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2.1. Natural LogarithmOn the 
ontents of the le
ture.In the beginning of Cal
ulus was the Word, and the Word waswith Arithmeti
, and the Word was Logarithm1Logarithmi
 tables. Multipli
ation is mu
h more diÆ
ult than addition. Alogarithm redu
es multipli
ation to addition. The invention of logarithms was oneof the great a
hievements of our 
ivilization.In early times, when logarithms were unknown instead of them one used trigono-metri
 fun
tions. The following identity2 
osx 
os y = 
os(x+ y) + 
os(x� y)
an be applied to 
al
ulate produ
ts via tables of 
osines. To multiply numbers xand y, one represents them as 
osines x = 
osa, y = 
os b using the 
osine table.Then evaluate (a + b) and (a � b) and �nd their 
osines in the table. Finally, theresults are summed and divided by 2. That is all. A single multipli
ation requiresfour sear
hes in the table of 
osines, two additions, one subtra
tion and one divisionby 2.A logarithmi
 fun
tion l(x) is a fun
tion su
h that l(xy) = l(x) + l(y) for anyx and y. If one has a logarithmi
 table, to evaluate the produ
t xy one has to �ndin the logarithmi
 table l(x) and l(y) then sum them and �nd the antilogarithm ofthe sum. This is mu
h easier.The idea of logarithms arose in 1544, when M. Stiefel 
ompared geometri
 andarithmeti
 progressions. The addition of exponents 
orresponds to the multipli
a-tion of powers. Hen
e 
onsider a number 
lose to 1, say, 1:000001. Cal
ulate thesequen
e of its powers and pla
e them in the left 
olumn. Pla
e in the right 
ol-umn the 
orresponding values of exponents, whi
h are just the line numbers. Thelogarithmi
 table is ready.Now to multiply two numbers x and y, �nd them (or their approximations) inthe left 
olumn of the logarithmi
 table, and read their logarithms from the right
olumn. Sum the logarithms and �nd the value of the sum in the right 
olumn.Next to this sum in the left 
olumn the produ
t xy stands. The �rst tables of su
hlogarithms were 
omposed by John Napier in 1614.Area of a 
urvilinear trapezium. Re
all that a sequen
e is said to be mono-tone, if it is either in
reasing or de
reasing. The minimal interval whi
h 
ontainsall elements of a given sequen
e of points will be 
alled supporting interval of thesequen
e. And a sequen
e is 
alled exhausting for an interval I if I is the supportinginterval of the sequen
e.Let f be a non-negative fun
tion de�ned on [a; b℄. The set f(x; y) j x 2[a; b℄ and 0 � y � f(x)g is 
alled a 
urvilinear trapezium under the graph of fover the interval [a; b℄.To estimate the area of a 
urvilinear trapezium under the graph of f over [a; b℄,
hoose an exhausting sequen
e fxigni=0 for [a; b℄ and 
onsider the following sums:(2.1.1) n�1Xk=0 f(xk)jÆxkj; n�1Xk=0 f(xk+1)jÆxkj (where Æxk = xk+1 � xk):1�o
o& is Greek for \word", �%���o& means \number".34



2.1 natural logarithm 35

a bFigure 2.1.1. A 
urvilinear trapeziumWe will 
all the �rst of them the re
eding sum, and the se
ond the advan
ing sum, ofthe sequen
e fxkg for the fun
tion f . If the fun
tion f is monotone the area of the
urvilinear trapezium is 
ontained between these two sums. To see this, 
onsider thefollowing step-�gures: Sn�1k=0 [xk; xk+1℄�[0; f(xk)℄ and Sn�1k=0 [xk; xk+1℄�[0; f(xk+1)℄.If f and fxkg both in
rease or both de
rease the �rst step-�gure is 
ontained inthe 
urvilinear trapezium and the se
ond step-�gure 
ontains the trapezium withpossible ex
eption of a verti
al segment [a � [0; f(a)℄ or [b � [0; f(b)℄. If one of fand fxkg in
reases and the other de
reases, then the step-�gures swit
h the roles.The rededing sum equals the area of the �rst step-�gure, and the advan
ing sumequals the area of the se
ond one. Thus we have proved the following lemma.Lemma 2.1.1. Let f be a monotone fun
tion and let S be the area of the
urvilinear trapezium under the graph of f over [a; b℄. Then for any sequen
efxkgnk=0 exhausting [a; b℄ the area S is 
ontained between Pn�1k=0 f(xk)jÆxk j andPn�1k=0 f(xk+1)jÆxkj.Fermat's quadratures of parabolas. In 1636 Pierre Fermat proposed aningenious tri
k to determine the area below the 
urve y = xa.

Figure 2.1.2. Fermat's quadratures of parabolas



36 2.1 natural logarithmIf a > �1 then 
onsider any interval of the form [0; B℄. Choose a positiveq < 1. Then the in�nite geometri
 progression B;Bq;Bq2; Bq3; : : : exhausts [0; B℄and the values of the fun
tion for this sequen
e also form a geometri
 progressionBa; qaBa; q2aBa; q3aBa; : : : . Then both the re
eding and advan
ing sums turn intogeometri
 progressions:1Xk=0Baqka(qkB � qk+1B) = Ba+1(1� q) 1Xk=0 qk(a+1)= Ba+1(1� q)1� qa+1 ;1Xk=0Baq(k+1)a(qkB � qk+1B) = Ba+1(1� q) 1Xk=0 q(k+1)(a+1)= Ba+1(1� q)qa1� qa+1 :For a natural a, one has 1�q1�qa+1 = 11+q+q2+���+qa . As q tends to 1 both sums
onverge to Ba+1a+1 . This is the area of the 
urvilinear trapezium. Let us remark thatfor a < 0 this trapezium is unbounded, nevertheless it has �nite area if a > �1.If a < �1, then 
onsider an interval in the form [B;1℄. Choose a positiveq > 1. Then the in�nite geometri
 progression B;Bq;Bq2; Bq3; : : : exhausts [B;1℄and the values of the fun
tion for this sequen
e also form a geometri
 progressionBa; qaBa; q2aBa; q3aBa; : : : . The re
eding and advan
ing sums are1Xk=0Baqka(qk+1B � qkB) = Ba+1(q � 1) 1Xk=0 qk(a+1)= Ba+1(q � 1)1� qa+1 ;1Xk=0Baq(k+1)a(qk+1B � qkB) = Ba+1(1� q) 1Xk=0 q(k+1)(a+1)= Ba+1(q � 1)qa1� qa+1 :If a is an integer set p = q�1. Then q�11�qa+1 = q 1�p1�pjaj�1 = q 11+p+p2+���+pn�2 .As q tends to 1 both sums 
onverge to Ba+1jaj�1 . This is the area of the 
urvilineartrapezium.For a > �1 the area of the 
urvilinear trapezium under the graph of xa over[A;B℄ is equal to the di�eren
e between the areas of trapezia over [0; B℄ and [0; A℄.Hen
e this area is Ba+1�Aa+1a+1 .For a < �1 one 
an evaluate the area of the 
urvilinear trapezium under thegraph of xa over [A;B℄ as the di�eren
e between the areas of trapezia over [A;1℄and [B;1℄. The result is expressed by the same formula Ba+1�Aa+1a+1 .Theorem 2.1.2 (Fermat). The area below the 
urve y = xa over the interval[A;B℄ is equal to Ba+1�Aa+1a+1 for a 6= 1.We have proved this theorem for integer a, but Fermat proved it for all reala 6= �1.



2.1 natural logarithm 37The Natural Logarithm. In the 
ase a = �1 the geometri
 progression forareas of step-�gures turns into an arithmeti
 progression. This means that the areabelow a hyperbola is a logarithm! This dis
overy was made by Gregory in 1647.
1 xFigure 2.1.3. The hyperboli
 trapezium over [1; x℄The �gure bounded from above by the graph of hyperbola y = 1=x, from belowby segment [a; b℄ of the axis of abs
issas, and on ea
h side by verti
al lines passingthrough the end points of the interval, is 
alled a hyperboli
 trapezium over [a; b℄.The area of hyperboli
 trapezium over [1; x℄ with x > 1 is 
alled the naturallogarithm of x, and it is denoted by lnx. For a positive number x < 1 its logarithmis de�ned as the negative number whose absolute value 
oin
ides with the area ofhyperboli
 trapezium over [x; 1℄. At last, ln 1 is de�ned as 0.Theorem 2.1.3 (on logarithm). The natural logarithm is an in
reasing fun
tionde�ned for all positive numbers. For ea
h pair of positive numbers x, ylnxy = lnx+ ln y:Proof. Consider the 
ase x; y > 1. The di�eren
e lnxy � ln y is the area ofthe hyperboli
 trapezium over [y; xy℄. And we have to prove that it is equal tolnx, the area of trapezium over [1; x℄. Choose a large number n. Let q = x1=n.Then qn = x. The �nite geometri
 progression fqkgnk=0 exhausts [1; x℄. Then there
eding and advan
ing sums aren�1Xk=0 q�k(qk+1 � qk) = n(q � 1) n�1Xk=0 q�k�1(qk+1 � qk) = n(q � 1)q :(2.1.2)Now 
onsider the sequen
e fxqkgnk=0 exhausting [x; xy℄. Its re
eding sumn�1Xk=0 x�1q�k(xqk+1 � xqk) = n(q � 1)just 
oin
ides with the re
eding sum (2.1.2) for lnx. The same is true for theadvan
ing sum. As a result we obtain for any natural n the following inequalities:n(q � 1) � lnx � n(q � 1)q n(q � 1) � lnxy � ln y � n(q � 1)qThis implies that j lnxy� lnx� ln yj does not ex
eed the di�eren
e between the there
eding and advan
ing sums. The statement of Theorem 2.1.3 in the 
ase x; y > 1will be proved when we will prove that this di�eren
e 
an be made arbitrarily smallby a 
hoi
e of n. This will be dedu
ed from the following general lemma.



38 2.1 natural logarithmLemma 2.1.4. Let f be a monotone fun
tion over the interval [a; b℄ and letfxkgnk=0 be a sequen
e that exhausts [a; b℄. Then�����n�1Xk=0 f(xk)Æxk � n�1Xk=0 f(xk+1)Æxk����� � jf(b)� f(a)jmaxk<n jÆxk jProof of lemma. The proof of the lemma is a straightforward 
al
ulation.To shorten the notation, set Æf(xk) = f(xk+1)� f(xk).�����n�1Xk=0 f(xk)Æxk � n�1Xk=0 f(xk+1)Æxk����� = �����n�1Xk=0 Æf(xk)Æxk������ n�1Xk=0 jÆf(xk)jmax jÆxkj= max jÆxk j n�1Xk=0 jÆf(xk)j= max jÆxk j �����n�1Xk=0 Æf(xk)�����= max jÆxk jjf(b)� f(a)j:The equality ���Pn�1k=0 Æf(xk)��� =Pn�1k=0 jÆf(xk)j holds, as Æf(xk) have the same signsdue to the monotoni
ity of f . �The value max jÆxk j is 
alled maximal step of the sequen
e fxkg. For thesequen
e fqkg of [1; x℄ its maximal step is equal to qn � qn�1 = qn(1 � q�1) =x(1 � q)=q. It tends to 0 as q tends to 1. In our 
ase jf(b) � f(a)j = 1 � 1x < 1.By Lemma 2.1.4 the di�eren
e between the re
eding and advan
ing sums 
ould bemade arbitrarily small. This 
ompletes the proof in the 
ase x; y > 1.Consider the 
ase xy = 1, x > 1. We need to prove the following(inversion rule) ln 1=x = � lnx:As above, put qn = x > 1. The sequen
e fq�kgnk=0 exhausts [1=x; 1℄. The 
orre-sponding re
eding sumPn�1k=0 qk+1(q�k�q�k�1) =Pn�1k=0 (q�1) = n(q�1) 
oin
ideswith its 
ounterpart for lnx. The same is true for the advan
ing one. The samearguments as above prove j ln 1=xj = lnx. The sign of ln 1=x is de�ned as minusbe
ause 1=x < 1. This proves the inversion rule.Now 
onsider the 
ase x < 1, y < 1. Then 1=x > 1 and 1=y > 1 and by the�rst 
ase ln 1=xy = (ln 1=x+ln1=y). Repla
ing all terms of this equation a

ordingto the inversion rule, one gets � lnxy = � lnx� ln y and �nally lnxy = lnx+ ln y.The next 
ase is x > 1, y < 1, xy < 1. Sin
e both 1=x and xy are less then 1,then by the previous 
ase lnxy + ln 1=x = ln xyx = ln y. Repla
ing ln 1=x by � lnxone gets lnxy � lnx = ln y and �nally lnxy = lnx+ ln y.The last 
ase, x > 1, y < 1, xy > 1 is proved by lnxy + ln 1=y = lnx andrepla
ing ln 1=y by � ln y. �Base of a logarithm. Natural or hyperboli
 logarithms are not the only loga-rithmi
 fun
tions. Other popular logarithms are de
imal ones. In 
omputer s
ien
eone prefers binary logarithms. Di�erent logarithmi
 fun
tions are distinguished by



2.1 natural logarithm 39their bases. The base of a logarithmi
 fun
tion l(x) is de�ned as the number bfor whi
h l(b) = 1. Logarithms with the base b are denoted by logb x. What isthe base of the natural logarithm? This is the se
ond most important 
onstant inmathemati
s (after �). It is an irrational number denoted by e whi
h is equal to2:71828182845905 : : : . It was Euler who introdu
ed this number and this notation.Well, e is the number su
h that the area of hyperboli
 trapezium over [1; e℄is 1. Consider the geometri
 progression qn for q = 1 + 1n . All summands in the
orresponding hyperboli
 re
eding sum for this progression are equal to qk+1�qkqk =q � 1 = 1n . Hen
e the re
eding sum for the interval [1; qn℄ is equal to 1 and it isgreater than ln qn. Consequently e > qn. The summands of the advan
ing sumin this 
ase are equal to qk+1�qkqk+1 = 1 � 1q = 1n+1 . Hen
e the advan
ing sum forthe interval [1; qn+1℄ is equal to 1. It is less than the 
orresponding logarithm.Consequently, e < qn+1. Thus we have proved the following estimates for e:�1 + 1n�n < e < �1 + 1n�n+1We see that �1 + 1n�n rapidly tends to e as n tends to in�nity.Problems.1. Prove that lnx=y = lnx� ln y.2. Prove that ln 2 < 1.3. Prove that ln 3 > 1.4. Prove that x > y implies lnx > ln y.5. Is lnx bounded?6. Prove that 1n+1 < ln(1 + 1=n) < 1n .7. Prove that x1+x < ln(1 + x) < x.8. Prove the Theorem 2.1.2 (Fermat) for a = 1=2; 1=3; 2=3.9. Prove the unboundedness of nlnn .10. Compare �1 + 1n�n and (1 + 1n+1 )n+1.11. Prove the monotoni
ity of nlnn .12. Prove that Pn�1k=2 1k < lnn <Pn�1k=1 1k .13. Prove that ln(1 + x) > x� x22 .14. Estimate integral part of ln 1000000.15. Prove that ln x+y2 � lnx+ln y2 .16. Prove the 
onvergen
e of P1k=1( 1k � ln(1 + 1k )).17. Prove that (n+ 12 )�1 � ln(1 + 1n ) < 12 ( 1n + 1n+1 ).�18. Prove that 11�2 + 13�4 + 15�6 + � � � = ln 2.



2.2. De�nite IntegralOn the 
ontents of the le
ture. Areas of 
urvilinear trapezia play an extra-ordinary important role in mathemati
s. They generate a key 
on
ept of Cal
ulus| the 
on
ept of the integral.Three basi
 rules. For a nonnegative fun
tion f its integral R ba f(x) dx alongthe interval [a; b℄ is de�ned just as the area of the 
urvilinear trapezium below thegraph of f over [a; b℄. We allow a fun
tion to take in�nite values. Let us remarkthat 
hanging of the value of fun
tion in one point does not a�e
t the integral,be
ause the area of the line is zero. That is why we allow the fun
tions under
onsideration to be unde�ned in a �nite number of points of the interval.Immediately from the de�nition one gets the following three basi
 rules ofintegration:Rule of 
onstant R ba f(x) dx = 
(b� a); if f(x) = 
 for x 2 (a; b),Rule of inequality R ba f(x) dx � R ba g(x) dx; if f(x) � g(x) for x 2 (a; b),Rule of partition R 
a f(x) dx = R ba f(x) dx+ R 
b f(x) dx for b 2 (a; 
).Partition. Let jJ j denote the length of an interval J . Let us say that a se-quen
e fJkgnk=1 of disjoint open subintervals of an interval I is a partition of I ,if Pnk=1 jIkj = jI j. The boundary of a partition P = fJkgnk=1 is de�ned as thedi�eren
e I nSnk=1 Jk and is denoted �P .For any �nite subset S of an interval I , whi
h 
ontains the ends of I , thereis a unique partition of I whi
h has this set as the boundary. Su
h a partition is
alled generated by S. For a monotone sequen
e fxkgnk=0 the generated partitionis f(xk�1; xk)gnk=1.Pie
ewise 
onstant fun
tions. A fun
tion f(x) is 
alled partially 
onstanton a partition fJkgnk=1 of [a; b℄ if it is 
onstant on ea
h Jk. The Rules of Constantand Partition immediately imply:(2.2.1) Z ba f(x) dx = nXk=1 f(Jk)jJk j:Proof. Indeed, the integral splits into a sum of integrals over Jk = [xk�1; xk ℄,and the fun
tion takes the value f(Jk) in (xk�1; xk). �A fun
tion is 
alled pie
ewise 
onstant over an interval if it is partially 
onstantwith respe
t to some �nite partition of the interval.Lemma 2.2.1. Let f and g be pie
ewise 
onstant fun
tions over [a; b℄. ThenR ba (f(x)� g(x)) dx = R ba f(x) dx� R ba g(x) dx.Proof. First, suppose f(x) = 
 is 
onstant on the interval (a; b). Let g take thevalue gk over the interval (xk ; xk+1) for an exhausting fxkgnk=0. Then f(x) + g(x)takes values (
+gk) over (xk; xk+1). Hen
e R ba (f(x)+g(x)) dx =Pn�1k=0 (
+gk)jÆxk jdue to (2.2.1). Splitting this sum and applying (2.2.1) to both summands, one getsPn�1k=0 
jÆxkj +Pn�1k=0 gkjÆxkj = R ba f(x) dx + R ba g(x) dx. This proves the 
ase of a
onstant f . 40



2.2 definite integral 41Now let f be partially 
onstant on the partition generated by fxkgnk=0. Then, bythe partition rule, R ba (f(x)+g(x)) dx =Pnk=1 R xkxk�1(f(x)+g(x)) dx. As f is 
onstanton any (xk�1; xk), for any k one gets R xkxk�1(f(x) + g(x)) dx = R xkxk�1 f(x) dx +R xkxk�1 g(x) dx. Summing up these equalities one 
ompletes the proof of Lemma2.2.1 for the sum.The statement about di�eren
es follows from the addition formula applied tog(x) and f(x)� g(x). �Lemma 2.2.2. For any monotone nonnegative fun
tion f on the interval [a; b℄and for any " > 0 there is su
h pie
ewise 
onstant fun
tion f" su
h that f" � f(x) �f"(x) + ".Proof. f"(x) =P1k=0 k"[k" � f(x) < (k + 1)"℄. �Theorem 2.2.3 (Addition Theorem). Let f and g be nonnegative monotonefun
tions de�ned on [a; b℄. ThenZ ba (f(x) + g(x)) dx = Z ba f(x) dx + Z ba g(x) dx:Proof. Let f" and g" be "-approximations of f and g respe
tively providedby Lemma 2.2.2. Set f"(x) = f"(x) + " and g"(x) = g"(x) + ". Then f"(x) �f(x) � f"(x) and g"(x) � g(x) � g"(x) for x 2 (a; b). Summing and integratingthese inequalities in di�erent order givesZ ba (f"(x) + g"(x)) dx � Z ba (f(x) + g(x)) dx � Z ba (f"(x) + g"(x)) dxZ ba f"(x) dx + Z ba g"(x) dx � Z ba f(x) dx + Z ba g(x) dx � Z ba f"(x) dx + Z ba g"(x) dx:Due to Lemma 2.2.1, the left-hand sides of these inequalities 
oin
ide, as well as theright-hand sides. Hen
e the di�eren
e between the 
entral parts does not ex
eedZ ba (f"(x) � f"(x)) dx + Z ba (g"(x) � g"(x)) dx � 2"(b� a):Hen
e, for any positive "�����Z ba (f(x) + g(x)) dx � Z ba f(x) dx� Z ba g(x) dx����� < 2"(b� a):This implies that the left-hand side vanishes. �Term by term integration of a fun
tional series.Lemma 2.2.4. Let ffng1n=1 be a sequen
e of nonnegative nonde
reasing fun
-tions and let p be a pie
ewise 
onstant fun
tion. If P1k=1 fk(x) � p(x) for allx 2 [a; b℄ then P1k=1 R ba fk(x) dx � R ba p(x) dx.Proof. Let p be a pie
ewise 
onstant fun
tion with respe
t to fxigni=0. Chooseany positive ". Sin
eP1k=1 fk(xi) � p(
), eventually one hasPmk=1 fk(xi) > p(xi)�". Fixm su
h that this inequality holds simultaneously for all fxigni=0. Let [xi; xi+1℄be an interval where p(x) is 
onstant. Then for any x 2 [xi; xi+1℄ one has theseinequalities: Pmk=1 fk(x) � Pmk=1 fk(xk) > p(xk) � " = p(x) � ". Consequently



42 2.2 definite integralfor all x 2 [a; b℄ one has the inequality Pmk=1 fk(x) > p(x) � ". Taking integralsgives R ba Pmk=1 fk(x) dx � R ba (p(x)� ") dx = R ba p(x) dx� "(b� a). By the AdditionTheorem R ba Pmk=1 fk(x) dx = Pmk=1 R ba fk(x) dx � P1k=1 R ba fk(x) dx. ThereforeP1k=1 R ba fk(x) dx � R ba p(x) dx � "(b � a) for any positive ". This implies theinequality P1k=1 R ba fk(x) dx � R ba p(x) dx. �Theorem 2.2.5. For any sequen
e ffng1n=1 of nonnegative nonde
reasing fun
-tions on an interval [a; b℄Z ba 1Xk=1 fk(x) dx = 1Xk=1 Z ba fk(x) dx:Proof. Sin
e Pnk=1 fk(x) �P1k=1 fk(x) for all x, by integrating one getsZ ba nXk=1 fk(x) dx � Z ba 1Xk=1 fk(x) dx:By the the Addition Theorem the left-hand side is equal toPnk=1 R ba fk(x) dx, whi
his a partial sum of P1k=1 R ba fk(x) dx. Then by All-for-One one gets the inequalityP1k=1 R ba fk(x) dx � R ba P1k=1 fk(x) dx.To prove the opposite inequality for any positive ", we apply Lemma 2.2.2to �nd a pie
ewise 
onstant fun
tion F", su
h that F"(x) � P1k=1 fk(x)dx andR ba P1k=1(fk(x)� F"(x)) dx < ". On the other hand, by Lemma 2.2.4 one gets1Xk=1 Z ba fk(x) dx � Z ba F"(x) dx:Together these inequalities implyP1k=1 R ba fk(x) dx+" � R ba P1k=1 fk(x) dx. As thelast inequality holds for all " > 0, it holds also for " = 0 �Theorem 2.2.6 (Mer
ator,1668). For any x 2 (�1; 1℄ one has(2.2.2) ln(1 + x) = 1Xk=1 (�1)k+1xkkProof. Consider x 2 [0; 1). Sin
e R x0 tk dt = tk+1k+1 due to the Fermat Theorem2.1.2, termwise integration of the geometri
 series P1k=0 tk over the interval [0; x℄for x < 1 gives R x0 11�t dt =P1k=0 R x0 tk dt =P1k=0 xk+1k+1 .Lemma 2.2.7. R x0 11�t dt = ln(1� x).Proof of Lemma. Constru
t a translation of the plane whi
h transforms the
urvilinear trapezium below 11�t over [0; x℄ into the trapezium for ln(1�x). Indeed,the re
e
tion of the plane ((x; y)! (2� x; y)) along the line x = 1 transforms thistrapezium to the 
urvilinear trapezium under 1x�1 over [2 � x; 2℄. The paralleltranslation by 1 to the left of the latter trapezium (x; y)! (x� 1; y) transforms itjust in to the ogarithmi
 trapezium for ln(1� x). �The Lemma proves the Mer
ator Theorem for negative x. To prove it forpositive x, set fk(x) = x2k�1 � x2k . All fun
tions fk are nonnegative on [0; 1℄ and



2.2 definite integral 43P1k=1 fk(x) = 11+x . Termwise integration of this equality over [0; x℄ gives (2.2.2),modulo the equality R x0 11+t dt = R x1 1t dt. The latter is proved by parallel translationof the plane. Let us remark, that in the 
ase x = 1 the seriesP1k=1 (�1)k+1xkk is notabsolutely 
onvergent, and under its sum we meanP1k=1 12k(2k�1) =P1k=1( 12k�1 �12k ). And the above proof proves just this fa
t. �The arithmeti
 mean of Mer
ator's series evaluated at x and �x givesGregory'sSeries(2.2.3) 12 ln 1 + x1� x = x+ x33 + x55 + x77 + : : : :Gregory's series 
onverges mu
h faster than Mer
ator's one. For example, puttingx = 13 in (2.2.3) one getsln 2 = 23 + 23 � 33 + 25 � 35 + 27 � 37 + : : : :Problems.1. Prove that ���R ba f(x) dx��� � R ba jf(x)j dx.2. Prove the following formulas via pie
ewise 
onstant approximations:Z ba �f(x) dx = � Z ba f(x) dx(multipli
ation formula) Z ba f(x) dx = Z b+
a+
 f(x� 
) dx(shift formula) Z a0 f(x) dx = Z 0�a f(�x) dx(re
e
tion formula) Z a0 f(x) dx = 1k Z ka0 f �xk� dx(
ompression formula)3. Evaluate R 2�0 (sinx+ 1) dx.4. Prove the inequality R 2�2(2 + x32x) dx > 8.5. Prove R 2�0 x(sin x+ 1) dx < 2�.6. Prove R 200�100� x+sin(x)x dx � 100� + 150�.7. Denote by sn the area of f(x; y) j 0 � x � 1; (1 � x) ln n + x ln(n + 1) � y �ln(1 + x)g. Prove that P1k=1 sk <1.8. Prove that P2nk=1(�1)k+1 xkk < ln(1 + x) <P2n+1k=1 (�1)k+1 xkk for x > 0.9. Compute the logarithms of the primes 2; 3; 5; 7 with a

ura
y 0:01.10. Evaluate R 10 px dx.�11. Evaluate R �0 sinx dx.



2.3. Stieltjes IntegralOn the 
ontents of the le
ture. The Stieltjes relativization of the integralmakes the integral 
exible. We learn the main transformations of integrals. Theyallow us to evaluate a lot of integrals.Basi
 rules. A parametri
 
urve is a mapping of an interval into the plane.In 
artesian 
oordinates a parametri
 
urve 
an be presented as a pair of fun
tionsx(t); y(t). The �rst fun
tion x(t) represents the value of abs
ises at the moment t,and the se
ond y(t) is the ordinate at the same moment. We de�ne the integralR ba f(t) dg(t) for a nonnegative fun
tion f , 
alled the integrand, and with respe
t toa nonde
reasing 
ontinuous fun
tion g, 
alled the di�erand, as the area below the
urve f(t); g(t) j t 2 [a; b℄.A monotone fun
tion f is 
alled 
ontinuous over the interval [a; b℄ if it takes allintermediate values, that is, the image f [a; b℄ of [a; b℄ 
oin
ides with [f(a); f(b)℄. Ifit is not 
ontinuous for some y 2 [f(a); f(b)℄ n f [a; b℄, there is a point x(y) 2 [a; b℄with the following property: f(x) < y if x < x(y) and f(x) > y if x > x(y). Let usde�ne a generalized preimage f [�1℄(y) of a point y 2 [f(a); f(b)℄ either as its usualpreimage f�1(y) if it is not empty, or as x(y) in the opposite 
ase.Now the 
urvilinear trapezium below the 
urve f(t); g(t) over [a; b℄ is de�nedas f(x; y) j 0 � y � g(f [�1℄(x))g.The basi
 rules for relative integrals transform into:Rule of 
onstant R ba f(t) dg(t) = 
(g(b)� g(a)); if f(t) = 
 for t 2 (a; b),Rule of inequality R ba f1(t) dg(t) � R ba f2(t) dg(t); if f1(t) � f2(t) for t 2 (a; b),Rule of partition R 
a f(t) dg(t) = R ba f(t) dg(t) + R 
b f(t) dg(t) for b 2 (a; 
).Addition theorem. The proofs of other properties of the integral are basedon pie
ewise 
onstant fun
tions. For any number x, let us de�ne its "-integral partas "[x="℄. Immediately from the de�nition one gets:Lemma 2.3.1. For any monotone nonnegative fun
tion f on the interval [a; b℄and for any " > 0, the fun
tion [f ℄" is pie
ewise 
onstant su
h that [f(x)℄" � f(x) �[f(x)℄" + " for all x.Theorem 2.3.2 (on multipli
ation). For any nonnegative monotone f , andany 
ontinuous nonde
reasing g and any positive 
onstant 
 one has(2.3.1) Z ba 
f(x) dg(x) = 
 Z ba f(x) dg(x) = Z ba f(x) d
g(x):Proof. For the pie
ewise 
onstant f" = [f ℄", the proof is by a dire
t 
al
ula-tion. Hen
e(2.3.2) Z ba 
f"(x) dg(x) = 
 Z ba f"(x) dg(x) = Z ba f"(x) d
g(x) = I":Now let us estimate the di�eren
es between integrals from (2.3.1) and their approx-imations from (2.3.2). For example, for the right-hand side integrals one has:(2.3.3) Z ba f d
g � Z ba f" d
g = Z ba (f � f") d
g � Z ba " d
g = "(
g(b)� 
g(a)):44



2.3 stieltjes integral 45Hen
e R ba f d
g = I" + "1, where "1 � 
"(g(b) � g(a)). The same argument proves
 R ba f dg = I" + "2 and R ba 
f dg = I" + "3, where "2; "3 � 
"(g(b)� g(a)). Then thepairwise di�eren
es between the integrals of (2.3.1) do not ex
eed 2
"(g(b)� g(a)).Consequently they are less than any positive number, that is, they are zero. �Theorem 2.3.3 (Addition Theorem). Let f1, f2 be nonnegative monotone fun
-tions and g1, g2 be nonde
reasing 
ontinuous fun
tions over [a; b℄, thenZ ba (f1(t) + f2(t)) dg1(t) = Z ba f1(t) dg1(t) + Z ba f2(t) dg1(t);(2.3.4) Z ba f1(t) d(g1(t) + g2(t)) = Z ba f1(t) dg1(t) + Z ba f1(t) dg2(t):(2.3.5)Proof. For pie
ewise 
onstant integrands both the equalities follow from theRule of Constant and the Rule of Partition. To prove (2.3.4) repla
e f1 and f2 inboth parts by [f1℄" and [f2℄". We get equality and denote by I" the 
ommon valueof both sides of this equality. Then by (2.3.3) both integrals on the right-hand sidedi�er from they approximation at most by "(g1(b)�g1(a)), therefore the right-handside of (2.3.4) di�ers from I" at most by 2"(g1(b)� g1(a)). The same is true for theleft-hand side of (2.3.4). This follows immediately from (2.3.3) in 
ase f = f1+ f2,f" = [f1℄" + [f2℄" and g = g1. Consequently, the di�eren
e between left-hand andright-hand sides of (2.3.4) does not ex
eed 4"(g1(b) � g1(a)). As " 
an be 
hosenarbitrarily small this di�eren
e has to be zero.The proof of (2.3.5) is even simpler. Denote by I" the 
ommon value of bothparts of (2.3.5) where f1 is 
hanged by [f1℄". By (2.3.3) one 
an estimate thedi�eren
es between the integrals of (2.3.5) and their approximations as being �"(g1(b)+ g2(b)� g1(a)� g2(a)) for the left-hand side, and as � "(g1(b)� g1(a)) and� "(g2(b)� g2(a)) for the 
orresponding integrals of the right-hand side of (2.3.5).So both sides di�er from I" by at most � "(g1(b) � g1(a) + g2(b) � g2(a)). Hen
ethe di�eren
e vanishes. �Di�erential forms. An expression of the type f1dg1 + f2dg2 + � � � + fndgnis 
alled a di�erential form. One 
an add di�erential forms and multiply them byfun
tions. The integral of a di�erential form R ba (f1 dg1 + f2dg2 + � � � + fndgn) isde�ned as the sum of the integralsPnk=1 R ba fk dgk. Two di�erential forms are 
alledequivalent on the interval [a; b℄ if their integrals are equal for all subintervals of [a; b℄.For the sake of brevity we denote the di�erential form f1dg1 + f2dg2 + � � �+ fndgnby FdG, where F = ff1; : : : ; fng is a 
olle
tion of integrands and G = fg1; : : : ; gngis a 
olle
tion of di�erands.Theorem 2.3.4 (on multipli
ation). Let FdG and F 0dG0 be two di�erentialforms, with positive in
reasing integrands and 
ontinuous in
reasing di�erands,whi
h are equivalent on [a; b℄. Then their produ
ts by any in
reasing fun
tion fon [a; b℄ are equivalent on [a; b℄ too.Proof. If f is 
onstant then the statement follows from the multipli
ationformula. If f is pie
ewise 
onstant, then divide [a; b℄ into intervals where it is 
on-stant and prove the equality for parts and after 
olle
t the results by the PartitionRule. In the general 
ase, 0 � R ba fF dG � R ba [f ℄"F dG � R ba "F dG = " R ba F dG.Sin
e R ba [f ℄"F 0 dG0 = R ba [f ℄"F dG, one 
on
ludes that ���R ba fF 0 dG0 � R ba fF dG��� �



46 2.3 stieltjes integral" R ba F dG + " R ba F 0 dG0. The right-hand side of this inequality 
an be made arbi-trarily small. Hen
e the left-hand side is 0. �Integration by parts.Theorem 2.3.5. If f and g are 
ontinuous nonde
reasing nonnegative fun
tionson [a; b℄ then d(fg) is equivalent to fdg + gdf .Proof. Consider [
; d℄ � [a; b℄. The integral R d
 f dg represents the area belowthe 
urve (f(t); g(t))t2[
;d℄. And the integral R d
 g df represents the area on the leftof the same 
urve. Its union is equal to [0; f(d)℄� [0; g(d)℄ n [0; f(
)℄� [0; g(
)℄. Thearea of this union is equal to (f(d)g(d)�f(
)g(
) = R d
 dfg. On the other hand thearea of this union is the sum of the areas of 
urvilinear trapezia representing theintegrals R d
 f dg and R d
 g df . �Change of variable. Consider a Stieltjes integral R ba f(�) dg(�) and supposethere is a 
ontinuous nonde
reasing mapping � : [t0; t1℄! [a; b℄, su
h that �(t0) = aand �(t1) = b. The 
omposition g(�(t)) is a 
ontinuous nonde
reasing fun
tion andthe 
urve f(f(�(t); g(�(t))) j t 2 [t0; t1℄g just 
oin
ides with the 
urve f(f(�); g(�)) j� 2 [a; b℄. Hen
e, the following equality holds; it is known as the Change of Variableformula: Z t1t0 f(�(t)) dg(�(t)) = Z �(t1)�(t0) f(�) dg(�):For di�erentials this means that the equality F (x)dG(x) = F 0(x)dG0(x) 
onservesif one substitutes instead of an independent variable x a fun
tion.Di�erential Transformations.Case dxn. Integration by parts for f(t) = g(t) = t gives dt2 = tdt+ tdt. Hen
etdt = d t22 . If we already know that dxn = ndxn�1, then dxn+1 = d(xxn) =xdxn+xndx = nxxn�1dx+xndx = (n+1)xndx. This proves the Fermat Theoremfor natural n.Case d npx. To evaluate d npx substitute x = yn into the equality dyn =nyn�1dy. One gets dx = nxnpxd npx, hen
e d npx = npxnx dx.Case lnxdx. We know d lnx = 1xdx. Integration by parts gives lnxdx =d(x ln x)� xd lnx = d(x lnx) � dx = d(x ln x� x).Problems.1. Evaluate dx2=3.2. Evaluate dx�1.3. Evaluate x lnx dx.4. Evaluate d ln2 x.5. Evaluate ln2 x dx.6. Evaluate dex.7. Investigate the 
onvergen
e of P1k=2 1k lnk .



2.4. Asymptoti
s of SumsOn the 
ontents of the le
ture. We be
ome at last a
quainted with thefundamental 
on
ept of a limit. We extend the notion of the sum of a series anddis
over that a 
hange of order of summands 
an a�e
t the ultimate sum. Finallywe derive the famous Stirling formula for n!.Asymptoti
 formulas. The Mer
ator series shows how useful series 
an befor evaluating integrals. In this le
ture we will use integrals to evaluate both partialand ultimate sums of series. Rarely one has an expli
it formula for partial sumsof a series. There are lots of important 
ases where su
h a formula does not exist.For example, it is known that partial sums of the Euler series 
annot be expressedas a �nite 
ombination of elementary fun
tions. When an expli
it formula is notavailable, one tries to �nd a so-
alled asymptoti
 formula. An asymptoti
 formulafor a partial sum Sn of a series is a formula of the type Sn = f(n)+R(n) where f isa known fun
tion 
alled the prin
ipal part and R(n) is a remainder, whi
h is small,in some sense, with respe
t to the prin
ipal part. Today we will get an asymptoti
formula for partial sums of the harmoni
 series.In�nitesimally small sequen
es. The simplest asymptoti
 formula has a
onstant as its prin
ipal part and an in�nitesimally small remainder. One says thata sequen
e fzkg is in�nitesimally small and writes lim zk = 0, if zk tends to 0 as ntends to in�nity. That is for any positive " eventually (i.e., beginning with some n)jzkj < ". With Iverson notation, this de�nition 
an be expressed in the following
lear form:[fzkg1k=1 is in�nitesimally small℄ = 1Ym=1 2 ����� 1Xn=1(�1)n 1Yk=1 [m[k > n℄jzkj < 1℄����� :Three basi
 properties of in�nitesimally small sequen
es immediately followfrom the de�nition:� if lim ak = lim bk = 0 then lim(ak + bk) = 0;� if lim ak = 0 then lim akbk = 0 for any bounded sequen
e fbkg;� if ak � bk � 
k for all k and lim ak = lim 
k = 0, then lim bk = 0.The third property is 
alled the squeeze rule.Today we need just one property of in�nitesimally small sequen
es:Theorem 2.4.1 (Addition theorem). If the sequen
es fakg and fbkg are in-�nitesimally small, than their sum and their di�eren
e are in�nitesimally smalltoo.Proof. Let " be a positive number. Then "=2 also is positive number. Andby de�nition of in�nitesimally small, the inequalities jakj < "=2 and jbkj < "=2 holdeventually beginning with some n. Then for k > n one has jak � bkj � jakj+ jbkj �"=2 + "=2 = ". �Limit of sequen
e.Definition. A sequen
e fzkg of (
omplex) numbers 
onverges to a number zif lim z�zk = 0. The number z is 
alled the limit of the sequen
e fzkg and denotedby lim zk. 47



48 2.4 asymptoti
s of sumsAn in�nite sum represents a parti
ular 
ase of a limit as demonstrated by thefollowing.Theorem 2.4.2. The partial sums of an absolutely 
onvergent series P1k=1 zk
onverge to its sum.Proof. jPn�1k=1 zk �P1k=1 zkj = jP1k=n zkj � P1k=n jzkj. Sin
e P1k=1 jzkj >P1k=1 jzkj � ", there is a partial sum su
h that Pn�1k=1 jzkj > P1k=1 jzkj � ". Thenfor all m � n one has P1k=m jzkj �P1k=n jzkj < ". �Conditional 
onvergen
e. The 
on
ept of the limit of sequen
e leads to anotion of 
onvergen
e generalizing absolute 
onvergen
e.A seriesP1k=1 ak is 
alled (
onditionally) 
onvergent if limPnk=1 ak = A+�n,where lim�n = 0. The number A is 
alled its ultimate sum.The following theorem gives a lot of examples of 
onditionally 
onvergent serieswhi
h are not absolutely 
onvergent. By [[n℄℄ we denote the even part of the numbern, i.e., [[n℄℄ = 2[n=2℄.Theorem 2.4.3 (Leibniz). For any of positive de
reasing in�nitesimally smallsequen
e fang, the series P1k=1(�1)k+1ak 
onverges.Proof. Denote the di�eren
e ak � ak+1 by Æak. The series P1k=1 Æa2k�1 andP1k=1 Æa2k are positive and 
onvergent, be
ause their termwise sum isP1k=1 Æak =a1. Hen
e S =P1k=1 Æa2k�1 � a1. Denote by Sn the partial sumPn�1k=1 (�1)k+1ak.Then S2n = Pn�1k=1 Æa2n�1 = S + �n, where lim�n = 0. Then Sn = S[[n℄℄ +an[n is odd℄+�[[n℄℄. As an[n is odd℄+�[[n℄℄ is in�nitesimally small, this implies thetheorem. �Lemma 2.4.4. Let f be a non-in
reasing nonnegative fun
tion. Then the seriesP1k=1 (f(k)� R k+1k f(x) dx) is positive and 
onvergent and has sum 
f � f(1).Proof. Integration of the inequalities f(k) � f(x) � f(k + 1) over [k; k + 1℄gives f(k) � R k+1k f(x) dx � f(n+ 1). This proves the positivity of the series andallows us to majorize it by the teles
opi
 seriesP1k=1(f(k)� f(k+1)) = f(1). �Theorem 2.4.5 (Integral Test on Convergen
e). If a nonnegative fun
tionf(x) de
reases monotoni
ally on [1;+1), then P1k=1 f(k) 
onverges if and onlyif R11 f(x) dx <1.Proof. Sin
e R11 f(x) dx = P1k=1 R k+1k f(x) dx, one has P1k=1 f(k) = 
f +R11 f(x) dx. �Euler 
onstant. The sumP1k=1 � 1k � ln(1 + 1k )�, whi
h is 
f for f(x) = 1x , is
alled Euler's 
onstant and denoted by 
. Its �rst ten digits are 0:5772156649 : : : .Harmoni
 numbers. The sum Pnk=1 1k is denoted Hn and is 
alled the n-thharmoni
 number.Theorem 2.4.6. Hn = lnn+ 
 + on where lim on = 0.Proof. Sin
e ln n = Pn�1k=1 (ln(k + 1) � ln k) = Pn�1k=1 ln(1 + 1k ), one haslnn+Pn�1k=1 � 1k � ln(1 + 1k )� = Hn�1. But Pn�1k=1 � 1k � ln(1 + 1k )� = 
 + �n, wherelim�n = 0. Therefore Hn = lnn+ 
 + ( 1n + �n). �



2.4 asymptoti
s of sums 49Alternating harmoni
 series. The alternating harmoni
 seriesP1k=1(�1)k+1kis a 
onditionally 
onvergent series due to the Leibniz Theorem 2.4.3, and it is notabsolutely 
onvergent. To �nd its sum we apply our Theorem 2.4.6 on asymptoti
sof harmoni
 numbers.Denote by Sn = Pnk=1 (�1)k+1k the partial sum. Then Sn = H 0n � H 00n , whereH 0n = Pnk=1 1k [k is odd℄ and H 00n = Pnk=1 1k [k is even℄. Sin
e H 002n = 12Hn andH 02n = H2n �H 002n = H2n � 12Hn one getsS2n = H2n � 12Hn � 12Hn= H2n �Hn= ln 2n+ 
 + o2n � lnn� 
 � on= ln 2 + (o2n � on):Consequently Sn = ln 2+(o[[n℄℄�o[n=2℄+ (�1)n+1n [n is odd℄). As the sum in bra
ketsis in�nitesimally small, one gets1Xk=1 (�1)k+1k = ln 2:The same arguments for a permutated alternating harmoni
 series give(2.4.1) 1 + 13 � 12 + 15 + 17 � 14 + 19 + 111 � 16 + � � � = 32 ln 2:Indeed, in this 
ase its 3n-th partial sum isS3n = H 04n �H 002n= H4n � 12H2n � 12Hn= ln 4n+ 
 + o4n � 12 (ln 2n+ 
 + o2n + lnn+ 
 + on)= ln 4� 12 ln 2 + o0n= 32 ln 2 + o0n;where lim o0n = 0. Sin
e the di�eren
e between Sn and S3m where m = [n=3℄ isin�nitesimally small, this proves (2.4.1).Stirling's Formula. We will try to estimate lnn!. Integration of the inequal-ities ln[x℄ � lnx � ln[x+ 1℄ over [1; n℄ gives ln(n� 1)! � R n1 lnx dx � lnn!. Let usestimate the di�eren
e D between R n1 lnx dx and 12 (lnn! + ln(n� 1)!).D = Z n1 (lnx� 12 (ln[x℄ + ln[x+ 1℄)) dx= n�1Xk=1 Z 10 �ln(k + x)� lnpk(k + 1)� dx:(2.4.2)To prove that all summands on the left-hand side are nonnegative, we apply thefollowing general lemma.Lemma 2.4.7. R 10 f(x) dx = R 10 f(1� x) dx for any fun
tion.Proof. The re
e
tion of the plane a
ross the line y = 12 transforms the 
urvi-linear trapezium of f(x) over [0; 1℄ into 
urvilinear trapezium of f(1 � x) over[0; 1℄. �



50 2.4 asymptoti
s of sumsLemma 2.4.8. R 10 ln(k + x) dx � lnpk(k + 1).Proof. Due to Lemma 2.4.7 one hasZ 10 ln(k + x) dx = Z 10 ln(k + 1� x) dx= Z 10 12 (ln(k + x) + ln(k + 1� x)) dx= Z 10 lnp(k + x)(k + 1� x) dx= Z 10 lnpk(k + 1) + x� x2 dx� Z 10 lnpk(k + 1) dx= lnpk(k + 1): �Integration of the inequality ln(1 + x=k) � x=k over [0; 1℄ givesZ 10 ln(1 + x=k) dx � Z 10 xk dx = 12k :This estimate together with the inequality ln(1 + 1=k) � 1=(k + 1) allows us toestimate the summands from the right-hand side of (2.4.2) in the following way:Z 10 ln(k + x)� lnpk(k + 1) dx = Z 10 ln(k + x)� ln k � 12 (ln(k + 1)� ln k) dx= Z 10 ln �1 + xk �� 12 ln �1 + 1k � dx� 12k � 12(k+1) :We see that Dn � P1k=1 12k � 12(k+1) = 12 for all n. Denote by D1 the sum(2.4.2) for in�nite n. Then Rn = D1 �Dn = �2n for some nonnegative � < 1, andwe get D1 � �2n = Z n1 lnx dx� 12 (lnn! + ln(n� 1)!)= Z n1 lnx dx� lnn! + 12 lnn:(2.4.3)Substituting in (2.4.3) the value of the integral R n1 ln x dx = R n1 d(x ln x � x) =(n lnn� n)� (1 ln 1� 1) = n lnn� n+ 1, one getslnn! = n lnn� n+ 12 lnn+ (1�D1) + �2n :Now we know that 1 � (1 �D1) � 12 , but it is possible to evaluate the value ofD1 with more a

ura
y. Later we will prove that 1�D1 = p2�.



2.4 asymptoti
s of sums 51Problems.1. Does P1k=1 sin k 
onverge?2. Does P1k=1 sin k2 
onverge?3. Evaluate 1 + 12 � 23 + 14 + 15 � 26 + � � � � 23n + 13n+1 + 13n+2 � : : : .4. Prove: If lim an+1an < 1, then P1k=1 ak 
onverge.5. Prove: If P1k=1 jak � ak�1j <1, then fakg 
onverges.6. Prove the 
onvergen
e of P1k=1 (�1)[pk℄k .7. Prove the 
onvergen
e of P1k=2 1ln3 k .8. Prove the 
onvergen
e of P1k=2 1k ln kpln lnk .9. Prove the 
onvergen
e of P1k=2 1k ln k(ln ln k)2 .10. Prove the 
onvergen
e of P1k=2 1k ln k and �nd its asymptoti
 formula.11. Prove the 
onvergen
e of P1k=2 1k ln2 k .12. Whi
h partial sum of the above series is 0:01 
lose to its ultimate sum?13. Evaluate P1k=2 1k ln2 k with pre
ision 0:01.14. Evaluate R 31 lnx d[x℄.15. Express the Stirling 
onstant via the Wallis produ
t �2 =Q1n=1 2n2n�1 2n2n+1 .



2.5. Quadrature of Cir
leOn the 
ontents of the le
ture. We extend the 
on
ept of the integralto 
omplex fun
tions. We evaluate a very important integral H 1zdz by applyingAr
himedes' theorem on the area of 
ir
ular se
tor. As a 
onsequen
e, we evaluatethe Wallis produ
t and the Stirling 
onstant.De�nition of a 
omplex integral. To spe
ify an integral of a 
omplex fun
-tion one has to indi
ate not only its limits, but also the path of integration. Apath of integration is a mapping p : [a; b℄ ! C , of an interval [a; b℄ of the real lineinto 
omplex plane. The integral of a 
omplex di�erential form fdg (here f and gare 
omplex fun
tions of 
omplex variable) along the path p is de�ned via separateintegration of di�erent 
ombinations of real and imaginary parts in the followingway:Z ba Re f(p(t)) dRe g(p(t))� Z ba Im f(p(t)) d Im g(p(t))+ i Z ba Re f(p(t)) d Im g(p(t)) + i Z ba Im f(p(t)) dRe g(p(t))Two 
omplex di�erential forms are 
alled equal if their integrals 
oin
ide for allpaths. So, the de�nition above 
an be written shortly as fdg = Re fdRe g �Im fd Im g + iRe fd Im g + i Im fdRe g.The integral R 1z dz. The Integral is the prin
ipal 
on
ept of Cal
ulus andR 1zdz is the prin
ipal integral. Let us evaluate it along the path p(t) = 
os t+i sin t,t 2 [0; �℄, whi
h goes along the ar
 of the 
ir
le of the length � � �=2. Sin
e1
os t+i sin t = 
os t� i sin t, one hasZp 1z dz = Z �0 
os t d 
os t+ Z �0 sin t d sin t� i Z �0 sin t d 
os t+ i Z �0 
os t d sin t:(2.5.1)Its real part transforms into R �0 12 d 
os2 t + R �0 12 d sin2 t = R �0 12 d(
os2 t + sin2 t) =R �0 12 d1 = 0. An attentive reader has to obje
t: integrals were de�ned only fordi�erential forms with non-de
reasing di�erands, while 
os t de
reases.Sign rule. Let us de�ne the integral for any di�erential form fdg with any
ontinuous monotone di�erand g and any integrand f of a 
onstant sign (i.e, non-positive or non-negative). The de�nition relies on the following Sign Rule.(2.5.2) Z ba �f dg = � Z ba f dg = Z ba f d(�g)If f is of 
onstant sign, and g is monotone, then among the forms fdg, �fdg, fd(�g)and �fd(�g) there is just one with non-negative integrand and non-de
reasingdi�erand. For this form, the integral was de�ned earlier, for the other 
ases it isde�ned by the Sign Rule.Thus the integral of a negative fun
tion against an in
reasing di�erand and theintegral of a positive fun
tion against a de
reasing di�erand are negative. And theintegral of a negative fun
tion against a de
reasing di�erand is positive.52



2.5 quadrature of 
ir
le 53The Sign Rule agrees with the Constant Rule: the formula R ba 
 dg = 
(g(b) �g(a)) remains true either for negative 
 or de
reasing g.The Partition Rule also is not a�e
ted by this extension of the integral.The Inequality Rule takes the following form: if f1(x) � f2(x) for all x 2 [a; b℄then R ba f1(x) dg(x) � R ba f2(x) dg(x) for non-de
reasing g and R ba f1(x) dg(x) �R ba f2(x) dg(x) for non-in
reasing g.Change of variable. Now all integrals in (2.5.1) are de�ned. The next obje
-tion 
on
erns transformation 
os td 
os t = 12d 
os2 t. This transformation is basedon a de
reasing 
hange of variable x = 
os t in dx2=2 = xdx. But what happenswith an integral when one applies a de
reasing 
hange of variable? The 
urvilineartrapezium, whi
h represents the integral, does not 
hange at all under any 
hangeof variable, even for a non-monotone one. Hen
e the only thing that may happenis a 
hange of sign. And the sign 
hanges by the Sign Rule, simultaneously on bothsides of equality dx2=2 = xdx. If the integrals of xdx and dx2 are positive, bothintegrals of 
os td 
os t and 
os2 t are negative and have the same absolute value.These arguments work in the general 
ase:A de
reasing 
hange of variable reverses the sign of the integral.Addition Formula. The next question 
on
erns the legitima
y of addition ofdi�erentials, whi
h appeared in the 
al
ulation d 
os2 t+d sin2 t = d(
os2 t+sin2 t) =0, where di�erands are not 
omonotone: 
os t de
reases, while sin t in
reases. Theaddition formula in its full generality will be proved in the next le
ture, but thisspe
ial 
ase is not diÆ
ult to prove. Our equality is equivalent to d sin2 t = �d 
os2 t.By the Sign Rule �d 
os2 t = d(� 
os2 t), but � 
os2 t is in
reasing. And by theAddition Theorem d(� 
os2 t+1) = d(� 
os2 t)+d1 = d(� 
os2 t). But � 
os2 t+1 =sin2 t. Hen
e our evaluation of the real part of (2.5.1) is justi�ed.Trigonometri
 integrals. We pro
eed to the evaluation of the imaginary partof (2.5.1), whi
h is 
os t d sin t� sin t d 
os t. This is a simple geometri
 problem.The integral of sin t d 
os t is negative as 
os t is de
reasing on [0; �2 ℄, and its ab-solute value is equal to the area of the 
urvilinear triangle A0BA, whi
h is obtainedfrom the 
ir
ular se
tor OBA with area �=2 by deletion of the triangle OA0B, whi
hhas area 12 
os� sin�. Thus R �0 sin t d 
os t is �=2� 12 
os� sin�.The integral of 
os t d sin t is equal to the area of 
urvilinear trapezium OB0BA.The latter 
onsists of a 
ir
ular se
tor OBA with area �=2 and a triangle OB0Bwith area 12 
os� sin�. Thus R �0 
os t d sin t = �=2 + 12 
os� sin�.As a result we get Rp 1z dz = i�. This result has a lot of 
onsequen
es. Buttoday we restri
t our attention to the integrals of sin t and 
os t.Multipli
ation of di�erentials. We have proved(2.5.3) 
os t d sin t� sin t d 
os t = dt:Multiplying this equality by 
os t, one gets
os2 t d sin t� sin t 
os t d 
os t = 
os t dt:Repla
ing 
os2 t by (1�sin2 t) and moving 
os t into the di�erential, one transformsthe left-hand side asd sin t� sin2 t d sin t� 12 sin t d 
os2 t = d sin t� 12 sin t d sin2 t� 12 sin t d 
os2 t:
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AA’

BB’

O
φFigure 2.5.1. Trigonometri
 integralsWe already know that d sin2 t+ d 
os2 t is zero. Now we have to prove the same forthe produ
t of this form by 12 sin t. The arguments are the same: we multiply by12 sin t the equivalent equality d sin2 t = d(� 
os2 t) whose di�erands are in
reasing.This is a general way to extend the theorem on multipli
ation of di�erentials tothe 
ase of any monotone fun
tions. We will do it later. Now we get just d sin t =
os t dt.Further, multipli
ation of the left-hand side of (2.5.3) by sin t givessin t 
os t d sin t� sin2 t d 
os t = 12 
os t d sin2 t� d 
os t+ 12 
os t d 
os2 t = �d 
os t:So we get d 
os t = � sin tdt.Theorem 2.5.1. d sin t = 
os t dt and d 
os t = � sin t dt.We have proved this equality only for [0; �=2℄. But due to well-known symme-tries this suÆ
es.Appli
ation of trigonometri
 integrals.Lemma 2.5.2. For any 
onvergent in�nite produ
t of fa
tors � 1 one has(2.5.4) lim nYk=1 pk = 1Yk=1 pk:Proof. Let " be a positive number. ThenQ1k=1 pk >Q1k=1 pk�", and by All-for-One there is n su
h thatQnk=1 pk >Q1k=1 pk�". Then for anym > n one has theinequalities Q1k=1 pk � Qmk=1 pk >Q1k=1 pk � ". Therefore jQmk=1 pk �Q1k=1 pkj <". �Wallis produ
t. Set In = R �0 sinn x dx. Then I0 = R �0 1 dx = � and I1 =R �0 sinx dx = � 
os� + 
os 0 = 2. For n � 2, let us repla
e the integrand sinn x by



2.5 quadrature of 
ir
le 55sinn�2 x(1� 
os2 x) and obtainIn = Z �0 sinn�2 x(1� 
os2 x) dx= Z �0 sinn�2 x dx� Z �0 sinn�2 x 
osx d sinx= In�2 � 1n�1 Z �0 
osx d sinn�1(x)= In�2 � Z �0 d(
osx sinn�1 x) + Z �0 sinn�1 x d 
osx= In�2 � 1n�1In:We get the re
urren
e relation In = n�1n In�2, whi
h gives the formula(2.5.5) I2n = � (2n� 1)!!2n!! ; I2n�1 = 2(2n� 2)!!(2n� 1)!!where n!! denotes the produ
t n(n � 2)(n � 4) � � � (n mod 2 + 1). Sin
e sinn x �sinn�1 x for all x 2 [0; �℄, the sequen
e fIng de
reases. Sin
e In � In�1 � In�2, onegets n�1n = InIn�2 � In�1In�2 � 1. Hen
e In�1In�2 di�ers from 1 less than 1n . Consequently,lim In�1In�2 = 1. In parti
ular, lim I2n+1I2n = 1. Substituting in this last formula theexpressions of In from (2.5.5) one getslim �2 (2n+ 1)!!(2n� 1)!!2n!!2n!! = 1:Therefore this is the famous Wallis Produ
t�2 = lim 2n!!2n!!(2n� 1)!!(2n+ 1)!! = 1Yn=1 4n24n2 � 1 :Stirling 
onstant. In Le
ture 2.4 we have proved that(2.5.6) lnn! = n lnn� n+ 12 lnn+ � + on;where on is in�nitesimally small and � is a 
onstant. Now we are ready to determinethis 
onstant. Consider the di�eren
e ln 2n!� 2 lnn!. By (2.5.6) it expands into(2n ln 2n� 2n+ 12 ln 2n+ � + o2n)� 2(n lnn� n+ 12 lnn+ � + on)= 2n ln 2 + 12 ln 2n� lnn� � + o0n;where o0n = o2n � 2on is in�nitesimally small. Then � 
an be presented as� = 2 lnn!� ln 2n! + 2n ln 2 + 12 lnn+ 12 ln 2� lnn+ o0n:Multiplying by 2 one gets2� = 4 lnn!� 2 ln 2n! + 2 ln 22n � lnn+ ln 2 + 2o0n:Hen
e 2� = lim(4 lnn!� 2 ln 2n! + 2 ln 22n � lnn+ ln 2). Swit
hing to produ
t andkeeping in mind the identities n! = n!!(n� 1)!! and n!2n = 2n!! one gets�2 = lim n!424n+1(2n!)2n = lim 2 � (2n!!)4(2n!!)2(2n� 1)!!2n lim 2 � (2n!!)2(2n+ 1)(2n� 1)!!(2n+ 1)!!n = 2�:



56 2.5 quadrature of 
ir
leProblems.1. Evaluate R p1� x2 dx.2. Evaluate R 1p1�x2 dx.3. Evaluate R p5� x2 dx.4. Evaluate R 
os2 x dx.5. Evaluate R tanx dx.6. Evaluate R sin4 x dx.7. Evaluate R sinx2 dx.8. Evaluate R tanx dx.9. Evaluate R x2 sinx dx.10. Evaluate d ar
sinx.11. Evaluate R ar
sinx dx.12. Evaluate R ex 
osx dx.



2.6. Virtually monotone fun
tionsMonotonization of the integrand. Let us say that a pair of fun
tions f1, f2monotonize a fun
tion f , if f1 is non-negative and non-de
reasing, f2 is non-positiveand non-in
reasing and f = f1 + f2.Lemma 2.6.1. Let f = f1 + f2 and f = f 01 + f 02 be two monotonizations of f .Then for any monotone h one has f1dh+ f2dh = f1dh+ f 02dh.Proof. Our equality is equivalent to f1dh � f 02dh = f 01dh � f2dh. By thesign rule this turns into f1dh + (�f 02)dh = f 01dh + (�f2)dh. Now all integrandsare nonnegative and for non-de
reasing h we 
an apply the Addition Theorem andtransform the inequality into (f1 � f 02)dh = (f 01 � f2)dh. This is true be
ause(f1 � f 02) = (f 01 � f2).The 
ase of a non-in
reasing di�erand is redu
ed to the 
ase of a non-de
reasingone by the transformation f1d(�h)+f2d(�h) = f 01d(�h)+f 02d(�h), whi
h is basedon the Sign Rule. �A fun
tion whi
h has a monotonization is 
alled virtually monotone.We de�ne the integral R ba f dg for any virtually monotone integrand f and any
ontinuous monotone di�erand g via a monotonization f = f1 + f2 byZ ba f dg = Z ba f1 dg + Z ba f2 dg:Lemma 2.6.1 demonstrates that this de�nition does not depend on the 
hoi
eof a monotonization.Lemma 2.6.2. Let f and g be virtually monotone fun
tions; then f + g isvirtually monotone and fdh+ gdh = (f + g)dh for any 
ontinuous monotone h.Proof. Let h be nonde
reasing. Consider monotonizations f = f1 + f2 andg = g1 + g2. Then fdh + gdh = f1dh + f2dh + g1dh + g2dh by de�nition viamonotonization of the integrand. By virtue of the Addition Theorem 2.3.3 thisturns into (f1 + g1)dh + (f2 + g2)dh. But the pair of bra
kets monotonize f + g.Hen
e f+g is proved to be virtually monotone and the latter expression is (f+g)dhby de�nition, via monotonization of the integrand. The 
ase of non-in
reasing h isredu
ed to the previous 
ase via �fd(�h)� gd(�h) = �(f + g)d(�h). �Lemma on lo
ally 
onstant fun
tions. Let us say that a fun
tion f(x) islo
ally 
onstant at a point x if f(y) = f(x) for all y suÆ
iently 
lose to x, i.e., forall y from an interval (x� "; x+ ").Lemma 2.6.3. A fun
tion f whi
h is lo
ally 
onstant at ea
h point of an intervalis 
onstant.Proof. Suppose f(x) is not 
onstant on [a; b℄. We will 
onstru
t by indu
tiona sequen
e of intervals Ik = [ak; bk℄, su
h that I0 = [a; b℄, Ik+1 � Ik, jbk � akj �2jbk+1 � ak+1j and the fun
tion f is not 
onstant on ea
h Ik. First step: Let
 = (a + b)=2, as f is not 
onstant f(x) 6= f(
) for some x. Then 
hoose [x; 
℄ or[
; x℄ as for [a1; b1℄. On this interval f is not 
onstant. The same are all furthersteps. The interse
tion of the sequen
e is a point su
h that any of its neighborhoods
ontains some interval of the sequen
e. Hen
e f is not lo
ally 
onstant at thispoint. �57



58 2.6 virtually monotone fun
tionsLemma 2.6.4. If f(x) is a 
ontinuous monotone fun
tion and a < f(x) < bthen a < f(y) < b for all y suÆ
iently 
lose to x.Proof. If f takes values greater than b, then it takes value b and if f(x) takesvalues less than a then it takes value a due to 
ontinuity. Then [f�1(a); f�1(b)℄ isthe interval where inequalities hold. �Lemma 2.6.5. Let g1, g2 be 
ontinuous 
omonotone fun
tions. Then g1+ g2 is
ontinuous and monotone, and for any virtually monotone f one has(2.6.1) fdg1 + fdg2 = fd(g1 + g2):Proof. Suppose g1(x) + g2(x) < p, let " = p � g1(x) � g2(x). Then g1(y) <g1(y) + "=2 and g2(y) < g2(y) + "=2 for all y suÆ
iently 
lose to x. Hen
e g(y) +g2(y) < p for all y suÆ
iently 
lose to x. The same is true for the opposite inequality.Hen
e sgn(g1(x)+g2(x)�p) is lo
ally 
onstant at all points where it is not 0. But itis not 
onstant if p is an intermediate value, hen
e it is not lo
ally 
onstant, hen
eit takes value 0. At this point g1(x) + g2(x) = p and the 
ontinuity of g1 + g2 isproved.Consider a monotonization f = f1+f2. Let gi be nonde
reasing. By de�nitionvia monotonization of the integrand, the left-hand side of (2.6.1) turns into (f1dg1+f2dg1) + (f1dg2 + f2dg2) = (f1dg1 + f1dg2) + (f2dg1 + f2dg2). By the AdditionTheorem 2.3.3 f1dg1 + f1dg2 = f1d(g1 + g2). And the equality f2dg1 + f2dg2 =f2d(g1+ g2) follows from (�f2)dg1+(�f2)dg2 = (�f2)d(g1+ g2) by the Sign Rule.Hen
e the left-hand side is equal to f1d(g1 + g2) + f2d(g1 + g2), whi
h 
oin
ideswith the right-hand side of (2.6.1) by de�nition via monotonization of integrand.The 
ase of non-in
reasing di�erands is taken 
are of via transformation of (2.6.1)by the Sign Rule into fd(�g1) + fd(�g2) = fd(�g1 � g2). �Lemma 2.6.6. Let g1 + g2 = g3 + g4 where all (�1)kgk are non-in
reasing
ontinuous fun
tions. Then fdg1+ fdg2 = fdg3+ fdg4 for any virtually monotonef . Proof. Our equality is equivalent to fdg1 � fdg4 = fdg3 � fdg2. By theSign Rule it turns into fdg1 + fd(�g4) = fdg3 + fd(�g2). Now all di�erands arenonde
reasing and by Lemma 2.6.5 it transforms into fd(g1 � g4) = fd(g3 � g2).This is true be
ause g1 � g4 = g3 � g2. �Monotonization of the di�erand. A monotonization by 
ontinuous fun
-tions is 
alled 
ontinuous. A virtually monotone fun
tion whi
h has a 
ontinuousmonotonization is 
alled 
ontinuous. The integral for any virtually monotone in-tegrand f against a virtually monotone 
ontinuous di�erand g is de�ned via a
ontinuous virtualization g = g1 + g2 of the di�erandZ ba f dg = Z ba f dg1 + Z ba f dg2:The integral is well-de�ned be
ause of Lemma 2.6.6.Theorem 2.6.7 (Addition Theorem). For any virtually monotone fun
tionsf; f 0 and any virtually monotone 
ontinuous g; g0, fdg + f 0dg = (f + f 0)dg andfdg + fdg0 = fd(g + g0)



2.6 virtually monotone fun
tions 59Proof. To prove fdg+ f 0dg = (f + f 0)dg, 
onsider a 
ontinuous monotoniza-tion g = g1+g2. Then by de�nition of the integral for virtually monotone di�erandsthis equality turns into (fdg1+fdg2)+(f 0dg1+f 0dg2) = (f+f 0)dg1+(f+f 0)dg2. Af-ter rearranging it turns into (fdg1+f 0dg1)+(fdg2+f 0dg2) = (f+f 0)dg1+(f+f 0)dg2.But this is true due to Lemma 2.6.2.To prove fdg + fdg0 = fd(g + g0), 
onsider monotonizations g = g1 + g2,g0 = g01 + g02. Then (g1+ g01) + (g2 + g02) is a monotonization for g+ g0. And by thede�nition of the integral for virtually monotone di�erands our equality turns intofdg1 + fdg2 + fdg01 + fdg02 �Change of variable.Lemma 2.6.8. If f is virtually monotone and g is monotone, then f(g(x)) isvirtually monotone.Proof. Let f1 + f2 be a monotonization of f . If h is non-de
reasing thenf1(h(x)) + f2(h(x)) gives a monotonization of f(g(x)). If h is de
reasing then themonotonization is given by (f2(h(x)) + 
) + (f1(h(x)) � 
) where 
 is a suÆ
ientlylarge 
onstant to provide positivity of the �rst bra
kets and negativity of the se
ondone. �The following natural 
onvention is applied to de�ne an integral with reversedlimits: R ba f(x) dg(x) = � R ab f(x) dg(x).Theorem 2.6.9 (on 
hange of variable). If h : [a; b℄! [h(a); h(b)℄ is monotone,f(x) is virtually monotone and g(x) is virtually monotone 
ontinuous thenZ ba f(h(t)) dg(h(t)) = Z h(b)h(a) f(x) dg(x):Proof. Let f = f1+f2 and g = g1+g2 be a monotonization and a 
ontinuousmonotonization of f and g respe
tively. The R ba f(h(t)) dg(h(t)) splits into sumof four integrals: R ba fi(h(t)) dgj(h(t)) where fi are of 
onstant sign and gj aremonotone 
ontinuous. These integrals 
oin
ide with the 
orresponding integralsR h(b)h(a) fi(x) dgi(x). Indeed their absolute values are the areas of the same 
urvilineartrapezia. And their signs determined by the Sign Rule are the same. �Integration by parts. We have established the Integration by Parts formulafor non-negative and non-de
reasing di�erential forms. Now we extend it to the
ase of 
ontinuous monotone forms. In the �rst 
ase f and g are non-de
reasing.In this 
ase 
hoose a positive 
onstant 
 suÆ
iently large to provide positivity off + 
 and g+ 
 on the interval of integration. Then d(f + 
)(g + 
) = (f + 
)d(g +
) + (g + 
)d(f + 
). On the other hand d(f + 
)(g + 
) = dfg + 
df + 
dg and(f + 
)d(g + 
) + (g + 
)d(f + 
) = fdg + 
dg + 
df . Compare these results to getdfg = fdg + gdf . Now if f is in
reasing and g is de
reasing then �g is in
reasingand we get �dfg = df(�g) = fd(�g) + (�g)df = �fdg � gdf , whi
h leads todfg = fdg + gdf . The other 
ases: f de
reasing, g in
reasing and both de
reasingare proved by the same arguments. The extension of the Integration by Partsformula to pie
ewise monotone forms immediately follows by the Partition Rule.Variation. De�ne the variation of a sequen
e of numbers fxkgnk=1 as the sumP1k=1 jxk+1 � xkj. De�ne the variation of a fun
tion f along a sequen
e fxkgnk=0
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tionsas the variation of sequen
e ff(xk)gnk=0. De�ne a 
hain on an interval [a; b℄ as anonde
reasing sequen
e fxkgnk=0 su
h that x0 = a and xn = b. De�ne the partialvariation of f on an interval [a; b℄ as its variation along a 
hain on the interval.The least number surpassing all partial variations fun
tion f over [a; b℄ is 
alledthe (ultimate) variation of a fun
tion f(x) on an interval [a; b℄ and is denoted byvarf [a; b℄.Lemma 2.6.10. For any fun
tion f one has the inequality varf [a; b℄ � jf(b)�f(a)j. If f is a monotone fun
tion on [a; b℄, then varf [a; b℄ = jf(b)� f(a)j.Proof. The inequality varf [a; b℄ � jf(b)� f(a)j follows immediately from thede�nition be
ause fa; bg is a 
hain. For monotone f , all partial variations areteles
opi
 sums equal to jf(b)� f(a)j �Theorem 2.6.11 (additivity of variation). varf [a; b℄ + varf [b; 
℄ = varf [a; 
℄.Proof. Consider a 
hain fxkgnk=0 of [a; 
℄, whi
h 
ontains b. In this 
ase thevariation of f along fxkgnk=0 splits into sums of partial variations of f along [a; b℄and along [b; 
℄. As a partial variations does not ex
eed an ultimate, we get that inthis 
ase the variation of f along fxkgnk=0 does not ex
eed varf [a; b℄ + varf [b; 
℄.If fxkgnk=0 does not 
ontain b, let us add b to the 
hain. Then in the sumexpressing the partial variation of f , the summand jf(xi+1)�f(xi)j 
hanges by thesum jf(b)� f(xi)j+ jf(xi+1 � f(b)j whi
h is greater or equal. Hen
e the variationdoes not de
rease after su
h modi�
ation. But the variation along the modi�ed
hain does not ex
eed varf [a; b℄ + varf [b; 
℄ as was proved above. As all partialvariations of f over [a; 
℄ do not ex
eed varf [a; b℄ + varf [b; 
℄, the same is true forthe ultimate variation.To prove the opposite inequality we 
onsider a relaxed inequality varf [a; b℄ +varf [b; 
℄ � varf [a; 
℄ + " where " is an positive number. Choose 
hains fxkgnk=0on [a; b℄ and fykgmk=0 on [b; 
℄ su
h that 
orresponding partial variations of f are� varf [a; b℄ + "=2 and � varf [b; 
℄ + "=2 respe
tively. As the union of these 
hainsis a 
hain on [a; 
℄ the sum of these partial variations is a partial variation of f on[a; 
℄. Consequently this sum is less or equal to varf [a; 
℄. On the other hand it isgreater or equal to varf [a; b℄ + "=2+varf [b; 
℄ + "=2. Comparing these results givesjust the relaxed inequality. As the relaxed inequality is proved for all " > 0 it alsoholds for " = 0. �Lemma 2.6.12. For any fun
tions f , g one has the inequality varf+g[a; b℄ �varf [a; b℄ + varg [a; b℄.Proof. Sin
e jf(xk+1) + g(xk+1) � f(xk) � g(xk)j � jf(xk+1) � f(xk)j +jg(xk+1) � g(xk)j, the variation of f + g along any sequen
e does not ex
eed thesum of the variations of f and g along the sequen
e. Hen
e all partial variations off + g do not ex
eed varf [a; b℄ + varg [a; b℄, and so the same is true for the ultimatevariation. �Lemma 2.6.13. For any fun
tion of �nite variation on [a; b℄, the fun
tionsvarf [a; x℄ and varf [a; x℄� f(x) are both nonde
reasing fun
tions of x.Proof. That varf [a; x℄ is nonde
reasing follows from nonnegativity and addi-tivity of variation. If x > y then the inequality varf [a; x℄� f(x) � varf [a; y℄� f(y)
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tions 61is equivalent to varf [a; x℄�varf [a; y℄ � f(x)�f(y). This is true be
ause varf [a; x℄�varf [a; y℄ = varf [x; y℄ � jf(x)� f(y)j. �Lemma 2.6.14. varf2 [a; b℄ � 2(jf(a)j+ varf [a; b℄) varf [a; b℄.Proof. For all x; y 2 [a; b℄ one hasjf(x) + f(y)j = j2f(a) + f(x)� f(a) + f(y)� f(a)j� 2jf(a)j+ varf [a; x℄ + varf [a; y℄� 2jf(a)j+ 2varf [a; b℄:Hen
ePn�1k=0 jf2(xk+1)� f2(xk)j =Pn�1k=0 jf(xk+1)� f(xk)jjf(xk+1) + f(xk)j� 2(jf(a)j+ varf [a; b℄)Pn�1k=0 jf(xk+1)� f(xk)j� 2(jf(a)j+ varf [a; b℄) varf [a; b℄ �Lemma 2.6.15. If varf [a; b℄ <1 and varg[a; b℄ <1, then varfg[a; b℄ <1.Proof. 4fg = (f + g)2 � (f � g)2. �Theorem 2.6.16. The fun
tion f is virtually monotone on [a; b℄ if and only ifit has a �nite variation.Proof. Sin
e monotone fun
tions have �nite variation on �nite intervals, andthe variation of a sum does not ex
eed the sum of variations, one gets that allvirtually monotone fun
tions have �nite variation. On the other hand, if f has�nite variation then f = (varf [a; x℄ + 
) + (f(x) � varf [a; x℄ � 
), the fun
tionsin the bra
kets are monotone due to Lemma 2.6.13, and by 
hoosing a 
onstant 
suÆ
iently large, one obtains that the se
ond bra
ket is negative. �Problems.1. Evaluate R i1 z2 dz.2. Prove that 1=f(x) has �nite variation if it is bounded.3. Prove R ba f(x) dg(x) � max[a;b℄ f varg[a; b℄.


