CHAPTER 2

Integrals
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2.1. Natural Logarithm

On the contents of the lecture.

In the beginning of Calculus was the Word, and the Word was
with Arithmetic, and the Word was Logarithm!

Logarithmic tables. Multiplication is much more difficult than addition. A
logarithm reduces multiplication to addition. The invention of logarithms was one
of the great achievements of our civilization.

In early times, when logarithms were unknown instead of them one used trigono-
metric functions. The following identity

2cosz cosy = cos(x + y) + cos(z — y)

can be applied to calculate products via tables of cosines. To multiply numbers z
and y, one represents them as cosines x = cosa, y = cosb using the cosine table.
Then evaluate (a + b) and (@ — b) and find their cosines in the table. Finally, the
results are summed and divided by 2. That is all. A single multiplication requires
four searches in the table of cosines, two additions, one subtraction and one division
by 2.

A logarithmic function /() is a function such that I(zy) = I(z) + I(y) for any
z and y. If one has a logarithmic table, to evaluate the product xy one has to find
in the logarithmic table [(z) and I(y) then sum them and find the antilogarithm of
the sum. This is much easier.

The idea of logarithms arose in 1544, when M. Stiefel compared geometric and
arithmetic progressions. The addition of exponents corresponds to the multiplica-
tion of powers. Hence consider a number close to 1, say, 1.000001. Calculate the
sequence of its powers and place them in the left column. Place in the right col-
umn the corresponding values of exponents, which are just the line numbers. The
logarithmic table is ready.

Now to multiply two numbers z and y, find them (or their approximations) in
the left column of the logarithmic table, and read their logarithms from the right
column. Sum the logarithms and find the value of the sum in the right column.
Next to this sum in the left column the product zy stands. The first tables of such
logarithms were composed by John Napier in 1614.

Area of a curvilinear trapezium. Recall that a sequence is said to be mono-
tone, if it is either increasing or decreasing. The minimal interval which contains
all elements of a given sequence of points will be called supporting interval of the
sequence. And a sequence is called exhausting for an interval I if I is the supporting
interval of the sequence.

Let f be a non-negative function defined on [a,b]. The set {(z,y) | = €
[a,b] and 0 < y < f(z)} is called a curvilinear trapezium under the graph of f
over the interval [a, b].

To estimate the area of a curvilinear trapezium under the graph of f over [a, b],
choose an exhausting sequence {z;}}, for [a,b] and consider the following sums:

n—1 n—1
(2.1.1) Z flz) |0z, Z f(xpy1)|0zr| (where dzp = Tp41 — k).
k=0 k=0

1)\07og is Greek for “word”, aptfuos means “number”.
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2.1 NATURAL LOGARITHM 35
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FIGURE 2.1.1. A curvilinear trapezium

We will call the first of them the receding sum, and the second the advancing sum, of
the sequence {z},} for the function f. If the function f is monotone the area of the

curvilinear trapezium is contained between these two sums. To see this, consider the

following step-figures: g [k, r+1] %[0, f(zx)] and Up—s [ek, Tri1] X [0, f(zri1)]-

If f and {z} both increase or both decrease the first step-figure is contained in
the curvilinear trapezium and the second step-figure contains the trapezium with
possible exception of a vertical segment [a x [0, f(a)] or [b x [0, f(b)]. If one of f
and {z} increases and the other decreases, then the step-figures switch the roles.
The rededing sum equals the area of the first step-figure, and the advancing sum
equals the area of the second one. Thus we have proved the following lemma.

LEMMA 2.1.1. Let f be a monotone function and let S be the area of the
curvilinear trapezium under the graph of f over [a,b]. Then for any sequence
{zx}}_, exhausting [a,b] the area S is contained between ZZ;S fz)|0zy| and

SRy @) |z

Fermat’s quadratures of parabolas. In 1636 Pierre Fermat proposed an
ingenious trick to determine the area below the curve y = z°.

|t

FIGURE 2.1.2. Fermat’s quadratures of parabolas



36 2.1 NATURAL LOGARITHM

If @ > —1 then consider any interval of the form [0, B]. Choose a positive
q < 1. Then the infinite geometric progression B, Bq, Bq?, B¢®, ... exhausts [0, B]
and the values of the function for this sequence also form a geometric progression

B®,q°B%, ¢**B*,¢3*B?,.... Then both the receding and advancing sums turn into
geometric progressions:
o o] o ]
Z Baqka (qu _ qchrlB) Ba+1 Z qk a+1)
k=0
B*(1—q)
BT

00 00
ZBaq(k+1)a(qu _ qk+1B) — BaJrl(]_ _ q) Zq(kJrl)(aJrl)

_ B - g)g
B 1 —got!

. As ¢ tends to 1 both sums

1—q _ 1
For a natural a, one has ==t = =

converge to 2 +1 This is the area of the curvilinear trapezium. Let us remark that
for a < 0 this trapezium is unbounded, nevertheless it has finite area if a > —1.

If a < —1, then consider an interval in the form [B,c0]. Choose a positive
q > 1. Then the infinite geometric progression B, Bq, B¢*, Bq®, ... exhausts [B, 00]
and the values of the function for this sequence also form a geometric progression

B®,q°B%,¢**B%,¢3*B?, . ... The receding and advancing sums are
(oo} (ee]
ZBaqka (qk-‘rlB _ qu) Ba+1 qu a+1)
k=0 k=0
B Botl ((] _ 1)
1= g+l ’
ZBaq(k+1)a(qk+1B _ qu) Ba+1 Zq k+1)(a+1)

_ B*'(q - l)q“
- ]_ _ anrl

. . -1 -1 1-p 1
If a is an integer set p = ¢~ . Then an =41 P = AT

As ¢ tends to 1 both sums converge to ‘aT—Jri This is the area of the curvilinear
trapezium.

For a > —1 the area of the curvilinear trapezium under the graph of % over
[A, B] is equal to the difference between the areas of trapezia over [0, B] and [0, A].
Hence this area is B —=A"""
For a < —1 one can evaluate the area of the curvilinear trapezium under the

graph of z* over [A, B] as the difference between the areas of trapezia over [A, 0]
and [B, oo]. The result is expressed by the same formula %
THEOREM 2.1.2 (Fermat). The area below the curve y = x® over the interval

[A, B] is equal to W for a # 1.

We have proved this theorem for integer a, but Fermat proved it for all real

a# —1.
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The Natural Logarithm. In the case a = —1 the geometric progression for
areas of step-figures turns into an arithmetic progression. This means that the area
below a hyperbola is a logarithm! This discovery was made by Gregory in 1647.

F1Gureg 2.1.3. The hyperbolic trapezium over [1, z]

The figure bounded from above by the graph of hyperbola y = 1/z, from below
by segment [a, b] of the axis of abscissas, and on each side by vertical lines passing
through the end points of the interval, is called a hyperbolic trapezium over [a,b].

The area of hyperbolic trapezium over [1,z] with z > 1 is called the natural
logarithm of x, and it is denoted by In z. For a positive number z < 1 its logarithm
is defined as the negative number whose absolute value coincides with the area of
hyperbolic trapezium over [z, 1]. At last, In1 is defined as 0.

THEOREM 2.1.3 (on logarithm). The natural logarithm is an increasing function
defined for all positive numbers. For each pair of positive numbers x, y

Inzy =lnz +1ny.

ProOOF. Consider the case z,y > 1. The difference Inzy — Iny is the area of
the hyperbolic trapezium over [y,zy]. And we have to prove that it is equal to
Inz, the area of trapezium over [1,z]. Choose a large number n. Let ¢ = z/m,
Then ¢" = z. The finite geometric progression {g*}?_, exhausts [1,z]. Then the
receding and advancing sums are

(212) iqfk(qlwrl _ qk) _ n(q _ 1) iqfkfl(qlwrl _ qk) — @
k=0 k=0

Now consider the sequence {zg*}?_, exhausting [z, zy]. Its receding sum
n—1
> a g et — 2gh) = n(g - 1)
k=0

just coincides with the receding sum (2.1.2) for Inz. The same is true for the
advancing sum. As a result we obtain for any natural n the following inequalities:

M n(q—l)Zlnxy—lnyZM

q q
This implies that |ln zy —Inz —Iny| does not exceed the difference between the the
receding and advancing sums. The statement of Theorem 2.1.3 in the case z,y > 1
will be proved when we will prove that this difference can be made arbitrarily small
by a choice of n. This will be deduced from the following general lemma.

n(g—1) >Inz >
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LEMMA 2.1.4. Let f be a monotone function over the interval [a,b] and let
{zr}}i_o be a sequence that ezhausts [a,b]. Then

n—1 n—1
> flae)dzk = Y flarir)dm
k=0 k=0

< 1£(0) ~ (a) ma o

PRrROOF OF LEMMA. The proof of the lemma is a straightforward calculation.
To shorten the notation, set 0 f(zx) = f(xg+1) — f(zk)-

n—1 n—1 n—1
Z f(xg)ozy, — Z f(@pq1)dzr| = Z Of(zr)dxp
k=0 k=0 k=0
n—1
< 37 16 (w)| max| oz
k=0
n—1
= max |6z | Y [6f (ws)|
k=0
n—1
= max |0xg| Z df(xk)
k=0

= max |6z | £(b) — f(a).

The equality Yo 6f(a:k)‘ = 310 10f(x1)| holds, as §f(x) have the same signs
due to the monotonicity of f. O

The value max |dxy| is called mazimal step of the sequence {x;}. For the
sequence {g¥} of [1,z] its maximal step is equal to ¢" — ¢" ! = ¢"(1 — ¢ ') =
z(1 —¢)/q. It tends to 0 as ¢ tends to 1. In our case |f(b) — f(a)) =1 -1 < 1.
By Lemma 2.1.4 the difference between the receding and advancing sums could be
made arbitrarily small. This completes the proof in the case z,y > 1.

Consider the case zy = 1, x > 1. We need to prove the following

(inversion rule) Inl/z =—Inz.
As above, put ¢" = ¢ > 1. The sequence {¢g *}?_, exhausts [1/z,1]. The corre-
sponding receding sum 37— g*t1 (g7F —g=F=1) = 770 (¢—1) = n(g—1) coincides

with its counterpart for Inz. The same is true for the advancing one. The same
arguments as above prove |Inl/z| = Inz. The sign of In1/z is defined as minus
because 1/xz < 1. This proves the inversion rule.

Now consider the case # < 1, y < 1. Then 1/z > 1 and 1/y > 1 and by the
first case In1/zy = (In1/z+1n1/y). Replacing all terms of this equation according
to the inversion rule, one gets —Inzy = —Inz —Iny and finally Inzy = Inz + Iny.

The next caseis x > 1, y < 1, zy < 1. Since both 1/z and zy are less then 1,
then by the previous case Inzy +Inl/z = In %Y = Iny. Replacing In1/z by —Inz
one gets Inzxy —Inz =Iny and finally Inzy =Ilnz + Iny.

The last case, x > 1, y < 1, zy > 1 is proved by lnzy + In1/y = Inz and
replacing In 1/y by —Iny. O

Base of a logarithm. Natural or hyperbolic logarithms are not the only loga-
rithmic functions. Other popular logarithms are decimal ones. In computer science
one prefers binary logarithms. Different logarithmic functions are distinguished by
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their bases. The base of a logarithmic function () is defined as the number b
for which I(b) = 1. Logarithms with the base b are denoted by log, z. What is
the base of the natural logarithm? This is the second most important constant in
mathematics (after 7). It is an irrational number denoted by e which is equal to
2.71828182845905 . ... It was Euler who introduced this number and this notation.
Well, e is the number such that the area of hyperbolic trapezium over [1, €]

is 1. Consider the geometric progression ¢" for ¢ = 1 + % All summands in the
qk+17 k

corresponding hyperbolic receding sum for this progression are equal to e i =

q—1= % Hence the receding sum for the interval [1,¢"] is equal to 1 and it is

greater than In¢". Consequently e > ¢". The summands of the advancing sum
. . k41 k
in this case are equal to L= = 1 — 1 = _1

q — n+l’
the interval [1,¢"*!] is equal to 1. It is less than the corresponding logarithm.
Consequently, e < ¢"*'. Thus we have proved the following estimates for e:

1 n 1 n+1
<1+—> <e<<1+—>
n n

We see that (1+ 1)" rapidly tends to e as n tends to infinity.

Hence the advancing sum for

Problems.

1. Prove that Inz/y =lnz —Iny.

2. Prove that In2 < 1.

3. Prove that In3 > 1.

4. Prove that « > y implies Inz > Iny.
5. Is Inz bounded?

6. Prove that n}rl <In(l+1/n) < L.
7. Prove that {7 <In(l1+2) <=.

8.

Prove the Theorem 2.1.2 (Fermat) for a =1/2,1/3,2/3.
9. Prove the unboundedness of *-.

10. Compare (1+ %)n and (1 + HLH)“H.

11. Prove the monotonicity of .
12. Prove that Y p 5 L <Inn < Y} ) 1.
13. Prove that In(14+x) >z — %
14. Estimate integral part of In 1000000.
15. Prove that In ZT‘H’ > W
16. Prove the convergence of Y .2, (
17. Prove that (n+3) ' <In(1+ 2

*18. Prove that 11—2 + ﬁ + ﬁ +---=1In2



2.2. Definite Integral

On the contents of the lecture. Areas of curvilinear trapezia play an extra-
ordinary important role in mathematics. They generate a key concept of Calculus
— the concept of the integral.

Three basic rules. For a nonnegative function f its integral fab f(z) dz along
the interval [a,b] is defined just as the area of the curvilinear trapezium below the
graph of f over [a,b]. We allow a function to take infinite values. Let us remark
that changing of the value of function in one point does not affect the integral,
because the area of the line is zero. That is why we allow the functions under
consideration to be undefined in a finite number of points of the interval.

Immediately from the definition one gets the following three basic rules of
integration:

Rule of constant fab fl@)de = c¢(b—a), if f(z) =c for x € (a,b),
Rule of inequality fab flx)de < f;g(:v) dz, if f(x) < g(x) for x € (a,b),
Rule of partition [ f(x) da = fab fl@)dz + [ f(x)d for b € (a,c).

b
b

Partition. Let |J| denote the length of an interval J. Let us say that a se-
quence {J}7_; of disjoint open subintervals of an interval I is a partition of I,
if > 41 |Zx| = |I]. The boundary of a partition P = {J;}}_, is defined as the
difference I \ |J;_, Jk and is denoted dP.

For any finite subset S of an interval I, which contains the ends of I, there
is a unique partition of I which has this set as the boundary. Such a partition is
called generated by S. For a monotone sequence {zj}}_, the generated partition

is {(zk—1,7k) } oy -

Piecewise constant functions. A function f(x) is called partially constant
on a partition {J}}_, of [a,b] if it is constant on each J;. The Rules of Constant
and Partition immediately imply:

b n
(2.2.1) [ t@yde =3 11l
a k=1

Proor. Indeed, the integral splits into a sum of integrals over Ji, = [zf_1, Z],
and the function takes the value f(Ji) in (zr—1, ). O

A function is called piecewise constant over an interval if it is partially constant
with respect to some finite partition of the interval.

LEMMA 2.2.1. Let f and g be piecewise constant functions over [a,b]. Then
b b b
Jo (f(@) £ g(z))dz = [, f(z)dw + [, g(z) dz.

ProOOF. First, suppose f(x) = cis constant on the interval (a, b). Let g take the
value gy, over the interval (zx,zg+1) for an exhausting {x;}}_,. Then f(z) + g(z)
takes values (c¢+ gi) over (zy, z+1). Hence f;(f(:v)-i—g(x)) dx = Z;S(c+gk)|6:ck|
due to (2.2.1). Splitting this sum and applying (2.2.1) to both summands, one gets
S hso clok| + Sy gklowk| = f; f(z)de + f;g(x) dx. This proves the case of a
constant f.

40



2.2 DEFINITE INTEGRAL 41

Now let f be partially constant on the partition generated by {zy}7_,. Then, by
the partition rule, f;(f($)+g(a:)) de =% 4, f;:ﬁl(f(:n)+g(a:)) dz. As f is constant

on any (zj_1,zx), for any k one gets [ (f(z) + g(z))dz = [7* f(z)dz +

Tp—1 Tp—1

f;:fl g(x)dzr. Summing up these equalities one completes the proof of Lemma

2.2.1 for the sum.
The statement about differences follows from the addition formula applied to

g(z) and f(z) —g(). .

LEMMA 2.2.2. For any monotone nonnegative function f on the interval [a,b]
and for any € > 0 there is such piecewise constant function f such that f- < f(z) <

fe(z) + €.
PROOF. f.(z) =Y po, kelke < f(z) < (k+ 1)e]. ad

THEOREM 2.2.3 (Addition Theorem). Let f and g be nonnegative monotone
functions defined on [a,b]. Then

b b b
[ G@+g@yde= [ f@de+ [ g o
PROOF. Let f. and g. be e-approximations of f and g respectively provided
by Lemma 2.2.2. Set f¢(z) = f.(z) + ¢ and ¢°(z) = g.(z) + . Then f.(z) <

flz) < fe(z) and g.(z) < g(z) < ¢°(z) for z € (a,b). Summing and integrating
these inequalities in different order gives

b b b
/a (f- () + g-(x)) do < / (f(@) + g(a)) dar < / (f°(2) + ¢ (2)) do
/ o) d + / g () da < / ) do + / () d < / (@) da + / () d.

Due to Lemma, 2.2.1, the left-hand sides of these inequalities coincide, as well as the
right-hand sides. Hence the difference between the central parts does not exceed

b b
[ @ - @+ [ (@) - @) e < 2600 a)
Hence, for any positive €
b b b
/ (f(z) + g(z)) dx —/ flz)dz —/ g(z) dz| < 2¢(b— a).

This implies that the left-hand side vanishes. d

Term by term integration of a functional series.

LEMMA 2.24. Let {fn}22, be a sequence of nonnegative nondecreasing func-
tions and let p be a piecewise constant function. If .~ fe(z) > p(z) for all

z € [a,b] then Y., fab fr(z)dz > fabp(a:) dz.

PRrOOF. Let p be a piecewise constant function with respect to {x;},. Choose
any positive e. Since Y po; fr(z;) > p(c), eventually one has > p-, fi(z;) > p(@;) —
e. Fix m such that this inequality holds simultaneously for all {z;}? . Let [x;, Z;y1]
be an interval where p(x) is constant. Then for any x € [z;,2;41] one has these
inequalities: Y ;" | fu(z) > >opt, fr(zk) > p(zr) —e = p(z) —e. Consequently
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for all € [a,b] one has the inequality e L fr(z) > p(z) —e. Taking integrals

gives [V fr(z) de > [’ (p(x) — ) dzw = [ p(x) dz — (b — a). By the Addition
Theorem [ Ekzl fk( )d:c = zk Y @) de < 52 Y fu(x) de. Therefore
POy fb fr(z f p(z)dz — s(b - a) for any positive e. This implies the
inequality Zk 1f fk d:z: > f p(z O

THEOREM 2.2.5. For any sequence { fn}52; of nonnegative nondecreasing func-
tions on an interval [a, b

/a Zlfku)dx:?jl/:fk(x)dx

PROOF. Since Y_;_, fr(z) < > po; fr(z) for all z, by integrating one gets

/abfjfku)dxs/abfjfk(x)dx

By the the Addition Theorem the left-hand side is equal to Y ;_, f fr(x) dx, which
is a partlal sum of Ek 1 f fr(z) dz. Then by All-for-One one gets the inequality

Py 1f fr(z dar<f >oret fr(x) da

To prove the opposite mequahty for any positive €, we apply Lemma 2.2.2
to find a piecewise constant function F., such that F.(z) < Y7, fi(z)dz and

f; > ey (fu(z) = F.(z)) dw < e. On the other hand, by Lemma 2.2.4 one gets

i/abfk(w)dxz/abﬂ(x)dx.

Together these inequalities imply Ek 1 f fe(z)dz+e > f Ek 1 fu(z)dz. Asthe
last inequality holds for all € > 0, it holds also for e=0 O

THEOREM 2.2.6 (Mercator,1668). For any x € (—1,1] one has

| (—1)kHgh
(2.2.2) n(1 + z) Z
k=1
Proor. Consider z € [0,1). Since fo th dt = k—+1 due to the Fermat Theorem

2.1.2, termwise integration of the geometric series Y., t* over the interval [0, z]
for z < 1gives [ fpdt =377, [o thdt =317, ,;:
LEMMA 2.2.7. [ {35 dt =In(1 — ).

PROOF OF LEMMA. Construct a translation of the plane which transforms the
curvilinear trapezium below 1 over [0, z] into the trapezium for In(1—z). Indeed,
the reflection of the plane ((z,y) — (2 — z,y)) along the line z = 1 transforms this
trapezium to the curvilinear trapezium under —- over [2 — x,2]. The parallel
translation by 1 to the left of the latter trapezium (z,y) — (z — 1,y) transforms it

just in to the ogarithmic trapezium for In(1 — z). O

The Lemma proves the Mercator Theorem for negative x. To prove it for
positive z, set f(z) = z?*~1 — 2%*. All functions f; are nonnegative on [0, 1] and
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> iey fr(x) = - Termwise integration of this equality over [0,z] gives (2.2.2),

modulo the equality f0$ 1+-t dt = |, f % dt. The latter is proved by parallel translation

k+1,_k
of the plane. Let us remark, that in the case z = 1 the series Zzo 1 % is not

absolutely convergent, and under its sum we mean 327 | 5o S T = ke VGG —
5 k). And the above proof proves just this fact. a

The arithmetic mean of Mercator’s series evaluated at x and —z gives Gregory’s
Series

1+ +x3+x5+x7+
=+ —+—+—=—+....
1—=z 3 5 7

Gregory’s series converges much faster than Mercator’s one. For example, putting

z = % in (2.2.3) one gets

(2.2.3) %m

-
3.3 5.3 7-37

2
In2 =2
n 3+

Problems.
1. Prove that ‘fab f(x) dx‘ < fab |f(z)] dw.
2. Prove the following formulas via piecewise constant approximations:

b b
(multiplication formula) / M(z)de = )\/ f(z)dx
‘ b bic
(shift formula) / flz)de = / flz —c)dz
a a+tc
a 0
(reflection formula) / flz)dz = f(—z)dz
0 —a
a 1 ka z
(compression formula) /0 flz)de = % /0 f (E) dz
3. Evaluate f027r(sina: +1)dz.
4. Prove the inequality ff2(2 + 232%) dx > 8.
5. Prove fOZW (sinz + 1) dz < 2.
6. Prove f120000: H+n(w) dz < 1007 + .
7. Denote by s, the area of {(z,y) |0 <z <1,(1—2)lnn+zln(n+1) <y <

In(1+ x)}. Prove that E,io 1 Sk < 00.
Prove that 77, (~1)F 20 < In(1 4+ 2) < ot (= 1)FH122 for 2 > 0,
9. Compute the logarlthms of the primes 2, 3,5, 7 with accuracy 0.01.
10. Evaluate [, /7 da.
*11. Evaluate [ sinz da.

®



2.3. Stieltjes Integral

On the contents of the lecture. The Stieltjes relativization of the integral
makes the integral flexible. We learn the main transformations of integrals. They
allow us to evaluate a lot of integrals.

Basic rules. A parametric curve is a mapping of an interval into the plane.
In cartesian coordinates a parametric curve can be presented as a pair of functions
x(t),y(t). The first function x(t) represents the value of abscises at the moment ¢,
and the second y(t) is the ordinate at the same moment. We define the integral

f f(t)dg(t) for a nonnegative function f, called the integrand, and with respect to
a nondecreasmg continuous function g, called the differand, as the area below the
curve f(t),g(t) | t € [a,b].

A monotone function f is called continuous over the interval [a, b] if it takes all
intermediate values, that is, the image f[a,b] of [a, b] coincides with [f(a), f(b)]. If
it is not continuous for some y € [f(a), f(b)] \ fla,b], there is a point z(y) € [a, b]
with the following property: f(z) <y if z < z(y) and f(z) >y if z > z(y). Let us
define a generalized preimage fl='1(y) of a point y € [f(a), f(b)] either as its usual
preimage f~!(y) if it is not empty, or as z(y) in the opposite case.

Now the curvilinear trapezium below the curve f(t),g(t) over [a,b] is defined
as {(z,y) | 0 <y < g(F-(x))}.

The basic rules for relative integrals transform into:

Rule of constant f; ft)dg(t) = c(g(d) — g(a)), if f(t) =c for t € (a,b),
Rule of inequality f; fi(t)dg(t) < f; f2(t)dg(t), if fi(t) < fo(t) for t € (a,b),
Rule of partition [ f(t) dg(t) = f; f@&)dg(t) + [, f(t)dg(t) for b € (a,c).

Addition theorem. The proofs of other properties of the integral are based
on piecewise constant functions. For any number z, let us define its e-integral part
as e[z /e]. Immediately from the definition one gets:

LEMMA 2.3.1. For any monotone nonnegative function f on the interval [a, b]
and for any € > 0, the function [f]. is piecewise constant such that [f(x)]. < f(z) <
[f(x)]c + € for all x.

THEOREM 2.3.2 (on multiplication). For any nonnegative monotone f, and
any continuous nondecreasing g and any positive constant ¢ one has

(2.3.1) /aCf( ) dg(a —c/ f(z) dg(z /f ) deg(x

PROOF. For the piecewise constant f. = [f]., the proof is by a direct calcula-
tion. Hence

(2.3.2) / of(z) dg(z) = / (&) dg(z / f-() deg (e

Now let us estimate the differences between integrals from (2.3.1) and their approx-
imations from (2.3.2). For example, for the right-hand side integrals one has:

sy | ' fdeg - / ' deg = / (= £ deg < / e deg = e(eq(t)  ca(a).
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Hence f; fdeg = I. + €1, where 1 < ce(g(b) — g(a)). The same argument proves
cfab fdg=1I.+¢2 and fab cf dg = I. + &3, where 3, e3 < ce(g(b) — g(a)). Then the
pairwise differences between the integrals of (2.3.1) do not exceed 2ce(g(b) — g(a)).
Consequently they are less than any positive number, that is, they are zero. d

THEOREM 2.3.3 (Addition Theorem). Let fi, fo be nonnegative monotone func-
tions and g1, g» be nondecreasing continuous functions over [a,b], then

(2.3.4) / (1(t) + Fo() o (¢ /fl ) dgy (t /fz ) dg (¢

(2.3.5) /fl t) + ga(t /fl ) dga (t /f1 ) dga(t

ProOF. For piecewise constant integrands both the equalities follow from the
Rule of Constant and the Rule of Partition. To prove (2.3.4) replace f; and f> in
both parts by [f1]. and [f2].. We get equality and denote by I. the common value
of both sides of this equality. Then by (2.3.3) both integrals on the right-hand side
differ from they approximation at most by (g1 (b) — g1 (a)), therefore the right-hand
side of (2.3.4) differs from I. at most by 2(g1(b) — g1(a)). The same is true for the
left-hand side of (2.3.4). This follows immediately from (2.3.3) in case f = f1 + fa,
fe = [f1)s + [f2)c and g = g1. Consequently, the difference between left-hand and
right-hand sides of (2.3.4) does not exceed 4¢(g1(b) — g1(a)). As € can be chosen
arbitrarily small this difference has to be zero.

The proof of (2.3.5) is even simpler. Denote by I. the common value of both
parts of (2.3.5) where f; is changed by [fi]. By (2.3.3) one can estimate the
differences between the integrals of (2.3.5) and their approximations as being <
€(g1(b) + g2(b) — g1(a) — g2(a)) for the left-hand side, and as < e(g1 (b) — g1(a)) and
< g(g2(b) — g2(a)) for the corresponding integrals of the right-hand side of (2.3.5).
So both sides differ from I. by at most < e(g1(b) — g1(a) + g2(b) — g2(a)). Hence
the difference vanishes. d

Differential forms. An expression of the type fidg, + fodgs + -+ + frndgn
is called a differential form. One can add differential forms and multiply them by

functions. The integral of a differential form fab (fidgr + fadga + -+ + fudgyn) is

defined as the sum of the integrals _,_, f; fr dgr. Two differential forms are called
equivalent on the interval [a, b] if their integrals are equal for all subintervals of [a, b].
For the sake of brevity we denote the differential form fidg: + fodgs + -+ + frdgn
by FdG, where F = {f1,..., fn} is a collection of integrands and G = {g1,...,9n}
is a collection of differands.

THEOREM 2.3.4 (on multiplication). Let F'dG and F'dG' be two differential
forms, with positive increasing integrands and continuous increasing differands,
which are equivalent on [a,b]. Then their products by any increasing function f
on [a,b] are equivalent on [a,b] too.

PROOF. If f is constant then the statement follows from the multiplication
formula. If f is piecewise constant, then divide [a, b] into intervals where it is con-
stant and prove the equality for parts and after collect the results by the Partition

Rule. In the general case, 0 < f; fFdG — fab[f]ngG < fab eF dG = z—:fadeG.
Since fab[f]EF’ dG' = f;[f]EFdG, one concludes that ‘f; fF'dG' — fab deG‘ <
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€ f; FdG +¢ fab F'dG'. The right-hand side of this inequality can be made arbi-
trarily small. Hence the left-hand side is 0. g

Integration by parts.

THEOREM 2.3.5. If f and g are continuous nondecreasing nonnegative functions
on [a,b] then d(fg) is equivalent to fdg + gdf.

Proor. Consider [c,d] C [a,b]. The integral fcd f dg represents the area below

the curve (f(t),g(t))te[c,q)- And the integral fcd g df represents the area on the left
of the same curve. Its union is equal to [0, f(d)] x [0, g(d)]\ [0, f(c)] x [0, g(c)]. The
area of this union is equal to (f(d)g(d) — f(c)g(c) = fcd dfg. On the other hand the
area of this union is the sum of the areas of curvilinear trapezia representing the

integrals fcd fdg and fcdgdf. O

Change of variable. Consider a Stieltjes integral fab f(r)dg(7) and suppose
there is a continuous nondecreasing mapping 7: [to, t1] — [a, b], such that 7(t9) = a
and 7(¢1) = b. The composition g(7(t)) is a continuous nondecreasing function and
the curve {(f(7(t),9(7(t))) | t € [to,t1]} just coincides with the curve {(f(7), g(7)) |
T € [a,b]. Hence, the following equality holds; it is known as the Change of Variable

formula:
T(t1)

CF(r() dg(r(t) = / £(r) dg(r).

to (to)
For differentials this means that the equality F(z)dG(x) = F'(x)dG'(x) conserves
if one substitutes instead of an independent variable = a function.

Differential Transformations.

Case dz™. Integration by parts for f(t) = g(t) = t gives dt? = tdt + tdt. Hence
tdt = d%. If we already know that dz” = ndz™!, then dz"t! = d(zz") =
xdz" + z"dx = nxz" dr +z"dz = (n+ 1)z"dz. This proves the Fermat Theorem
for natural n.

Case d%¥/z. To evaluate d%¥/r substitute z = y™ into the equality dy” =

ny™ tdy. One gets do = %d%, hence d%¥/z = l—gdaz.

Case Inzdz. We know dlnz = %daz. Integration by parts gives lnzdx =
dizlnz) —zdlnz =d(xzlnz) — de = d(zlnz — ).

Problems.
Evaluate dz2/3.
Evaluate dz—'.
Evaluate z In z dz.
Evaluate dIn® z.
Evaluate In” z dz.
Evaluate de”.

Investigate the convergence of > .., L

klnk"*

NS TR W=



2.4. Asymptotics of Sums

On the contents of the lecture. We become at last acquainted with the
fundamental concept of a limit. We extend the notion of the sum of a series and
discover that a change of order of summands can affect the ultimate sum. Finally
we derive the famous Stirling formula for n!.

Asymptotic formulas. The Mercator series shows how useful series can be
for evaluating integrals. In this lecture we will use integrals to evaluate both partial
and ultimate sums of series. Rarely one has an explicit formula for partial sums
of a series. There are lots of important cases where such a formula does not exist.
For example, it is known that partial sums of the Euler series cannot be expressed
as a finite combination of elementary functions. When an explicit formula is not
available, one tries to find a so-called asymptotic formula. An asymptotic formula
for a partial sum S,, of a series is a formula of the type S, = f(n)+ R(n) where f is
a known function called the principal part and R(n) is a remainder, which is small,
in some sense, with respect to the principal part. Today we will get an asymptotic
formula for partial sums of the harmonic series.

Infinitesimally small sequences. The simplest asymptotic formula has a
constant as its principal part and an infinitesimally small remainder. One says that
a sequence {z} is infinitesimally small and writes lim z;, = 0, if z;, tends to 0 as n
tends to infinity. That is for any positive ¢ eventually (i.e., beginning with some n)
|zr] < e. With Iverson notation, this definition can be expressed in the following
clear form:

o0 o0 o0
[{zr}72, is infinitesimally small] = H 2 Z(—l)” H (m[k > n]|zx| < 1]].
m=1 [n=1 k=1

Three basic properties of infinitesimally small sequences immediately follow
from the definition:

e if limay = lim b, = 0 then lim(ay + bi) = 0;
e if limay = 0 then lim axb;, = 0 for any bounded sequence {by};
o if ap < b < ¢ for all k and limag = lim ¢, = 0, then lim by, = 0.
The third property is called the squeeze rule.
Today we need just one property of infinitesimally small sequences:

THEOREM 2.4.1 (Addition theorem). If the sequences {ay} and {b;} are in-
finitesimally small, than their sum and their difference are infinitesimally small
too.

PrOOF. Let € be a positive number. Then /2 also is positive number. And
by definition of infinitesimally small, the inequalities |a| < €/2 and |bg| < €/2 hold
eventually beginning with some n. Then for k£ > n one has |ag £ bg| < |ax| + |br| <
ef2+¢e/2=¢.

Limit of sequence.

DEFINITION. A sequence {zy} of (complex) numbers converges to a number z
iflim z —z;, = 0. The number z is called the limit of the sequence {z1} and denoted
by lim 2.
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An infinite sum represents a particular case of a limit as demonstrated by the
following.

THEOREM 2.4.2. The partial sums of an absolutely convergent series 21211 2k
converge to its sum.

PROOF. | 577 2k — 20l 2kl = | 02, 2l < 302, |- Since 532, |zl >
S22, |2k| — &, there is a partial sum such that S 7_1 |2¢| > S50, |2x] — &. Then
for all m > n one has Y o |zx| < Yope,, 2] <e. O

Conditional convergence. The concept of the limit of sequence leads to a
notion of convergence generalizing absolute convergence.

A series ) ,° | ay is called (conditionally) convergent if im >, ap = A+ ay,
where lim , = 0. The number A is called its ultimate sum.

The following theorem gives a lot of examples of conditionally convergent series
which are not absolutely convergent. By [[n]] we denote the even part of the number
n, i.e., [[n]] = 2[n/2].

THEOREM 2.4.3 (Leibniz). For any of positive decreasing infinitesimally small

sequence {a,}, the series Y p— (—1)¥*1ay converges.

PRrOOF. Denote the difference ay — agt+1 by dag. The series Z;; dasy—1 and
> he, dasy are positive and convergent, because their termwise sum is ) .- | day, =
ar. Hence S = 372, dasg—1 < ai. Denote by S, the partial sum Y7 (—1)F+1ay.

Then S, = Z;ll dazp—1 = S + ap, where lima, = 0. Then S, = Sy, +
ap[n is odd] +aqpn)). As an[n is odd] + ajp,) is infinitesimally small, this implies the
theorem. |

LEMMA 2.4.4. Let f be a non-increasing nonnegative function. Then the series
Soheq (f(k)— :H f(x) dx) is positive and convergent and has sum cp < f(1).

PROOF. Integration of the inequalities f(k) > f(z) > f(k + 1) over [k, k + 1]
gives f(k) > kk+1 f(x)dz > f(n+ 1). This proves the positivity of the series and
allows us to majorize it by the telescopic series Y~ (f(k) — f(k+ 1)) = f(1). O

THEOREM 2.4.5 (Integral Test on Convergence). If a nonnegative function
f(z) decreases monotonically on [1,+00), then Y o, f(k) converges if and only

if [° f(z)dr < 0.
PROOF. Since [~ f(z)dz = Y e, fkk—H f(z)dz, one has Y ,o, f(k) = ¢f +
[ f (@) da. O

Euler constant. The sum Y 2| (3 —In(1+ ¢)), which is ¢f for f(z) = 1, is
called Euler’s constant and denoted by . Its first ten digits are 0.5772156649. ...

Harmonic numbers. The sum Y, _, % is denoted H,, and is called the n-th
harmonic number.

THEOREM 2.4.6. H, =Inn + v+ 0, where limo, = 0.

PROOF. Since Inn = Y p_ (In(k + 1) — Ink) = > p_;In(l + 1), one has
Inn+ 3021 (2 —In(l+ 3)) = Hyy. But 307 (2 —In(1 + 2)) = v + ay,, where

lim o, = 0. Therefore H, =Inn+ v+ (% + a,). O



2.4 ASYMPTOTICS OF SUMS 49

k1

Alternating harmonic series. The alternating harmonic series 220:1%

is a conditionally convergent series due to the Leibniz Theorem 2.4.3, and it is not

absolutely convergent. To find its sum we apply our Theorem 2.4.6 on asymptotics
of harmonic numbers. -

Denote by S, = Y.¢_, S the partial sum. Then S, = H/, — H}!, where

= Y1 3lkisodd] and H]] = > ¢, £[k is even]. Since Hj, = $H, and
H), = Hy, — HY, = Hy,, — %Hn one gets

1
- 1H,

=ln2n+~v+o09, —lnn—-—7vy—-o0,
=1In2+ (02, — 0p)-

Consequently Sy, = In 24 (0[pu)] — 052 + (717);“ [ is odd]). As the sum in brackets
is infinitesimally small, one gets

N N

k=1
The same arguments for a permutated alternating harmonic series give
(2.4.1) 143 —24+t+2-1+5+5—s+--=32In2
Indeed, in this case its 3n-th partial sum is
Ssn = Hy,, — HY,
= Hy, — 5Hon — 5 H,
=1ndn + v+ 04y — %(1n2n—|—7+02n+lnn—l—7+on)
=In4—$In2+o0),
=3mn2+o0),

where lim o}, = 0. Since the difference between S,, and Ss,, where m = [n/3] is
infinitesimally small, this proves (2.4.1).

Stirling’s Formula. We will try to estimate Inn!. Integration of the inequal-
ities In[z] < Inz < Infz + 1] over [1,n] gives In(n — 1)! < ["Inzdz <Inn!. Let us
estimate the difference D between [,*Inzdz and i (Inn! + In(n — 1)!).

D= / (Inz — L(nfe] + Infz + 1])) dz

_Z/ (in(k +2) ~In Rk +1)) do.

To prove that all summands on the left-hand side are nonnegative, we apply the
following general lemma.

(2.4.2)

LEMMA 2.4.7. fo x)dr = fo f(1 —z)dx for any function.

PROOF. The reflection of the plane across the line y = % transforms the curvi-
linear trapezium of f(z) over [0,1] into curvilinear trapezium of f(1 — z) over
[0,1]. O
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LEMMA 2.4.8. [ ln(k +z)de > In/k(k +1).

PROOF. Due to Lemma 2.4.7 one has

1 1
/ ln(k-i—:v)dx:/ In(k+1—2x)de
0 0

:/1%(1n(k+$)—|—ln(k+1—az))dw
0

:/11n\/(k—|—az)(k+1—az)d:n
:/11n\/k(k+1)+x—x2dx

0

1
Z/ In\k(k+1)dz

0

=In/k(k + 1).

Integration of the inequality In(1 + z/k) < z/k over [0, 1] gives

1 1
/ln(1+x/k)dx§/ fda:_i
0 0 k

2k
This estimate together with the inequality In(1 4+ 1/k) > 1/(k + 1) allows us to
estimate the summands from the right-hand side of (2.4.2) in the following way:

/lnk+x —Invk(k+1) d:c—/ In(k +z) —Ink — $(In(k + 1) — Ink) dx
0 0

We see that D,, < 372, ﬁ - 2(% = % or all n. Denote by Dy, the sum

fo
(2.4.2) for infinite n. Then R,, = Do, — D,, = 21 for some nonnegative 6 < 1, and
we get

n
Dy — £ :/ Inzdr — 1 (Inn! +In(n — 1)!)
1

(2.4.3) n
:/ lna:da:—lnn!—l—%lnn.
1

Substituting in (2.4.3) the value of the integral [“Inzdr = [ d(zlnz — ) =
(nlnn—n) — (1lnl—1) =nlon —n+ 1, one gets
Inn!=nlnn—n+ilnn+(1-Dy)+ L.

Now we know that 1 > (1 — D) > %, but it is possible to evaluate the value of
D, with more accuracy. Later we will prove that 1 — Do, = /2.
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Problems.
Does >, sink converge?

Does Yo, sink? converge7
Evaluate1+———+ +____|_...__+
Prove: If lim a”“

1
3n+1 + 3nt+2

<1, then Zk | G converge.
Prove: If 3.2, |ak — ag—1| < o0, then {a} converges.
(DI

k

Prove the convergence of Y 77, lné T

Prove the convergence of Y, Tw \/—
n

Prove the convergence of Y~

Inln &
Prove the convergence of Y~ m

Prove the convergence of )7, kln 7 and find its asymptotic formula.
1
nZ k"

. Which partial sum of the above series is 0.01 close to its ultimate sum?
. Evaluate 2320:2 Tz With precision 0.01.

. Evaluate [] Inzd[z].

. Express the Stirling constant via the Wallis product Z = [];7 | 522 ;22

n=1 2n—1 2n+1"



2.5. Quadrature of Circle

On the contents of the lecture. We extend the concept of the integral
to complex functions. We evaluate a very important integral § %dz by applying
Archimedes’ theorem on the area of circular sector. As a consequence, we evaluate
the Wallis product and the Stirling constant.

Definition of a complex integral. To specify an integral of a complex func-
tion one has to indicate not only its limits, but also the path of integration. A
path of integration is a mapping p: [a,b] — C, of an interval [a, b] of the real line
into complex plane. The integral of a complex differential form fdg (here f and g
are complex functions of complex variable) along the path p is defined via separate
integration of different combinations of real and imaginary parts in the following
way:

b

b
/ Re f(p(t)) dRe g(p(t)) — / I (p(t)) dTm g (p(t))

a

b b
i / Re f(p(t)) dTm g(p(t)) + i / Im £ (p(t)) dRe g(p(t))

Two complex differential forms are called equal if their integrals coincide for all
paths. So, the definition above can be written shortly as fdg = Re fdReg —
Im fdlmg+iRe fdlmg +iIm fdReg.

The integral [ %dz. The Integral is the principal concept of Calculus and
Ik %dz is the principal integral. Let us evaluate it along the path p(t) = cost+isint,
t € [0,¢], which goes along the arc of the circle of the length ¢ < 7/2. Since
L = cost — isint, one has

cost+isint
1 [ [
/—dz:/ costdcost+/ sintdsint
p < 0 0

2.5.1
(2.5.1) o o
—i/ sintdcost+i/ costdsint.

0 0

Its real part transforms into fo(b Tdcos®t + fo(b : dsin®t = fod’ 2 d(cos®t + sin?t) =

fod) % dl = 0. An attentive reader has to object: integrals were defined only for

differential forms with non-decreasing differands, while cost decreases.

Sign rule. Let us define the integral for any differential form fdg with any
continuous monotone differand g and any integrand f of a constant sign (i.e, non-
positive or non-negative). The definition relies on the following Sign Rule.

(2.5.2) /ab—fdg:—/abfdgz/abfd(—g)

If f is of constant sign, and g is monotone, then among the forms fdg, — fdg, fd(—g)
and — fd(—g) there is just one with non-negative integrand and non-decreasing
differand. For this form, the integral was defined earlier, for the other cases it is
defined by the Sign Rule.

Thus the integral of a negative function against an increasing differand and the
integral of a positive function against a decreasing differand are negative. And the
integral of a negative function against a decreasing differand is positive.
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The Sign Rule agrees with the Constant Rule: the formula fab cdg = ¢(g(b) —
g(a)) remains true either for negative ¢ or decreasing g.

The Partition Rule also is not affected by this extension of the integral.

The Inequality Rule takes the following form: if fi(z) < fa(z) for all = € [a, b]

then fab fi(z)dg(z) < f; f2(z) dg(z) for non-decreasing g and fab fi(z)dg(z) >
fab f2(z) dg(x) for non-increasing g.

Change of variable. Now all integrals in (2.5.1) are defined. The next objec-
tion concerns transformation costdcost = %d cos? t. This transformation is based
on a decreasing change of variable # = cost in dz?/2 = xdz. But what happens
with an integral when one applies a decreasing change of variable? The curvilinear
trapezium, which represents the integral, does not change at all under any change
of variable, even for a non-monotone one. Hence the only thing that may happen
is a change of sign. And the sign changes by the Sign Rule, simultaneously on both
sides of equality da?/2 = zdz. If the integrals of zdz and dz? are positive, both
integrals of costdcost and cos?t are negative and have the same absolute value.
These arguments work in the general case:

A decreasing change of variable reverses the sign of the integral.

Addition Formula. The next question concerns the legitimacy of addition of
differentials, which appeared in the calculation d cos? t+dsin® t = d(cos? t+sin®t) =
0, where differands are not comonotone: cost decreases, while sint increases. The
addition formula in its full generality will be proved in the next lecture, but this
special case is not difficult to prove. Our equality is equivalent to dsin® t = —d cos? t.
By the Sign Rule —dcos®’t = d(—cos®t), but —cos®t is increasing. And by the
Addition Theorem d(— cos? t+1) = d(— cos? t)+d1 = d(— cos® t). But —cos®>t+1 =
sin? t. Hence our evaluation of the real part of (2.5.1) is justified.

Trigonometric integrals. We proceed to the evaluation of the imaginary part
of (2.5.1), which is costdsint —sint dcost. This is a simple geometric problem.

The integral of sin¢d cost is negative as cost is decreasing on [0, 5], and its ab-
solute value is equal to the area of the curvilinear triangle A’ BA, which is obtained
from the circular sector OB A with area ¢/2 by deletion of the triangle OA' B, which
has area % cos ¢sin ¢. Thus f0¢ sintdcost is ¢/2 — 3 cos ¢ sin ¢.

The integral of cost dsint is equal to the area of curvilinear trapezium OB’ BA.
The latter consists of a circular sector OBA with area ¢/2 and a triangle OB'B

with area % cos ¢ sin ¢. Thus fod) costdsint = ¢/2 + % coS ¢ sin ¢.
As a result we get fp % dz = i¢. This result has a lot of consequences. But
today we restrict our attention to the integrals of sint¢ and cost.

Multiplication of differentials. We have proved
(2.5.3) costdsint —sintdcost = dt.
Multiplying this equality by cost, one gets

cos? tdsint —sint costdcost = cost dt.

Replacing cos® t by (1 —sin®t) and moving cost into the differential, one transforms
the left-hand side as

dsint —sin® tdsint — tsintdcos®t = dsint — %sintdsin2t— 1 sintdcos? t.
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(p ’
o) A A

FIGURE 2.5.1. Trigonometric integrals

We already know that dsin® ¢t +d cos® t is zero. Now we have to prove the same for
the product of this form by %sin t. The arguments are the same: we multiply by
L sint the equivalent equality dsin”t = d(— cos? t) whose differands are increasing.
This is a general way to extend the theorem on multiplication of differentials to
the case of any monotone functions. We will do it later. Now we get just dsint =
costdt.

Further, multiplication of the left-hand side of (2.5.3) by sint gives

sintcostdsint —sin® tdcost = L costdsin®t — dcost + L costdcos® t = —d cost.

So we get dcost = — sintdt.
THEOREM 2.5.1. dsint = costdt and dcost = —sintdt.

We have proved this equality only for [0,7/2]. But due to well-known symme-
tries this suffices.

Application of trigonometric integrals.

LEMMA 2.5.2. For any convergent infinite product of factors > 1 one has

n o0
(2.5.4) lim H Dk = H Dk
k=1 k=1

PROOF. Let ¢ be a positive number. Then [, pr > [Toe; pPr — ¢, and by All-
for-One there is n such that [],_, pr > [Ir—; pr—e. Then for any m > n one has the
inequalities [T,—; pr > [Tpey Pr > [Ipey P — €. Therefore | [T, pr — [Trey x| <
E. O

Wallis product. Set [,, = foﬂ sin” ¢ de. Then Iy = foﬂ lde = mand I =

foﬂ sinzdxr = —cosm + cos0 = 2. For n > 2, let us replace the integrand sin™ z by
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sin” % (1 — cos? z) and obtain

I, = / sin"~? z(1 — cos® x) dx
0

™ ™
= / sin® 2z dx — / sin” "2 z cosz dsin
0 0

™

=1, o — ﬁ cosz dsin™ ()

™
=12 — dcosxsm 1:v)+/ sin" 'z dcosw
0
— In— Z_n 1

We get the recurrence relation I,, = nT_lln_g, which gives the formula

_ (2n-1)1 _,(@2n=2)N
(255) IQTL = FT, IQn_l = QW
where n!! denotes the product n(n — 2)(n —4)---(n mod 2 4+ 1). Since sin"z <

sin” !z for all = € [0, 7], the sequence {I,,} decreases. Since I,, < In 1 <1I,_2,0ne

gets ”T_l = InI—"Q < ﬁ: L < 1. Hence ;" L differs from 1 less than =. Consequently,
I,

lim ﬁ = 1. In particular, lim = 1. Substituting in this last formula the

Iony1
Ton
expressions of I, from (2.5.5) one gets
T (2n+ D20 -1
2 2n!12n!! N
Therefore this is the famous Wallis Product

lim

T 2n!12n!!
Ty
2 T MM e DEnr 1) H4n2—1

Stirling constant. In Lecture 2.4 we have proved that
(2.5.6) Inn!=nlon—n+ilnn+o+o,,

where o, is infinitesimally small and o is a constant. Now we are ready to determine
this constant. Consider the difference In2n! — 2Inn!. By (2.5.6) it expands into

(2nln2n —2n+ $In2n+4 0 + 02,) — 2(nlnn —n+ $Inn+ o+ o,)
=2nIn2+ $In2n —Inn — o + o,
where o, = 04, — 20, is infinitesimally small. Then o can be presented as

c=2lnn!—In2n!+2nn2+ fInn+$In2—Inn+o,.
Multiplying by 2 one gets
20 =4Inn! —2In2n! 4+ 2n2*" —Inn +1n2 + 20,.

Hence 20 = lim(41lnn! — 21n 2n! + 21n2?" — Inn + In 2). Switching to product and
keeping in mind the identities n! = nll(n — 1)!! and n!2" = 2n!! one gets
9 pligintl 2 (2n!h)? . 2-(2n!)%(2n +1)

7 = = M a2 n - DEn ™ @ - D@n + e
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Problems.

Evaluate [v1— 2?2 dz.

Evaluate [ ﬁdaz.

Evaluate [ V5 — a2 d.

Evaluate [ cos® z dz.
Evaluate [ tanzdz.
Evaluate [ sin'zdz.
Evaluate [ sinz?dz.
Evaluate [ tanzdz.
Evaluate [ ?sinzdx.
Evaluate d arcsin x.

. Evaluate [ arcsinz da.
. Evaluate [e” coszdz.

2.5 QUADRATURE OF CIRCLE



2.6. Virtually monotone functions

Monotonization of the integrand. Let us say that a pair of functions fi, fo
monotonize a function f,if f; is non-negative and non-decreasing, fo is non-positive
and non-increasing and f = f; + fs.

LEMMA 2.6.1. Let f = fi + f2 and f = f] + f} be two monotonizations of f.
Then for any monotone h one has fidh + fodh = fidh + fidh.

PrOOF. Our equality is equivalent to fidh — fidh = f{dh — fodh. By the
sign rule this turns into fidh + (—f3)dh = f{dh + (—f2)dh. Now all integrands
are nonnegative and for non-decreasing h we can apply the Addition Theorem and
transform the inequality into (f; — f5)dh = (f] — f2)dh. This is true because
(fi = f3) = (fi — f2)-

The case of a non-increasing differand is reduced to the case of a non-decreasing
one by the transformation fid(—h)+ fod(—h) = f{d(—h)+ f3d(—h), which is based
on the Sign Rule. O

A function which has a monotonization is called virtually monotone.
We define the integral fab f dg for any virtually monotone integrand f and any
continuous monotone differand g via a monotonization f = fi; + fo by

/abfdgz/abfldgﬁL/:fzdg-

Lemma, 2.6.1 demonstrates that this definition does not depend on the choice
of a monotonization.

LEMMA 2.6.2. Let f and g be virtually monotone functions; then f + g is
virtually monotone and fdh + gdh = (f + g)dh for any continuous monotone h.

PRrROOF. Let h be nondecreasing. Consider monotonizations f = f; + fo and
g = g1 + g2. Then fdh + gdh = fidh + fadh + gidh + gadh by definition via
monotonization of the integrand. By virtue of the Addition Theorem 2.3.3 this
turns into (f1 + g1)dh + (f2 + g2)dh. But the pair of brackets monotonize f + g.
Hence f+g is proved to be virtually monotone and the latter expression is (f +g)dh
by definition, via monotonization of the integrand. The case of non-increasing h is
reduced to the previous case via —fd(—h) — gd(—h) = —(f + g)d(=h). O

Lemma on locally constant functions. Let us say that a function f(z) is
locally constant at a point  if f(y) = f(x) for all y sufficiently close to x, i.e., for
all y from an interval (z — ¢,z + ¢€).

LEMMA 2.6.3. A function f which is locally constant at each point of an interval
18 constant.

PROOF. Suppose f(z) is not constant on [a,b]. We will construct by induction
a sequence of intervals Ij, = [ay, bg], such that Iy = [a,b], Iy4+1 C Iy, |br — ax| >
2|bg+1 — agy1] and the function f is not constant on each I. First step: Let
c=(a+b)/2, as f is not constant f(z) # f(c) for some z. Then choose [z, c] or
[c,z] as for [a1,b1]. On this interval f is not constant. The same are all further
steps. The intersection of the sequence is a point such that any of its neighborhoods
contains some interval of the sequence. Hence f is not locally constant at this
point. (|
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58 2.6 VIRTUALLY MONOTONE FUNCTIONS

LeEMMA 2.6.4. If f(x) is a continuous monotone function and a < f(x) < b
then a < f(y) < b for all y sufficiently close to x.

Proor. If f takes values greater than b, then it takes value b and if f(z) takes
values less than a then it takes value a due to continuity. Then [f~!(a), f~1(b)] is
the interval where inequalities hold.

LEMMA 2.6.5. Let g1, g2 be continuous comonotone functions. Then g, + g2 is
continuous and monotone, and for any virtually monotone f one has

(2.6.1) fdgi + fdgs = fd(g1 + g2).

PROOF. Suppose g1(z) + g2(x) < p, let € = p — g1(z) — g2(x). Then ¢g1(y) <
91(y) +¢/2 and g2(y) < g2(y) + ¢/2 for all y sufficiently close to x. Hence gey) +
92(y) < pfor all y sufficiently close to z. The same is true for the opposite inequality.
Hence sgn(gi(z) +g2(z) —p) is locally constant at all points where it is not 0. But it
is not constant if p is an intermediate value, hence it is not locally constant, hence
it takes value 0. At this point g;(x) + g2(z) = p and the continuity of ¢g; + g2 is
proved.

Consider a monotonization f = fi + f2. Let g; be nondecreasing. By definition
via monotonization of the integrand, the left-hand side of (2.6.1) turns into (f1dg; +
f2dg1) + (fidgz + fadge) = (fidgr + fidga) + (f2dg1 + f2dg2). By the Addition
Theorem 2.3.3 fidg, + fidgs = fid(g1 + g2). And the equality fodg, + fodg, =
f2d(g1 + g2) follows from (—f2)dg1 + (— f2)dgs = (— f2)d(g1 + g=) by the Sign Rule.
Hence the left-hand side is equal to fid(g1 + g2) + f2d(g1 + g2), which coincides
with the right-hand side of (2.6.1) by definition via monotonization of integrand.
The case of non-increasing differands is taken care of via transformation of (2.6.1)
by the Sign Rule into fd(—g1) + fd(—g2) = fd(—g1 — g2). |

LEMMA 2.6.6. Let g1 + g2 = g3 + ga where all (—1)*gy, are non-increasing
continuous functions. Then fdg) + fdgs = fdgs + fdgs for any virtually monotone

f.

PROOF. Our equality is equivalent to fdg; — fdgy = fdgs — fdgs. By the
Sign Rule it turns into fdg; + fd(—g4) = fdgs + fd(—g2). Now all differands are
nondecreasing and by Lemma 2.6.5 it transforms into fd(g; — g4) = fd(gs — g2)-
This is true because g1 — g4 = g3 — go- d

Monotonization of the differand. A monotonization by continuous func-
tions is called continuous. A virtually monotone function which has a continuous
monotonization is called continuous. The integral for any virtually monotone in-
tegrand f against a virtually monotone continuous differand g is defined via a
continuous virtualization g = g; + g» of the differand

/abfdgz/abfdgmL/abfdgz-

The integral is well-defined because of Lemma 2.6.6.

THEOREM 2.6.7 (Addition Theorem). For any virtually monotone functions
fy f' and any virtually monotone continuous g,g', fdg + f'dg = (f + f')dg and

fdg + fdg' = fd(g +g')
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Proor. To prove fdg+ f'dg = (f + f")dg, consider a continuous monotoniza-
tion g = g1 +¢g2. Then by definition of the integral for virtually monotone differands
this equality turns into (fdgs + fdgo)+(f'dgs +1'dgs) = (f-+F)dgi+(f+")dgs. AF-
ter rearranging it turns into (fdg, +f'dg1)+(fdge+f'dgs) = (f+f)dgr+(f+f')dg2.
But this is true due to Lemma 2.6.2.

To prove fdg + fdg' = fd(g + ¢'), consider monotonizations g = g1 + go,
g =gi + g5 Then (g1 + ¢7) + (g2 + g5) is a monotonization for g + ¢g'. And by the
definition of the integral for virtually monotone differands our equality turns into
fdgy + fdgz + fdgy + fdgs O

Change of variable.

LeEMMA 2.6.8. If f is virtually monotone and g is monotone, then f(g(x)) is
virtually monotone.

ProoOF. Let f; + fo be a monotonization of f. If h is non-decreasing then
fi(h(z)) + f2(h(x)) gives a monotonization of f(g(z)). If h is decreasing then the
monotonization is given by (f2(h(z)) + ¢) + (fi(h(x)) — ¢) where ¢ is a sufficiently
large constant to provide positivity of the first brackets and negativity of the second
one. g

The following natural convention is applied to define an integral with reversed
. b
limits: [ f(x) dg(z) = —fba f(x)dg(x).

THEOREM 2.6.9 (on change of variable). If h: [a,b] = [h(a), h(b)] is monotone,
f(x) is virtually monotone and g(x) is virtually monotone continuous then
b h(b)
| s agnay = [ s dste
PROOF. Let f = f1 + fo and g = g1 + g2 be a monotonization and a continuous
monotonization of f and g respectively. The fab F(h(t))dg(h(t)) splits into sum

of four integrals: fab fi(h(t)) dg;j(h(t)) where f; are of constant sign and g; are
monotone continuous. These integrals coincide with the corresponding integrals
I :(S))) fi(z) dg;(x). Indeed their absolute values are the areas of the same curvilinear
trapezia. And their signs determined by the Sign Rule are the same. a

Integration by parts. We have established the Integration by Parts formula
for non-negative and non-decreasing differential forms. Now we extend it to the
case of continuous monotone forms. In the first case f and g are non-decreasing.
In this case choose a positive constant ¢ sufficiently large to provide positivity of
f+cand g+ con the interval of integration. Then d(f + ¢)(g+c¢) = (f + ¢)d(g +
¢) + (g + e)d(f + ¢). On the other hand d(f + ¢)(g + ¢) = dfg + cdf + cdg and
(f+od(g+c)+ (g+c)d(f +c) = fdg + cdg + cdf. Compare these results to get
dfg = fdg + gdf. Now if f is increasing and g is decreasing then —g is increasing
and we get —dfg = df(—g) = fd(—g) + (—g)df = —fdg — gdf, which leads to
dfg = fdg + gdf. The other cases: f decreasing, g increasing and both decreasing
are proved by the same arguments. The extension of the Integration by Parts
formula to piecewise monotone forms immediately follows by the Partition Rule.

Variation. Define the variation of a sequence of numbers {z; }?_. as the sum
q k=1
> req lk+1 — zx|. Define the variation of a function f along a sequence {zy}}_,
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as the variation of sequence {f(xr)}i_,- Define a chain on an interval [a,b] as a
nondecreasing sequence {xj }7_, such that zp = a and x, = b. Define the partial
variation of f on an interval [a,b] as its variation along a chain on the interval.

The least number surpassing all partial variations function f over [a, b] is called
the (ultimate) variation of a function f(z) on an interval [a,b] and is denoted by
varys[a, b].

LEMMA 2.6.10. For any function f one has the inequality vary[a,b] > |f(b) —
f(a)|. If f is a monotone function on [a,b], then varsla,b] = |f(b) — f(a)|.

ProoF. The inequality vary[a,b] > |f(b) — f(a)| follows immediately from the
definition because {a,b} is a chain. For monotone f, all partial variations are
telescopic sums equal to |f(b) — f(a)| O

THEOREM 2.6.11 (additivity of variation). vars[a,b] + vary[b, c] = vars[a, c].

PRrOOF. Consider a chain {z;}}7_, of [a,c], which contains b. In this case the
variation of f along {x}}_, splits into sums of partial variations of f along [a, b]
and along [b,c]. As a partial variations does not exceed an ultimate, we get that in
this case the variation of f along {1 }}_, does not exceed varg[a, b] + vary (b, c].

If {1}, does not contain b, let us add b to the chain. Then in the sum
expressing the partial variation of f, the summand |f(z;+1) — f(z;)| changes by the
sum |f(b) — f(z;)| + |f(zir1 — f(b)| which is greater or equal. Hence the variation
does not decrease after such modification. But the variation along the modified
chain does not exceed vary[a,b] + varg[b, c] as was proved above. As all partial
variations of f over [a,c] do not exceed vary[a,b] + vary[b, c|, the same is true for
the ultimate variation.

To prove the opposite inequality we consider a relazed inequality vars[a,b] +
varg[b, ¢|] < varga,c] + € where ¢ is an positive number. Choose chains {zx}}_,
on [a,b] and {yi}j*, on [b,c] such that corresponding partial variations of f are
> varyg[a,b] +¢/2 and > vary[b, c| + €/2 respectively. As the union of these chains
is a chain on [a, ¢] the sum of these partial variations is a partial variation of f on
[a,c]. Consequently this sum is less or equal to varg[a,c]. On the other hand it is
greater or equal to vars[a,b] +¢/2 + vars[b, c| +¢/2. Comparing these results gives
just the relaxed inequality. As the relaxed inequality is proved for all € > 0 it also
holds for € = 0. O

LEMMA 2.6.12. For any functions f, g one has the inequality vary,4(a,b] <
varyla, b] + vary[a, b].

Proor. Since [f(zk+1) + 9(@rt1) — flar) — glar)| < |f(@rt1) — flaw)| +
|g(zg+1) — g(zr)|, the variation of f + g along any sequence does not exceed the
sum of the variations of f and g along the sequence. Hence all partial variations of
f + g do not exceed vars[a, b] + vary[a, b, and so the same is true for the ultimate
variation. O

LEMMA 2.6.13. For any function of finite variation on [a,b], the functions
vars|a, z] and varg[a,x] — f(x) are both nondecreasing functions of x.

PrOOF. That vary[a, z] is nondecreasing follows from nonnegativity and addi-
tivity of variation. If > y then the inequality var¢[a, x] — f(x) > varga,y] — f(y)
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is equivalent to varys[a, ] —vars[a,y] > f(z)— f(y). This is true because vars[a, z] —
varyla, y] = vars[z,y] > |f(z) — f(y)]- O

LEMMA 2.6.14. varsz[a,b] < 2(|f(a)| + vars[a, b]) vary[a, b].

PRrOOF. For all z,y € [a,b] one has
|f(2) + fW)] = 12f(a) + f(x) = fla) + fy) — f(a)|
< 2|f(a)| + varg[a, «] + varg|a, y]
< 2|f(a)| + 2vary[a, b].
Hence
wo P2 (@ren) = f2@n)l = Th20 1 (@rsn) = F@o)llf (@rr) + flan)]

2(1£(a)] + vars[a,0]) 35 | f (wrs1) = £ ()]

<
< 2(|f(a)] + var[a, ) vary[a, 1]

LEMMA 2.6.15. If varg[a,b] < oo and varg[a,b] < oo, then vargy[a,b] < co.

ProoOF. 4fg = (f +9)* — (f — 9)% O

THEOREM 2.6.16. The function f is virtually monotone on [a,b] if and only if
it has a finite variation.

PROOF. Since monotone functions have finite variation on finite intervals, and
the variation of a sum does not exceed the sum of variations, one gets that all
virtually monotone functions have finite variation. On the other hand, if f has
finite variation then f = (vary[a,z] + ¢) + (f(z) — vary[a, z] — ¢), the functions
in the brackets are monotone due to Lemma 2.6.13, and by choosing a constant ¢
sufficiently large, one obtains that the second bracket is negative. O

Problems.

1. Evaluate ff 22 dz.
. Prove that 1/f(z) has finite variation if it is bounded.

3. Prove fab f(z)dg(z) < max, f varg|a,b].

N



