dz���� � 4
k diam�; �����Z� 1Xk=n fk(z) dz����� � 4 diam� 1Xk=n 
k:Set Fn(z) = Pn�1k=1 fk(z). By the left inequality of (3.6.2), the module of dif-feren
e between R� Fn(z) dz = Pn�1k=1 R� fk(z) dz and the left-hand side of (3.6.1)does not ex
eed 4 diam�P1k=n 
k. Hen
e this module is in�nitesimally small asn tends to in�nity. On the other hand, by the right inequality of (3.6.2) one gets��R� Fn(z) dz � R� F (z) dz�� � 4 diam�P1k=n 
k. This implies that the di�eren
e be-tween the left-hand and right-hand sides of (3.6.1) is in�nitesimally small as n tendsto in�nity. But this di�eren
e does not depend on n. Hen
e it is zero. �Lemma 3.6.3. If a real fun
tion f de�ned over an interval [a; b℄ is lo
allybounded, then it is bounded.Proof. The proof is by 
ontradi
tion. Suppose that f is unbounded. Dividethe interval [a; b℄ in half. Then the fun
tion has to be unbounded at least on oneof the halves. Consider this half and divide it in half. Choose the half wherethe fun
tion is unbounded. So we 
onstru
t a nested in�nite sequen
e of intervals
onverging to a point, whi
h 
oin
ides with the interse
tion of all the intervals. Andf is obviously not lo
ally bounded at this point. �Corollary 3.6.4. A 
omplex fun
tion f(z) 
ontinuous on the boundary of adomain D is bounded on �D. 89



90 3.6 analyti
 fun
tionsProof. Consider a path p : [a; b℄! �D. Then jf(p(t))j is 
ontinuous on [a; b℄,hen
e it is lo
ally bounded, hen
e it is bounded. Sin
e �D 
an be 
overed by imagesof �nitely many paths this implies boundedness of f over �D. �Theorem 3.6.5. If a fun
tion f(z) is 
omplex di�erentiable in the disk jz�z0j �R, then for jz � z0j < Rf(z) = 1Xk=0(z � z0)k I Rz0 f(�)(� � z0)k+1 d�;where the series on the right-hand side absolutely 
onverges for jz � z0j < R.Proof. Fix a point z su
h that jz� z0j < R and 
onsider � as a variable. Forj� � z0j > jz � z0j one has(3.6.3) 1� � z = 1(� � z0)� (z � z0) = 1� � z0 11� z�z0��z0 = 1Xk=0 (z � z0)k(� � z0)k+1 :On the 
ir
le j� � z0j = R the series on the right-hand side is majorized by the
onvergent series P1k=0 jz�z0jkRk+1 for r > jz � z0j. The fun
tion f(�) is bounded onj� � z0j = R by Corollary 3.6.4. Therefore after multipli
ation of (3.6.3) by f(�)all the 
onditions of Lemma 3.6.2 are satis�ed. Termwise integration gives:f(z) = I Rz0 f(�)� � z d� = 1Xk=0(z � z0)k I Rz0 f(�) d�(� � z0)k+1 : �Analyti
 fun
tions. A fun
tion f(z) of 
omplex variable is 
alled an analyti
fun
tion in a point z0 if there is a positive " su
h that f(z) = P1k=0 ak(z � z0)kfor all z from a disk jz� z0j � " and the series absolutely 
onverges. Sin
e one 
andi�erentiate power series termwise (Theorem 3.3.9), any fun
tion whi
h is analyti
at z is also 
omplex di�erentiable at z. Theorem 3.6.5 gives a 
onverse. Thus, weget the following:Corollary 3.6.6. A fun
tion f(z) is analyti
 at z if and only if it is 
omplexdi�erentiable in some neighborhood of z.Theorem 3.6.7. If f is analyti
 at z then f 0 is analyti
 at z. If f and g areanalyti
 at z then f + g, f � g, fg are analyti
 at z. If f is analyti
 at z and g isanalyti
 at f(z) then g(f(z)) is analyti
 at z.Proof. Termwise di�erentiation of the power series representing f in a neigh-borhood of z gives the power series for its derivative. Hen
e f 0 is analyti
. Thedi�erentiability of f � g, fg and g(f(z)) follow from 
orresponding di�erentiationrules. �Lemma 3.6.8 (Isolated Zeroes). If f(z) is analyti
 and is not identi
ally equalto 0 in some neighborhood of z0, then f(z) 6= 0 for all z 6= z0 suÆ
iently 
lose toz0. Proof. Let f(z) = P1k=0 
k(z � z0)k in a neighborhood U of z0. Let 
mbe the �rst nonzero 
oeÆ
ient. Then P1k=m 
k(z � z0)k�m 
onverges in U to adi�erentiable fun
tion g(z) by Theorem 3.3.9. Sin
e g(z0) = 
m 6= 0 and g(z) is
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ontinuous at z0, the inequality g(z) 6= 0 holds for all z suÆ
iently 
lose to z0. Asf(z) = g(z)(z � z0)m, the same is true for f(z). �Theorem 3.6.9 (Uniqueness Theorem). If two power series P1k=0 ak(z � z0)kand P1k=0 bk(z� z0)k 
onverge in a neighborhood of z0 and their sums 
oin
ide forsome in�nite sequen
e fzkg1k=1 su
h that zk 6= z0 for all k and limk!1 zk = z0,then ak = bk for all k.Proof. Set 
k = ak � bk. Then f(z) = P1k=0 
k(z � z0)k has a non-isolatedzero at z0. Hen
e f(z) = 0 in a neighborhood of z0. We get a 
ontradi
tionby 
onsidering the fun
tion g(z) = P1k=m 
k(z � z0)k�m, whi
h is nonzero for allz suÆ
iently 
lose to z0 (
f. the proof of the Isolated Zeroes Lemma 3.6.8), andsatis�es the equation f(z) = g(z)(z � z0)m. �Taylor series. Set f (0) = f and by indu
tion de�ne the (k + 1)-th derivativef (k+1) of f as the derivative of its k-th derivative f (k). For the �rst and the se
ondderivatives one prefers the notation f 0 and f 00. For example, the k-th derivative ofzn is nkzn�k. (Re
all that nk = n(n� 1) : : : (n� k + 1).)The following series is 
alled the Taylor series of a fun
tion f at point z0:1Xk=0 f (k)(z0)k! (z � z0)k:The Taylor series is de�ned for any analyti
 fun
tion, be
ause an analyti
 fun
-tion has derivative of any order due to Theorem 3.6.7.Theorem 3.6.10. If a fun
tion f is analyti
 in the disk jz � z0j < r thenf(z) =P1k=0 f (k)(z0)k! (z � z0)k for any z from the disk.Proof. By Theorem 3.6.5, f(z) is presented in the disk by a 
onvergent powerseries P1k=0 ak(z � z0)k . To prove our theorem we prove that(3.6.4) ak = I Rz0 f(�)(� � z0)k+1 d� = f (k)(z0)k! :Indeed, a0 = f(z0) and termwise di�erentiatiion of P1k=0 ak(z � z0)k applied ntimes gives f (n)(z) = P1k=n knak(z � z0)k. Putting z = z0, one gets f (n)(z0) =nnan = ann!. �Theorem 3.6.11 (Liouville). If a fun
tion f is analyti
 and bounded on thewhole 
omplex plane, then f is 
onstant.Proof. If f is analyti
 on the whole plane then f(z) =P1k=0 akzk, where akis de�ned by (3.6.4). If jf(z)j � B by the Estimation Lemma 3.5.4 one gets(3.6.5) jakj = �����I R0 f(�)zk+1 d������ � 4 � 4 BRk+1 Rp2 = CRk :Consequently ak for k > 0 is in�nitesimally small as R tends to in�nity. But akdoes not depend on R, hen
e it is 0. Therefore f(z) = a0. �Theorem 3.6.12 (Fundamental Theorem of Algebra). Any non
onstant poly-nomial P (z) has a 
omplex root.
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tionsProof. If P (z) has no roots the fun
tion f(z) = 1P (z) is analyti
 on the wholeplane. Sin
e limz!1 f(z) = 0 the inequality jf(z)j < 1 holds for jzj = R if R issuÆ
iently large. Therefore the estimation (3.6.5) for the k-th 
oeÆ
ient of f holdswith B = 1 for suÆ
iently large R. Hen
e the same arguments as in proof of theLiouville Theorem 3.6.11 show that f(z) is 
onstant. This is a 
ontradi
tion. �
.
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ontinuation.Lemma 3.6.13. If an analyti
 fun
tion f(z) has �nitely many singular pointsin a domain D and a non isolated zero at a point z0 2 D then f(z) = 0 for allregular z 2 D.Proof. For any nonsingular point z 2 D, we 
onstru
t a sequen
e of suÆ-
iently small disks D0; D1; D2; : : : ; Dn without singular points with the followingproperties: 1) z0 2 D0 � U ; 2) z 2 Dn; 3) zk, the 
enter of Dk, belongs to Dk�1for all k > 0. Then by indu
tion we prove that f(Dk) = 0. First step: if z0 is anon-isolated zero of f , then the Taylor series of f vanishes at z0 by the UniquenessTheorem 3.6.9. But this series represents f(z) on D0 due to Theorem 3.6.10, sin
eD0 does not 
ontain singular points. Hen
e, f(D0) = 0. Suppose we have provedalready that f(Dk) = 0. Then zk+1 is a non-isolated zero of f by the third propertyof the sequen
e fDkgnk=0. Consequently, the same arguments as above for k = 0prove that f(Dk+1) = 0. And �nally we get f(z) = 0. �Consider any formula whi
h you know from s
hool about trigonometri
 fun
-tions. For example, tan(x + y) = tanx+tany1�tanx tan y . The above lemma implies thatthis formula remains true for 
omplex x and y. Indeed, 
onsider the fun
tionT (x; y) = tan(x + y) � tanx+tan y1�tanx tan y . For a �xed x the fun
tion T (x; y) is analyti
and has �nitely many singular points in any disk. This fun
tion has non-isolatedzeroes in all real points, hen
e this fun
tion is zero in any disk interse
ting the realline. This implies that T (x; y) is zero for all y. The same arguments applied toT (x; y) with �xed y and variable x prove that T (x; y) is zero for all 
omplex x; y.The same arguments prove the following theorem.
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tions 93Theorem 3.6.14. If some analyti
 relation between analyti
 fun
tions holds ona 
urve �, it holds for any z 2 C , whi
h 
an be 
onne
ted with � by a paths avoidingsingular points of the fun
tions.Lemma 3.6.15. sin t � 2t� for t 2 [0; �=2℄.Proof. Let f(t) = sin t� 2t� . Then f 0(x) = 
os t� 2� . Set y = ar

os 2� . Thenf 0(x) � 0 for x 2 [0; y℄. Therefore f is nonde
reasing on [0; y℄, and nonnegative,be
ause f(0) = 0. On the interval [y; �=2℄ the derivative of f is negative. Hen
ef(x) is non-in
reasing and nonnegative, be
ause its value on the end of the intervalis 0. �Lemma 3.6.16 (Jordan). Let f(z) be an analyti
 fun
tion in the upper half-plane su
h that limz!1 f(z) = 0. Denote by �R the upper half of the 
ir
le jzj = R.Then for any natural m(3.6.6) limR!1 Z�R f(z) exp(miz) dz = 0:Proof. Consider the parametrization z(t) = R 
os t+Ri sin t, t 2 [0; �℄ of �R.Then the integral (3.6.6) turns into(3.6.7) Z �0 f(z) exp(iRm 
os t�Rm sin t) d(R 
os t+ Ri sin t)= Z �0 Rf(z) exp(iRm 
os t) exp(�Rm sin t)(� sin t+ i 
os t) dt:If jf(z)j � B on �R, then jf(z) exp(iRm 
os t)(� sin t + i 
os t)j � B on �R. Andthe module of the integral (3.6.7) 
an be estimated from above byBR Z �0 exp(�Rm sin t) dt:Sin
e sin(� � t) = sin t, the latter integral is equal to 2BR R �=20 exp(�Rm sin t) dt.Sin
e sin t � 2t� , the latter integral does not ex
eed2BR Z �=20 exp(�2Rmt=�) dt = 2BR1� exp(�Rm)2Rm � Bm:Sin
e B 
an be 
hosen arbitrarily small for suÆ
iently large R, this proves thelemma. �Evaluation of R +1�1 sinxx dx = limN!1 R N�N sinxx dx. Sin
e sinx = Im eix ourintegral is equal to Im R +1�1 eizz dz. Set �(r) = fz j jzj = r; Im z � 0g. This is asemi
ir
le. Let us orient it 
ounter-
lo
kwise, so that its initial point is r.Consider the domain D(R) bounded by the semi
ir
les ��(r), �(R) and theintervals [�R;�r℄, [r; R℄, where r = 1R and R > 1. The fun
tion eizz has no singularpoints inside D(R). Hen
e H�D(R) eizz dz = 0. Hen
e for any R(3.6.8) Z �R�r eizz dz + Z Rr eizz dz = Z�(r) eizz dz � Z�(R) eizz dz:The se
ond integral on the right-hand side tends to 0 as R tends to in�nity due toJordan's Lemma 3.6.16. The fun
tion eizz has a simple pole at 0, hen
e the �rst
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r

R
−r

−R Figure 3.6.2. The domain D(R)integral on the right-hand side of (3.6.8) tends to �i res eizz = �i due to Remark3.5.8. As a result, the right-hand side of (3.6.8) tends to �i as R tends to in�nity.Consequently the left-hand side of (3.6.8) also tends to �i as R !1. The imagi-nary part of left-hand side of (3.6.8) is equal to R R�R sinxx dx� R r�r sinxx dx. The lastintegral tends to 0 as r ! 0, be
ause j sinxx j � 1. Hen
e R R�R sinxx dx tends to � asR!1. Finally R +1�1 sinxx dx = �.Problems.1. Prove that an even analyti
 fun
tion f , i.e., a fun
tion su
h that f(z) = f(�z),has a Taylor series at 0 
onsisting only of even powers.2. Prove that analyti
 fun
tion whi
h has a Taylor series only with even powersis an even fun
tion.3. Prove: If an analyti
 fun
tion f(z) takes real values on [0; 1℄, then f(x) is realfor any real x.4. Evaluate R +1�1 11+x4 dx.5. Evaluate R +��� d�5+3 
os� .6. Evaluate R10 x2(x2+a2)2 dx (a > 0).7. Evaluate R +1�1 x sinxx2+4x+20 dx.8. Evaluate R10 
os axx2+b2 dx (a; b > 0).


