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1.1. Autore
ursion of In�nite ExpressionsOn the 
ontents of the le
ture. The le
ture presents a romanti
 style ofearly analyti
s. The motto of the le
ture 
ould be \in�nity, equality and no de�-nitions!". In�nity is the main personage we will play with today. We demonstratehow in�nite expressions (i.e., in�nite sums, produ
ts, fra
tions) arise in solutionsof simple equations, how it is possible to 
al
ulate them, and how the results ofsu
h 
al
ulations apply to �nite mathemati
s. In parti
ular, we will dedu
e theEuler-Binet formula for Fibona

i numbers, the �rst Euler's formula of the 
ourse.We be
ome a
quainted with geometri
 series and the golden se
tion.A
hilles and the turtle. The an
ient Greek philosopher Zeno 
laimed thatA
hilles pursuing a turtle 
ould never pass it by, in spite of the fa
t that his velo
itywas mu
h greater than the velo
ity of the turtle. His arguments adopted to ourpurposes are the following.First Zeno proposed a pursuing algorithm for A
hilles:Initialization. Assign to the variable goal the original position of the turtle.A
tion. Rea
h the goal.Corre
tion. If the 
urrent turtle's position is goal, then stop, else reassign tothe variable goal the 
urrent position of the turtle and go to A
tion.Se
ondly, Zeno remarks that this algorithm never stops if the turtle 
onstantlymoves in one dire
tion.And �nally, he notes that A
hilles has to follow his algorithm if he want passthe turtle by. He may be not aware of this algorithm, but un
ons
iously he mustperform it. Be
ause he 
annot run the turtle down without rea
hing the originalposition of the turtle and then all positions of the turtle whi
h the variable goaltakes.Zeno's algorithm generates a sequen
e of times ftkg, where tk is the time ofexe
ution of the k-th a
tion of the algorithm. And the whole time of work of thealgorithm is the in�nite sum P1k=1 tk; and this sum expresses the time A
hillesneeds to run the turtle down. (The 
orre
tions take zero time, be
ause A
hillesreally does not think about them.) Let us name this sum the Zeno series.Assume that both A
hilles and the turtle run with 
onstant velo
ities v andw, respe
tively. Denote the initial distan
e between A
hilles and the turtle by d0.Then t1 = d0v . The turtle in this time moves by the distan
e d1 = t1w = wv d0. Byhis se
ond a
tion A
hilles over
omes this distan
e in time t2 = d1v = wv t1, while theturtle moves away by the distan
e d2 = t2w = wv d1. So we see that the sequen
es oftimes ftkg and distan
es fdkg satisfy the following re
urren
e relations : tk = wv tk�1,dk = wv dk�1.Hen
e ftkg as well as fdkg are geometri
 progressions with ratio wv . And thetime t whi
h A
hilles needs to run the turtle down ist = t1 + t2 + t3 + � � � = t1 + wv t1 + w2v2 t1 + � � � = t1 �1 + wv + w2v2 + � � �� :In spite of Zeno, we know that A
hilles does 
at
h up with the turtle. Andone easily gets the time t he needs to do it by the following argument: the distan
ebetween A
hilles and the turtle permanently de
reases with the velo
ity v � w.Consequently it be
omes 0 in the time t = d0v�w = t1 vv�w . Comparing the resultswe 
ome to the following 
on
lusion(1.1.1) vv�w = 1 + wv + w2v2 + w3v3 + � � � :2



1.1 autore
ursion of infinite expressions 3In�nite substitution. We see that some in�nite expressions represent �nitevalues. The fra
tion in the left-hand side of (1.1.1) expands into the in�nite serieson the right-hand side. In�nite expressions play a key rôle in mathemati
s andphysi
s. Solutions of equations quite often are presented as in�nite expressions.For example let us 
onsider the following simple equation(1.1.2) t = 1 + qt:Substituting on the right-hand side 1 + qt instead of t, one gets a new equationt = 1 + q(1 + qt) = 1 + q + q2t. Any solution of the original equation satis�es thisone. Repeating this tri
k, one gets t = 1 + q(1 + q(1 + qt)) = 1 + q + q2 + q3t.Repeating this in�nitely many times, one eliminates t on the right hand side andgets a solution of (1.1.2) in an in�nite formt = 1 + q + q2 + q3 + � � � = 1Xk=0 qk:On the other hand, the equation (1.1.2) solved in the usual way gives t = 11�q . Asa result, we obtain the following formula(1.1.3) 11� q = 1 + q + q2 + q3 + q4 + � � � = 1Xk=0 qk:whi
h represents a spe
ial 
ase of (1.1.1) for v = 1, w = q.Autore
ursion. An in�nite expression of the form a1+a2+a3+ : : : is 
alled aseries and is 
on
isely denoted byP1k=1 ak. Now we 
onsider a summation methodfor series whi
h is inverse to the above method of in�nite substitution. To �nd thesum of a series we shall 
onstru
t an equation whi
h is satis�ed by its sum. Wename this method autore
ursion. Re
ursion means \return to something known".Autore
ursion is \return to oneself".The series a2+a3+ � � � =P1k=2 ak obtained fromP1k=1 ak by dropping its �rstterm is 
alled the shift of P1k=1 ak.We will 
all the following equality the shift formula:1Xk=1 ak = a1 + 1Xk=2 ak:Another basi
 formula we need is the following multipli
ation formula:� 1Xk=1 ak = 1Xk=1 �ak:These two formulas are all one needs to �nd the sum of geometri
 seriesP1k=0 qk. To be exa
t, the multipli
ation formula gives the equality P1k=1 qk =qP1k=0 qk. Hen
e the shift formula turns into equation x = 1 + qx, where x isP1k=0 qk. The solution of this equation gives us the formula (1.1.3) for the sum ofthe geometri
 series again.From this formula, one 
an dedu
e the formula for the sum of a �nite geometri
progression. By Pnk=0 ak is denoted the sum a0 + a1 + a2 + � � �+ an. One hasn�1Xk=0 qk = 1Xk=0 qk � 1Xk=n qk = 11� q � qn1� q = 1� qn1� q :



4 1.1 autore
ursion of infinite expressionsThis is an important formula whi
h was traditionally studied in s
hool.The series P1k=0 kxk. To �nd the sum of P1k=1 kxk we have to apply addi-tionally the following addition formula,1Xk=1(ak + bk) = 1Xk=1 ak + 1Xk=1 bkwhi
h is the last general formula for series we introdu
e in the �rst le
ture.Reindexing the shift P1k=2 kxk we give it the form P1k=1(k + 1)xk+1. Furtherit splits into two partsx 1Xk=1(k + 1)xk = x 1Xk=1 kxk + x 1Xk=1 xk = x 1Xk=1 kxk + x x1� xby the addition formula. The �rst summand is the original sum multiplied byx. The se
ond is a geometri
 series. We already know its sum. Now the shiftformula for the sum s(x) of the original series turns into the equation s(x) =x+ x x1�x + xs(x). Its solution is s(x) = x(1�x)2 :Fibona

i Numbers. Starting with �0 = 0, �1 = 1 and applying the re
ur-ren
e relation �n+1 = �n + �n�1;one 
onstru
ts an in�nite sequen
e of numbers 0; 1; 1; 2; 3; 5; 8; 13; 21; : : : , 
alledFibona

i numbers. We are going to get a formula for �n.To do this let us 
onsider the following fun
tion �(x) = P1k=0 �kxk, whi
his 
alled the generating fun
tion for the sequen
e f�kg. Sin
e �0 = 0, the sum�(x) + x�(x) transforms in the following way:1Xk=1�kxk + 1Xk=1 �k�1xk = 1Xk=1 �k+1xk = �(x) � xx :Multiplying both sides of the above equation by x and 
olle
ting all terms 
ontaining�(x) on the right-hand side, one gets x = �(x) � x�(x) � x2�(x) = x. It leads to�(x) = x1� x� x2 :The roots of the equation 1� x � x2 = 0 are �1�p52 . More famous is the pairof their inverses 1�p52 . The number � = �1+p52 is the so-
alled golden se
tion orgolden mean. It plays a signi�
ant rôle in mathemati
s, ar
hite
ture and biology.Its dual is �̂ = �1�p52 . Then ��̂ = �1, and � + �̂ = 1. Hen
e (1� x�)(1 � x�̂) =1� x� x2, whi
h in turn leads to the following de
omposition:xx2 + x� 1 = 1p5 � 11� �x � 11� �̂x� :We expand both fra
tions on the right hand side into geometri
 series:11� �x = 1Xk=0�kxk ; 11� �̂x = 1Xk=0 �̂kxk :



1.1 autore
ursion of infinite expressions 5This gives the following representation for the generating fun
tion�(x) = 1p5 1Xk=0(�k � �̂k)xk:On the other hand the 
oeÆ
ient at xk in the original presentation of �(x) is �k .Hen
e(1.1.4) �k = 1p5(�k � �̂k) = (p5 + 1)k + (�1)k(p5� 1)k2kp5 :This is 
alled the Euler-Binet formula. It is possible to 
he
k it for small k andthen prove it by indu
tion using Fibona

i re
urren
e.Continued fra
tions. The appli
ation of the method of in�nite substitutionto the solution of quadrati
 equation leads us to a new type of in�nite expressions,the so-
alled 
ontinued fra
tions. Let us 
onsider the golden mean equation x2 �x � 1 = 0. Rewrite it as x = 1 + 1x . Substituting 1 + 1x instead of x on the right-hand side we get x = 1 + 11+ 1x . Repeating the substitution in�nitely many timeswe obtain a solution in the form of the 
ontinued fra
tion:(1.1.5) 1 + 11 + 11 + 11+:::As this fra
tion seems to represent a positive number and the golden mean is theunique positive root of the golden mean equation, it is natural to 
on
lude that thisfra
tion is equal to � = 1+p52 . This is true and this representation allows one to
al
ulate the golden mean and p5 e�e
tively with great pre
ision.To be pre
ise, 
onsider the sequen
e(1.1.6) 1; 1 + 11 ; 1 + 11 + 11 ; 1 + 11 + 11 + 11 ; : : :of so-
alled 
onvergents of the 
ontinued fra
tion (1.1.5). Let us remark that allodd 
onvergents are less than � and all even 
onvergents are greater than �. Tosee this, 
ompare the n-th 
onvergent with the 
orresponding term of the followingsequen
e of fra
tions:(1.1.7) 1 + 1x ; 1 + 11 + 1x ; 1 + 11 + 11 + 1x ; : : : :We know that for x = � all terms of the above sequen
e are equal to �. Hen
eall we need is to observe how the removal of 1x a�e
ts the value of the 
onsideredfra
tion. The value of the �rst fra
tion of the sequen
e de
reases, the value of these
ond fra
tion in
reases. If we denote the value of n-th fra
tion by fn, then thevalue of the next fra
tion is given by the following re
urren
e relation:(1.1.8) fn+1 = 1 + 1fn :Hen
e in
reasing fn de
reases fn+1 and de
reasing fn in
reases fn+1. Consequentlyin general all odd fra
tions of the sequen
e (1.1.7) are less than the 
orresponding



6 1.1 autore
ursion of infinite expressions
onvergent, and all even are greater. The re
urren
e relation (1.1.8) is valid for thegolden mean 
onvergent. By this re
urren
e relation one 
an qui
kly 
al
ulate the�rst ten 
onvergents 1; 2; 32 ; 53 ; 85 ; 138 ; 2113 ; 3421 ; 5534 ; 8955 . The golden mean lies betweenlast two fra
tions, whi
h have the di�eren
e 134�55 . This allows us to determine the�rst four de
imal digits after the de
imal point of it and of p5.Problems.1. Evaluate P1k=0 22k33k .2. Evaluate 1� 1 + 1� 1 + � � � .3. Evaluate 1 + 1� 1� 1 + 1 + 1� 1� 1 + � � � .4. Evaluate P1k=1 k3k .5. Evaluate P1k=1 k22k .6. De
ompose the fra
tion 1a+x into a power series.7. Find the generating fun
tion for the sequen
e f2kg.8. Find sum the P1k=1 �k3�k.9. Prove by indu
tion the Euler-Binet formula.�10. Evaluate 1� 2 + 1 + 1� 2 + 1 + � � � .11. Approximate p2 by a rational with pre
ision 0:0001.12. Find the value of 1 + 12 + 11 + 12 + � � �.13. Find the value of q2 +p2 +p2 + � � �:14. By in�nite substitution, solve the equation x2 � 2x� 1 = 0, and represent p2by a 
ontinued fra
tion.15. Find the value of the in�nite produ
t 2 � 2 12 � 2 14 � 2 18 � � � � .16. Find a formula for n-th term of the re
urrent sequen
e xn+1 = 2xn + xn�1,x0 = x1 = 1.17. Find the sum of the Fibona

i numbers P1k=1 �k.18. Find sum 1 + 0� 1 + 1 + 0� 1 + � � � .19. De
ompose into the sum of partial fra
tions 1x2�3x+2 .



1.2. Positive SeriesOn the 
ontents of the le
ture. In�nity is pregnant with paradoxes. Para-doxes throw us down from the heavens to the earth. We leave the poetry for prose,and rationalize the in�nity and equality by working with �niteness and inequality.We shall lay a solid foundation for a summation theory for positive series. And thereader will �nd out what P1k=1 1k2 = �26 pre
isely means.Divergent series paradox. Let us 
onsider the series P1k=0 2k. This is ageometri
 series. We know how to sum it up by autore
ursion. The autore
ursionequation is s = 1 + 2s. The only number satisfying this equation is �1. The sumof positive numbers turns to be negative!? Something is wrong!A way to save the situation is to admit in�nity as a feasible solution. In�nityis an obvious solution of s = 1+2s. The sum of any geometri
 seriesP1k=0 qk withdenominator q � 1 is obviously in�nite, isn't it?Indeed, this sum is greater than 1 + 1 + 1+ 1+ : : : , whi
h symbolizes in�nity.(The autore
ursion equation for 1 + 1 + 1 + : : : is s = s+ 1. In�nity is the uniquesolution of this equation.)The series P1k=0 2k represents Zeno's series in the 
ase of the Mighty Turtle,whi
h is faster than A
hilles. To be pre
ise, this series arises if v = d0 = 1 andw = 2. As the velo
ity of the turtle is greater than the velo
ity of A
hilles henever rea
hes it. So the in�nity is right answer for this problem. But the negativesolution �1 also makes sense. One 
ould interpret it as an event in the past. Justthe point in time when the turtle passed A
hilles.Os
illating series paradoxes. The philosopher Gvido Grandy in 1703 at-tra
ted publi
 attention to the series 1 � 1 + 1 � 1 + : : : . He 
laimed this seriessymbolized the Creation of Universe from Nothing. Namely, insertion of bra
ketsin one way gives Nothing (that is 0), in another way, gives 1.(1� 1) + (1� 1) + (1� 1) + � � � = 0 + 0 + 0 + � � � = 0;1� (1� 1)� (1� 1)� (1� 1)� � � � = 1� 0� 0� 0� � � � = 1:On the other hand, this series 1 � 1 + 1 � 1 + 1 � 1 + : : : is geometri
 withnegative ratio q = �1. Its autore
ursion equation s = 1� s has the unique solutions = 12 . Neither +1 nor �1 satisfy it. So 12 seems to be its true sum.Hen
e we see the Asso
iativity Law dethroned by 1� 1+1� 1+ : : : . The nextvi
tim is the Commutativity Law. The sum �1 + 1 � 1 + 1 � 1 + : : : is equal to� 12 . But the last series is obtained from 1� 1+1� 1+ : : : by transposition of oddand even terms.And the third amazing thing: diluting it by zeroes 
hanges its sum. The sum1+0� 1+1+0� 1+1+0�1+ : : : by no means is 12 . It is 23 . Indeed, if we denotethis sum by s then by shift formulas one getss = 1 + 0� 1 + 1 + 0� 1 + 1 + 0� 1 + 1 + 0� 1 + : : : ;s� 1 = 0� 1 + 1 + 0� 1 + 1 + 0� 1 + 1 + 0� 1 + 1 + : : : ;s� 1� 0 = �1 + 1 + 0� 1 + 1 + 0� 1 + 1 + 0� 1 + 1 + 0 + : : : :7



8 1.2 positive seriesSumming the numbers 
olumn-wise (i.e., by the Termwise Addition Formula), weget s+ (s� 1) + (s� 1� 0) = (1 + 0� 1) + (0� 1 + 1) + (�1 + 1 + 0)+ (1 + 0� 1) + (0� 1 + 1) + (�1 + 1 + 0) + : : : :The left-hand side is 3s � 2. The right-hand side is the zero series. That is whys = 23 .The series 1 � 1 + 1 � 1 + : : : arises as Zeno's series in the 
ase of a blindA
hilles dire
ted by a 
ruel Zeno, who is interested, as always, only in proving his
laim, and a foolish, but mer
iful turtle. The blind A
hilles is not fast, his velo
ityequals the velo
ity of the turtle. At the �rst moment Zeno tells the blind A
hilleswhere the turtle is. A
hilles starts the rally. But the mer
iful turtle wishing to helphim goes towards him instead of running away. A
hilles meets the turtle half-way.But he misses it, being busy to perform the �rst step of the algorithm. Whenhe a

omplishes this step, Zeno orders: \Turn about!" and surprises A
hilles bysaying that the turtle is on A
hilles' initial position. The turtle dis
overs thatA
hilles turns about and does the same. The situation repeats ad in�nitum. Nowwe see that assigning the sum 12 to the series 1 � 1 + 1 � 1 + : : : makes sense. Itpredi
ts a

urately the time of the �rst meeting of A
hilles and turtle.Positivity. The paradoxes dis
ussed above are dis
ouraging. Our intuitionbased on handling �nite sums fails when we turn to in�nite ones. Observe that allparadoxes above involve negative numbers. And to eliminate the evil in its root,let us 
onsider only nonnegative numbers.We return to the an
ient Greeks. They simply did not know what a negativenumber is. But in 
ontrast to the Greeks, we will retain zero. A series withnonnegative terms will be 
alled a positive series. We will show that for positiveseries all familiar laws, in
luding asso
iativity and 
ommutativity, hold true andzero terms do not a�e
t the sum.De�nition of In�nite Sum. Let us 
onsider what Euler's equality 
ouldmean: 1Xk=1 1k2 = �26 :The natural answer is: the partial sums Pnk=1 1k2 , whi
h 
ontain more and morere
ipro
al squares, approa
h 
loser and 
loser the value �26 . Consequently, all par-tial sums have to be less than �26 , its ultimate sum. Indeed, if some partial sumex
eeds or 
oin
ides with �26 then all subsequent sums will move away from �26 .Furthermore, any number 
 whi
h is less than �26 has to be surpassed by partialsums eventually, when they approa
h �26 
loser than by �26 � 
. Hen
e the ultimatesum majorizes all partial ones, and any lesser number does not. This means thatthe ultimate sum is the smallest number whi
h majorizes all partial sums.Geometri
 motivation. Imagine a sequen
e [ai�1; ai℄ of intervals of the realline. Denote by li the length of i-th interval. Let a0 = 0 be the left end point ofthe �rst interval. Let [0; A℄ be the smallest interval 
ontaining the whole sequen
e.Its length is naturally interpreted as the sum P1i=1 liThis motivates the following de�nition.



1.2 positive series 9Definition. If the partial sums of the positive seriesP1k=1 ak in
rease withoutbound, its sum is de�ned to be 1 and the series is 
alled divergent. In the opposite
ase the series 
alled 
onvergent, and its sum is de�ned as the smallest number Asu
h that A �Pnk=1 ak for all n.This De�nition is equivalent to the following 
ouple of prin
iples. The �rstprin
iple limits the ultimate sum from below:Prin
iple (One-for-All). The ultimate sum of a positive series majorizes allpartial sums.And the se
ond prin
iple limits the ultimate sum from above:Prin
iple (All-for-One). If all partial sums of a positive series do not ex
eeda number, then the ultimate sum also does not ex
eed it.Theorem 1.2.1 (Termwise Addition Formula).1Xk=1 ak + 1Xk=1 bk = 1Xk=1(ak + bk):Proof. The inequality P1k=1 ak +P1k=1 bk �P1k=1(ak + bk) is equivalent toP1k=1 ak �P1k=1(ak + bk)�P1k=1 bk. By All-for-One, the last is equivalent to thesystem of inequalitiesNXk=1 ak � 1Xk=1(ak + bk)� 1Xk=1 bk N = 1; 2; : : : :This system is equivalent to the following system1Xk=1 bk � 1Xk=1(ak + bk)� NXk=1 ak N = 1; 2; : : : :Ea
h inequality of the last system, in its turn, is equivalent to the system of in-equalities MXk=1 bk � 1Xk=1(ak + bk)� NXk=1 ak M = 1; 2; : : : :But these inequalities are true for all N and M , as the following 
omputationsshow. MXk=1 bk + NXk=1 ak � M+NXk=1 bk +M+NXk=1 ak = M+NXk=1 (ak + bk) � 1Xk=1(ak + bk):In the opposite dire
tion, we see that any partial sum on the right-hand sidePnk=1(ak + bk) splits into Pnk=1 ak +Pnk=1 bk. And by virtue of the One-for-Allprin
iple, this does not ex
eedP1k=1 ak +P1k=1 bk. Now, the All-for-One prin
ipleprovides the inequality in the opposite dire
tion. �Theorem 1.2.2 (Shift Formula).1Xk=0 ak = a0 + 1Xk=1 ak:



10 1.2 positive seriesProof. The Shift Formula immediately follows from the Termwise Additionformula. To be pre
ise, immediately from the de�nition, one gets the following:a0 +0+ 0+ 0+ 0+ � � � = a0 and that 0 + a1 + a2 + a3 + � � � =P1k=1 ak. TermwiseAddition of these series givesa0 + 1Xk=1 ak = (a0 + 0) + (0 + a1) + (0 + a2) + (0 + a3) + � � � = 1Xk=0 ak: �Theorem 1.2.3 (Termwise Multipli
ation Formula).� 1Xk=1 ak = 1Xk=1 �ak:Proof. For any partial sum from the right-hand side one hasnXk=1 �ak = � nXk=1 ak � � 1Xk=1 akby the Distributivity Law for �nite sums and One-for-All. This implies the inequal-ity �P1k=1 ak � P1k=1 �ak by All-for-One. The opposite inequality is equivalentto P1k=1 ak � 1�P1k=1 �ak. As any partial sum Pnk=1 ak is equal to 1�Pnk=1 �ak ,whi
h does not ex
eed 1�P1k=1 �ak, one gets the opposite inequality. �Geometri
 series. We have to return to the geometri
 series, be
ause theautore
ursion equation produ
ed by shift and multipli
ation formulas says nothingabout 
onvergen
e. So we have to prove 
onvergen
e for P1k=0 qk with positiveq < 1. It is suÆ
ient to prove the following inequality for all n1 + q + q2 + q3 + � � �+ qn < 11�q :Multiplying both sides by 1� q one gets on the left-hand side(1� q) + (q � q2) + (q2 � q3) + � � �+ (qn�1 � qn) + (qn � qn+1)= 1� q + q � q2 + q2 � q3 + q3 � � � � � qn + qn � qn+1= 1� qn+1and 1 on the right-hand side. The inequality 1�qn+1 < 1 is obvious. Hen
e we haveproved the 
onvergen
e. Now the autore
ursion equation x = 1 + qx for P1k=0 qkis 
onstru
ted in usual way by the shift formula and termwise multipli
ation. Itleaves only two possibilities for P1k=0 qk, either 1q�1 or 1. For q < 1 we haveproved 
onvergen
e, and for q � 1 in�nity is the true answer.Let us pay spe
ial attention to the 
ase q = 0. We adopt a 
ommon 
onvention:00 = 1:This means that the seriesP1k=0 0k satis�es the 
ommon formula for a 
onvergentgeometri
 series P1k=0 0k = 11�0 = 1. Finally we state the theorem, whi
h isessentially due to Eudoxus, who proved the 
onvergen
e of the geometri
 serieswith ratio q < 1.



1.2 positive series 11Theorem 1.2.4 (Eudoxus). For every nonnegative q one has1Xk=0 qk = 11� q for q < 1, and 1Xk=0 qk =1 for q � 1:Comparison of series. Quite often exa
t summation of series is too diÆ
ult,and for pra
ti
al purposes it is enough to know the sum approximatively. In this
ase one usually 
ompares the series with another one whose sum is known. Su
ha 
omparison is based on the following Termwise Comparison Prin
iple, whi
himmediately follows from the de�nition of a sum.Prin
iple (Termwise Comparison). If ak � bk for k, then1Xk=1 ak � 1Xk=1 bk:The only series we have so far to 
ompare with are the geometri
 ones. Thefollowing lemma is very useful for this purposes.Lemma 1.2.5 (Ratio Test). If ak+1 � qak for k holds for some q < 1 then1Xk=0 ak � a01� q :Proof. By indu
tion one proves the inequality ak � a0qk. Now by TermwiseComparison one estimatesP1k=0 ak from above by the geometri
 seriesP1k=0 a0qk =a01�q �If the series under 
onsideration satis�es an autore
ursion equation, to proveits 
onvergen
e usually means to evaluate it exa
tly. For proving 
onvergen
e, theTermwise Comparison Prin
iple 
an be strengthened. Let us say that the seriesP1k=1 ak is eventually majorized by the series P1k=1 bk, if the inequality bk � akholds for ea
h k starting from k = n for some n. The following lemma is very usefulto prove 
onvergen
e.Prin
iple (Eventual Comparison). A seriesP1k=1 ak, whi
h is eventually ma-jorized by a 
onvergent series P1k=1 bk, is 
onvergent.Proof. Consider a tail P1k=n bk, whi
h termwise majorizesP1k=n ak. Then1Xk=1 ak = n�1Xk=1 ak + 1Xk=n ak� n�1Xk=1 ak + 1Xk=n bk� n�1Xk=1 ak + 1Xk=1 bk<1: �Consider the series P1k=1 k2�k. The ratio of two su

essive terms ak+1ak of theseries is k+12k . This ratio is less or equal to 23 starting with k = 3. Hen
e this series



12 1.2 positive seriesis eventually majorizes by the geometri
 series P1k=0 a3 2k3k , (a3 = 23 ). This provesits 
onvergen
e. And now by autore
ursion equation one gets its sum.Harmoni
 series paradox. Now we have a solid ba
kground to evaluatepositive series. Nevertheless, we must be 
areful about in�nity! Consider thefollowing 
al
ulation:1Xk=1 12k(2k � 1) = 1Xk=1 12k � 1 � 1Xk=1 12k= 1Xk=1 12k � 1 � 12 1Xk=1 1k= 1Xk=1 12k � 1 � 12  1Xk=1 12k � 1 + 1Xk=1 12k!=  1Xk=1 12k � 1 � 12 1Xk=1 12k � 1!� 12 1Xk=1 12k= 12  1Xk=1 12k � 1!� 12 1Xk=1 12k= 12 1Xk=1 12k(2k � 1) :We get that the sumP1k=1 1(2k�1)2k satis�es the equation s = s2 . This equation hastwo roots 0 and 1. But s satis�es the inequalities 12 < s < �26 . What is wrong?Problems.1. ProveP1k=1 0 = 0.2. ProveP1k=1 0k = 1.3. ProveP1k=0 ak =P1k=0 a2k +P1k=0 a2k+1.4. ProveP1k=1(ak � bk) =P1k=1 ak �P1k=1 bk for 
onvergent series.5. Evaluate P1k=1 1k(k+1) .6. Prove (1� 12 ) + ( 13 � 14 ) + ( 15 � 16 ) + � � � = 1� [( 12 � 13 ) + ( 14 � 15 ) + � � � .7. Prove the 
onvergen
e of P1k=0 2kk! .8. Prove the 
onvergen
e of P1k=1 1000kk! .9. Prove the 
onvergen
e of P1k=1 k10002k .10. Prove that qn < 1n(1�q) for 0 < q < 1.11. Prove that for any positive q < 1 there is an n that qn < 12 .12. ProveP1k=1 1k! � 2.13. Evaluate P1k=1 1k(k+2) .14. Prove the 
onvergen
e of the Euler series P1k=1 1k2 .�15. Prove that P1i=1P1j=1 aij =P1j=1P1i=1 aij for aij � 0.



1.3. Unordered SumsOn the 
ontents of the le
ture. Our summation theory 
ulminates in theSum Partition Theorem. This le
ture will 
ontribute towards evaluation of theEuler series in two ways: we prove its 
onvergen
e, and even estimate its sum by 2.On the other hand, we will realize that evaluation of the Euler series with Euler'sa

ura
y (10�18) seems to be beyond a human being's strength.Consider a family faigi2I of nonnegative numbers indexed by elements of anarbitrary set I . An important spe
ial 
ase of I is the set of pairs of natural numbersN � N. Families indexed by N � N are 
alled double series. They arise when onemultiplies one series by another one.Any sum of the typePi2K ai, where K is a �nite subset of I is 
alled a subsumof faigi2I over K.Definition. The least number majorizing all subsums of faigi2I over �nitesubsets is 
alled its (ultimate) sum and denoted by Pi2I aiThe One-for-All and All-for-One prin
iples for non-ordered sums are obtainedfrom the 
orresponding prin
iples for ordered sums by repla
ing \partial sums" by\�nite subsums".Commutativity. In 
ase I = N we have a de�nition whi
h apparently is new.But fortunately this de�nition is equivalent to the old one. Indeed, as any �nitesubsum of positive series does not ex
eed its ultimate (ordered) sum, the non-ordered sum also does not ex
eed it. On the other hand, any partial sum of theseries is a �nite subsum. This implies the opposite inequality. Therefore we haveestablished the equality. 1Xk=1 ak =Xk2N akThis means that positive series obey the Commutativity Law. Be
ause the non-ordered sum obviously does not depend on the order of summands.Partitions. A family of subsets fIkgk2K of a set I is 
alled a partition of Iand is written Fk2K Ik if I = Sk2K Ik and Ik \ Ij = ? for all k 6= j.Theorem 1.3.1 (Sum Partition Theorem). For any partition I = Fj2J Ij ofthe indexing set and any family faigi2I of nonnegative numbers,(1.3.1) Xi2I ai =Xj2JXi2Ij ai:Iverson notation. We will apply the following notation: a statement in
ludedinto [ ℄ takes value 1, if the statement is true, and 0, if it is false. Prove the followingsimple lemmas to adjust to this notation. In both lemmas one has K � I .Lemma 1.3.2. Pi2K ai =Pi2I ai[i 2 K℄.In parti
ular, for K = I , Lemma 1.3.2 turns intoLemma 1.3.3. Pi2I ai =Pi2I ai[i 2 I ℄.Lemma 1.3.4. Pk2K [i 2 Ik ℄ = [i 2 IK ℄ for all i 2 I i� IK = Fk2K Ik.13



14 1.3 unordered sumsProof of Sum Partition Theorem. At �rst we prove the following SumTransposition formula for �nite J ,(1.3.2) Xi2I Xj2J aij =Xj2JXi2I aij :Indeed, if J 
ontains just two elements, this formula turns into the Termwise Ad-dition formula. The proof of this formula is the same as for series. Suppose theformula is proved for any set whi
h 
ontains fewer elements than J does. De
om-pose J into a union of two nonempty subsets J1tJ2. Then applying only TermwiseAddition and Lemmas 1.3.2, 1.3.3, 1.3.4, we getXi2I Xj2J aij =Xi2I Xj2J aij [j 2 J ℄=Xi2I Xj2J(aij [j 2 J1℄ + aij [j 2 J2℄)=Xi2I Xj2J aij [j 2 J1℄ +Xi2I Xj2J aij [j 2 J2℄=Xi2I Xj2J1 aij +Xi2I Xj2J2 aij :But the last two sums 
an be transposed by the indu
tion hypothesis. After su
ha transposition one getsXj2J1Xi2I aij + Xj2J2Xi2I aij =Xj2J [j 2 J1℄Xi2I aij +Xj2J [j 2 J2℄Xi2I aij=Xj2J([j 2 J1℄ + [j 2 J2℄)Xi2I aij=Xj2J [j 2 J ℄Xi2I aij=Xj2JXi2I aijand the Sum Transposition formula for �nite J is proved. Consider the general 
ase.To prove � in (1.3.2), 
onsider a �nite K � I . By the �nite Sum Transpositionformula the subsum Pi2KPj2J aij is equal to Pj2JPi2K aij . But this sum istermwise majorized by the right-hand side sum in (1.3.2). Therefore the left-handside does not ex
eed the right-hand side by All-for-One prin
iple.To derive the Sum Partition Theorem from the Sum Transposition formula,pose aij = ai[i 2 Ij ℄. Then ai = Pj2J aij and (1.3.1) turns into (1.3.2). This
ompletes the proof of the Sum Partition Theorem.Blo
king. For a given a seriesP1k=0 ak and an in
reasing sequen
e of naturalnumbers fnkg1k=0 starting with n0 = 0 one de�nes a new series P1k=0 Ak by therule Ak =Pnk+1�1i=nk ai. The series P1k=0 Ak is 
alled blo
king of P1k=0 ak by fnkg.The Sum Partition Theorem implies that the sums of blo
ked and unblo
kedseries 
oin
ide. Blo
king formalizes putting of bra
kets. Therefore the Sum Parti-tion Theorem implies the Sequential Asso
iativity Law : Pla
ing bra
kets does not
hange the sum of series.



1.3 unordered sums 15Estimation of the Euler series. Let us 
ompare the Euler series with theseries P1k=0 12k , blo
ked by f2ng to P1k=1 ak. The sum P2n+1�1k=2n 1k2 
onsists of 2nsummands, all of whi
h are less then the �rst one, whi
h is 122n . As 2n 122n = 12n , itfollows that an � 12n for ea
h n. Summing these inequalities, one getsP1k=1 ak � 2.Now let us estimate how many terms of Euler's series one needs to take intoa

ount to �nd its sum up to the eighteenth digit. To do this, we need to estimateits tail. The arguments above give P1k=2n 1k2 � 12n�1 . To obtain a lower estimate,let us remark that all terms of sum P2n+1�1k=2n 1k2 ex
eed 122(n+1) . As the numberof summands is 2n, one gets an � 14�2n . Hen
e P1k=2n 1k2 � 12n+1 . Sin
e 210 =1024 ' 103, one gets 260 ' 1018. So, to provide an a

ura
y of 10�18 one needsto sum approximately 1018 terms. This task is ina

essible even for a modern
omputer. How did Euler manage to do this? He invented a summation formula(Euler-Ma
Laurin formula) and transformed this slowly 
onvergent series into non-positive divergent (!) one, whose partial sum 
ontaining as few as ten terms gaveeighteen digit a

ura
y. The whole 
al
ulation took him an evening. To introdu
ethis formula, one needs to know integrals and derivatives. We will do this later.Problems.1. Find P1k=1 1(2k)2 and P1k=1 1(2k�1)2 , assuming P1k=1 1k2 = �2=6.2. Prove the 
onvergen
e of P1k=1 1kpk .3. Estimate how many terms of the series P1n=1 1n3 are ne
essary for 
al
ulationof its sum with pre
ision 10�3.4. Estimate the value of P1k=1 12k 1k .5. Prove the equality P1k=0 akP1k=0 bk =Pj;k2N ajbk.6. Estimate how many terms of the Harmoni
 series give the sum surpassing 1000.7. Prove the Diri
hlet formula Pnk=1Pki=1 aki =Pni=1Pnk=i aki.8. Evaluate Pi;j2N 12i3j .9. Evaluate Pi;j2N i+j2i3j .10. Represent an unordered sum Pi+j<n aij as a double sum.11. Evaluate Pi;j2N ij2i3j .12. Change the summation order in P1i=0P2ij=0 aij .13. De�ne by Iverson notation the following fun
tions:� [x℄ (integral part),� jxj (module),� sgnx (signum),� n! (fa
torial).14. De�ne only by formulas the expression [p is prime℄.



1.4. In�nite Produ
tsOn the 
ontents of the le
ture. In this le
ture we be
ome a
quainted within�nite produ
ts. The famous Euler Identity will be proved. We will �nd out that�(2) is another name for the Euler series. And we will see how Euler's de
ompositionof the sine fun
tion into a produ
t works to sum up the Euler Series.Definition. The produ
t of an in�nite sequen
e of numbers fakg, su
h thatak � 1 for all k, is de�ned as the least number majorizing all partial produ
tsQnk=1 ak = a1a2 : : : an.A sequen
e of natural numbers is 
alled essentially �nite if all but �nitelymany of its elements are equal to zero. Denote by N1 the set of all essentially�nite sequen
es of natural numbers.Theorem 1.4.1. For any given sequen
e of positive seriesP1k=0 ajk, j = 1; 2; : : :su
h that aj0 = 1 for all j one has(1.4.1) 1Yj=1 1Xk=0 ajk = Xfkjg2N1 1Yj=1 ajkj :The summands on the right-hand side of (1.4.1) usually 
ontain fa
tors whi
hare less than one. But ea
h of the summands 
ontains only �nitely many fa
torsdi�erent from 1. So the summands are in fa
t �nite produ
ts.Proof. For a sequen
e fkjg 2 N1 de�ne its length as maximal j for whi
hkj 6= 0 and its maximum as the value of its maximal term. The length of the zerosequen
e is de�ned as 0.Consider a �nite subset S � N1 . Consider the partial sumXfkjg2S 1Yk=1 ajkj :To estimate it, denote by L the maximal length of elements of S and denote by Mthe greatest of maxima of fkjg 2 S. In this 
aseXfkjg2S 1Yj=1 ajkj = Xfkjg2S LYj=1 ajkj � Xfkjg2NLM LYj=1 ajkj = LYj=1 MXk=0 ajk � 1Yj=1 1Xk=0 ajk;where NLM denotes the set of all �nite sequen
es fk1; k2; : : : ; kLg of natural numberssu
h that ki � M . By All-for-One this implies one of the required inequalities,namely, �.To prove the opposite inequality, we prove that for any natural L one has(1.4.2) LYj=1 1Xk=0 ajk = Xfkjg2NL LYj=1 ajkj ;where NL denotes the set of all �nite sequen
es fk1; : : : kLg of natural numbers.The proof is by indu
tion on L. 16



1.4 infinite produ
ts 17Lemma 1.4.2. For any families faigi2I , fbjgj2J of nonnegative numbers, onehas Xi2I aiXj2J bj = X(i;j)2I�J aibj :Proof of Lemma 1.4.2. Sin
e I � J = Fi2Ifig � J by the Sum PartitionTheorem one gets: X(i;j)2I�J aibj =Xi2I X(i;j)2fig�J aibj=Xi2I Xj2J aibj=Xi2I aiXj2J bj=Xj2J bjXi2I ai: �Case L = 2 follows from Lemma 1.4.2, be
ause N2 = N � N. The indu
tionstep is done as follows L+1Yj=1 1Xk=0 ajk = 1Xk=0 aL+1k LYj=1 1Xk=0 ajk=Xk2NaL+1k Xfkjg2NL LYj=1 ajkj= Xfkjg2NL+1 L+1Yj=1 ajkj :The left-hand side of (1.4.2) is a partial produ
t for the left-hand side of (1.4.1)and the right-hand side of (1.4.2) is a subsum of the right-hand side of (1.4.1).Consequently, all partial produ
ts of the right-hand side in (1.4.1) do not ex
eedits left-hand side. This proves the inequality �. �Euler's Identity. Our next goal is to prove the Euler Identity.1Xk=1 1k� = 1Yp=1�1� 1p���[p is prime℄Here � is any rational (or even irrational) positive number.The produ
t on the right-hand side is 
alled the Euler Produ
t. The series onthe left-hand side is 
alled the Diri
hlet series. Ea
h fa
tor of the Euler Produ
texpands into the geometri
 seriesP1k=0 1pk� . By Theorem 1.4.1, the produ
t of thesegeometri
 series is equal to the sum of produ
ts of the type p�k1�1 p�k2�2 : : : p�kn�n= N��. Here fpig are di�erent prime numbers, fkig are positive natural numbersand pk11 pk22 : : : pknn = N . But ea
h produ
t pk11 pk22 : : : pknn = N is a natural number,di�erent produ
ts represent di�erent numbers and any natural number has a uniquerepresentation of this sort. This is exa
tly what is 
alled Prin
ipal Theorem of



18 1.4 infinite produ
tsArithmeti
. That is, the above de
omposition of the Euler produ
t expands in theDiri
hlet series.Convergen
e of the Diri
hlet series.Theorem 1.4.3. The Diri
hlet series P1n=1 1ns 
onverges if and only if s > 1.Proof. Consider a f2kg pa
king of the series. Then the n-th term of thepa
ked series one estimates from above as2n+1�1Xk=2n 1ks � 2n+1�1Xk=2n 1(2n)s = 2n 12ns = 2n�ns = (21�s)n:If s > 1 then 21�s < 1 and the pa
ked series is termwise majorized by a 
onvergentgeometri
 progression. Hen
e it 
onverges. In the 
ase of the Harmoni
 series(s = 1) the n-th term of its pa
king one estimates from below as2n+1�1Xk=2n 1k � 2n+1�1Xk=2n 12n+1 = 2n 12n+1 = 12 :That is why the harmoni
 series diverges. A Diri
hlet series for s < 1 termwisemajorizes the Harmoni
 series and so diverges. �The Riemann �-fun
tion. The fun
tion�(s) = 1Xn=1 1nsis 
alled the Riemann �-fun
tion. It is of great importan
e in number theory.The simplest appli
ation of Euler's Identity represents Euler's proof of thein�nity of the set of primes. The divergen
e of the harmoni
 series P1k=1 1k impliesthe Euler Produ
t has to 
ontain in�nitely many fa
tors to diverge.Euler proved an essentially more exa
t result: the series of re
ipro
al primesdivergesP 1p =1.Summing via multipli
ation. Multipli
ation of series gives rise to a newapproa
h to evaluating their sums. Consider the geometri
 series P1k=0 xk . Then 1Xk=0 xk!2 = Xj;k2N2 xjxk = 1Xm=0 Xj+k=m xjxk = 1Xm=0(m+ 1)xm:As P1k=0 xk = 11�x one gets P1k=0(k + 1)xk = 1(1�x)2 .Sine-produ
t. Now we are ready to understand how two formulassinxx = 1Yk=1�1� x2k2�2� ; sinx = 1Xk=0(�1)k x2k+1(2k + 1)!(1.4.3)whi
h appeared in the Legends, yield an evaluation of the Euler Series. Sin
e atthe moment we do not know how to multiply in�nite sequen
es of numbers whi
hare less than one, we invert the produ
t in the �rst formula. We get(1.4.4) xsinx = 1Yk=1�1� x2k2�2��1 = 1Yk=1 1Xj=0 x2jk2j�2j :



1.4 infinite produ
ts 19To avoid negative numbers, we interpret the series1Xk=0(�1)k x2k+1(2k + 1)!in the se
ond formula of (1.4.3) as the di�eren
e1Xk=0 x4k+1(4k + 1)! � 1Xk=0 x4k+3(4k + 3)! :Substituting this expression for sinx in xsinx and 
an
elling out x, we getxsinx = 11� 1Pk=1(�1)k+1 x2k(2k+1)! = 1Xj=0 1Xk=1(�1)k+1 x2k(2k + 1)!!j :All terms on the right-hand side starting with j = 2 are divisible by x4. Conse-quently the only summand with x2 on the right-hand side is x26 . On the other handin (1.4.4) after an expansion into a sum by Theorem 1.4.1, the terms with x2 givethe seriesP1k=1 x2k2�2 . Comparing these results, one gets P1k=1 1k2 = �26 .Problems.1. Prove Q1n=1 1:1 =1.2. Prove the identity Q1n=1 a2n = (Q1n=1 an)2 (an � 1).3. Does Q1n=1(1 + 1n ) 
onverge?4. Evaluate Q1n=2 n2n2�1 .5. Prove the divergen
e of Q11 (1 + 1k )[k is prime℄.6. Evaluate Q1n=3 n(n+1)(n�2)(n+3) .7. Evaluate Q1n=3 n2�1n2�4 .8. Evaluate Q1n=1(1 + 1n(n+2) ).9. Evaluate Q1n=1 (2n+1)(2n+7)(2n+3)(2n+5) .10. Evaluate Q1n=2 n3+1n3�1 .11. Prove the inequality Q1k=2(1 + 1k2 ) �P1k=2 1k2 .12. Prove the 
onvergen
e of the Wallis produ
t Q 4k24k2�1 .13. Evaluate P1k=1 1k4 by applying (1.4.3).14. Prove Q1n=2 n2+1n2 <1.15. Multiply a geometri
 series by itself and get a power series expansion for (1�x)�2.16. De�ne �(n) as the number of divisors of n. Prove �2(x) =P1n=1 �(n)nx .17. De�ne �(n) as the number of numbers whi
h are less than n are relatively primeto n. Prove �(x�1)�(x) =P1n=1 �(n)nx .18. De�ne �(n) (M�obius fun
tion) as follows: �(1) = 1, �(n) = 0, if n is divisible bythe square of a prime number, �(n) = (�1)k, if n is the produ
t of k di�erentprime numbers. Prove 1�(x) =P1k=1 �(n)nx .�19. ProveP1k=1 [k is prime℄k =1.�20. Prove the identity Q1n=0(1 + x2n) = 11�x .



1.5. Teles
opi
 SumsOn the 
ontent of this le
ture. In this le
ture we learn the main se
ret ofelementary summation theory. We will evaluate series via their partial sums. Weintrodu
e fa
torial powers, whi
h are easy to sum. Following Stirling we expand11+x2 into a series of negative fa
torial powers and apply this expansion to evaluatethe Euler series with Stirling's a

ura
y of 10�8.The series P1k=1 1k(k+1) . In the �rst le
ture we 
al
ulated in�nite sums di-re
tly without invoking partial sums. Now we present a dual approa
h to summingseries. A

ording to this approa
h, at �rst one �nds a formula for the n-th par-tial sum and then substitutes in this formula in�nity instead of n. The seriesP1k=1 1k(k+1) gives a simple example for this method. The key to sum it up is thefollowing identity 1k(k + 1) = 1k � 1k + 1 :Be
ause of this identity P1k=1 1k(k+1) turns into the sum of di�eren
es(1.5.1) �1� 12�+�12 � 13�+�13 � 14�+ � � �+� 1n � 1n+ 1�+ : : : :Its n-th partial sum is equal to 1� 1n+1 . Substituting in this formula n = +1, onegets 1 as its ultimate sum.Teles
opi
 sums. The sum (1.5.1) represents a teles
opi
 sum. This name isused for sums of the form Pnk=0(ak � ak+1). The value of su
h a teles
opi
 sumis determined by the values of the �rst and the last of ak, similarly to a teles
ope,whose thi
kness is determined by the radii of the external and internal rings. Indeed,nXk=0(ak � ak+1) = nXk=0 ak � nXk=0 ak+1 = a0 + nXk=1 ak � n�1Xk=0 ak+1 � an+1 = a0 � an+1:The same arguments for in�nite teles
opi
 sums give(1.5.2) 1Xk=0(ak � ak+1) = a0:But this proof works only if P1k=0 ak <1. This is untrue for P1k=1 1k(k+1) , owingto the divergen
e of the Harmoni
 series. But the equality (1.5.2) holds also ifak tends to 0 as k tends to in�nity. Indeed, in this 
ase a0 is the least numbermajorizing all a0 � an, the n-th partial sums of P1k=0 ak.Di�eren
es. For a given sequen
e fakg one denotes by f�akg the sequen
eof di�eren
es �ak = ak+1 � ak and 
alls the latter sequen
e the di�eren
e of fakg.This is the main formula of elementary summation theory.n�1Xk=0�ak = an � a0To teles
ope a seriesP1k=0 ak it is suÆ
ient to �nd a sequen
e fAkg su
h that�Ak = ak. On the other hand the sequen
e of sums An =Pn�1k=0 ak has di�eren
e�An = an. Therefore, we see that to teles
ope a sum is equivalent to �nd a formula20



1.5 teles
opi
 sums 21for partial sums. This lead to 
on
ept of a teles
opi
 fun
tion. For a fun
tion f(x)we introdu
e its di�eren
e �f(x) as f(x + 1) � f(x). A fun
tion f(x) teles
opesPak if �f(k) = ak for all k.Often the sequen
e fakg that we would like to teles
ope has the form ak = f(k)for some fun
tion. Then we are sear
hing for a teles
opi
 fun
tion F (x) for f(x),i.e., a fun
tion su
h that �F (x) = f(x).To evaluate the di�eren
e of a fun
tion is usually mu
h easier than to teles
opeit. For this reason one has evaluated the di�eren
es of all basi
 fun
tions andorganized a table of di�eren
es. In order to teles
ope a given fun
tion, look in thistable to �nd a table fun
tion whose di�eren
e 
oin
ides with or is 
lose to givenfun
tion.For example, the di�eren
es of xn for n � 3 are �x = 1, �x2 = 2x + 1,�x3 = 3x2 + 3x + 1. To teles
ope P1k=1 k2 we 
hoose in this table x3. Then�x33 �x2 = x+ 13 = �x22 ��x6 . Therefore, x2 = ��x33 � x22 + x6�. This immediatelyimplies the following formula for sums of squares:(1.5.3) n�1Xk=1 k2 = 2n3 � 3n2 + n6 :Fa
torial powers. The usual powers xn have 
ompli
ated di�eren
es. Theso-
alled fa
torial powers xk have simpler di�eren
es. For any number x and anynatural number k, let xk denote x(x � 1)(x � 2) : : : (x � k + 1), and by x�k wedenote 1(x+1)(x+2):::(x+k) . At last we de�ne x0 = 1. The fa
torial power satis�es thefollowing addition law. xk+m = xk(x� k)mWe leave to the reader to 
he
k this rule for all integers m, k. The power nn fora natural n 
oin
ides with the fa
torial n! = 1 � 2 � 3 � � �n. The main property offa
torial powers is given by: �xn = nxn�1The proof is straightforward:(x + 1)k � xk = (x+ 1)1+(k�1) � x(k�1)+1= (x+ 1)xk�1 � xk�1(x� k + 1)= kxk�1:Applying this formula one 
an easily teles
ope any fa
torial polynomial, i.e., anexpression of the forma0 + a1x1 + a2x2 + a3x3 + � � �+ anxn:Indeed, the expli
it formula for the teles
oping fun
tion isa0x1 + a12 x2 + a23 x3 + a34 x4 + � � �+ ann+1xn+1:Therefore, another strategy to teles
ope xk is to represent it as a fa
torial polyno-mial.For example, to represent x2 as fa
torial polynomial, 
onsider a+ bx+ 
x2, ageneral fa
torial polynomial of degree 2. We are looking for x2 = a + bx + 
x2.Substituting x = 0 in this equality one gets a = 0. Substituting x = 1, one gets



22 1.5 teles
opi
 sums1 = b, and �nally for x = 2 one has 4 = 2+2
. Hen
e 
 = 1. As result x2 = x+x2.And the teles
oping fun
tion is given by12x2 + 13x3 = 12 (x2 � x) + 13 (x(x2 � 3x+ 2)) = 16 (2x3 � 3x2 + x):And we have on
e again proved the formula (1.5.3).Stirling Estimation of the Euler series. We will expand 1(1+x)2 into a seriesof negative fa
torial powers in order to teles
ope it. A natural �rst approximationto 1(1+x2) is x�2 = 1(x+1)(x+2) . We represent 1(1+x)2 as x�2 +R1(x), whereR1(x) = 1(1 + x)2 � x�2 = 1(x+ 1)2(x + 2) :The remainder R1(x) is in a natural way approximated by x�3. If R1(x) = x�3 +R2(x) then R2(x) = 2(x+1)2(x+2)(x+3) . Further, R2(x) = 2x�4 +R3(x), whereR3(x) = 2 � 3(x+ 1)2(x+ 2)(x+ 3)(x+ 4) = 3!x+ 1x�4:The above 
al
ulations lead to the 
onje
ture(1.5.4) 1(1 + x)2 = n�1Xk=0 k!x�k�2 + n!x+ 1x�n�1:This 
onje
ture is easily proved by indu
tion. The remainder Rn(x) = n!x+1x�n�1represents the di�eren
e 1(1+x)2 �Pn�1k=0 k!x�2�k. Owing to the inequality x�1�n� 1(n+1)! , whi
h is valid for all x � 0, the remainder de
reases to 0 as n in
reasesto in�nity. This impliesTheorem 1.5.1. For all x � 0 one has1(1 + x)2 = 1Xk=0 k!x�2�k :To 
al
ulateP1k=p 1(1+k)2 , repla
e all summands by the expressions (1.5.4). Wewill get 1Xk=p n�1Xm=0m!k�2�m + n!k + 1k�1�n! :Changing the order of summation we haven�1Xm=0m! 1Xk=p k�2�m + 1Xk=p n!k + 1k�1�n:Sin
e 11+mx�1�m teles
opes the sequen
e fk�2�mg, P1k=p k�2�m = 11+mp�1�m,Denote the sum of remainders P1k=p n!k+1k�1�n by R(n; p). Then for all natural pand n one has 1Xk=p 1(1 + k)2 = n�1Xm=0 m!1 +mp�1�m +R(n; p)



1.5 teles
opi
 sums 23For p = 0 and n = +1, the right-hand side turns into the Euler series, and one
ould get a false impression that we get nothing new. But k�2�n � 1k+1k�1�n �(k � 1)�2�n, hen
en!1 + np�1�n = 1Xk=pn!k�2�n � R(n; p) � 1Xk=p n!(k � 1)�2�n = n!1 + n (p� 1)�1�n:Sin
e (p� 1)�1�n � p�1�n = (1 + n)(p� 1)�2�n, there is a � 2 (0; 1) su
h thatR(n; p) = n!1 + np�1�n + �n!(p� 1)�2�n:Finally we get:1Xk=1 1k2 = p�1Xk=0 1(1 + k)2 + n�1Xk=0 k!1 + k p�1�k + �n!(p� 1)�2�n:For p = n = 3 this formula turns into1Xk=1 1k2 = 1 + 14 + 19 + 14 + 140 + 1180 + �420 :For p = n = 10 one gets R(10; 10) � 10!9�12. After 
an
ellations one has12�11�12�13�14�15�17�19 . This is approximately 2 � 10�8. Therefore10�1Xk=0 1(k + 1)2 + 10�1Xk=0 k!1 + k10�1�kis less than the sum of the Euler series by only 2 � 10�8. In su
h a way one 
an inone hour 
al
ulate eight digits of P1k=1 1k2 after the de
imal point. It is not a badresult, but it is still far from Euler's eighteen digits. For p = 10, to provide eighteendigits one has to sum essentially more than one hundred terms of the series. Thisis a bit too mu
h for a person, but is possible for a 
omputer.Problems.1. Teles
ope P k3.2. Represent x4 as a fa
torial polynomial.3. Evaluate P1k=1 1k(k+2) .4. Evaluate P1k=1 1k(k+1)(k+2)(k+3) .5. Prove: If �ak � �bk for all k and a1 � b1 then ak � bk for all k.6. �(x + a)n = n(x+ a)n�1.7. Prove Ar
himedes's inequality n33 �Pn�1k=1 k2 � (n+1)33 .8. Teles
ope P1k=1 k2k .9. Prove the inequalities 1n �P1k=n+1 1k2 � 1n+1 .10. Prove that the degree of �P (x) is less than the degree of P (x) for any polyno-mial P (x).11. Relying on �2n = 2n, prove that P (n) < 2n eventually for any polynomialP (x).12. ProveP1k=0 k!(x� 1)�1�k = 1x .



1.6. Complex SeriesOn the 
ontents of the le
ture. Complex numbers hide the key to the EulerSeries. The summation theory developed for positive series now extends to 
omplexseries. We will see that 
omplex series 
an help to sum real series.Cubi
 equation. Complex numbers arise in 
onne
tion with the solution ofthe 
ubi
 equation. The substitution x = y� a3 redu
es the general 
ubi
 equationx3 + ax2 + bx+ 
 = 0 to y3 + py + q = 0:The redu
ed equation one solves by the following tri
k. One looks for a root in theform y = �+�. Then (�+�)3+p(�+�)+q = 0 or �3+�3+3��(�+�)+p(�+�)+q =0. The latter equality one redu
es to the system�3 + �3 = �q;3�� = �p:(1.6.1)Raising the se
ond equation into a 
ube one gets�3 + �3 = �q;27�3�3 = �p3:Now �3, �3 are roots of the quadrati
 equationx2 + qx� p327 ;
alled the resolution of the original 
ubi
 equation. Sometimes the resolution hasno roots, while the 
ubi
 equation always has a root. Nevertheless one 
an evaluatea root of the 
ubi
 equation with the help of its resolution. To do this one simplyignores that the numbers under the square roots are negative.For example 
onsider the following 
ubi
 equation(1.6.2) x3 � 32x� 12 = 0:Then (1.6.1) turns into �3 + �3 = 12 ;�3�3 = 18 ;The 
orresponding resolution is t2 � t2 + 18 = 0 and its roots aret1;2 = 14 �q 116 � 18 = 14 � 14p�1:Then the desired root of the 
ubi
 equation is given by(1.6.3) 3q 14 (1 +p�1) + 3q 14 (1�p�1) = 13p4 � 3p1 +p�1 + 3p1�p�1� :It turns out that the latter expression one uniquely interprets as a real number whi
his a root of the equation (1.6.2). To evaluate it 
onsider the following expression(1.6.4) 3q(1 +p�1)2 � 3q(1 +p�1) 3q(1�p�1) + 3q(1�p�1)2:Sin
e (1 +p�1)2 = 12 + 2p�1 +p�12 = 1 + 2p�1� 1 = 2p�1;the left summand of (1.6.4) is equal to3q2p�1 = 3p2 3qp�1 = 3p2q 3p�1 = 3p2p�1:24



1.6 
omplex series 25Similarly (1 � p�1)2 = �2p�1, and the right summand of (1.6.4) turns into� 3p2p�1. Finally (1 +p�1)(1�p�1) = 12 �p�12 = 2 and the 
entral one is� 3p2. As a result the whole expression (1.6.4) is evaluated as � 3p2.On the other hand one evaluates the produ
t of (1.6.3) and (1.6.4) by the usualformula as the sum of 
ubes13p4 ((1 +p�1) + (1�p�1)) = 13p4 ((1 + 1) + (p�1)�p�1)) = 13p4 (2 + 0) = 3p2:Consequently (1.6.3) is equal to 3p2� 3p2 = �1. And �1 is a true root of (1.6.2).Arithmeti
 of 
omplex numbers. In the sequel we use i instead of p�1.There are two basi
 ways to represent a 
omplex number. The representationz = a + ib, where a and b are real numbers we 
all the Cartesian form of z. Thenumbers a and b are 
alled respe
tively the real and the imaginary parts of z and aredenoted by Re z and by Im z respe
tively. Addition and multipli
ation of 
omplexnumbers are de�ned via their real and imaginary parts as followsRe(z1 + z2) = Re z1 +Re z2;Im(z1 + z2) = Im z1 + Im z2;Re(z1z2) = Re z1Re z2 � Im z1 Im z2;Im(z1z2) = Re z1 Im z2 + Im z1Re z2:The trigonometri
 form of a 
omplex number is z = �(
os� + i sin�), where� � 0 is 
alled the module or the absolute value of a 
omplex number z and isdenoted jzj, and � is 
alled its argument. The argument of a 
omplex number isde�ned modulo 2�. We denote by Arg z the set of all arguments of z, and by arg zthe element of Arg z whi
h satis�es the inequalities �� < arg z � �. So arg z isuniquely de�ned for all 
omplex numbers. arg z is 
alled the prin
ipal argument ofz. The number a � bi is 
alled the 
onjugate to z = a + bi and denoted z. Onehas zz = jzj2. This allows us to express z�1 as zjzj2 .
arg z

Re z

Im z

 O

Z

Figure 1.6.1. The representation of a 
omplex numberIf z = a+ib then jzj = pa2 + b2 and arg z = ar
tg ba . One represents a 
omplexnumber z = a+bi as a point Z of the plane with 
oordinates (a; b). Then jzj is equal



26 1.6 
omplex seriesto the distan
e from Z to the origin O. And arg z represents the angle betweenthe axis of abs
ises and the ray �!OZ. Addition of 
omplex numbers 
orrespondsto usual ve
tor addition. And the usual triangle inequality turns into the moduleinequality : jz + �j � jzj+ j�j:The multipli
ation formula for 
omplex numbers in the trigonometri
 form is espe-
ially simple: r(
os�+ i sin�)r0(
os + i sin )= rr0(
os(�+  ) + i sin(�+  )):(1.6.5)Indeed, the left-hand side and the right-hand side of (1.6.5) transform torr0(
os� 
os � sin� sin ) + irr0(sin� 
os + sin 
os�):That is, the module of the produ
t is equal to the produ
t of modules and theargument of produ
t is equal to the sum of arguments:Arg z1z2 = Arg z1 �Arg z2:Any 
omplex number is uniquely de�ned by its module and argument.The multipli
ation formula allows us to prove by indu
tion the following:(Moivre Formula) (
os�+ i sin�)n = (
osn�+ i sinn�):Sum of a 
omplex series. Now is the time to extend our summation theoryto series made of 
omplex numbers. We extend the whole theory without anylosses to so-
alled absolutely 
onvergent series. The series P1k=1 zk with arbitrary
omplex terms is 
alled absolutely 
onvergent, if the series P1k=1 jzkj of absolutevalues 
onverges.For any real number x one de�nes two nonnegative numbers: its positive x+ andnegative x� parts as x+ = x[x � 0℄ and x� = �x[x < 0℄. The following identities
hara
terize the positive and negative parts of xx+ + x� = jxj; x+ � x� = x:Now the sum of an absolutely 
onvergent series of real numbers is de�ned as follows:(1.6.6) 1Xk=1 ak = 1Xk=1 a+k � 1Xk=1 a�k :That is, from the sum of all positive summands one subtra
ts the sum of modulesof all negative summands. The two series on the right-hand side 
onverge, be
ausea+k � jakj, a�k � jakj and P1k=1 jakj <1.For an absolutely 
onvergent 
omplex series P1k=1 zk we de�ne the real andimaginary parts of its sum separately by the formulasRe 1Xk=1 zk = 1Xk=1Re zk; Im 1Xk=1 zk = 1Xk=1 Im zk:(1.6.7)The series in the right-hand sides of these formulas are absolutely 
onvergent, sin
ejRe zkj � jzkj and j Im zkj � jzkj.



1.6 
omplex series 27Theorem 1.6.1. For any pair of absolutely 
onvergent series P1k=1 ak andP1k=1 bk its termwise sum P1k=1(ak + bk) absolutely 
onverges and(1.6.8) 1Xk=1(ak + bk) = 1Xk=1 ak + 1Xk=1 bk:Proof. First, remark that the absolute 
onvergen
e of the series on the left-hand side follows from the Module Inequality jak+bkj � jakj+ jbkj and the absolute
onvergen
e of the series on the right-hand side.Now 
onsider the 
ase of real numbers. Representing all sums in (1.6.8) asdi�eren
es of their positive and negative parts and separating positive and negativeterms in di�erent sides one transforms (1.6.8) into1Xk=1 a+k + 1Xk=1 b+k + 1Xk=1(ak + bk)� = 1Xk=1 a�k + 1Xk=1 b�k + 1Xk=1(ak + bk)+:But this equality is true due to termwise addition for positive series and the follow-ing identity, x� + y� + (x+ y)+ = x+ + y+ + (x+ y)�:Moving terms around turns this identity into(x+ y)+ � (x+ y)� = (x+ � x�) + (y+ � y�);whi
h is true due to the identity x+ �+x� = x.In the 
omplex 
ase the equality (1.6.8) splits into two equalities, one for realparts and another for imaginary parts. As for real series the termwise addition isalready proved, we 
an write the following 
hain of equalities,Re (P1k=1 ak +P1k=1 bk) = ReP1k=1 ak +ReP1k=1 bk=P1k=1Re ak +P1k=1 Re bk=P1k=1(Re ak +Re bk)=P1k=1Re(ak + bk)= ReP1k=1(ak + bk);whi
h proves the equality of real parts in (1.6.8). The same proof works for theimaginary parts. �Sum Partition Theorem. An unordered sum of a family of 
omplex numbersis de�ned by the same formulas (1.6.6) and (1.6.7). Sin
e for positive series non-ordered sums 
oin
ide with the ordered sums, we get the same 
oin
iden
e for allabsolutely 
onvergent series. Hen
e the 
ommutativity law holds for all absolutely
onvergen
e series.Theorem 1.6.2. If I = Fj2J Ij andP1k=1 jakj <1 thenPj2J ���Pi2Ij ai��� <1and Pj2JPi2Ij ai =Pi2I ai.Proof. At �rst 
onsider the 
ase of real summands. By de�nition Pi2I ai =Pi2I a+i �Pi2I a�i . By Sum Partition Theorem positive series one transforms theoriginal sum into Pj2JPi2Ij a+i �Pj2JPi2Ij a�i :



28 1.6 
omplex seriesNow by the Termwise Addition applied at �rst to external and after to internalsums one getsPj2J �Pi2Ij a+i �Pi2Ij a�i � =Pj2JPi2Ij (a+i � a�i ) =Pj2JPi2Ij ai:So the Sum Partition Theorem is proved for all absolutely 
onvergent real series.And it immediately extends to absolutely 
onvergent 
omplex series by its splittinginto real and imaginary parts. �Theorem 1.6.3 (Termwise Multipli
ation). If P1k=1 jzkj < 1 then for any(
omplex) 
, P1k=1 j
zkj <1 and P1k=1 
zk = 
P1k=1 zk.Proof. Termwise Multipli
ation for positive numbers gives the �rst statementof the theorem P1k=1 j
zkj = P1k=1 j
jjzkj = j
jP1k=1 jzkj. The further proof isdivided into �ve 
ases.At �rst suppose 
 is positive and zk real. Then 
z+k = 
z+k and by virtue ofTermwise Multipli
ation for positive series we getP1k=1 
zk =P1k=1 
z+k �P1k=1 
z�k= 
P1k=1 z+k � 
P1k=1 z�k= 
 �P1k=1 z+k �P1k=1 z�k �= 
P1k=1 zk:The se
ond 
ase. Let 
 = �1 and zk be real. In this 
aseP1k=1�zk =P1k=1(�zk)+ �P1k=1(�zk)� =P1k=1 z�k �P1k=1 z+k = �P1k=1 zk:The third 
ase. Let 
 be real and zk 
omplex. In this 
ase Re 
zk = 
Re zk andthe two 
ases above imply the Termwise Multipli
ation for any real 
. Hen
eReP1k=1 
zk =P1k=1 Re 
zk=P1k=1 
Re zk= 
P1k=1Re zk= 
ReP1k=1 zk= Re 
P1k=1 zk:The same is true for imaginary parts.The fourth 
ase. Let 
 = i and zk be 
omplex. Then Re izk = � Im zk andIm izk = Re zk. So one gets for real partsReP1k=1 izk =P1k=1 Re(izk)=P1k=1� Im zk= �P1k=1 Im zk= � ImP1k=1 zk= Re iP1k=1 zk:



1.6 
omplex series 29The general 
ase. Let 
 = a+ bi with real a, b. Then
P1k=1 zk = aP1k=1 zk + ibP1k=1 zk=P1k=1 azk +P1k=1 ibzk=P1k=1(azk + ibzk)=P1k=1 
zk: �Multipli
ation of Series. For two given series P1k=0 ak and P1k=0 bk, onede�nes their 
onvolution as a seriesP1n=0 
n, where 
n =Pnk=0 akbn�k.Theorem 1.6.4 (Cau
hy). For any pair of absolutely 
onvergent seriesP1k=0 akand P1k=0 bk their 
onvolution P1k=0 
k absolutely 
onverges andP1k=0 
k =P1k=0 akP1k=0 bk:Proof. Consider the double seriesPi;j aibj . Then by the Sum Partition The-orem its sum is equal toP1j=0 (P1i=0 aibj) =P1j=0 bj (P1i=0 ai) = (P1i=0 ai)(P1j=0 bj):On the other hand,Pi;j aibj =P1n=0Pn+1�1k=0 akbn�k. But the last sum is just the
onvolution.This proof goes through for positive series. In the general
ase we have to proveabsolute 
onvergen
e of the double series. But this follows from(P1k=0 jakj) (P1k=0 jbkj) =P1k=0 j
kj: �Module Inequality.(1.6.9) ����� 1Xk=1 zk����� � 1Xk=1 jzkj:Let zk = xk + iyk. Summation of the inequalities �jxkj � xk � jxk j gives�P1k=1 jxkj � P1k=1 xk � P1k=1 jxk j, whi
h means jP1k=1 xkj � P1k=1 jxk j. Thesame inequality is true for yk. Consider z0k = jxk j + ijykj. Then jzkj = jz0kj andjP1k=1 zkj � jP1k=1 z0kj. Therefore it is suÆ
ient to prove the inequality (1.6.9) forz0k, that is, for numbers with non-negative real and imaginary parts. Now supposingxk; yk to be nonnegative one gets the following 
hain of equivalent transformationsof (1.6.9):(P1k=1 xk)2 + (P1k=1 yk)2 � (P1k=1 jzkj)2P1k=1 xk �q(P1k=1 jzkj)2 � (P1k=1 yk)2Pnk=1 xk �q(P1k=1 jzkj)2 � (P1k=1 yk)2; 8n = 1; 2; : : :P1k=1 yk �q(P1k=1 jzkj)2 � (RePnk=1 xk)2; 8n = 1; 2; : : :Pmk=1 yk �q(P1k=1 jzkj)2 � (Pnk=1 xk)2; 8n;m = 1; 2; : : :(Pnk=1 xk)2 + (Pmk=1 yk)2 � (P1k=1 jzkj)2 ; 8m;n = 1; 2; : : :



30 1.6 
omplex seriesr�PNk=1 xk�2 + �PNk=1 yk�2 �P1k=1 jzkj; 8N = 1; 2; : : :���PNk=1 zk��� �P1k=1 jzkj; 8N = 1; 2; : : :The inequalities of the last system hold be
ause ���PNk=1 zk��� � PNk=1 jzkj �P1k=1 jzkj.Complex geometri
 progressions. The sum of a geometri
 progression witha 
omplex ratio is given by the same formula(1.6.10) n�1Xk=0 zk = 1� zn1� z :And the proof is the same as in the 
ase of real numbers. But the meaning ofthis formula is di�erent. Any 
omplex formula is in fa
t a pair of formulas. Any
omplex equation is in fa
t a pair of equations.In parti
ular, for z = q(sin� + i 
os�) the real part of the left-hand side of(1.6.10) owing to the Moivre Formula turns intoPn�1k=0 qk sin k� and the right-handside turns into Pn�1k=0 qk 
os k�. So the formula for a geometri
 progression splitsinto two formulas whi
h allow us to teles
ope some trigonometri
 series.Espe
ially interesting is the 
ase with the ratio "n = 
os 2�n + i sin 2�n . In this
ase the geometri
 progression 
y
li
ally takes the same values, be
ause "nn = 1.The terms of this sequen
e are 
alled the roots of unity, be
ause they satisfy theequation zn � 1 = 0.Lemma 1.6.5. (zn � 1) =Qnk=1(z � "kn).Proof. Denote by P (z) the right-hand side produ
t. This polynomial hasdegree n, has major 
oeÆ
ient 1 and has all "kn as its roots. Then the di�eren
e(zn � 1)� P (z) is a polynomial of degree < n whi
h has n di�erent roots. Su
h apolynomial has to be 0 by virtue of the following general theorem. �Theorem 1.6.6. The number of roots of any nonzero 
omplex polynomial doesnot ex
eed its degree.Proof. The proof is by indu
tion on the degree of P (z). A polynomial ofdegree 1 has the form az+b and the only root is � ba . Suppose our theorem is provedfor any polynomial of degree< n. Consider a polynomial P (z) = a0+a1z+� � �+anznof degree n, where the 
oeÆ
ients are 
omplex numbers. Suppose it has at least nroots z1; : : : ; zn. Consider the polynomial P �(z) = anQnk=1(z� zk). The di�eren
eP (z) � P �(z) has degree < n and has at least n roots (all zk). By the indu
tionhypothesis this di�eren
e is zero. Hen
e, P (z) = P �(z). But P �(z) has only nroots. Indeed, for any z di�erent from all zk one has jz � zkj > 0. ThereforejP �(z)j = janjQnk=1 jz � zkj > 0. �By blo
king 
onjugated roots one gets a pure real formula:zn � 1 = (z � 1) (n�1)=2Yk=1 �z2 � 2z 
os 2k�n + 1� :



1.6 
omplex series 31Complexi�
ation of series. Complex numbers are e�e
tively applied tosum up so-
alled trigonometri
 series, i.e., series of the type P1k=0 ak 
os kx andP1k=0 ak sin kx. For example, to sum the series P1k=1 qk sin k� one 
ouples it withits dualP1k=0 qk 
os k� to form a 
omplex seriesP1k=0 qk(
os k�+i sin k�). The lastis a 
omplex geometri
 series. Its sum is 11�z , where z = 
os�+i sin�. Now the sumof the sine seriesP1k=1 qk sin k� is equal to Im 11�z , the imaginary part of the 
om-plex series, and the real part of the 
omplex series 
oin
ides with the 
osine series.In parti
ular, for q = 1, one has 11�z = 11+
os�+i sin� . To evaluate the real and imag-inary parts one multiplies both numerator and denominator by 1 + 
os� � i sin�.Then one gets (1 � 
os�)2 + sin2 � = 1 � 2 
os2 � + 
os2 � + sin2 � = 2 � 2 
os�as the denominator. Hen
e 11�z = 1�
os�+i sin�2�2 
os� = 12 + 12 
ot �2 . And we get tworemarkable formulas for the sum of the divergent series1Xk=0 
os k� = 12 ; 1Xk=1 sin k� = 12 
ot �2 :For � = 0 the left series turns into P1k=0(�1)k. The evaluation of the Euler seriesvia this 
osine series is remarkably short, it takes one line. But one has to knowintegrals and a something else to justify this evaluation.Problems.1. Find real and imaginary parts for 11�i , ( 1�i1+i )3, i5+2i19+1 , (1+i)5(1�i)3 .2. Find trigonometri
 form for �1, 1 + i, p3 + i.3. Prove that z1z2 = 0 implies either z1 = 0 or z2 = 0.4. Prove the distributivity law for 
omplex numbers.5. Analyti
ally prove the inequality jz1 + z2j � jz1j+ jz2j.6. Evaluate Pn�1k=1 1zk(zk+1) , where zk = 1 + kz.7. Evaluate Pn�1k=1 z2k, where zk = 1 + kz.8. Evaluate Pn�1k=1 sin k2k .9. Solve z2 = i.10. Solve z2 = 3� 4i.11. Teles
ope P1k=1 sin 2k3k .12. Prove that the 
onjugated to a root of polynomial with real 
oeÆ
ient is theroot of the polynomial.13. Prove that z1 + z2 = z1 + z2.14. Prove that z1z2 = z1 z2.�15. Solve 8x3 � 6x� 1 = 0.16. Evaluate P1k=1 sin k2k .17. Evaluate P1k=1 sin 2k3k .18. Prove absolute 
onvergen
e of P1k=0 zkk! for any z.19. For whi
h z the seriesP1k=1 zkk absolutely 
onverges?20. Multiply a geometri
 series onto itself several times applying Cau
hy formula.21. Find series for p1 + x by method of inde�nite 
oeÆ
ients.22. Does seriesP1k=1 sin kk absolutely 
onverge?23. Does seriesP1k=1 sin kk2 absolutely 
onverge?


