CHAPTER 3

Derivatives
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3.1. Newton-Leibniz Formula

On the contents of the lecture. In this lecture appears the celebrated
Newton-Leibniz formula — the main tool in the evaluation of integrals. It is accom-
panied with such fundamental concepts as the derivative, the limit of a function
and continuity.

Motivation. Consider the following problem: for a given function F' find a
function f such that dF(z) = f(x) dz, over [a, b], that is, fcd ft)ydt = F(d) — F(c)
for any subinterval [c, d] of [a, b].

Suppose that such an f exists. Since the value of f at a single point does not
affects the integral, we cannot say anything about the value of f at any given point.
But if f is continuous at a point g, its value is uniquely defined by F'.

To be precise, the difference quotient %ﬁfzo) tends to f(xo) as x tends to
x9. Indeed, F(z) = F(x0) +f;0 f(t) dt. Furthermore, f;o f)dt = f(xo)(x — o) +
f;o(f(t) — f(xo)) dt. Also, |f;§0 (f(t) = f(wo) dt| < varg[zg, z]|z — xo|. Consequently
F(z) — F(xo)

1.1
(3.1.1) pr—

— f(zo)| < vargz, zo).
However, vary[z, o] can be made arbitrarily small by choosing « sufficiently close
to xg, since vary g = 0.

Infinitesimally small functions. A set is called a neighborhood of a point x
if it contains all points sufficiently close to z, that is, all points y such that |y — |
is less then a positive number ¢.

We will say that a function f is locally bounded (above) by a constant C at a
point z, if f(z) < C for all y sufficiently close to z.

A function o(z) is called infinitesimally small at xg, if |o(z)| is locally bounded
at xo by any € > 0.

LEMMA 3.1.1. If the functions o and w are infinitesimally small at xg then otw
are infinitesimally small at xg.

PROOF. Let ¢ > 0. Let O; be a neighborhood of zy where |o(z)| < £/2,
and let O, be a neighborhood of zy where |w(z)| < €/2. Then O; N O3 is a
neighborhood where both inequalities hold. Hence for all z € O; N O2 one has
lo(z) fw(z)| <e/2+¢e/2=¢. O

LeEmMA 3.1.2. If o(z) is infinitesimally small at xo and f(x) is locally bounded
at xo, then f(x)o(z) is infinitesimally small at z.

ProoOF. The neighborhood where |f(z)o(z)| is bounded by a given € > 0 can
be constructed as the intersection of a neighborhood U, where |f(z)| is bounded
by a constant C, and a neighborhood V', where |o(z)| is bounded by ¢/C. O

DEFINITION. One says that a function f(z) tends to A as x tends to o and
writes limy ., f(z) = A, if f(x) = A+ o(x) on the complement of xo, where o(x)
is infinitesimally small at xg.

COROLLARY 3.1.3. If both the limits lim,_,,, f(z) and lim,_,,, g(x) ezist, then
the limit lim, ., (f(x) + g(z)) also exists and lim,_, ., (f(z) + g(z)) = lim, ., f(z)+
lim, ., g(z).
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3.1 NEWTON-LEIBNIZ FORMULA 65

Proor. This follows immediately from Lemma 3.1.1. d

LeMMA 3.1.4. If the limits lim,_,,, f(x) and limg_,,, g(z) exist, then also
lim, ., f(z)g(z) ezxists and lim,_, ., f(z)g(z) = lim, ., f(z)lim,_., g(z).

Proor. If f(z) = A+o(z) and g(z) = B4+w(z), then f(z)g(z) = AB+Aw(z)+
Bo(x) + w(z)o(x), where Aw(z), Bo(x) and w(z)o(z) all are infinitesimally small
at zo by Lemma 3.1.2; and their sum is infinitesimally small by Lemma 3.1.1. O

DEFINITION. A function f is called continuous at xg, if lim,_,,, f(z) = f(xo).

A function is said to be continuous (without mentioning a point), if it is con-
tinuous at all points under consideration.
The following lemma gives a lot of examples of continuous functions.

LeEmMA 3.1.5. If f is a monotone function on [a,b] such that fla,b] = [f(a),
f(b)] then f is continuous.

PROOF. Suppose f is nondecreasing. Suppose a positive € is given. For a
given point & denote by z° = f~!(f(x) +¢) and z. = f(f(x) —¢). Then [z.,z°]
contains a neighborhood of z, and for any y € [z., 2] one has f(z) +& = f(z:) <
f(y) < f(2f) = f(x) + e. Hence the inequality |f(y) — f(z)| < € holds locally at =
for any e. a

The following theorem immediately follows from Corollary 3.1.3 and Lemma
3.1.4.

THEOREM 3.1.6. If the functions f and g are continuous at xq, then f+ g and
fg are continuous at xg.

The following property of continuous functions is very important.

THEOREM 3.1.7. If f is continuous at Ty and g is continuous at f(xo), then
g(f(z)) is continuous at x.

PROOF. Given € > 0, we have to find a neighborhood U of xy, such that
lg(f(z)) — g(f(zo0))| < e forx € U. Aslim,_, ¢, 9(y) = 9(f(20)), there exists a
neighborhood V' of f(x) such that |g(y) — g(yo)| < € for y € V. Thus it is sufficient
to find a U such that f(U) C V. And we can do this. Indeed, by the definition of
neighborhood there is § > 0 such that V' contains Vs = {y | |y — f(x0)| < 6}. Since
limg s, f(z) = f(z0), there is a neighborhood U of zg such that |f(x) — f(zo)] < &

for all z € U. Then f(U) C Vs C V. O
DEFINITION. A function f is called differentiable at a point xo if the difference
quotient @)= pas ¢ limit as = tends to xo. This limit is called the derivative

r—Io

of the function F at the point xo, and denoted f'(zo) = lim,_,, -

Immediately from the definition one evaluates the derivative of linear function
(3.1.2) (az+b) =a
The following lemma is a direct consequence of Lemma 3.1.3.

LEMMA 3.1.8. If f and g are differentiable at xq, then f + g is differentiable
at zo and (f + g)'(zo) = f'(z0) + ¢'(20).
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Linearization. Let f be differentiable at xg. Denote by o(z) the difference
fl@)—f(xo) _ f'(x0). Then

(3.1.3) F(@) = (o) + '(x0) (@ - 29) + ole)(x — x0),

where o(x) is infinitesimally small at zo. We will call such a representation a
linearization of f(x).

LEMMA 3.1.9. If f is differentiable at xq, then it is continuous at .

Proor. All summands but f(zo) on the right-hand side of (3.1.3) are infinites-
imally small at xo; hence lim,_,,, f(z) = f(zo). O

LEMMA 3.1.10 (on uniqueness of linearization). If f(z) = a + b(z — zo) +
o(z)(z — x), where lim,_,,, o(x) =0, then f is differentiable at o and a = f(xo),

b = f’(:l?o).

PRrOOF. The difference f(x) — f(xo) is infinitesimally small at z¢ because f is
continuous at zo and the difference f(z) —a = b(z — zo) + o(z)(z — x¢) is infinites-
imally small by the definition of linearization. Hence f(z) — a is infinitesimally
small. But it is constant, hence f(z9) —a = 0. Thus we established a = f(zo).

The difference % — b = o(x) is infinitesimally small as well as %ﬁéwo) -
f'(zo). But f(?:gg“) = féw_);)a. Therefore b— f'(xp) is infinitesimally small. That
is b= f'(z0). O

LEMMA 3.1.11. If f and g are differentiable at xo, then fg is differentiable at
zo and (fg)'(zo0) = f'(z0)g(z0) + g'(20) f(20).

PRrOOF. Consider lineariations f(zo)+ f'(zo)(x —x0)+o0(z)(x—x¢) and g(zo)+
9'(xo)(x — 20) + w(z)(z — o). Their product is f(zo)g(zo) + (f'(z0)g(zo) +
f(@0)g' (z0))(x — o) + (f(z)w(z) + f(z0)o(z))(x — o). This is the linearization of
f(x)g(z) at zo, because fw and go are infinitesimally small at xq. O

THEOREM 3.1.12. If f is differentiable at xo, and g is differentiable at f(xo)
then g(f(x)) is differentiable at o and (g(f(z0))) = g'(f(z0))f'(x0).

PROOF. Denote f(zo) by o and substitute into the linearization g(y) = g(yo) +
9'(y0)(y — yo) + o(y)(y — yo) another linearization y = f(zo) + f'(z0)(z — o) +
w(@)(z — xo). Since y —yo = f'(20)(x — @0) + w(@)(z — o), we get g(y) = g(yo) +
9 (o) f'(zo)(x — z0) + g'(y0) (z — zo)w(z) + o f(x))(x — o). Due to Lemma 3.1.10,
it is sufficient to prove that g'(yo)w(z) + o(f(z)) is infinitesimally small at zo. The
first summand is obviously infinitesimally small. To prove that the second one also
is infinitesimally small, we remark that o(f(zo) = 0 and o(y) is continuous at f (o)
and that f(z) is continuous at xy due to Lemma 3.1.9. Hence by Theorem 3.1.6
the composition is continuous at zo and infinitesimally small. d

THEOREM 3.1.13. Let f be a wvirtually monotone function on [a,b]. Then
F(z) = [T f(t)dt is virtually monotone and continuous on [a,b]. It is differen-
tiable at any point xg where f is continuous, and F'(xo) = f(xo).

PRrROOF. If f has a constant sign, then F' is monotone. So, if f = fi + f2 is a
monotonization of f, then [ fi(x)dx + [ fi(x)dx is a monotonization of F(x).
This proves that F'(z) is virtually monotone.
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To prove continuity of F(x) at xo, fix a constant C' which bounds f in some
neighborhood U of xy. Then for € U one proves that |F(z) — F(zp)| is infinites-
imally small via the inequalities |F(z) — F(xo)| = |f;0 flz)dz| < |f;0 Cdzx| =
Clz — zo-

Now suppose [ is continuous at xg. Then o(z) = f(xo) — f(x) is infinitesi-
mally small at xg. Therefore lim, 4, wi—lwo f;o o(x)dx = 0. Indeed for any € > 0
the inequality |o(z)| < e holds over [z.,zo] for some x.. Hence |f;0 o(z)dz| <
| [ edx| = elz — xo| for any z € [zo, z.].

Then F(z) = F(zo)+ f(z0)(x —0) + (=== [ o(t) dt)(z — ) is a linearization

Tr—T0 o

of F(z) at zo. O

COROLLARY 3.1.14. The functions In, sin, cos are differentiable and In'(z) = -
sin’ = cos, cos’ = — sin.

PRrROOF. Since dsinz = cosx dx, dcosz = —sinx dx, due to Theorem 3.1.13
both sinz and cos x are continuous, and, as they are continuous, the result follows
from Theorem 3.1.13. AndIn'z = %, by Theorem 3.1.13, follows from the continuity
of % The continuity follows from Lemma 3.1.5. O

Since sin’(0) = cos 0 = 1 and sin 0 = 0, the linearization of sin z at 0 is z+zo(z).
This implies the following very important equality

sin x
=1.

(3.1.4) lim

z—=0 X

LemMA 3.1.15. If f'(z) > 0 for all x € [a,b], then f(b) > f(a)|.

PROOF. Suppose f(a) > f(b). We construct a sequence of intervals [a,b] D
[a1,b1] D [a2,b2] D ... such that their lengths tend to 0 and f(ax) > f(by). All
steps of construction are the same. The general step is: let m be the middle point
of [ag, bg]. If f(m) < f(ax) we set [ag+1,bk+1] = [ak, m], otherwise f(m) > f(ar) >
f(by) and we set [agt1,br+1] = [m, b

Now consider a point z belonging to all [ag,bx]. Let f(y) = f(z) + (f'(z) +
o(z))(y — z) be the linearization of f at x. Let U be neighborhood where |o(z)| <
f'(z). Then sgn(f(y) — f(x)) = sgn(y — x) for all y € U. However for some n
we get [an,by] C U. If a, < z < b, we get fa,) < f(x) < f(by) else a, <
and f(a,) < f(z) < f(bn). In the both cases we get f(a,) < f(b,). This is a
contradiction with our construction of the sequence of intervals. d

THEOREM 3.1.16. If f'(x) =0 for all x € [a,b], then f(z) is constant.

Proor. Set k = LU=I@ 1f | < 0 then g(x) = f(z) — kx/2 has derivative
g'(z) = f'(x) — k/2 > 0 for all . Hence by Lemma 3.1.15 g(b) > g(a) and further
f(b) — f(a) > k(b — a)/2. This contradicts the definition of k. If k¥ > 0 then one
gets the same contradiction considering g(z) = — f(z) + kx /2. O

THEOREM 3.1.17 (Newton-Leibniz). If f'(x) is a continuous virtually monotone
function on an interval [a,b], then f; f'(x)dx = f(b) — f(a).

PROOF. Due to Theorem 3.1.13, the derivative of the difference [ f'(t) dt —
f(z) is zero. Hence the difference is constant by Theorem 3.1.16. Substituting
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& = a we find the constant which is f(a). Consequently, [ f'(t)dt — f(z) = f(a)

for all z. In particular, for x = b we get the Newton-Leibniz formula. a
Problems.
1. Evaluate (1/z)', /&', (Vsinz2)'.
2. Evaluate exp’ z.
3. Evaluate arctg’ z, tan’ .
4. Evaluate |z|', Rez’.
5. Prove: f'(xz) =1 if and only if f(z) = = + const.
2 . !
6. Evaluate ( Jr st dt) as a function of z.
7. Evaluate V1 — 22 .
8. Evaluate ( fol sinbt gt)' as a function of k.
9. Prove: If f is continuous at a and lim, oo T, = a then lim, o f(z,) = f(a).
Yy !
10. Evaluate ([ [«] d:z:)y.
11. Evaluate arcsin’ z.
12. Evaluate [ 4.
13. Prove: If f'(z) < 0 for all z < m and f'(z) > 0 for all x > m then f'(m) = 0.

[y
'S

. Prove: If f'(x) is bounded on [a,b] then f is virtually monotone on [a, b].



3.2. Exponential Functions

On the contents of the lecture. We solve the principal differential equation
y' = y. Its solution, the exponential function, is expanded into a power series. We
become acquainted with hyperbolic functions. And, finally, we prove the irrational-
ity of e.

Debeaune’s problem. In 1638 F. Debeaune posed Descartes the following
geometrical problem: find a curve y(z) such that for each point P the distances
between V' and T, the points where the vertical and the tangent lines cut the z-
axis, are always equal to a given constant a. Despite the efforts of Descartes and
Fermat, this problem remained unsolved for nearly 50 years. In 1684 Leibniz solved
the problem via infinitesimal analysis of this curve: let z, y be a given point P (see
the picture). Then increase x by a small increment of b, so that y increases almost
by yb/a. Indeed, in small the curve is considered as the line. Hence the point P’ of
the curve with vertical projection V', one considers as lying on the line T'P. Hence
the triangle TP’V is similar to TPV. As TV = a, TV' = b+ a this similarity gives
the equality -2t2 = 2 which gives dy = yb/a.

y+éy ~ y
Repeating we obtain a sequence of values

y, y(1+2), y(1+2)2, y(1+ L)%,

We see that “in small” y(z) transforms an arithmetic progression into a geometric
one. This is the inverse to what the logarithm does. And the solution is a function
which is the inverse to a logarithmic function. Such functions are called ezponential.

a b

Fi1GURE 3.2.1. Debeaune’s problem

Tangent line and derivative. A tangent line to a smooth convex curve at a
point z is defined as a straight line such that the line intersects the curve just at x
and the whole curve lies on one side of the line.

We state that the equation of the tangent line to the graph of function f at a
point zg is just the principal part of linearization of f(z) at zp. In other words,
the equation is y = f(zo) + (x — x0) f'(z0).

First, consider the case of a horizontal tangent line. In this case f(x¢) is either
maximal or minimal value of f(z).
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70 3.2 EXPONENTIAL FUNCTIONS

LeEMMA 3.2.1. If a function f(x) is differentiable at an extremal point xg, then
f'(xo) = 0.

Proor. Consider the linearization f(x) = f(zo)+f'(z0)(z—20)+o0(z))(z—1x0).
Denote z—1z¢ by dz, and f(z)— f(zo) by 6 f(z). If we suppose that f'(z¢) # 0, then,
for sufficiently small dx, we get |o(z£d0x)| < |f'(x)], hence sgn(f'(xo)+o(zo+0z)) =
sgn(f'(xo)+o(xo—dx)), and sgn § f(x) = sgn dx. Therefore the sign of § f (z) changes
whenever the sign of dx changes. The sign of §f(x) cannot be positive if f(xg) is
the maximal value of f(z), and it cannot be negative if f(z¢) is the minimal value.
This is the contradiction. O

THEOREM 3.2.2. If a function f(x) is differentiable at xo and its graph is
convet, then the tangent line to the graph of f(z) at xo isy = f(zo)+ f'(z0)(x—x0).

ProOF. Let y = ax+b be the equation of a tangent line to the graph y = f(x)
at the point zg. Since ax + b passes through zo, one has azo +b = f(zo), therefore
b = f(xo) — axp, and it remains to prove that a = f'(x¢). If the tangent line ax + b
is not horizontal, consider the function g(z) = f(z) — ax. At wo it takes either a
maximal or a minimal value and ¢'(z¢) = 0 by Lemma 3.2.1. On the other hand,

g'(z0) = f'(w0) — a. O

Differential equation. The Debeaune problem leads to a so-called differen-
tial equation on y(x). To be precise, the equation of the tangent line to y(x) at
xo is y = y(zo) + ¥'(xo)(z — xo). So the z-coordinate of the point T' can be found

from the equation 0 = y(zo) + y'(x0)(x — x¢). The solution is x = zg — %
The z-coordinate of V is just zg. Hence TV is equal to 5((2‘;)). And Debeaune’s
requirement is ulzo) — g Or ay' = y. Equations that include derivatives of

"(x
functions are caﬁédO)diﬁerential equations. The equation above is the simplest dif-
ferential equation. Its solution takes one line. Indeed passing to differentials one
gets ay’ dx = ydx, further ady = ydz, then a% = dr and adlny = dx. Hence
alny = z+cand finally y(z) = exp(c+ %), where exp 2 denotes the function inverse
to the natural logarithm and c is an arbitrary constant.

Exponenta. The function inverse to the natural logarithm is called the ex-
ponential function. We shall call it the exponenta to distinguish it from other
exponential functions.

THEOREM 3.2.3. The exponenta is the unique solution of the differential equa-
tion y' =y such that y'(0) = 1.

exp’ x

Proor. Differentiation of the equality lnexpz = z gives o = 1. Hence
expx satisfies the differential equation y' = y. For z = 0 this equation gives

exp’(0) = exp0. But exp0=1aslnl=0.

For the converse, let y(x) be a solution of y" = y. The derivative of Iny is % =1
Hence the derivative of Iny(z) — = is zero. By Theorem 3.1.16 from the previous
lecture, this implies In y(x) — z = ¢ for some constant c. If y'(0) = 1, then y(0) =1
and ¢ =1In1l—0=0. Therefore Iny(z) = = and y(z) = explny(z) = expz. O
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Exponential series. Our next goal is to prove that

2 $3 k

00
T T T
(3.2.1) eXp$:1+$+?+2—‘3+"'+ﬁ+"':E o

n

n=0

where 0! = 1. This series is absolutely convergent for any z. Indeed, the ratio of
its subsequent terms is &> and tends to 0, hence it is eventually majorized by any

geometric series.

Hyperbolic functions. To prove that the function presented by series (3.2.1)
is virtually monotone, consider its odd and even parts. These parts represent the
so-called hyperbolic functions: hyperbolic sine shz, and hyperbolic cosine chz.

00 oo
$2k+1 2k

sh(z) = ,; 2R ch(z) = ; o

The hyperbolic sine is an increasing function, as all odd powers are increasing
over the whole line. The hyperbolic cosine is increasing for positive z and decreasing
for negative. Hence both are virtually monotone; and so is their sum.

Consider the integral fow shtdt. As all terms of the series representing sh are
increasing, we can integrate the series termwise. This integration gives chz. As
sh z is locally bounded, ch z is continuous by Theorem 3.1.13. Consider the integral
foz chtdt; here we also can integrate the series representing ch termwise, because for
positive = all the terms are increasing, and for negative x, decreasing. Integration
gives sh z, since the continuity of chx was already proved. Further, by Theorem
3.1.13 we get that shx is differentiable and sh'z = chz. Now returning to the
equality chx = fox shtdt we get ch' z = shz, as shz is continuous.

Therefore (shz +chx) =cha +shz. And sh0+ch0=0+1=1. Now by the
above Theorem 3.2.3 one gets expx = chz +shz.

Other exponential functions. The exponenta as a function inverse to the
logarithm transforms sums into products. That is, for all  and y one has

exp(x + y) = exprexpy.

A function which has this property (i.e., transform sums into products) is called
exponential.

THEOREM 3.2.4. For any positive a there is a unique differentiable function
denoted by a® called the exponential function to base a, such that a' = a and
a**tY = a®a¥ for any x, y. This function is defined by the formula expalnz.

Proor. Consider I(z) = Ina®. This function has the property I(z+y) = I(z)+
I(y). Therefore its derivative at any point is the same: it is equal to k = lim,_,¢ @
Hence the function [(z) — kx is constant, because its derivative is 0. This constant
is equal to {(0), which is 0. Indeed [(0) = 1(0 + 0) = 1(0) +{(0). Thus Ina® = k.
Substituting = 1 one gets k = Ina. Hence a® = exp(zlna). So if a differentiable
exponential function with base a exists, it coincides with exp(zlna). On the other
hand it is easy to see that exp(xz In a) satisfies all the requirements for an exponential
function to base a, that is exp(11lna) = a, exp((z +y) Ina) = exp(z In a) exp(ylna);
and it is differentiable as composition of differentiable functions. O
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Powers. Hence for any positive a and any real b, one defines the number a’ as

a® = exp(blna)

a is called the base, and b is called the exponent. For rational b this definition
agrees with the old definition. Indeed if b = % then the properties of the exponenta
and the logarithm imply ai = 1/aP.

Earlier, we have defined logarithms to base b as the number ¢, and called the
logarithm of b to base a, if a® = b and denoted ¢ = log,, b.

The basic properties of powers are collected here.

THEOREM 3.2.5.

(ab)c = a(bc), a’t¢ = abac, (ab)® = ab®, log,b=

Power functions. The power operation allows us to define the power function z®
for any real degree a. Now we can prove the equality (z%)" = az® ! in its full value.
Indeed, () = (exp(alnz)) = exp’(alnz)(alnz)’ = exp(alnz)® = az® !,

Infinite products via the Logarithm.

LEMMA 3.2.6. Let f(x) be a function continuous at xo. Then for any sequence
{z,} such that lim,,_, o z, = T one has lim,,_, f(z,) = f(xo).

ProoF. For any given € > 0 there is a neighborhood U of zg such that |f(z) —
f(zo)| <eforx € U. As lim,_, &n = To, eventually x,, € U. Hence eventually

|f(zn) — fzo)| <e. O

As we already have remarked, infinite sums and infinite products are limits of
partial products.

THEOREM 3.2.7. In[[;2, pk = Y pey Inpi.

PRrOOF.
exp(3o 5 Inpr) = exp(limp oo 35, Inpy)
= lim, 00 exp(>_j_; Inpy,)
= lim, HZ:1 Pk
= [ pr-
Now take logarithms of both sides of the equation. d

Symmetric arguments prove the following: exp Y~ ax = []r, exp a.

Irrationality of e. The expansion of the exponenta into a power series gives
an expansion into a series for e which is exp 1.

LEMMA 3.2.8. For any natural n one has n+r1 <en!—[en!] < i

PROOF. en! = 377 2. The partial sum ) ,_, 2 is an integer. The tail
> hent1 & is termwise majorized by the geometric series Y ;7 m =1 On
the other hand the first summand of the tail is n+_1 Consequently the tail has its
sum between n%_l and % O

THEOREM 3.2.9. The number e is irrational.
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PROOF. Suppose e = % where p and ¢ are natural. Then eq! is a natural

number. But it is not an integer by Lemma 3.2.8. d
Problems.
1. Prove the inequalities 1 + z < expa < .
2. Prove the inequalities 7 <In(1 +z) <.
3. Evaluate lim,,— o (1 — %)n
4. Evaluate lim,, (1 + %)n
5. Evaluate lim,, (1 + #)n
6. Find the derivative of z7.
7. Prove: ¢ > y implies expx > expy.
8. Express via e: exp 2, exp(1/2), exp(2/3), exp(—1).
9. Prove that exp(m/n) =e™ .
10. Prove that expx > 0 for any x.
11. Prove the addition formulas ch(z + y) = ch(z) ch(y) + sh(z) sh(y), sh(z +y) =

sh(z) ch(y) + sh(y) ch(z).

12. Prove that Ash(z —0.5) = sh0.5ch(z), Ach(z —0.5) = sh0.5sh(z).

13. Prove sh2x = 2shzchz.

14. Prove ch?(x) — sh?(z) = 1.

15. Solve the equation shz = 4/5.

16. Express via e the sum ) ;- | k/k!.

17. Express via e the sum Y ;- k?/k!.

18. Prove that {e’]‘cﬁk} is unbounded.

19. Prove: The product [[(1 + p,) converges if and only if the sum " p,, (pn > 0)
converges.

20. Determine the convergence of [ %

21. Does []n(e'/™ — 1) converges?

22. Prove the divergence of Y | =prime],

23. Expand a” into a power series.

24. Determine the geometrical sense of shz and chz.
25. Evaluate lim,,_, o, sin men!.

26. Does the series ).~ sinwek! converge?

*27. Prove the irrationality of e2.



3.3. Euler Formula

On the contents of the lecture. The reader becomes acquainted with the
most famous Euler formula. Its special case e = —1 symbolizes the unity of
mathematics: here e represents Analysis, i represents Algebra, and m represents
Geometry. As a direct consequence of the Euler formula we get power series for sin
and cos, which we need to sum up the Euler series.

Complex Newton-Leibniz. For a function of a complex variable f(z) the

derivative is defined by the same formula f'(zp) = lim,_,., [EFz0)  We will

Z—Zz
denote it also by af ( ) , to distinguish from derivatives of paths: complex valued

functions of real varlable. For a path p(t) its derivative will be denoted either p’(t)

or d’;(tt). The Newton-Leibniz formula for real functions can be expressed by the
equality LY dt = df(t). Now we extend this formula to complex functions.

The hnearlzauon of a complex function f(z) at zo has the same form f(zo) +
f'(z0)(z — 20) + o(2)(z — 2p), where o(z) is an infinitesimally small function of
complex variable. The same arguments as for real numbers prove the basic rules of
differentiation: the derivative of sums, products and compositions.

THEOREM 3.3.1. 4 — pn—1

dz
PROOF. % = 1 one gets immediately from the definition of the derivative.
Suppose the equality % = nz""! is proved for n. Then dz;;l = dfi'z = zdjz +

ndz

2% = znz""! 4 2" = (n+ 1)2"dz. And the theorem is proved by induction. O

A smooth path is a differentiable mapping p: [a,b] — C with a continuous
bounded derivative. A function f(z) of a complex variable is called virtually mono-
tone if for any smooth path p(t) the functions Re f(p(t)) and Im f(p(t)) are virtually
monotone.

LeEMMA 3.3.2. If f'(z) is bounded, then f(z) is virtually monotone.

Proor. Consider a smooth path p. Then W = f'(p(t))p'(t) is bounded by
some K. Due to Lemma 3.1.15 one has | f(p(t)) — f(p(to))| < K|t — to|. Hence any
partial variation of f(p(t)) does not exceed K (b — a). Therefore vary(,)la,b] <
K.

THEOREM 3.3.3. If a complex function f(z) has a bounded virtually monotone
continuwous complex derivative over the image of a smooth path p: [a,b] — C, then

[, I'(z)dz = f(p(b)) — f(p(a)).

PROOF. W = f'(p(t))p'(t) = e {igp(t)) 4 j4m {iip(t)). All functions here
are continuous and virtually monotone by hypothesis. Passing to differential forms
one gets

UO) gy _ AR S0) gy | LS00 gy
= d(Re f(P( ) + Zd(Imf( (1))
= d(Re f(p(t)) + iIm f(p(t)))
= d(f(p(t))-
Hence f fl(z)dz = f df (z O

74
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COROLLARY 3.3.4. If f'(z) = 0 then f(z) is constant.
Proor. Consider p(t) = zo+ (2 — 20)t, then f(z) — f(z0) = fp F1(0)d¢c=0. O

Differentiation of series. Let us say that a complex series > - | aj majorizes
(eventually) another such series Y~ | by, if |bg| < |a| for all k (resp. for k beyond
some n).

The series Y oo, kg, (2 —20)F~! is called a formal derivative of 3o ¢, (z—20)*.

LEMMA 3.3.5. Any power series Yo, ci(z — 20)" eventually majorizes its for-
mal derivative Yo o ke (21 — 20)¥ 71 if |21 — 20| < |z — 20]-

PROOF. The ratio of the n-th term of the derivative to the n-th term of the
series tends to 0 as n tends to infinity. Indeed, this ratio is % = kq*, where

lg] < 1 since |z1 — 20| < |z — 20| The fact that lim, ., ng" = 0 follows from
the convergence of 220:1 kq* which we already have proved before. This series is
eventually majorized by any geometric series >, o AQF with @ > ¢. O

A path p(t) is called monotone if both Re p(t) and Im p(t) are monotone.

LEMMA 3.3.6. Let p: [a,b] = C be a smooth monotone path, and let f(z) be
virtually monotone. If | f(p(t))| < ¢ for t € [a,b] then ‘fp f(z) dz‘ < 4e|p(b) — p(a)].

PrOOF. Integration of the inequalities —¢ < Re f(p(t)) < ¢ against dRez

along the path gives | fp Re f(z) dRez| < | Rep(b) — Rep(a)| < ¢|p(b) — p(a)|. The
same arguments prove |fp Im f(z) dImz| < ¢|Imp(b) — Imp(a)| < ¢|p(b) — p(a)|.
The sum of these inequalities gives | Re fpf(z) dz| < 2c|Rep(b) — Rep(a)|. The
same arguments yields | Im fp f(2z)dz] <2c|Rep(b) —Rep(a)|. And the addition of
the two last inequalities allows us to accomplish the proof of the Lemma because

[, £(2)dz] < |Re [, f(z) del +| [, £(=) dl. 0
LEMMA 3.3.7. 2" — ("] < n|z — (| max{|]z"7!|,[¢"7!}.
PROOF. (2" — (") = (2 — () X3 25¢*# 1 and |25¢**1| < max{|z""}|,

¢} O
A linear path from zy to z; is defined as a linear mapping p: [a,b] — C, such

that p(a) = zp and p(b) = 21, that is p(t) = zo(t — a) + (21 — 20)(t — a)/(b — a).
We denote by fab f(2) dz the integral along the linear path from a to b.
LEMMA 3.3.8. For any complez z, ( and natural n > 0 one has

(3.3.1) 2" =28 —nzd (2 — 20)| < 2n(n — 1)|z — 20|* max{|z|"72, 20"}
ProOF. By the Newton-Leibniz formula, 2" — 2§ = f;o n¢" ! d¢. Further,

/z: n¢"td¢ = /z: nzytd¢ + /z n(¢"t — 20 d¢

20

z
= nz{)“l +/ n(¢"t - z{f*l) dc.
Zi

o]

Consequently, the left-hand side of (3.3.1) is equal to ‘f;o n(¢"t — 207 dC‘. Due
to Lemma 3.3.7 the absolute value of the integrand along the linear path does not
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exceed (n — 1)|z — zp| max{|2"~2|,|28"%|}. Now the estimation of the integral by
Lemma 3.3.6 gives just the inequality (3.3.1). O

THEOREM 3.3.9. If Y77 ck(z1 — 20)F converges absolutely, then Y o ci(z —
20)* and ey ke (z — 20)¥~1 absolutely converge provided by |z — zo| < |21 — 20/,
and the function Y i, key(z—20)" ! is the complez derivative of Y 4o ci(z—z0)F.

ProoF. The series Y - ce(z — 20)* and its formal derivative are eventually
majorized by Yo, ¢k (21 — 20)F if |2 — 20| < |21 — 20| by the Lemma 3.3.5. Hence
they absolutely converge in the circle |z — zo| < |21 — 2o|. Consider

R(z) =Y er(z — 20)F =D en(¢ = 20)F = (2= Q) D ker(¢ — 20)"
k=0 k=0 k=1

To prove that the formal derivative is the derivative of > p  ck(z — 20)¥ at ( it is
sufficient to prove that R(z) = o(z)(z — (), where o(z) is infinitesimally small at (.
One has R(z) = Y po; ¢k ((z — 20)* — (¢ — 20)* — k(¢ — 20)*~'). By Lemma 3.3.8
one gets the following estimate: |R(z)| < Y77, 2|exlk(k — 1)z — ([*|22 — 20|™ 2,
where |20 — 20| = max{|z — 20|, |¢ — z0|}. Hence all we need now is to prove that
> ey 2k(k — 1)|ck|22 — 20|"72|2 — (| is infinitesimally small at (. And this in its
turn follows from the convergence of Y po | 2k(k — 1)|ck||z2 — 20/*~2. The latter
may be deduced from Lemma 3.3.5. Indeed, consider z3, such that |zo — zo| <
|z3 — 20| < |21 — 20]. The convergence of Y -, klck||zs — 20/¥ ! follows from
the convergence of Y~ |ck||z1 — 20/¥ by Lemma 3.3.5. And the convergence of
> nes k(k—1)|ck |22 — 20| 2 follows from the convergence of > p- | klcg||zs — zolF 1
by the same lemma. O

COROLLARY 3.3.10. Let f(z) = > po ckz" converge absolutely for |z| < r, and

let a, b have absolute values less then r. Then f; fl2)dz = Y02 o 125 (BFH! —aFth),

ProoF. Consider F(z) = >~ , % This series is termwise majorized by
the series of f(z), hence it converges absolutely for |z| < r. By Theorem 3.3.9 f(z)
is its derivative for |z| < r. In our case f(z) is differentiable and its derivative is
bounded by Y2 klck|rk, where ro = max{|al,|b|}. Hence f(z) is continuous and

virtually monotone and our result now follows from Theorem 3.3.3. O

Exponenta in C. The exponenta for any complex number z is defined as
k k
expz = Y ;o % The definition works because the series )/ ) 4+ absolutely

converges for any z € C.

THEOREM 3.3.11. The exponenta is a differentiable function of a complex vari-
able with derivative exp’ z = expz, such that for all complex z, { the following
addition formula holds: exp(z + () = exp zexp (.

PROOF. The derivative of the exponenta can be evaluated termwise by Theo-
rem 3.3.9. And this evaluation gives exp’ z = exp z. To prove the addition formula
consider the following function r(z) = %. Differentiation of the equality
r(z) expz = exp(z + () gives ' (z) exp z + r(z) exp z = exp(z + (). Division by exp z
gives r'(z) + r(z) = r(z). Hence r(z) is constant. This constant is determined by
substitution z = 0 as r(z) = exp (. This proves the addition formula. d
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LEMMA 3.3.12. Let p: [a,b] = C be a smooth path contained in the complement

of a neighborhood of 0. Then exp fp % a¢ = ,’383

PROOF. First consider the case when p is contained in a circle |z — zo| < 20|
with center zg # 0. In this circle, % expands in a power series:
1 1 11 i (20 — O)*
o — (=) 20-C T kL
¢ 20—(20—¢ 21— == = %
Integration of this series is possible to do termwise due to Corollary 3.3.10. Hence
the result of the integration does not depend on the path. And Theorem 3.3.9
provides differentiability of the termwise integral and the possibility of its termwise
differentiation. Such differentiation simply gives the original series, which represents
% in this circle.
Consider the function I(2) = [~ 1d¢. Then I'(z) = L. The derivative of
20 € z

the composition expl(z) is e’(pz—l(z). Hence the composition satisfies the differential

equation y'z = y. We search for a solution of this equation in the form y = zw.
Then y' = w + w'z and our equation turns into wz + w'2? = wz. Therefore w' = 0
and w is constant. To find this constant substitute z = z9 and get 1 = exp0 =
expl(zp) = wzp. Hence w = - and expl(z) = =.

To prove the general case consider a partition {z}7_, of [a,b]. Denote by
pr the restriction of p over [z, zr4+1]. Choose the partition so small that |p(z) —
p(zr)| < |p(zx)| for all z € [xg,zk+1]. Then any pj satisfies the requirement of

the above considered case. Hence exp fpk %d{ = p;}%:)l). Further exp fp % ¢ =

exp YTy [, ¢ =TIHC, et = p(b)/p(a). O

THEOREM 3.3.13 (Euler Formula). For any real ¢ one has

‘expigzﬁ :cos¢+isingz5‘

PROOF. In Lecture 2.5 we have evaluated fp L dz =i¢ for p(t) = cost +isint,

t € [0, ¢]. Hence Lemma 3.3.12 applied to p(t) immediately gives the Euler formula.
(]

Trigonometric functions in C. The Euler formula gives power series expan-
sions for sin x and cos z:

S i £U2k+1 0 i $2k)
sinx = 1) cosx = -1 .
ne kz:%( U TR v g( UeTY

These expansions are used to define trigonometric functions for complex vari-
able. On the other hand the Euler formula allows us to express trigonometric
functions via the exponenta:

exp(iz) — exp(—iz) o8 5 — exp(iz) + exp(—iz)

sinz = -
2i ’ 2

The other trigonometric functions tan, cot, sec, cosec are defined for complex vari-
ables by the usual formulas via sin and cos.
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. Evaluate .7, ¢

. Expand into a power series e” cosz.
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Problems.

Evaluate Y, Snk,

Prove the formula of Joh. Bernoulli fol et dr =Y,

Find In(-1).
Solve the equation exp z = ¢.
Evaluate ¢*.

Prove sinz = &=%—, cosz = ¢

27 2
Prove the identity sin® z + cos? z = 1.
Solve the equation sinz = 5/3.

Solve the equation cosz = 2.

Evaluate Y 77 C‘;:!’“.
dz
Evaluate f‘z‘ﬂ —-
=1 4

e Sinkzx

k

iz_ =iz iz 4 iz

(_1)k+1

kk



3.4. Abel’s Theorem

On the contents of the lecture. The expansion of the logarithm into power
series will be extended to the complex case. We learn the very important Abel’s
transformation of sum. This transformation is a discrete analogue of integrations by
parts. Abel’s theorem on the limit of power series will be applied to the evaluation
of trigonometric series related to the logarithm. The concept of Abel’s sum of a
divergent series will be introduced.

Principal branch of the Logarithm. Since exp(z +iy) = e*(cosy +isiny),
one gets the following formula for the logarithm: Logz = In|z| + i Argz, where
Argz = argz + 2wk. We see that the logarithm is a multi-valued function, that is
why one usually chooses a branch of the logarithm to work. For our purposes it is
sufficient to consider the principal branch of the logarithm:

Inz=In|z|+iargz, —w<argz<m.

The principal branch of the logarithm is a differentiable function of a complex vari-
able with derivative %, inverse to exp z. This branch is not continuous at negative
numbers. However its restriction on the upper half-plane is continuous and even
differentiable at negative numbers.

LEmMA 3.4.1. For any nonnegative z one has flz % d¢ =1Inz.

PrOOF. If Imz # 0, the segment [0, z] is contained in the circle |¢ — zo| <

2
|z0| for zp = % In this circle % expands into a power series, which one can

integrate termwise. Since for z* the result of integration depends only on the ends
of path of integration, the same is true for power series. Hence, we can change
the path of integration without changing the result. Consider the following path:
p(t) = cost + isint, t € [0,argz]. We know the integral fp % d¢ = iargz. This
path terminates at ﬁ Continue this path by the linear path to z. The integral

satisfies fzz/‘z‘ cd¢ = 1|Z| ﬁdtz/|z| = fllzl 1dt = In|z|. Therefore flz%d( =

s % ¢ + fzz/‘z‘ %d{ =jargz +In|z|. O

Logarithmic series. In particular for |1 — z| < 1 termwise integration of the
series % =Y 1o (1 =)k gives the complex Mercator series:

o0

Zk
(3.4.1) In(142) = ];(—1)’9“?

Substitute in this series —z for z and subtract the obtained series from (3.4.1) to
get the complex Gregory series:

1 1 o 2k+1
2 1—-=z 2k+1
k=0
In particular for z = iz, one has ‘ﬁ% =1 and arg ﬁ;; = 2arctgz. Therefore
one gets
o0 p2k+1
tgr =) (—1)* :
arcte ;( T

79
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the substitution of

Since arg(l + €%) = arctg 1ii?£¢ = arctgtan(¢/2) =

exp(i¢) for z in the Mercator series In(1 + e'?) = 312 (-
imaginary parts:

o n k¢ ¢
(3.4.2) k1S
2

¢
1)

k+1 e ® gives for the

27

However the last substitution is not correct, because |e’?| = 1 and (3.4.1) is proved
only for |z| < 1. To justify it we will prove a general theorem, due to Abel.

Summation by parts. Consider two sequences {ax}?_;, {br}r_;. The dif-
ference of their product dayby = ar+1br+1 — arbr can be presented as
5(akbk) = ak+16bk + brday.

Summation of these equalities gives

apb, —a1by = Z ap+10bg + Z brday.

A permutation of the latter equahty gives the so-called Abel’s transformation of

sums
n—1

Z bkAak = an n — a1b1 Z ak_HAbk

k=1

Abel’s theorem. One writes £ — a — 0 instead of x — a and x < a, and
z — a+ 0 means z >a and z — a.

THEOREM 3.4.2 (Abel).

o0
IfZak converges, then hm Zakx = Zak.
k=0

k=0

PROOF. Y 72 arz® converges absolutely for |z| < 1, because of the bounded-
ness of {ag}.

Suppose € > 0. Set A(n,m) = > - ag, A(n,m)(z) =3 ;- araz*. Choose N
so large that
(3.4.3) |A(0, ) — A(0,00)| < g
Applying the Abel transformation for any m > n one gets

Vn > N.

A(n,m) — A(n,m)(x) = Z ap(1 —z*)
k=n
m k—1
= (1—x)Z5A(n—1,k—1)ij
k=n Jj=0
= (l—x)[A(n—l,m)ij —A(n — 1,n)ij - ZA(n— 1,k)xk].
j=0 j=0 k=n

By (3.4.3) for n > N, one gets |A(n — 1,m)| = |(A(0, ) —A)+ (A-A(0,n))| <
€/9+¢/9 = 2¢/9. Hence, we can estimate from above by / the absolute value of
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the expression in the brackets of the previous equation for A(n,m) — A(n,m)(z).
As a result we get

2
(3.4.4) |A(n,m) — A(n,m)(z)| < ?6’ Ym >n > N,Vz.

Since lirln o A(0,N)(z) = A(0, N) one chooses § so small that for z > 1 —¢ the
z—1—

following inequality holds:

|A(0, N) — A(0, N)(z)| < g

Summing up this inequality with (3.4.4) for n = N + 1 one gets:
|A(0,m) — A(0,m)(z)| <e, Vm>N,|1-z|<d.
Passing to limits as m tends to infinity the latter inequality gives
|A(0,00) — A(0,0)(x)| <e, for|l—z| <.
(|

Leibniz series. As the first application of the Abel Theorem we evaluate the

Leibniz series Y-, (27cl+)f . This series converges by the Leibniz Theorem 2.4.3. By

the Abel Theorem its sum is

. o= (—1)Fgh . B o
ZErln_oz: 1 —Zgrln_oarctg:n—arctgl—él.

We get the following remarkable equality:
T _ 1,1 _ 1,1
Z_l_§+5_7+§_""

Abel sum of a series. One defines the Abel sum of a series > -, ar as

the limit lirln 02’310 arz®. The series which have an Abel sum are called Abel
z—1—

summable. The Abel Theorem shows that all convergent series have Abel sums

coinciding with their usual sums. However there are a lot of series, which have an
Abel sum, but do not converge.

Abel’s inequality. Consider a series Y, | axby, where the partial sums A,, =
S %~ ay, are bounded by some constant A and the sequence {by} is monotone. Then
Sl arby = SR bkb AR = Apby — Arby + Y721 Apy10bg. Since SR [0by| =
|bn, — b1], one gets the following inequality:

n—1

Z akbk

k=1

< 3A max{|bg|}.

Convergence test.

THEOREM 3.4.3. Let the sequence of partial sums Zz;ll ar, be bounded, and let
{br.} be non-increasing and infinitesimally small. Then Z;’;l arbr, converges to its
Abel sum, if the latter exists.

ProoF. The difference between a partial sum Zz;ll arbr, and the Abel sum is

equal to

z—1—

n—1 00
li 1—a" li k.
lmogakbk( T )+w_1)IIII_OkZakbk$
= =n
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The first limit is zero, the second limit can be estimated by Abel’s inequality from
above by 34b,. It tends to 0 as n tends to infinity. O

Application. Now we are ready to prove the equality (3.4.2). The series
Sope i (—1)FFLEEEE has an Abel sum. Indeed,

‘ 00 . qk sin kx ) 00 - (qeix)k
i, S g, S 0
k=1 k=1
=Im lim ln(l + qe'®)
g—1—

=ImIn(1 + €™).

-1 1 . .
The sums > ;~, sinkz = Im ) ;" €'** = Im L=<~ are bounded. And f is de-

creasing and infinitesimally small. Hence we can apply Theorem 3.4.3.

Problems.
Evaluate1+——%—%+%+%—%—%+....
Evaluate ), S22k

S, ke = 1n|25in 21, (0 < |¢] < ).
e 1S‘“k¢ 2 (0 < ¢<2m).

(2k+1
Zk . C052k+1 )¢ — %]n|2c0t g|, (0 < |¢] <)

in(2k+1 s
Sy BekEDS — 1 (0 < ¢ < 7)
Yoo (= )’“+1C°sk =In (2c0s ) (—mr< <)
Find the Abel sumof 1 —1+1—-1+....
Find the Abel sumof 1 —14+0+1—-14+0+....
Prove: A periodic series, such that the sum of the period is zero, has an Abel
sum.

PRX® N A wbH=

[y

2
. Telescope Y-, ];—k

. Evaluate Y770 k cos k.

. Estimate from above )2 Sk

*14. Prove: If 372 o ar, > poobr and their convolution ) ;- ¢, converge, then

ZI?;O Ck = ZI?;O ak ZZO:O b,

e
—

—
W N




3.5. Residue Theory

On the contents of the lecture. At last, the reader learns something, which
Euler did not know, and which he would highly appreciate. Residue theory allows
one to evaluate a lot of integrals which were not accessible by the Newton-Leibniz
formula.

Monotone curve. A monotone curve I' is defined as a subset of the complex
plane which is the image of a monotone path. Nonempty intersections of vertical
and horizontal lines with a monotone curve are either points or closed intervals.

The points of the monotone curve which have an extremal sum of real and
imaginary parts are called its endpoints, the other points of the curve are called its
interior points.

A continuous injective monotone path p whose image coincides with I is called
a parametrization of T,

LEMMA 3.5.1. Let py: [a,b] = C and p2: [c,d] — C be two parametrizations of
the same monotone curve I'. Then p; *ps: [c,d] — [a,b] is a continuous monotone
bijection.

Proor. Set P;(t) = Rep;(t) + Imp;(t). Then P, and P, are continuous and
strictly monotone. And p;(t) = pa(7) if and only if P;(t) = P»(7). Hence p; 'ps =
P 'P,. Since P;' and P, are monotone continuous, the composition P, ' P, is
monotone continuous. o

Orientation. One says that two parametrizations p; and p, of a monotone
curve I' have the same orientation, if pflpg is increasing, and one says that they
have opposite orientations, if pflpg is decreasing.

Orientation divides all parametrizations of a curve into two classes. All elements
of one orientation class have the same orientation and all elements of the other class
have the opposite orientation.

An oriented curve is a curve with fixed circulation direction. A choice of orien-
tation means distinguishing one of the orientation classes as positive, corresponding
to the oriented curve. For a monotone curve, to specify its orientation, it is suffi-
cient to indicate which of its endpoints is its beginning and which is the end. Then
all positively oriented parametrizations start with its beginning and finish at its
end, and negatively oriented parametrizations do the opposite.

If an oriented curve is denoted by I', then its body, the curve without orientation,
is denoted |I'| and the curve with the same body but with opposite orientation is
denoted —T.

If I is a monotone curve which is contained in an oriented curve I', then one
defines the induced orientation on I by I' as the orientation of a parametrization
of I'" which extends to a positive parametrization of I.

Line integral. One defines the integral [;. f(z) dg(z) along a oriented mono-
tone curve I' as the integral fp f(2) dg(z), where p is a positively oriented parametr-
ization of I'. This definition does not depend on the choice of p, because different
parametrizations are obtained from each other by an increasing change of variable
(Lemma 3.5.1).

One defines a partition of a curve I' by a point x as a pair of monotone curves
'y, s, such that ' = ' Ul and 'y NIy = . And we write in this case I' = 'y +1Ts.
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84 3.5 RESIDUE THEORY
The Partition Rule for the line integral is
(3.5.1) / f(z)dg(z) = | [f(z)dg(z) + [ f(z)dg(2),
| A P I L2

where the orientations on I'; are induced by an orientation of I'. To prove the
Partition Rule consider a positive parametrization p: [a,b] — I'. Then the restric-
tions of p over [a,p~!(x)] and [p~!(x),b] give positive parametrizations of I'; and

['y. Hence the equality (3.5.1) follows from ffﬁl(x) f(2) dg(z)+f:,1(z) f(z)dg(z) =
JJ 1(2) dg(2).

A sequence of oriented monotone curves {I'x}}_,; with disjoint interiors is called
a chain of monotone curves and denoted by >, ; I'y. The body of a chain C' =
> h_y Tk is defined as |J;_, |Tx| and denoted by |C|. The interior of the chain is
defined as the union of interiors of its elements.

The integral of a form fdg along the chain is defined as fZZﬂFk fdg
k=1 Jr, fdg.

One says that two chains ), ; I’y and > ", I'} have the same orientation, if
the orientations induced by I'y and 1";- onTyN 1";- coincide in the case when I'y N 1";-
has a nonempty interior. Two chains with the same body and orientation are called
equivalent.

LEMMA 3.5.2. If two chains C = Y ;_ Ty and C" = Y°}" | T}, are equivalent
then the integrals along these chains coincide for any form fdg.

Proor. For any interior point x of the chain C, one defines the subdivision
of C by z as F]~+ + I + > iy Tkl # j], where T'; is the curve containing x and
F]-+ + I'; is the partition of I' by z. The subdivision does not change the integral
along the chain due to the Partition Rule.

Hence we can subdivide C step by step by endpoints of C’ to construct a chain
() whose endpoints include all endpoints of P’. And the integral along @ is the
same as along P. Another possibility to construct @ is to subdivide C’ by endpoints
of C'. This construction shows that the integral along @) coincides with the integral
along C'. Hence the integrals along C' and C' coincide. O

Due to this lemma, one can introduce the integral of a differential form along
any oriented piecewise monotone curve I'. To do this one considers a monotone
partition of I' into a sequence {I'y}}_, of monotone curves with disjoint interiors
and equip all I'y with the induced orientation. One gets a chain and the integral
along this chain does not depend on the partition.

Contour integral. A domain D is defined as a connected bounded part of
the plane with piecewise monotone boundary. The boundary of D denoted 0D is
the union of finitely many monotone curves. And we suppose that 9D C D, that
is we consider a closed domain.

For a monotone curve I, which is contained in the boundary of a domain D, one
defines the induced orientation of I' by D as the orientation of a parametrization
which leaves D on the left during the movement along I' around D.

One introduces the integral ¢, ,, f(2)dg(z) as the integral along any chain whose
body coincides with D and whose orientations of curves are induced by D.

Due to Lemma 3.5.2 the choice of chain does not affect the integral.
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F1Gurke 3.5.1. Contour integral

LEMMA 3.5.3. Let D be a domain andl be either a vertical or a horizontal line,
which bisects D into two parts: D' and D" lying on the different sides of l. Then

$op f(2)dz = $,p, f(2)dz + $yp f(2)d2.

PROOF. The line [ intersects the boundary of D in a finite sequence of points
and intervals {J}7" ;.

Set D = 0D NAD'" and 0"D = 8D N ID". The intersection &'D N 9" D
consists of finitely many points. Indeed, the interior points of .J;, do not belong to
this intersection, because their small neighborhoods have points of D only from one
side of I. Hence

(2)dz + (2)dz = f(z)dz.
o'D 8" D oD

The boundary of D’ consists of 'D and some number of intervals. And the

boundary of D" consists of 3"’ D and the same intervals, but with opposite orien-

tation. Therefore
L:/ f(z)dz:—/ f(z)d=.
INoD’ InaD"
On the other hand

(2)dz = (2)dz + L and (z)dz = f(z)dz— L,
oD’ 8D ap" 8" D
hence
(z)dz + (2)dz = (2)dz + (2)dz = f(z)dz.
oD oD 8D 8" D aD
g

LeMMA 3.5.4 (Estimation). If |f(z)| < B for any z from a body of a chain
C =34_1 Tk, then | [, f(2) dz| < 4Bndiam|C].
ProoF. By Lemma 3.3.6 for any k£ one has ‘fl“k f(z) dz‘ < 4B|Ay — Bi| <

4B diam |C| where Ay and By are endpoints of I'y. The summation of these in-
equalities proves the lemma. d

THEOREM 3.5.5 (Cauchy). If a function f is complex differentiable in a domain
D then §,,, f(z)dz = 0.
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Proor. Fix a rectangle R with sides parallel to the coordinate axis which
contains D and denote by |R| its area and by P its perimeter.

The proof is by contradiction. Suppose |§3D f(z) dz| # 0. Denote by c the ratio
of |§5, f(2)dz| /|R|. We will construct a nested sequence of rectangles {R}2,
such that

e Ry = R, Ryy1 C Ry;
o Ry is similar to R;
. |f8(kaD) f(z)dz| > c|Rg|, where |Ry| is the area of Ry.

The induction step: Suppose Ry, is already constructed. Divide Ry in two equal
rectanges R and R} by drawing either a vertical, if k is even, or a horizontal, if k
is odd, interval joining the middles of the opposite sides of Ry. Set Dy = D N Ry,
D' = DNR}, D" = DNR]. We state that at least one of the following inequalities

holds:
(3.5.2) ng” f(z)dz

(2)dz

> | Ry,

> c|Rj|.
oD’

Indeed, in the opposite case one gets

(z)dz + (2)dz
oD! oD
Since §,,, f(2)dz + $,,, f(2)dz = §,,, f(z)dz by Lemma 3.5.3 we get a contra-
diction with the hypothesis |prc f(2)dz| > c|Rg|. Hence, one of the inequalities
(3.5.2) holds. If the first inequality holds we set Ry1+1 = R}, else we set Ry11 = R}/,
After constructing the sequence { Ry}, consider a point zq belonging to (;—, Ry.
This point belongs to D, because all its neighborhoods contain points of D. Con-
sider the linearization f(z) = f(20)+f'(20)(2—20)+0(2)(2—20). Since ¢, , (f(20)+
f'(20)(z — #0))dz = 0 one gets

7€3Dk 0(2)(z — z0)dz

The boundary of Dy is contained in the union ORj U Ry N @D. Consider a
monotone partition 0D = 22:1 I';.. Since the intersection of Rj; with a monotone
curve is a monotone curve, one concludes that 0D N Ry is a union of at most n
monotone curves. As ORy consists of 4 monotone curves we get that 0Dy, is as a
body of a chain with at most 4 4+ n monotone curves.

Denote by Py the perimeter of Ri. And suppose that o(z) is bounded in Ry
by a constant of. Then |o(z)(z — zp)| < Proy for all z € Ry,.

Since diam 0D;, < % by the Estimation Lemma 3.5.4, we get the following
inequality:

< c|Ry,| + c|Ry| = c|Rk|.

(3.5.3)

(z)dz
0Dy,

Z C|Rk|.

(3.5.4)

P ‘
7{ 0(2)(z — z0)dz| < 4(4 + n)Pkok?’c =2(4+n)opP?.
0Dy,

The ratio P?/|Rg| is constant for even k. Therefore the inequalities (3.5.3) and

(3.5.4) contradict each other for o < 2@_@3% = 2(43‘_5)‘132.
c|R|

lo(z)| < Farmpe holds for some neighborhood V' of zo as o(x) is infinitesimally
small at zy. This is a contradiction, because V' contains some Ray,. [l

However the inequality
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Residues. By f; f(2)dz we denote the integral along the boundary of the
disk {|z — zo| < r}.

LEMMA 3.5.6. Suppose a function f(z) is complex differentiable in the domain
D with the exception of a finite set of points {zy}}_,. Then

fdz =3¢ f)dz,

oD k=1 2k
where T is so small that all disks |z — zi| < T are contained in D and disjoint.

PRrROOF. Denote by D' the complement of the union of the disks in D. Then
OD' is the union of 8D and the boundary circles of the disks. By the Cauchy
Theorem 3.5.5, §,,, f(2)dz = 0. On the other hand this integral is equal to the
sum ¢, f(2)dz and the sum of integrals along boundaries of the circles. The
orientation induced by D’ onto the boundaries of these circles is opposite to the
orientation induced from the circles. Hence

0= - f(z)dz = ﬁDf(z)dz—,;%Zk f(z)dz.
d

A singular point of a complex function is defined as a point where either the
function or its derivative are not defined. A singular point is called isolated, if it
has a neighborhood, where it is the only singular point. A point is called a regular
point if it not a singular point.

One defines the residue of f at a point 2y and denotes it as res,, f as the
limit lim,_,¢ QLM f; f(2)dz. The above lemma shows that this limit exists for any
isolated singular point and moreover, that all integrals along sufficiently small cir-
cumferences in this case are the same.

Since in all regular points the residues are 0 the conclusion of Lemma 3.5.6 for
a function with finitely many singular points can be presented in the form:

(3.5.5) f(z)dz =2mi ) res, f.

oD zeD

An isolated singular point zp is called a simple pole of a function f(z) if there
exists a nonzero limit lim,_,., f(z)(z — 2o).

LEMMA 3.5.7. If zg is a simple pole of f(z) then res,, f = lim,_,.,(z —20) f(2).

PROOF. Set L = lim,_,.,(z — 20) f(2). Then f(z) = L+ (ZOEZZ)O), where o(z) is
infinitesimally small at z¢. Hence

(3.5.6) %Z: % = %Z: f(z)dz — ?{Z . —Lzo dz.

Since the second integral from the right-hand side of (3.5.6) is equal to 2Lmi and
the other one is equal to 2mires;, f for sufficiently small r, we conclude that the
integral from the left-hand side also is constant for sufficiently small r. To prove that

L = res,, f we have to prove that this constant ¢ = lim,_,¢ Z'; ZOEZZ)O dz is 0. Indeed,

assume that |¢| > 0. Then there is a neighborhood U of zy such that |o(z)| < |3£2|
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for all z € U. Then one gets a contradiction by estimation of f: m (which is
0 Z2—%20
equal to |c| for sufficiently small r) from above by Ll for 7 less than the radius of

2

U. Indeed, the integrand is bounded by % and the path of integration (the circle)

can be divided into four monotone curves of diameter rv/2: quarters of the circle.

T oo(z)d le|] _ el
fzo OziZOZ S]'G\/ﬁé_% 0

REMARK 3.5.8. Denote by I'(r, $,z0) an arc of the circle |z — zo| = r, whose
angle measure is ¢. Under the hypothesis of Lemma 3.5.7 the same arguments prove
the following

Hence by the Estimation Lemma 3.5.4 one gets

lim f(z)dz =i¢ lim f(2)(z — z0).

r—0 L(¢,r,0z) z—2p

Problems.

1
Evaluate §; 1122 -

Evaluate §, -2
Evaluate fol Lz
Evaluate fol 4.

Evaluate fol sin L dz.
Evaluate fol ze* dz.
Evaluate 3%5/ ? 22 cotmz dz.

1
Evaluate fzz %

+r d¢
Evaluate [ ST3eosd"

. Evaluate [17 40
2w d
. Evaluate fO w.

. Evaluate fj;o 112‘4.
&

+oo d
. Evaluate fO m
2
. Evaluate fjooj 11;4

3
. Evaluate f:rooj Tos dz.

© ® NS mh N

[
-

e
W N

[y
20



3.6. Analytic Functions

On the contents of the lecture. This lecture introduces the reader into
the phantastically beautiful world of analytic functions. Integral Cauchy formula,
Taylor series, Fundamental Theorem of Algebra. The reader will see all of these
treasures in a single lecture.

THEOREM 3.6.1 (Integral Cauchy Formula). If function f is complex differen-
tiable in the domain D, then for any interior point z € D one has:

fo - L f 1O

_27TZ 8D C—Z

Proor. The function L& has its only singular point inside the circle. This

Z—Z0
is zp, which is a simple pole. The residue of % by Lemma 3.5.7 is equal to

lim,,,,(z — ZO)M = lim,,,, f(2) = f(20). And by the formula (3.5.5) the

Z—Z0

integral is equal to 27if(zo). O

LEMMA 3.6.2. Let Y, fi be a series of virtually monotone complex functions,
which is termwise magjorized by a convergent positive series Y p- | ¢k on a monotone
curve ' (that is |fr(2)] < ¢ for natural k and z € T') and such that F(z) =
>y fi(2) is virtually monotone. Then

(3.6.1) kz::l/rfk(z) dz:/rkz::lfk(z) dz.

ProOOF. By the Estimation Lemma 3.5.4 one has the following inequalities:

/F filz) dz /F gmz) dz

Set F,(z) = Zz;ll fr(z). By the left inequality of (3.6.2), the module of dif-
ference between [, F,,(2)dz = Zz;ll r fe(2) dz and the left-hand side of (3.6.1)
does not exceed 4diamI' Y ;2 ¢. Hence this module is infinitesimally small as
n tends to infinity. On the other hand, by the right inequality of (3.6.2) one gets
| Fu(2)dz — [ F(z)dz| < 4diamT Y72 ¢;. This implies that the difference be-
tween the left-hand and right-hand sides of (3.6.1) is infinitesimally small as n tends
to infinity. But this difference does not depend on n. Hence it is zero. d

(3.6.2) <4cpdiamT,

(oo}
<4diamT Z Cr.
k=n

LEMMA 3.6.3. If a real function f defined over an interval [a,b] is locally
bounded, then it is bounded.

PROOF. The proof is by contradiction. Suppose that f is unbounded. Divide
the interval [a,b] in half. Then the function has to be unbounded at least on one
of the halves. Consider this half and divide it in half. Choose the half where
the function is unbounded. So we construct a nested infinite sequence of intervals
converging to a point, which coincides with the intersection of all the intervals. And
f is obviously not locally bounded at this point. O

COROLLARY 3.6.4. A complex function f(z) continuous on the boundary of a
domain D is bounded on 0D.

89
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ProOF. Consider a path p: [a,b] = 0D. Then |f(p(t))| is continuous on [a, b],
hence it is locally bounded, hence it is bounded. Since 0D can be covered by images
of finitely many paths this implies boundedness of f over 9D. O

THEOREM 3.6.5. If a function f(2) is complex differentiable in the disk |z—zp| <
R, then for |z — z0| < R

o0 R
K f(©)
z) = zZ—2 ——=—d(,

where the series on the right-hand side absolutely converges for |z — zp| < R.

Proor. Fix a point z such that |z — 29| < R and consider ¢ as a variable. For
|¢ — 20| > |z — 20| one has

1 1 1 1 2 (z—2)F

3.6.3 = = = .
(36.3) (—z ((—2)—(2-20) (—21-F2 Z(

On the circle |¢ — z9| = R the series on the right-hand side is majorized by the

k
convergent series Y p- o ‘Zlg,ﬁl‘ for r > |z — zo|. The function f(¢) is bounded on

|¢ = z0| = R by Corollary 3.6.4. Therefore after multiplication of (3.6.3) by f(¢)
all the conditions of Lemma 3.6.2 are satisfied. Termwise integration gives:

I S-S R (oY
f@=p =22 7{ €~ )b

O

Analytic functions. A function f(z) of complex variable is called an analytic
function in a point zo if there is a positive € such that f(z) = Y, ar(z — 20)*
for all z from a disk |z — 29| < € and the series absolutely converges. Since one can
differentiate power series termwise (Theorem 3.3.9), any function which is analytic
at z is also complex differentiable at z. Theorem 3.6.5 gives a converse. Thus, we
get the following:

COROLLARY 3.6.6. A function f(z) is analytic at z if and only if it is complex
differentiable in some neighborhood of z.

THEOREM 3.6.7. If f is analytic at z then f' is analytic at z. If f and g are
analytic at z then f+ g, f —g, fg are analytic at z. If f is analytic at z and g is
analytic at f(z) then g(f(z)) is analytic at z.

ProOOF. Termwise differentiation of the power series representing f in a neigh-
borhood of z gives the power series for its derivative. Hence f' is analytic. The
differentiability of f £ g, fg and g(f(z)) follow from corresponding differentiation
rules. O

LeEmMA 3.6.8 (Isolated Zeroes). If f(z) is analytic and is not identically equal
to 0 in some neighborhood of zy, then f(z) # 0 for all z # 2o sufficiently close to
Z0.

ProoOF. Let f(z) = Y peyck(z — 20)* in a neighborhood U of zg. Let cp,
be the first nonzero coefficient. Then > p-  cx(z — 20)¥~™ converges in U to a
differentiable function g(z) by Theorem 3.3.9. Since g(20) = ¢ # 0 and g(z) is
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continuous at zp, the inequality g(z) # 0 holds for all z sufficiently close to zg. As
f(z) = g(2)(z — 20)™, the same is true for f(z). O

THEOREM 3.6.9 (Uniqueness Theorem). If two power series > p- , ar(z — 20)*
and EZ’;O bi(z — 20)* converge in a neighborhood of 2y and their sums coincide for
some infinite sequence {z}7>, such that z; # zo for all k and limy_, 2r = 20,
then ay, = by, for all k.

PROOF. Set ¢, = ay — by. Then f(z) = Y 7 ce(z — 20)* has a non-isolated
zero at zp. Hence f(z) = 0 in a neighborhood of z;. We get a contradiction
by considering the function g(z) = Y p-, cr(z — 20)¥~™, which is nonzero for all
z sufficiently close to zg (cf. the proof of the Isolated Zeroes Lemma 3.6.8), and
satisfies the equation f(z) = g(z)(z — z0)™. O

Taylor series. Set f(©) = f and by induction define the (k + 1)-th derivative
f5+D of f as the derivative of its k-th derivative f(*). For the first and the second
derivatives one prefers the notation f' and f”. For example, the k-th derivative of
2" is nf2" k. (Recall that n® =n(n—1)...(n —k+1).)

The following series is called the Taylor series of a function f at point zy:

£ (2,
Zf k(' )(z—zo)k.

k=0

The Taylor series is defined for any analytic function, because an analytic func-
tion has derivative of any order due to Theorem 3.6.7.

THEOREM 3.6.10. If a function f is analytic in the disk |z — zo| < r then
k
f(z) =372 W(z — 20)* for any z from the disk.

Proor. By Theorem 3.6.5, f(z) is presented in the disk by a convergent power
. [o'e) k
series .~ o ar(z — 29)". To prove our theorem we prove that

R (k) (4,
(3.6.4) ak:?{ #dg:f”“).

— Zo)kJrl k!

Indeed, ag = f(20) and termwise differentiatiion of Y p—, ax(z — zo)* applied n
times gives f("(z) = 3232 k"ax(z — 20)*. Putting z = 2o, one gets f(W(z) =
n"a, = a,n!. O

THEOREM 3.6.11 (Liouville). If a function f is analytic and bounded on the
whole complex plane, then f is constant.

PRroOF. If f is analytic on the whole plane then f(z) = Y .-, arz®, where ay
is defined by (3.6.4). If | f(2)| < B by the Estimation Lemma 3.5.4 one gets

(9

B R _C
ST e <4-4

(3.6.5) |ax| = SAdprn s =g

Consequently ay for £ > 0 is infinitesimally small as R tends to infinity. But ay
does not depend on R, hence it is 0. Therefore f(z) = ap. O

THEOREM 3.6.12 (Fundamental Theorem of Algebra). Any nonconstant poly-
nomial P(z) has a complex root.
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PROOF. If P(z) has no roots the function f(z) = #Z) is analytic on the whole
plane. Since lim,_, f(z) = 0 the inequality |f(z)| < 1 holds for |z| = R if R is
sufficiently large. Therefore the estimation (3.6.5) for the k-th coefficient of f holds
with B = 1 for sufficiently large R. Hence the same arguments as in proof of the
Liouville Theorem 3.6.11 show that f(z) is constant. This is a contradiction. O

FI1GURE 3.6.1. Analytic continuation

Analytic continuation.

LeEMMA 3.6.13. If an analytic function f(z) has finitely many singular points
in a domain D and a non isolated zero at a point zg € D then f(z) = 0 for all
reqular z € D.

PrOOF. For any nonsingular point z € D, we construct a sequence of suffi-
ciently small disks Dg, Dy, Da, ..., D, without singular points with the following
properties: 1) zo € Do C U; 2) z € Dy; 3) 2, the center of Dy, belongs to Dy_1
for all £ > 0. Then by induction we prove that f(Dy) = 0. First step: if zg is a
non-isolated zero of f, then the Taylor series of f vanishes at zy by the Uniqueness
Theorem 3.6.9. But this series represents f(z) on Dy due to Theorem 3.6.10, since
Dy does not contain singular points. Hence, f(Dy) = 0. Suppose we have proved
already that f(Dy) = 0. Then 2y, is a non-isolated zero of f by the third property
of the sequence {Dy}_,. Consequently, the same arguments as above for £k = 0
prove that f(Dg+1) = 0. And finally we get f(z) = 0. O

Consider any formula which you know from school about trigonometric func-
tions. For example, tan(z + y) = %ﬂy The above lemma implies that
this formula remains true for complex z and y. Indeed, consider the function
T(z,y) = tan(z +y) — % For a fixed z the function T'(z,y) is analytic
and has finitely many singular points in any disk. This function has non-isolated
zeroes in all real points, hence this function is zero in any disk intersecting the real
line. This implies that T'(x,y) is zero for all y. The same arguments applied to
T (z,y) with fixed y and variable x prove that T'(x,y) is zero for all complex x,y.

The same arguments prove the following theorem.
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THEOREM 3.6.14. If some analytic relation between analytic functions holds on
a curve I', it holds for any z € C, which can be connected with I" by a paths avoiding
singular points of the functions.

LEMMA 3.6.15. sint > 2 for t € [0,7/2].

PROOF. Let f(t) =sint — 2L, Then f'(x) = cost — 2. Set y = arccos 2. Then
f'(z) > 0 for z € [0,y]. Therefore f is nondecreasing on [0,y], and nonnegative,
because f(0) = 0. On the interval [y,n/2] the derivative of f is negative. Hence
f(x) is non-increasing and nonnegative, because its value on the end of the interval
is 0. O

LeEmMMA 3.6.16 (Jordan). Let f(z) be an analytic function in the upper half-
plane such that li)m f(z) = 0. Denote by T'r the upper half of the circle |z| = R.
z (oo}

Then for any natural m

(3.6.6) lim /F f(z)exp(miz)dz = 0.

R—o0

PRrOOF. Consider the parametrization z(t) = Rcost+ Risint, ¢t € [0, 7] of T'g.
Then the integral (3.6.6) turns into

(3.6.7) / f(z)exp(iRmcost — Rmsint) d(R cost + Risint)
0

= / Rf(z)exp(iRmcost) exp(—Rmsint)(—sint + icost) dt.
0

If |f(z)| < B on I'g, then |f(z)exp(iRmcost)(—sint + icost)] < B on I'r. And
the module of the integral (3.6.7) can be estimated from above by

BR / exp(—Rmsint) dt.
0

Since sin(m — t) = sint, the latter integral is equal to 2BR foﬂ/z exp(—Rmsint) dt.
Since sint > %, the latter integral does not exceed

w/2 1
QBR/ exp(—2Rmt/w) dt = 2BR
0

—exp(—Rm) < B

2Rm - m
Since B can be chosen arbitrarily small for sufficiently large R, this proves the
lemma. d

Evaluation of fj;o Si%vda: = limy oo fiVN Sigx dz. Since sinz = Im e our
integral is equal to Im fj;o 5172 dz. Set I'(r) = {# | |#| = r,Imz > 0}. This is a
semicircle. Let us orient it counter-clockwise, so that its initial point is r.

Consider the domain D(R) bounded by the semicircles —I'(r), I'(R) and the

intervals [~ R, —r], [r, R], where r = & and R > 1. The function % has no singular

R) =z

—-R iz R _iz iz iz
(3.6.8) / e—dz+/ SR :/ e_dz_/ e 5
- Z ro 2 r(r) # r(R) ?

The second integral on the right-hand side tends to 0 as R tends to infinity due to
Jordan’s Lemma 3.6.16. The function has a simple pole at 0, hence the first

points inside D(R). Hence faD( dz = 0. Hence for any R

eiz

z
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FIGURE 3.6.2. The domain D(R)

integral on the right-hand side of (3.6.8) tends to mires % = 7i due to Remark
3.5.8. As a result, the right-hand side of (3.6.8) tends to 7i as R tends to infinity.
Consequently the left-hand side of (3.6.8) also tends to mi as R — co. The imagi-

nary part of left-hand side of (3.6.8) is equal to ffR Sng gy — [T SNE gy The last
integral tends to 0 as » — 0, because |s‘%| < 1. Hence ffiR S‘% dz tends to 7 as
R — co. Finally fj;o SR gy = .

Problems.

1. Prove that an even analytic function f, i.e., a function such that f(z) = f(—=z),
has a Taylor series at 0 consisting only of even powers.

2. Prove that analytic function which has a Taylor series only with even powers
is an even function.

3. Prove: If an analytic function f(z) takes real values on [0, 1], then f(z) is real

for any real z.

Evaluate [©°° —L du.

—oo l+az?

+m do
Evaluate [ 5¥3cosd”

Evaluate [;° ﬁ dz (a > 0).
Evaluate [*°7 2sie o g

Evaluate [;° e dz (a,b > 0).

i I



