CHAPTER 1

Series



1.1. Autorecursion of Infinite Expressions

On the contents of the lecture. The lecture presents a romantic style of
early analytics. The motto of the lecture could be “infinity, equality and no defi-
nitions!”. Infinity is the main personage we will play with today. We demonstrate
how infinite expressions (i.e., infinite sums, products, fractions) arise in solutions
of simple equations, how it is possible to calculate them, and how the results of
such calculations apply to finite mathematics. In particular, we will deduce the
Euler-Binet formula for Fibonacci numbers, the first Euler’s formula of the course.
We become acquainted with geometric series and the golden section.

Achilles and the turtle. The ancient Greek philosopher Zeno claimed that
Achilles pursuing a turtle could never pass it by, in spite of the fact that his velocity
was much greater than the velocity of the turtle. His arguments adopted to our
purposes are the following.

First Zeno proposed a pursuing algorithm for Achilles:

Initialization. Assign to the variable goal the original position of the turtle.

Action. Reach the goal.

Correction. If the current turtle’s position is goal, then stop, else reassign to
the variable goal the current position of the turtle and go to Action.

Secondly, Zeno remarks that this algorithm never stops if the turtle constantly
moves in one direction.

And finally, he notes that Achilles has to follow his algorithm if he want pass
the turtle by. He may be not aware of this algorithm, but unconsciously he must
perform it. Because he cannot run the turtle down without reaching the original
position of the turtle and then all positions of the turtle which the variable goal
takes.

Zeno’s algorithm generates a sequence of times {t;}, where ¢; is the time of
execution of the k-th action of the algorithm. And the whole time of work of the
algorithm is the infinite sum 220:1 tr; and this sum expresses the time Achilles
needs to run the turtle down. (The corrections take zero time, because Achilles
really does not think about them.) Let us name this sum the Zeno series.

Assume that both Achilles and the turtle run with constant velocities v and
w, respectively. Denote the initial distance between Achilles and the turtle by dp.
Then t; = %. The turtle in this time moves by the distance d; = t;w = %do. By
his second action Achilles overcomes this distance in time t5 = % = ©t1, while the
turtle moves away by the distance do = tow = %dl. So we see that the sequences of
times {t } and distances {d } satisfy the following recurrence relations: ty, = 3t _1,
dp = Tdy1.

Hence {1} as well as {dy} are geometric progressions with ratio **. And the
time ¢ which Achilles needs to run the turtle down is
w ’ll)2 w w2
t:t1-|-t2+t3_|_...:t1_|_?t1_|_v_2t1+...:t1 (1_|_?+v_2_|_...)‘

In spite of Zeno, we know that Achilles does catch up with the turtle. And
one easily gets the time t he needs to do it by the following argument: the distance
between Achilles and the turtle permanently decreases with the velocity v — w.
Consequently it becomes 0 in the time ¢t = viow = t157;- Comparing the results
we come to the following conclusion

(1.1.1) v —1+%+15_j+1:_§+.._

v—w

2



1.1 AUTORECURSION OF INFINITE EXPRESSIONS 3

Infinite substitution. We see that some infinite expressions represent finite
values. The fraction in the left-hand side of (1.1.1) expands into the infinite series
on the right-hand side. Infinite expressions play a key role in mathematics and
physics. Solutions of equations quite often are presented as infinite expressions.

For example let us consider the following simple equation

(1.1.2) t=1+qt.

Substituting on the right-hand side 1 + gt instead of ¢, one gets a new equation
t=1+q(1+qt) =1+ q+ ¢*t. Any solution of the original equation satisfies this
one. Repeating this trick, one gets t = 1 + ¢(1 + q(1 + qt)) = 1 + q + ¢* + ¢°t.
Repeating this infinitely many times, one eliminates ¢ on the right hand side and
gets a solution of (1.1.2) in an infinite form

t=l+q++¢+--=) "
k=0
On the other hand, the equation (1.1.2) solved in the usual way gives t = 1%,1' As
a result, we obtain the following formula
1 ) o0
1.1.3 — =1 1@+t 4= k
(1.1.3) o ltet e kz_%q

which represents a special case of (1.1.1) forv =1, w =gq.

Autorecursion. An infinite expression of the form a; +as +az+... is called a
series and is concisely denoted by > ¢~ | a;. Now we consider a summation method
for series which is inverse to the above method of infinite substitution. To find the
sum of a series we shall construct an equation which is satisfied by its sum. We
name this method autorecursion. Recursion means “return to something known”.
Autorecursion is “return to oneself”.

The series as +az+- -+ =Y, aj obtained from >~ aj by dropping its first
term is called the shift of 3,2 ay.

We will call the following equality the shift formula:

o0 oo
E ar = a1 + Z ag-
k=1 k=2

Another basic formula we need is the following multiplication formula:

A i ar = i )\ak.
k=1 k=1

These two formulas are all one needs to find the sum of geometric series
Yreo ¢*. To be exact, the multiplication formula gives the equality Y orey ¢ =
qZ?;O ¢*. Hence the shift formula turns into equation = 1 + gz, where z is
> ey ¢*. The solution of this equation gives us the formula (1.1.3) for the sum of
the geometric series again.

From this formula, one can deduce the formula for the sum of a finite geometric
progression. By ZZ:O ay, is denoted the sum ag + a1 + as + - -+ + a,. One has

n—1 o] [e%s}
1 q" 1—q"
= d"-> ¢ = - =

1-q 1-—¢q°



4 1.1 AUTORECURSION OF INFINITE EXPRESSIONS
This is an important formula which was traditionally studied in school.

The series Y -, kaz*. To find the sum of > . ka* we have to apply addi-
tionally the following addition formula,
(oo} o0 (oo}
D (ar+be) =Y ar+Y by
k=1 k=1 k=1
which is the last general formula for series we introduce in the first lecture.
Reindexing the shift "=, kz* we give it the form Y ;- (k + 1)z*+1. Further
it splits into two parts

xi(k+1)mk :wikazk—f—ximk :wikazk—l—azlfx
k=1 k=1 k=1 k=1

by the addition formula. The first summand is the original sum multiplied by
. The second is a geometric series. We already know its sum. Now the shift
formula for the sum s(z) of the original series turns into the equation s(z) =

x4+ x5 + ws(x). Its solution is s(z) = el

Fibonacci Numbers. Starting with ¢ = 0, ¢ = 1 and applying the recur-
rence relation

Ont1 = Pp + Pp_1,

one constructs an infinite sequence of numbers 0,1,1,2,3,5,8,13,21,..., called
Fibonacci numbers. We are going to get a formula for ¢,,.

To do this let us consider the following function ®(z) = Y .=, #rz”, which
is called the generating function for the sequence {¢y}. Since ¢y = 0, the sum
®(z) + x®(x) transforms in the following way:

> > > O(x) —x
> ok + > g1zt =D ppaat = —
k=1 k=1 k=1

Multiplying both sides of the above equation by = and collecting all terms containing
®(x) on the right-hand side, one gets x = ®(z) — 2®(z) — 22®(x) = x. It leads to
x

(I)(x):71—x—$2'

The roots of the equation 1 — 2 — 2? = 0 are %\/g More famous is the pair
of their inverses % The number ¢ = ,1+\/g is the so-called golden section or
golden mean. It plays a significant role in mathematics, architecture and biology.
Its dual is ¢ = _1%‘/5 Then ¢¢ = —1, and ¢ + ¢ = 1. Hence (1 — z¢)(1 — z¢) =
1 — 2 — &2, which in turn leads to the following decomposition:

x 1 1 1
w?+r-1 V5\l-ds 1-¢z/)’
We expand both fractions on the right hand side into geometric series:

1 > 1 S
1— ¢ =D o', 1— o =2 ot

k=0 k=0
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This gives the following representation for the generating function
1 .
P(x) = — k_ gk,
() =% g(as )

On the other hand the coefficient at z* in the original presentation of ®(x) is .
Hence

(114) br = i(d)k_(i;k) _ (\/5+1)k+(_1)k(\/5_1)k‘

V5 2k/5
This is called the Euler-Binet formula. It is possible to check it for small & and
then prove it by induction using Fibonacci recurrence.

Continued fractions. The application of the method of infinite substitution
to the solution of quadratic equation leads us to a new type of infinite expressions,
the so-called continued fractions. Let us consider the golden mean equation z? —
@ —1=0. Rewrite it as # = 1+ 1. Substituting 1 + 1 instead of  on the right-

hand side we get = 1 + ——. Repeating the substitution infinitely many times

1+
we obtain a solution in the form of the continued fraction:
1
(1.1.5) 1+ 1
14+ —7F
L+ o

As this fraction seems to represent a positive number and the golden mean is the
unique positive root of the golden mean equation, it is natural to conclude that this
fraction is equal to ¢ = % This is true and this representation allows one to
calculate the golden mean and /5 effectively with great precision.

To be precise, consider the sequence

1

(1.1.6) 1, 141, 1+1+l, 1+ T
1

1+

1+ 1
of so-called convergents of the continued fraction (1.1.5). Let us remark that all
odd convergents are less than ¢ and all even convergents are greater than ¢. To

see this, compare the n-th convergent with the corresponding term of the following
sequence of fractions:

(1.1.7) 1+1, 1+

—_
_|_
8=

1+ ——~

141
We know that for z = ¢ all terms of the above sequence are equal to ¢. Hence
all we need is to observe how the removal of % affects the value of the considered
fraction. The value of the first fraction of the sequence decreases, the value of the
second fraction increases. If we denote the value of n-th fraction by f,, then the
value of the next fraction is given by the following recurrence relation:

1
(1.1.8) fo1 =14 —.

n
Hence increasing f,, decreases f, 11 and decreasing f, increases f, 1. Consequently
in general all odd fractions of the sequence (1.1.7) are less than the corresponding



6

1.1 AUTORECURSION OF INFINITE EXPRESSIONS

convergent, and all even are greater. The recurrence relation (1.1.8) is valid for the
golden mean convergent. By this recurrence relation one can quickly calculate the

first ten convergents 1,2, %, %, %, %, %, %, g—i, %. The golden mean lies between
last two fractions, which have the difference . This allows us to determine the

34-55°

first four decimal digits after the decimal point of it and of V5.

13.
14.

15.
16.

17.
18.
19.

N

Problems.

0o 92k
Evaluate )~ S%-

Evaluate 1 —14+1—-1+4---.
Evaluate 1+1—-1-14+1+1—-1—-1+4---.
Evaluate ", 7%

co k2
Evaluate )~ 7.
Decompose the fraction Hﬁ

Find the generating function for the sequence {2*}.

into a power series.

. Find sum the Y7 ¢x37*.

. Prove by induction the Euler-Binet formula.

. Evaluate 1 -24+14+1-2+1+---.

. Approximate /2 by a rational with precision 0.0001.

. Find the value of 1 +

2+
1+

24 ...

Find the value of \/2+ V2+vV2+---.

By infinite substitution, solve the equation 2> — 2z — 1 = 0, and represent v/2
by a continued fraction.

Find the value of the infinite product 2 - 23 .24 .28 .-,

Find a formula for n-th term of the recurrent sequence z,11 = 2z, + x,_1,
Top =21 = 1.

Find the sum of the Fibonacci numbers .2 | @x.

Findsum 1+0—-1+140—-1+4+---.
Decompose into the sum of partial fractions

1
z2—-3z+2"



1.2. Positive Series

On the contents of the lecture. Infinity is pregnant with paradoxes. Para-
doxes throw us down from the heavens to the earth. We leave the poetry for prose,
and rationalize the infinity and equality by working with finiteness and inequality.
We shall lay a solid foundation for a summation theory for positive series. And the
reader will find out what Zzozl k% = %2 precisely means.

Divergent series paradox. Let us consider the series Z;’;O 2%, This is a
geometric series. We know how to sum it up by autorecursion. The autorecursion
equation is s = 1+ 2s. The only number satisfying this equation is —1. The sum
of positive numbers turns to be negative!? Something is wrong!

A way to save the situation is to admit infinity as a feasible solution. Infinity
is an obvious solution of s = 1+ 2s. The sum of any geometric series Z;’;O ¢* with
denominator ¢ > 1 is obviously infinite, isn’t it?

Indeed, this sum is greater than 1+ 1+ 1+ 1+ ..., which symbolizes infinity.
(The autorecursion equation for 1 +1+ 1+ ... is s = s + 1. Infinity is the unique
solution of this equation.)

The series Y, 2% represents Zeno’s series in the case of the Mighty Turtle,
which is faster than Achilles. To be precise, this series arises if v = dy = 1 and
w = 2. As the velocity of the turtle is greater than the velocity of Achilles he
never reaches it. So the infinity is right answer for this problem. But the negative
solution —1 also makes sense. One could interpret it as an event in the past. Just
the point in time when the turtle passed Achilles.

Oscillating series paradoxes. The philosopher Gvido Grandy in 1703 at-
tracted public attention to the series 1 —1+4+1— 1+ .... He claimed this series
symbolized the Creation of Universe from Nothing. Namely, insertion of brackets
in one way gives Nothing (that is 0), in another way, gives 1.

1-1D)+(1-1)+1=1)+--=040+0+---=0,
1-1-1)—-(1-1)—-(1-1)—---=1-0-0-0—---=1.

On the other hand, this series 1 —1+1—-1+1—1+4 ... is geometric with
negative ratio ¢ = —1. Its autorecursion equation s = 1 — s has the unique solution
s = 3. Neither 400 nor —oo satisfy it. So 1 seems to be its true sum.

Hence we see the Associativity Law dethroned by 1 —141—1+.... The next
victim is the Commutativity Law. The sum —14+1—-1+1—1+ ... is equal to
—%. But the last series is obtained from 1 —1+1—1+4... by transposition of odd
and even terms.

And the third amazing thing: diluting it by zeroes changes its sum. The sum
1+0-14+1+0—-1+1+0—1+... by nomeansis 3. It is 2. Indeed, if we denote
this sum by s then by shift formulas one gets

s= 1+40-14+1+0-14+14+0-14+14+0-1+...,
s—1= 0-1+14+0-14+1+0-14+14+0-1+1+...,
§—1-0=-1+14+0-14+1+0-1+14+0-1+1+0+....
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Summing the numbers column-wise (i.e., by the Termwise Addition Formula), we
get

s+(s—1)+(s—1-0=(1+0-1)+0—-1+1)+(-1+1+0)
+(1+0-1)+O0—-14+1)+(-14+14+0)+....

The left-hand side is 3s — 2. The right-hand side is the zero series. That is why
s=2.

%he series 1 — 1+ 1 —1+ ... arises as Zeno’s series in the case of a blind
Achilles directed by a cruel Zeno, who is interested, as always, only in proving his
claim, and a foolish, but merciful turtle. The blind Achilles is not fast, his velocity
equals the velocity of the turtle. At the first moment Zeno tells the blind Achilles
where the turtle is. Achilles starts the rally. But the merciful turtle wishing to help
him goes towards him instead of running away. Achilles meets the turtle half-way.
But he misses it, being busy to perform the first step of the algorithm. When
he accomplishes this step, Zeno orders: “Turn about!” and surprises Achilles by
saying that the turtle is on Achilles’ initial position. The turtle discovers that
Achilles turns about and does the same. The situation repeats ad infinitum. Now

1

we see that assigning the sum 5 to the series 1 —1+1—1+ ... makes sense. It

predicts accurately the time of the first meeting of Achilles and turtle.

Positivity. The paradoxes discussed above are discouraging. Our intuition
based on handling finite sums fails when we turn to infinite ones. Observe that all
paradoxes above involve negative numbers. And to eliminate the evil in its root,
let us consider only nonnegative numbers.

We return to the ancient Greeks. They simply did not know what a negative
number is. But in contrast to the Greeks, we will retain zero. A series with
nonnegative terms will be called a positive series. We will show that for positive
series all familiar laws, including associativity and commutativity, hold true and
zero terms do not affect the sum.

Definition of Infinite Sum. Let us consider what Euler’s equality could

mean:
2

1 b
D E=g
k=1

The natural answer is: the partial sums 2221 k%, which contain more and more
x?
¥ 6
tial sums have to be less than %, its ultimate sum. Indeed, if some partial sum

.. . 2 . 2
exceeds or coincides with 7 then all subsequent sums will move away from 7.

Furthermore, any number ¢ which is less than %2 has to be surpassed by partial

reciprocal squares, approach closer and closer the value Z-. Consequently, all par-

sums eventually, when they approach %2 closer than by %2 — c¢. Hence the ultimate
sum majorizes all partial ones, and any lesser number does not. This means that
the ultimate sum is the smallest number which majorizes all partial sums.

Geometric motivation. Imagine a sequence [a;_1, a;] of intervals of the real
line. Denote by I; the length of i-th interval. Let ag = 0 be the left end point of
the first interval. Let [0, A] be the smallest interval containing the whole sequence.
Its length is naturally interpreted as the sum Y =, I;

This motivates the following definition.



1.2 POSITIVE SERIES 9

DEFINITION. If the partial sums of the positive series Y -, ar increase without
bound, its sum is defined to be co and the series is called divergent. In the opposite
case the series called convergent, and its sum is defined as the smallest number A
such that A > Y7 _, ay for all n.

This Definition is equivalent to the following couple of principles. The first
principle limits the ultimate sum from below:

PRINCIPLE (One-for-All). The ultimate sum of a positive series magjorizes all
partial sums.

And the second principle limits the ultimate sum from above:

PriINcIPLE (All-for-One). If all partial sums of a positive series do not exceed
a number, then the ultimate sum also does not exceed it.

THEOREM 1.2.1 (Termwise Addition Formula).

Zak+zbk—z (ar + by).
k=1

Proor. The inequality o, ar + > opey bk < Y pey(ak + by) is equivalent to
Yoy ak < Yop (g +bg) = > 4o bi. By All-for-One, the last is equivalent to the
system of inequalities

N [e's} oS}
Zakfz(ak+bk)_zbk N=12....
k=1 k=1 k=1

This system is equivalent to the following system

o0 o0
Zbkf ak+bk Zak N=12....
k=1 k=

Each inequality of the last system, in its turn, is equivalent to the system of in-
equalities

M o] N
Zbk SZ(ak+bk)—Zak M=1,2,....
k=1 k=1 k=1

But these inequalities are true for all N and M, as the following computations
show.

M+N M+N M+N

Zbk+zak< Z bi, + Z ay = Z ak+bk)§2(ak+bk)-
k=1 k=1

In the opposite direction, we see that any partial sum on the right-hand side
> hoq(ag + bg) splits into >, ar + >.p_; by. And by virtue of the One-for-All
principle, this does not exceed Y7 | ar + > 4o bi. Now, the All-for-One principle
provides the inequality in the opposite direction. d

THEOREM 1.2.2 (Shift Formula).

(oo} o0
E ap = ag + E Q.
k=0 k=1
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PrOOF. The Shift Formula immediately follows from the Termwise Addition
formula. To be precise, immediately from the definition, one gets the following:
ap+0+04+0+0+---=ap and that 0+ ay +az +az +--- = >, a. Termwise
Addition of these series gives

o0 o0
a0+zak:(GO+0)+(0+a1)+(0+a2)+(0+a3)+---:Zak.
k=1 k=0

THEOREM 1.2.3 (Termwise Multiplication Formula).

A i ap = i /\ak.
k=1 k=1

PRroOF. For any partial sum from the right-hand side one has
n n o0
PIEIEY PIEY P
k=1 k=1 k=1

by the Distributivity Law for finite sums and One-for-All. This implies the inequal-
ity MY pe, ak > D ope Aay by All-for-One. The opposite inequality is equivalent
t0 Yopoq ar > 5 Y peq Aak. As any partial sum Y, ax is equal to § Y Aak,
which does not exceed % Ezozl Aayg, one gets the opposite inequality. a

Geometric series. We have to return to the geometric series, because the
autorecursion equation produced by shift and multiplication formulas says nothing
about convergence. So we have to prove convergence for E,;";O ¢* with positive
q < 1. It is sufficient to prove the following inequality for all n

ltg+@++-+q" < .
Multiplying both sides by 1 — g one gets on the left-hand side

Q-+ @-)+ @ =)+ + (" =¢") + (" —¢"™)
=l—q+q-C+¢ -+~ —q"+q" ="
:l_qn—‘rl

and 1 on the right-hand side. The inequality 1—¢"*! < 1is obvious. Hence we have
proved the convergence. Now the autorecursion equation z = 1 + gz for EZ’;O q"

is constructed in usual way by the shift formula and termwise multiplication. It
leaves only two possibilities for Y, ¢*, either q+1 or co. For ¢ < 1 we have

proved convergence, and for ¢ > 1 infinity is the true answer.
Let us pay special attention to the case ¢ = 0. We adopt a common convention:

0% =1.

This means that the series >~ 0" satisfies the common formula for a convergent
geometric series 3,2 0" = 15 = 1. Finally we state the theorem, which is

essentially due to Eudoxus, who proved the convergence of the geometric series
with ratio ¢ < 1.
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THEOREM 1.2.4 (Eudoxus). For every nonnegative q one has

oo 1 o0
qu =—— forq<1, and qu =00 forq>1.
k=0 1-q k=0
Comparison of series. Quite often exact summation of series is too difficult,
and for practical purposes it is enough to know the sum approximatively. In this
case one usually compares the series with another one whose sum is known. Such
a comparison is based on the following Termwise Comparison Principle, which
immediately follows from the definition of a sum.

PriNCIPLE (Termwise Comparison). If ay < by, for k, then
oo oo
Z (473 S Z bk.
k=1 k=1

The only series we have so far to compare with are the geometric ones. The
following lemma is very useful for this purposes.

LemMA 1.2.5 (Ratio Test). If ag+1 < qag for k holds for some q < 1 then
>k <y
k=0 —4

PROOF. By induction one proves the inequality aj; < apg*. Now by Termwise
Comparison one estimates ZZ’;O ay, from above by the geometric series Zzozo apq® =

ao
1—gq U

If the series under consideration satisfies an autorecursion equation, to prove
its convergence usually means to evaluate it exactly. For proving convergence, the
Termwise Comparison Principle can be strengthened. Let us say that the series
> e, ak is eventually majorized by the series Y~ by, if the inequality by > ax
holds for each k starting from k& = n for some n. The following lemma is very useful
to prove convergence.

PrINCIPLE (Eventual Comparison). A series Y .- | ax, which is eventually ma-
jorized by a convergent series ZZ’;I br, s convergent.

PRrOOF. Consider a tail >, by, which termwise majorizes Y .- aj. Then
o] n—1 o]
doak= it ) a
k=1 k=1 k=n
n—1 o'}
<D art ) b
k=1 k=n
n—1 (o]
<D ak+ ) b
k=1 k=1

< 00.
O

Consider the series Y-, k27%. The ratio of two successive terms ”Z—:l of the

series is ’“2—21 This ratio is less or equal to % starting with & = 3. Hence this series
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. . . . . S ok ) .
is eventually majorizes by the geometrlc. series Z 0 03 5% (a.g = ). This proves
its convergence. And now by autorecursion equation one gets its sum.

Harmonic series paradox. Now we have a solid background to evaluate
positive series. Nevertheless, we must be careful about infinity! Consider the
following calculation:

= 1

= 1 =1
];21:(21:—1)22%—1_27:

2
k=1 k=1

=1 1x1
:;219—1_52_:E

=1 k=1

=1 1 1 =1
:;2k—1_§<z_:2k—1+z_:ﬂ>
=1 k=1 k=1

=1 e 1 11X 1
:<kzl2k—1_§kzl2k—1>_§;%
1 [ Ry |
-+ (Ewsr) -5
_100
_5 2k—1

We get that the sum ZZ’;I m satisfies the equation s = 3. This equation has
2
two roots 0 and co. But s satisfies the inequalities % < s < %. What is wrong?

Problems.

Prove 27, 0=0.

Prove > ;7 , 0% = 1.

Prove Y07 o ar = Y pe o @2k + D pog Q2k41-
Prove Y7, (ay — bk) > hey Gk — 2oy by for convergent series.
Evaluate Y2, k(k+1)

Prove (1-3)+ (5 - D+ (G -5+ =1-[G -

Prove the convergence of Y~ i, .

JHGE =5+

Wl

Prove the convergence of Y~ | +2%

© XS ok

Prove the convergence of Yo, A

Prove that ¢" < (1 ) for0<g< 1.

. Prove that for any positive ¢ < 1 there is an n that ¢" < 3.
. Prove 17 & <2.

. Evaluate Zk:l TR
. Prove the convergence of the Euler series Y ;- 75
*15. Prove that >37°) 327 a;; = Y272, Yo7 aij for a;; > 0.

[y
e

[ S Y
W N



1.3. Unordered Sums

On the contents of the lecture. Our summation theory culminates in the
Sum Partition Theorem. This lecture will contribute towards evaluation of the
Euler series in two ways: we prove its convergence, and even estimate its sum by 2.
On the other hand, we will realize that evaluation of the Euler series with Euler’s
accuracy (107'%) seems to be beyond a human being’s strength.

Counsider a family {a;};c; of nonnegative numbers indexed by elements of an
arbitrary set I. An important special case of I is the set of pairs of natural numbers
N x N. Families indexed by N x N are called double series. They arise when one
multiplies one series by another one.

Any sum of the type ), a;, where K is a finite subset of I is called a subsum
of {a,'},'ej over K.

DEFINITION. The least number majorizing all subsums of {a;}ic; over finite
subsets is called its (ultimate) sum and denoted by ) a;

The One-for-All and All-for-One principles for non-ordered sums are obtained
from the corresponding principles for ordered sums by replacing “partial sums” by
“finite subsums”.

Commutativity. In case I = N we have a definition which apparently is new.
But fortunately this definition is equivalent to the old one. Indeed, as any finite
subsum of positive series does not exceed its ultimate (ordered) sum, the non-
ordered sum also does not exceed it. On the other hand, any partial sum of the
series is a finite subsum. This implies the opposite inequality. Therefore we have

established the equality.
Su=Yu
k=1

kEN
This means that positive series obey the Commutativity Law. Because the non-
ordered sum obviously does not depend on the order of summands.

Partitions. A family of subsets {I}rcx of a set I is called a partition of I
and is written | | ., Ix if I = Upci Ix and Iy N [; = @ for all k # j.

THEOREM 1.3.1 (Sum Partition Theorem). For any partition I = | |
the indexing set and any family {a;}icr of nonnegative numbers,

(1.3.1) dai=>" ai

iel jeJi€el;

jeJ I of

Iverson notation. We will apply the following notation: a statement included
into [ ] takes value 1, if the statement is true, and 0, if it is false. Prove the following
simple lemmas to adjust to this notation. In both lemmas one has K C I.

LEMMA 1.3.2. Y a; =) icrafi € K.

In particular, for K = I, Lemma 1.3.2 turns into

LEMMA 1.3.3. Y., a; = ;o ali € I].

LeMMA 1.3.4. 37, [i € It] = [i € Ik] for all i € I iff I = | |;,c i Ik

13
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Proof of Sum Partition Theorem. At first we prove the following Sum
Transposition formula for finite .J,

(1.3.2) o> ai =" ai;.

iel jeJ jeJ iel
Indeed, if J contains just two elements, this formula turns into the Termwise Ad-
dition formula. The proof of this formula is the same as for series. Suppose the
formula is proved for any set which contains fewer elements than J does. Decom-

pose J into a union of two nonempty subsets J; UJ>. Then applying only Termwise
Addition and Lemmas 1.3.2, 1.3.3, 1.3.4, we get

DD a =Y ayli€ ]

i€l jeJ i€l jeJ
=3 (aisli € I+ ai;lj € Ja))
i€l jeJ
= D ayli € M+ aili € Fl
icl jeJ icl jeJ
SIS ) o
i€l jeJ, i€l jeEJo

But the last two sums can be transposed by the induction hypothesis. After such
a transposition one gets

Z Zaij+ Z Zaij :Z[j GJl]Zaij-FZ[jE J‘Z]Zaij

jeJ1 i€l jEJ2 i€l JjeJ el JjeJ el
=Y (Fenl+lien)) ay
jeJ iel
=D i€y ay
jeJ iel
=Y
jeJ iel

and the Sum Transposition formula for finite J is proved. Consider the general case.
To prove < in (1.3.2), consider a finite K C I. By the finite Sum Transposition
formula the subsum -, ;> ¢y asj is equal to Y- ;> e jc a;j. But this sum is
termwise majorized by the right-hand side sum in (1.3.2). Therefore the left-hand
side does not exceed the right-hand side by All-for-One principle.

To derive the Sum Partition Theorem from the Sum Transposition formula,
pose a;; = a;[i € I;]. Then a; = } ;. ;a;; and (1.3.1) turns into (1.3.2). This
completes the proof of the Sum Partition Theorem.

Blocking. For a given a series Y- aj and an increasing sequence of natural
numbers {n}%, starting with ng = 0 one defines a new series Y ;- Ay by the

rule Ay, = ZL’“;;A a;. The series > o Ay, is called blocking of Y, ar by {ny}.

The Sum Partition Theorem implies that the sums of blocked and unblocked
series coincide. Blocking formalizes putting of brackets. Therefore the Sum Parti-
tion Theorem implies the Sequential Associativity Law: Placing brackets does not

change the sum of series.
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Estimation of the Euler series. Let us compare the Euler series with the
n4l
series Y17 5r, blocked by {2"} to 327 ax. The sum Zi 20 k2 consists of 2"

summands, all of which are less then the first one, which is 227, . As 2”2% = 2%, it
follows that a, < zin for each n. Summing these inequalities, one gets Zzozl ar < 2.

Now let us estimate how many terms of Euler’s series one needs to take into
account to find its sum up to the eighteenth digit. To do this, we need to estimate
its tail. The arguments above give >~ 2 1 < 5a=r- To obtain a lower estimate,

let us remark that all terms of sum Zk - k12 exceed 55y~ As the number

of summands is 2", one gets a,, > ;4=. Hence > ;7,. 7z > . Since 210 =
1024 ~ 103, one gets 269 ~ 108, So, to provide an accuracy of 10718 one needs
to sum approximately 10'® terms. This task is inaccessible even for a modern
computer. How did Euler manage to do this? He invented a summation formula
(Euler-MacLaurin formula) and transformed this slowly convergent series into non-
positive divergent (!) one, whose partial sum containing as few as ten terms gave
eighteen digit accuracy. The whole calculation took him an evening. To introduce
this formula, one needs to know integrals and derivatives. We will do this later.

Problems.

1. Find 3207, gz and 3207, griyye, assuming 3207, g5 = 72/6.

Prove the convergence of Y7~ ,ml/E.

[

3. Estimate how many terms of the series Z;o:l # are necessary for calculation
of its sum with precision 1073,

Estimate the value of Y77 5 .

Prove the equality 3.7 ar 2 pZo bk = 22 pen @50k

Estimate how many terms of the Harmonic series give the sum surpassing 1000.
Prove the Dlrlchlet formula >°p_, Zl L ki = Dty i ki

Evaluate Y-, iy 5757 -
i+j
Evaluate }_; ;e v 5735
10. Represent an unordered sum Y

11. Evaluate }; ;c .

12. Change the summation order in )7, ZJ 0 @ij-
13. Define by Iverson notation the following functions:
e [z] (integral part),
e |z| (module),
e sgnaz (signum),
e n! (factorial).
14. Define only by formulas the expression [p is prime].

© XS R

i+j<n @ij as a double sum.



1.4. Infinite Products

On the contents of the lecture. In this lecture we become acquainted with
infinite products. The famous Euler Identity will be proved. We will find out that
¢(2) is another name for the Euler series. And we will see how Euler’s decomposition
of the sine function into a product works to sum up the Euler Series.

DEFINITION. The product of an infinite sequence of numbers {ay}, such that
ar > 1 for all k, is defined as the least number majorizing all partial products

[Tiiiar = a1az...ay.
A sequence of natural numbers is called essentially finite if all but finitely

many of its elements are equal to zero. Denote by N> the set of all essentially
finite sequences of natural numbers.

THEOREM 1.4.1. For any given sequence of positive series y oo ai, j=12 ...
such that al =1 for all j one has

oo 00 ) 00 '
) Xa- ¥ I,
j=1k=0 {k;}eN®> j=1

The summands on the right-hand side of (1.4.1) usually contain factors which
are less than one. But each of the summands contains only finitely many factors
different from 1. So the summands are in fact finite products.

ProoF. For a sequence {k;} € N> define its length as maximal j for which
k; # 0 and its mazimum as the value of its maximal term. The length of the zero
sequence is defined as 0.

Consider a finite subset S C N*°. Consider the partial sum

Z H ai]"
{k;j}eS k=1

To estimate it, denote by L the maximal length of elements of S and denote by M
the greatest of maxima of {k;} € S. In this case

o] ] L ) L ) L M ] oo 0o ]
>, Ma, = > I, < > e, =112 a<II>
Jj=1k=0

{k;}€S j=1 {k;}es j=1 (k;}ENE, j=1 J=1 k=0
where N, denotes the set of all finite sequences {k1, ko, ...,k } of natural numbers
such that k; < M. By All-for-One this implies one of the required inequalities,
namely, >.

To prove the opposite inequality, we prove that for any natural L one has
L o ) L ]
142 Y= ¥ Il
j=1k=0 {k; }ENT j=1

where N denotes the set of all finite sequences {ki,...kr} of natural numbers.
The proof is by induction on L.

16
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LEMMA 1.4.2. For any families {a;}icr, {bj}jes of nonnegative numbers, one
has
SaYn- ¥ b
iel  jed (i,§)€IxJT

PROOF OF LEMMA 1.4.2. Since I x J = | |;c;{i} x J by the Sum Partition

Theorem one gets:
D, b=, ) ad

(i,4)eIxJT i€l (i,j)ef{i}xJ
=D b
iel jeJ
=D ai) b
el jeJ
- Z bj Z (1788
jeJ el
O

Case L = 2 follows from Lemma 1.4.2, because N> = N x N. The induction
step is done as follows

L+1 oo o0 L o~
J _ L+1 J
[I> =2 a ][> a
j=1 k=0 k=0 j=1 k=0
L
_ L+1 J
=2 a > ]la,
keN {k; }eNL j=1
L+1

Z H aij.
{k; }ENE+L j=1
The left-hand side of (1.4.2) is a partial product for the left-hand side of (1.4.1)
and the right-hand side of (1.4.2) is a subsum of the right-hand side of (1.4.1).
Consequently, all partial products of the right-hand side in (1.4.1) do not exceed
its left-hand side. This proves the inequality <. a

Euler’s Identity. Our next goal is to prove the Euler Identity.

o 1 o) 1 —[p is prime]
Y10 7)

Here a is any rational (or even irrational) positive number.

The product on the right-hand side is called the Fuler Product. The series on
the left-hand side is called the Dirichlet series. Each factor of the Euler Product
expands into the geometric series Y po pk%. By Theorem 1.4.1, the product of these

geometric series is equal to the sum of products of the type pfklo‘pgkw L

= N~2. Here {p;} are different prime numbers, {k;} are positive natural numbers

and p’flp’262 ...pk = N. But each product prIpIQ“2 ...pk" = N is a natural number,
different products represent different numbers and any natural number has a unique
representation of this sort. This is exactly what is called Principal Theorem of
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Arithmetic. That is, the above decomposition of the Euler product expands in the
Dirichlet series.

Convergence of the Dirichlet series.

THEOREM 1.4.3. The Dirichlet series Y ., == converges if and only if s > 1.

n=1 ns
Proor. Consider a {2*} packing of the series. Then the n-th term of the
packed series one estimates from above as

on+l_1q on+l_1q 1 1
—_ 9n __ 9on—ms __ 1—-s\n
ES Z (Qn)s_22ns_2 =)
k=2n k=2n

If s > 1 then 2'~% < 1 and the packed series is termwise majorized by a convergent
geometric progression. Hence it converges. In the case of the Harmonic series
(s = 1) the n-th term of its packing one estimates from below as

ontl_g ontl_g

Y12 Y maclmmy
k:_ on+l on+l 2°

k=2n k=2n

That is why the harmonic series diverges. A Dirichlet series for s < 1 termwise
majorizes the Harmonic series and so diverges. O

The Riemann (-function. The function
(oo}
1
(s)=) —
n=1 n
is called the Riemann (-function. It is of great importance in number theory.

The simplest application of Euler’s Identity represents Euler’s proof of the
infinity of the set of primes. The divergence of the harmonic series Y - % implies
the Euler Product has to contain infinitely many factors to diverge.

Euler proved an essentially more exact result: the series of reciprocal primes
diverges }° & = 0.

Summing via multiplication. Multiplication of series gives rise to a new
approach to evaluating their sums. Consider the geometric series > -, x*. Then

(oo} o0
(Zw ) > et =30 37 ek = 3 (m e
j,keN2 m=0 j+k=m m=0
As Y2 o a% = & one gets Y07 (k + 1)z* = ﬁ
Sine-product. Now we are ready to understand how two formulas

& 2k+1
sin x B . B T
(].4:3) < ]{}271'2) ; SINT = E (—].) m

k=0

which appeared in the Legends, yield an evaluation of the Euler Series. Since at
the moment we do not know how to multiply infinite sequences of numbers which
are less than one, we invert the product in the first formula. We get

-1 oo o0 2j
(1.4.4) S H ( k27r2> = H Z k2$jﬂ-2j.

k=1 k=1 j=0
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To avoid negative numbers, we interpret the series

)
2V arr)

in the second formula of (1.4.3) as the difference
i k1 o dkt3
4k +1) £~ (4k + 3)!"
24k + 1) & @k +3)!

€T
sin x

— = = ()" | -
sing (= 1)k (2:111)! = \io (2k + 1)!
k=1

Substituting this expression for sinx in and cancelling out x, we get

All terms on the right-hand side starting with j = 2 are divisible by z*. Conse-

quently the only summand with 22 on the right-hand side is %. On the other hand
in (1.4.4) after an expansion into a sum by Theorem 1.4.1, the terms with z? give

7I'2

. 2 .
the series ) . | 8. Comparing these results, one gets Y . k% =%

Problems.
. Prove [0, 1.1 =
. Prove the identity [, a2 = ([To—; an)? (an > 1).
. Does T[]0, (1+ %) converge?
. Evaluate [] 2 2

n=2 nZ—1"

. Prove the divergence of [[{°(1 + &)k Is prime],

n(n+1
. Evaluate Hn 3 W

Evaluate [[°°, %=L

n=3 n2—4-

Evaluate [, (1 + n(n+2))

[e%s) 2n+1)(2n+7
Evaluate Hn:l W

3
Evaluate [],, %t

. Prove the inequality [[,”,(1 4+ 72) > > 10y 72
. Prove the convergence of the Wallis product []

e
N = O

4k
4k2

[y
w

. Evaluate }_;” | 7 by applying (1.4.3).

. Prove [[°%, 41 < oo.

. Multiply a geometric series by itself and get a power series expansion for (1 —
T) 2.

16. Define 7(n) as the number of divisors of n. Prove (*(z) =Y -, %

17. Define ¢(n) as the number of numbers which are less than n are relatively prime

to n. Prove C(Cz(;)l) =3, %
18. Define u(n) (Mdbius function) as follows: u(1) =1, u(n) = 0, if n is divisible by

the square of a prime number u( ) = ( 1)k, if n is the product of k different

[y
'S

[y
20

prime numbers. Prove C(w ey n’” .

*19. Prove > .2 1% o

*20. Prove the identity [[°o (1 +2%") = .




1.5. Telescopic Sums

On the content of this lecture. In this lecture we learn the main secret of
elementary summation theory. We will evaluate series via their partial sums. We

introduce factorial powers, which are easy to sum. Following Stirling we expand

ﬁ into a series of negative factorial powers and apply this expansion to evaluate

the Euler series with Stirling’s accuracy of 107%.
1

The series 3,7, tr5- In the first lecture we calculated infinite sums di-

rectly without invoking partial sums. Now we present a dual approach to summing
series. According to this approach, at first one finds a formula for the n-th par-

tial sum and then substitutes in this formula infinity instead of n. The series

PP k(++1) gives a simple example for this method. The key to sum it up is the

following identity
1 1 1

k(k+1) k k+1

Because of this identity 2,7, zziqy turns into the sum of differences

a5 (12D (D) (Bt e (B ) e

Its n-th partial sum is equal to 1 — %ﬂ Substituting in this formula n = 400, one
gets 1 as its ultimate sum.

Telescopic sums. The sum (1.5.1) represents a telescopic sum. This name is
used for sums of the form Y ,_,(ar — ax41). The value of such a telescopic sum
is determined by the values of the first and the last of ag, similarly to a telescope,
whose thickness is determined by the radii of the external and internal rings. Indeed,

n n n n n—1
Z(ak —Qp41) = Zak - Zak+1 =ao + Zak - Z Qkt1 — Qp41 = Ao — Qpy1-
k=0 k=0 k=0 k=1 k=0

The same arguments for infinite telescopic sums give

(1.5.2) Z(ak — @k41) = ao-
k=0
But this proof works only if 377, a < co. This is untrue for 3777, ey, owing

to the divergence of the Harmonic series. But the equality (1.5.2) holds also if

ar tends to 0 as k tends to infinity. Indeed, in this case ag is the least number
. . . . [o'e)

majorizing all ap — ay, the n-th partial sums of )/~ ax.

Differences. For a given sequence {aj} one denotes by {Aay} the sequence
of differences Aay = ap4+1 — ar and calls the latter sequence the difference of {ay}.
This is the main formula of elementary summation theory.

n—1
E Aap = a, — ag
k=0

To telescope a series >, ay, it is sufficient to find a sequence {A;} such that

AAy = ag. On the other hand the sequence of sums A,, = Zz;é ay, has difference
AA, = a,. Therefore, we see that to telescope a sum is equivalent to find a formula

20
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for partial sums. This lead to concept of a telescopic function. For a function f(x)
we introduce its difference Af(z) as f(x + 1) — f(x). A function f(z) telescopes
>ay if Af(k) = ay, for all k.

Often the sequence {ay} that we would like to telescope has the form a = f(k)
for some function. Then we are searching for a telescopic function F(x) for f(x),
i.e., a function such that AF(x) = f(x).

To evaluate the difference of a function is usually much easier than to telescope
it. For this reason one has evaluated the differences of all basic functions and
organized a table of differences. In order to telescope a given function, look in this
table to find a table function whose difference coincides with or is close to given
function.

For example, the differences of z™ for n < 3 are Az = 1, Az? = 2z + 1,

Az? = 3z% + 3z —|— 1. To telescope Y .-, k* we choose in this table z*. Then

Ar® g2 o T+3 = £ Therefore, 2* = A (% - 3—2 + %) This immediately

3
implies the following formula for sums of squares:

(1.5.3) Z k2 = 2”_37””

Factorial powers. The usual powers =" have complicated differences. The
so-called factorial powers 2% have simpler differences. For any number x and any
natural number k, let 2& denote z(z — 1)(z — 2)...(z — k + 1), and by === we
denote WM At last we define 22 = 1. The factorial power satisfies the
following addition law.

‘xm = ob(z — k)m‘

We leave to the reader to check this rule for all integers m, k. The power n™ for
a natural n coincides with the factorial n! = 1-2-3---n. The main property of
factorial powers is given by:

Az™ = nz™2t
The proof is straightforward'

(3: + 1) ( + 1\1+(k 1) (k—1)+1
= (ﬂ?+1)$——gjk—1($_k+1)
= ko™t

Applying this formula one can easily telescope any factorial polynomial, i.e., an
expression of the form

1 2 3 n
ag +a1x + a2x= +asx= +---+ apT .

Indeed, the explicit formula for the telescoping function is

1 2 3 4 SIS
apr™ + Gt + Lat + P+ + n”_Ha:

Therefore, another strategy to telescope z* is to represent it as a factorial polyno-
mial.

For example, to represent x~ as factorial polynomial, consider a + bx + cxz, a
general factorial polynomial of degree 2. We are looking for 22 = a + bz + ca®.
Substituting = 0 in this equality one gets a = 0. Substituting = 1, one gets

2
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1 = b, and finally for z = 2 one has 4 = 2+ 2¢. Hence ¢ = 1. As result 2% = z + z*.
And the telescoping function is given by
12 4+ 12% = 122 — o) + L(2(2® — 3z + 2)) = L(22° - 322 + ).

And we have once again proved the formula (1.5.3).

Stirling Estimation of the Euler series. We will expand (1+ (e into a series

of negatlve factorial powers in order to telescope it. A natural first approximation

to (1+z2) is 272 m We represent (1+x)2 as r— —l—R1( ), where
_ 1 -2 _ 1
B =T~ ey

The remainder R;(z) is in a natural way approximated by =2 If R, () = =2+

Ry(z) then Ry(x) = MW Further, Ry(z) = 22— + Rs(z), where
2.3 3y

AR PE eI D) | S [ R R

The above calculations lead to the conjecture

n!
1.5.4 ! ==l
(154) 1+$ ka +1$

n! ,—n—1
x+1$

Nkl =2=% " Owing to the inequality 2=~

This conjecture is easily proved by induction. The remainder R, (z) =

represents the difference ﬁ —
< =y +1)" which is valid for all z > 0 the remainder decreases to 0 as n increases
to infinity. This implies

THEOREM 1.5.1. For all x > 0 one has

—2-k
1+x Zk'x

To calculate Ziip m, replace all summands by the expressions (1.5.4). We

will get
1-n
1 .
Changing the order of summation we have

Zm'Zk = m+zk+1

> (5w

k=p

m=0
—2— —1—
Since ﬁx " telescopes the sequence {ki} S kT = ﬁ —
Denote the sum of remainders Zk —p ,ﬁr'l — " by R(n,p). Then for all natural p
and n one has
00 1 n—1 m)
. —1-m
—_— = ——p +R(n
Z(1+k)2 14+m + B(n.p)
k=p m=0
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For p = 0 and n = +00, the right-hand side turns into the Euler series, and one
could get a false impression that we get nothing new. But k=22 < T ==t <
(k — 1)_2_n hence

[ee) . !
=22 < <S nlk-1)Fr = T (p-1)Tin
1+n Zn _R(n,p)_;n( ) e Gy
Since (p — 1)==2 — pL = (1+n)(p—1)=2=L, there is a 6 € (0, 1) such that
n! —1—n —2—n
= Onl(p—1
R(n.p) = v +onllp—1)
Finally we get:
= 1 k!
= =t 4+ oni(p—1
ZkQ kZHk +Z1+k +énl(p — 1)~
For p = n = 3 this formula turns into
Z + crpr 1,0
K 9 4 40 180 420
For p = n = 10 one gets R(10,10) < 10!9=2.  After cancellations one has

1
2:11.12-13-14-15-17-19°

This is approximately 2 - 10~8. Therefore
10—1 10—1

1
2 e +Zl+—k10

is less than the sum of the Euler series by only 2-107%. In such a way one can in
one hour calculate eight digits of 77, k% after the decimal point. It is not a bad
result, but it is still far from Euler’s eighteen digits. For p = 10, to provide eighteen
digits one has to sum essentially more than one hundred terms of the series. This
is a bit too much for a person, but is possible for a computer.

Problems.
1. Telescope Y k3.
2. Represent z* as a factorial polynomial.
o0 1
3. EValuate Zk:l k(k—+2)
o0 1
4. Evaluate Zk:l W
5. Prove: If Aay > Aby, for all k and a; > by then ap > by, for all k.
6. A(z + a) = n(z + o)™
7. Prove Archimedes’s inequality %- ° < >hoy Lg? < ("H)
8. Telescope > 57 &
9. Prove the inequalities + > Y77 | 75 > %H
10. Prove that the degree of AP(x) is less than the degree of P(z) for any polyno-
mial P(z).
11. Relying on A2™ = 2" prove that P(n) < 2™ eventually for any polynomial
P(z).
12. Prove Y ;- kl(z — 1)=1=t — 1



1.6. Complex Series

On the contents of the lecture. Complex numbers hide the key to the Euler
Series. The summation theory developed for positive series now extends to complex
series. We will see that complex series can help to sum real series.

Cubic equation. Complex numbers arise in connection with the solution of
the cubic equation. The substitution z = y — ¢ reduces the general cubic equation
2% +azx? +bxr +c=0to

v +py+q=0.
The reduced equation one solves by the following trick. One looks for a root in the
formy = a+p. Then (a+5)*+p(a+p)+q = 0or a®+5°+3af(a+p)+p(a+pB)+q =
0. The latter equality one reduces to the system

3 3 _

(1.6.1) “ J;(fﬂ _ :zqai

Raising the second equation into a cube one gets
o’ + B = —q,
270333 = —pd.

Now a3, 82 are roots of the quadratic equation

z? + qr — %,
called the resolution of the original cubic equation. Sometimes the resolution has
no roots, while the cubic equation always has a root. Nevertheless one can evaluate
a root of the cubic equation with the help of its resolution. To do this one simply

ignores that the numbers under the square roots are negative.
For example consider the following cubic equation

3 1 _
Then (1.6.1) turns into

383 _ 1
a” + B - 2
343 _ 1
a B - 8

The corresponding resolution is * — £ 4+ & = 0 and its roots are

tip=1+\/15—-s=1F1vV-1L
Then the desired root of the cubic equation is given by
(1.6.3) Yra+ v+ 3/ta- v =4 (4{/1 TV T+ 31— \/—1) .

It turns out that the latter expression one uniquely interprets as a real number which
is a root of the equation (1.6.2). To evaluate it consider the following expression

(1.6.4) Y+ Va2 - a+venifa - van + Y - voe.

Since

Q+vVoI)2 =12+ 2/ T1+vV-T =1+2/—1-1=2/"1,

the left summand of (1.6.4) is equal to

Vov=T = ¥ay/v—T= va/vT= ¥2 VT
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Similarly (1 — v/—1)2 = —2v/—1, and the right summand of (1.6.4) turns into
—%/2/=1. Finally (14 v=1)(1 — v=1) = 12 — /=1 = 2 and the central one is
—%/2. As a result the whole expression (1.6.4) is evaluated as — 3/2.

On the other hand one evaluates the product of (1.6.3) and (1.6.4) by the usual
formula as the sum of cubes

(VD) + (1= VD) = (1 + 1) + (VoD) — VD) = 22+ 0) = V2.

Consequently (1.6.3) is equal to % = —1. And —1 is a true root of (1.6.2).

Arithmetic of complex numbers. In the sequel we use i instead of \/—1.
There are two basic ways to represent a complex number. The representation
z = a + ib, where a and b are real numbers we call the Cartesian form of z. The
numbers a and b are called respectively the real and the imaginary parts of z and are
denoted by Re z and by Im z respectively. Addition and multiplication of complex
numbers are defined via their real and imaginary parts as follows

Re(z1 + 22) = Rez; + Re 2o,
Im(z; + 22) =Im 2z + Im 2o,
Re(z122) = Rez1 Rezo — Im 21 Im 29,

Im(z122) = Rez; Im 22 + Im 21 Re 2».

The trigonometric form of a complex number is z = p(cos ¢ + isin ¢), where
p > 0 is called the module or the absolute value of a complex number z and is
denoted |z|, and ¢ is called its argument. The argument of a complex number is
defined modulo 27. We denote by Argz the set of all arguments of z, and by arg z
the element of Argz which satisfies the inequalities —m < argz < 7. So argz is
uniquely defined for all complex numbers. arg z is called the principal argument of
z.

The number a — bi is called the conjugate to z = a + bi and denoted Z. One

has 2Z = |z|%. This allows us to express z~! as ELE

argz
O Rez

FIcURE 1.6.1. The representation of a complex number

If z = a+1ib then |z| = Va? + b2 and arg z = arctg g One represents a complex
number z = a+bi as a point Z of the plane with coordinates (a, b). Then |z| is equal
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to the distance from Z to the origin O. And argz represents the angle between

the axis of abscises and the ray OZ. Addition of complex numbers corresponds
to usual vector addition. And the usual triangle inequality turns into the module
inequality:

|2+ ¢l < |z +[¢]-

The multiplication formula for complex numbers in the trigonometric form is espe-
cially simple:

r(cos ¢ + i sin @)’ (cos ¢ + i sin 1))
— v/ (cos(¢ + ) + i sin(é + 1)),
Indeed, the left-hand side and the right-hand side of (1.6.5) transform to

(1.6.5)

rr’(cos ¢ cos 1) — sin ¢ sin1p) + irr’ (sin ¢ cos ¢ + sin 1) cos ¢).

That is, the module of the product is equal to the product of modules and the
argument of product is equal to the sum of arguments:

Argzizo = Argz) @ Arg z,.

Any complex number is uniquely defined by its module and argument.
The multiplication formula allows us to prove by induction the following;:

(Moivre Formula) (cos ¢ + isin @)™ = (cosng + i sinne).

Sum of a complex series. Now is the time to extend our summation theory
to series made of complex numbers. We extend the whole theory without any
losses to so-called absolutely convergent series. The series ) .- | z; with arbitrary
complex terms is called absolutely convergent, if the series > .-, |zx| of absolute
values converges.

For any real number z one defines two nonnegative numbers: its positive ™ and
negative z~ parts as T = x[x > 0] and x~ = —z[z < 0]. The following identities
characterize the positive and negative parts of x

+

t+ 1 = |7, t -1 =ua.

Now the sum of an absolutely convergent series of real numbers is defined as follows:

(1.6.6) Zak = Zaz —Za,;.
k=1 k=1 k=1

That is, from the sum of all positive summands one subtracts the sum of modules
of all negative summands. The two series on the right-hand side converge, because
aj; <lakl, @ < lag|and 337, Jag| < oo.

For an absolutely convergent complex series Z;’;l z, we define the real and
imaginary parts of its sum separately by the formulas

(1.6.7) Reizk :iRezk, Imizk:iImzk.
k=1 k=1 k=1 k=1

The series in the right-hand sides of these formulas are absolutely convergent, since
|Re zi| < |2k and |Im zx| < |2k
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THEOREM 1.6.1. For any pair of absolutely convergent series y o, ar and
>y bi its termwise sum Yoo (ar, + by) absolutely converges and

(1.6.8) > (ak +by) = Zak + Zbk
k=1

ProoOF. First, remark that the absolute convergence of the series on the left-
hand side follows from the Module Inequality |ag +bg| < |ak|+ |bx| and the absolute
convergence of the series on the right-hand side.

Now consider the case of real numbers. Representing all sums in (1.6.8) as
differences of their positive and negative parts and separating positive and negative
terms in different sides one transforms (1.6.8) into

Zak Zb++2 ay + by)~ Zak Zb;+2(ak+bk)+
k=1 k=1 k=1

But this equality is true due to termwise addition for positive series and the follow-
ing identity,
Ay @yt =gty + (w4 y)”

Moving terms around turns this identity into
@+y)t —@+y) =@ -2 )+ —y),

which is true due to the identity z+ — +z— = z.

In the complex case the equality (1.6.8) splits into two equalities, one for real
parts and another for imaginary parts. As for real series the termwise addition is
already proved, we can write the following chain of equalities,

Re(Y oo ae+ Y o bk) =Red oo ar+Red o by
=Y Reap +> 7, Reby
=> r (Reay + Reby)
= > po, Re(ay + by)
=Re 32,7 (ar + br),

which proves the equality of real parts in (1.6.8). The same proof works for the
imaginary parts. d

Sum Partition Theorem. An unordered sum of a family of complex numbers
is defined by the same formulas (1.6.6) and (1.6.7). Since for positive series non-
ordered sums coincide with the ordered sums, we get the same coincidence for all
absolutely convergent series. Hence the commutativity law holds for all absolutely
convergence series.

THEOREM 1.6.2. IfI = |;c; I; and 377, |ag| < oo then ), ; ‘Ziel,- a;| < oo

and EjeJ Eielj @i =D ieq @i

PROOF. At first consider the case of real summands. By definition ), ;a; =

+
Y icr @ — 2ier @; - By Sum Partition Theorem positive series one transforms the
original sum into

N _
Yjes 2uier; %~ 2jes 2aier; G -
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Now by the Termwise Addition applied at first to external and after to internal
sums one gets

+ -\ _ +_ -y
Zje] (Zielj a; — ZiEI]- a; ) = Zje] Zielj (a] —a;) = Zje] Zielj ;.

So the Sum Partition Theorem is proved for all absolutely convergent real series.
And it immediately extends to absolutely convergent complex series by its splitting
into real and imaginary parts. O

THEOREM 1.6.3 (Termwise Multiplication). If .7, |zx| < oo then for any
(complex) ¢, > oo, |czi| < 00 and Y ;2 ez =€y ooy 2k

ProoF. Termwise Multiplication for positive numbers gives the first statement
of the theorem Y 77, |czi| = Y pey lellzk| = le| Xpey |2k]- The further proof is
divided into five cases.

At first suppose c is positive and z real. Then cz,': = cz,j and by virtue of
Termwise Multiplication for positive series we get

ZZL CZr = EZL cz,j - Zlii1 czy,
= szozl le - 621?;1 2y
=c (leozl le - Zl?;l ZI;)

= €Dy %k

The second case. Let ¢ = —1 and z; be real. In this case

21?;1 —Zk = ZZL(—@)* - ZZ.;1(_Z1«)7 = Z/ii1 2, = ZZL le =- 220:1 2

The third case. Let ¢ be real and z; complex. In this case Reczr = cRez, and
the two cases above imply the Termwise Multiplication for any real ¢. Hence

Red po ¢z = > oy Reczy
=Y po cRez
=cYy o, Rez
=cRe) ;7 2
=Rec) oo 2k

The same is true for imaginary parts.

The fourth case. Let ¢ = i and zp be complex. Then Reizp; = —Imz; and
Im iz, = Rezg. So one gets for real parts

Re} p2yizr = 2opry Re(iz)
= Yhoy —Imzy
==Yk Imzy
=—-Im> >, 2z

=Rei) po, 2k
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The general case. Let ¢ = a + bi with real a, b. Then
CYohor 2k = Ay 2k DI 2
=D poq Qzk + 2o pey bz
= Yo (azp +ibzp)
=D poy CZk.

O

Multiplication of Series. For two given series Y .~ a; and Y.~ bg, one
defines their convolution as a series ZZO:O Cn, Where ¢, = EZ:O arby,_k.

THEOREM 1.6.4 (Cauchy). For any pair of absolutely convergent series y p- o ai
and Y2, br their convolution Y ., ¢ absolutely converges and

leozo Ck = ZI?;O g EZio by

ProoF. Consider the double series ), ; a;b;. Then by the Sum Partition The-
orem its sum is equal to

Ym0 (g aibj) = 3720 by (2 @) = (X0 ai) (2720 bj)-

On the other hand, )=, sa;b; = 3277 P ! akby_k. But the last sum is just the
convolution.

This proof goes through for positive series. In the generalcase we have to prove
absolute convergence of the double series. But this follows from

(ko law]) (ZkZo [0x]) = 2520 lexl-

Module Inequality.

(1.6.9)

o o
> <D Ll
k=1 k=1

Let z;, = xp + iyr. Summation of the inequalities —|z| < zp < |x| gives
=Yoo wk] < Xpey e < > pey |k|, which means [0 x| < 3007, |zk|. The
same inequality is true for y. Consider zj, = |zx| + ¢|yx|. Then |z;| = |2;| and
1> ey 2kl <> pey 2;]- Therefore it is sufficient to prove the inequality (1.6.9) for
zy,, that is, for numbers with non-negative real and imaginary parts. Now supposing
Zk, Y to be nonnegative one gets the following chain of equivalent transformations
of (1.6.9):

(rzs @) + (Sl we)” < (252 J24])”
S e < (0 )’ — (25, )
S e < (0 ) - (52, ), V=12,
T2k < (T2 )’ - (ReXj_, 21), Vn=1,2,...

S < (T2 ) = (Tp, @), Vnam =12,
n 2 m 2 0o 2
(Zk:l T) + (Zkzl yr)” < (Zk:l lzx])”, VYm,n=1,2,...
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\/(Zgl xk)Q + (Zgil yk)Q < Zzozl lze], VN =1,2,...

Sz <SRl vV =12,

The inequalities of the last system hold because ‘chvzl zk‘ <N <

Complex geometric progressions. The sum of a geometric progression with
a complex ratio is given by the same formula

n—1
1—2z"
1.6.1 § k= )
(1.6.10) k_oz 1=,

And the proof is the same as in the case of real numbers. But the meaning of
this formula is different. Any complex formula is in fact a pair of formulas. Any
complex equation is in fact a pair of equations.

In particular, for z = g(sin ¢ + icos @) the real part of the left-hand side of
(1.6.10) owing to the Moivre Formula turns into Zz;é q" sin k¢ and the right-hand
side turns into ZZ;& q* cosk¢. So the formula for a geometric progression splits
into two formulas which allow us to telescope some trigonometric series.

Especially interesting is the case with the ratio £, = cos %’r + i sin 27” In this
case the geometric progression cyclically takes the same values, because ]} =
The terms of this sequence are called the roots of unity, because they satisfy the
equation 2" — 1 =0.

LEMMA 1.6.5. (2" —1) =[];_,(z — k).

PROOF. Denote by P(z) the right-hand side product. This polynomial has
degree n, has major coefficient 1 and has all € as its roots. Then the difference
(2™ — 1) — P(2) is a polynomial of degree < n which has n different roots. Such a
polynomial has to be 0 by virtue of the following general theorem. d

THEOREM 1.6.6. The number of roots of any nonzero complex polynomial does
not exceed its degree.

PROOF. The proof is by induction on the degree of P(z). A polynomial of
degree 1 has the form az+b and the only root is —%. Suppose our theorem is proved
for any polynomial of degree < n. Consider a polynomial P(z) = ap+aiz+- - -+a,z"
of degree n, where the coefficients are complex numbers. Suppose it has at least n
roots z1,. .., 2,. Consider the polynomial P*(z) = ay, [[}_, (# — z¢). The difference
P(z) — P*(z) has degree < n and has at least n roots (all z;). By the induction
hypothesis this difference is zero. Hence, P(z) = P*(z). But P*(z) has only n
roots. Indeed, for any z different from all z; one has |z — z;x| > 0. Therefore
P*(2)] = lanl TTj_, = — 2] > 0. 0

By blocking conjugated roots one gets a pure real formula:

(n—1)/2 Ok
2P—1=(z2-1) H <z2—2zcos——|—1>.
k=1

n
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Complexification of series. Complex numbers are effectively applied to
sum up so-called trigonometric series, i.e., series of the type Z,;";O ar, cos kx and
ZZOZO ay sin kx. For example, to sum the series 21311 q* sin k¢ one couples it with
its dual Y-, ¢* cos k¢ to form a complex series Y- o~ ¢* (cos k¢+i sin k¢). The last
is a complex geometric series. Its sum is ﬁ, where z = cos ¢+i sin ¢. Now the sum
of the sine series ZZ’;I ¢* sin k¢ is equal to Im ﬁ, the imaginary part of the com-
plex series, and the real part of the complex series coincides with the cosine series.
In particular, for ¢ = 1, one has = = m To evaluate the real and imag-
inary parts one multiplies both numerator and denominator by 1 + cos ¢ — ¢ sin ¢.
Then one gets (1 — cos¢)? 4 sin® ¢ = 1 — 2cos? ¢ + cos? ¢ + sin® ¢ = 2 — 2cos ¢

as the denominator. Hence ;- = % =1+ 1Lcot2. And we get two
remarkable formulas for the sum of the divergent series
o0 (oo}
1 1L ¢
coskp = —, sink¢ = — cot —.
D A= 5o

For ¢ = 0 the left series turns into Y ,-,(—1)*. The evaluation of the Euler series
via this cosine series is remarkably short, it takes one line. But one has to know
integrals and a something else to justify this evaluation.

Problems.

i imagi 1 (l=iys 42 (149)°
Find real and imaginary parts for 1=, ({57)7 o7, TR

Find trigonometric form for —1, 144, v/3 + .

Prove that z122 = 0 implies either z; = 0 or 22 = 0.

Prove the distributivity law for complex numbers.

Analytically prove the inequality |z1 + 22| < |21] + |22]-
-1 1 —

Evaluate 3 ;=) — 7, where 2, = 1 + kz.

Evaluate Y 7} 27, where 2z, = 1 + k=.
n—1 Sink
k=1 2k -
9. Solve 22 = .

10. Solve 22 = 3 — 4i.

11. Telescope Y. o, 2k

12. Prove that the conjugated to a root of polynomial with real coefficient is the

root of the polynomial.

13. Prove that z; + 29 = z7 + Z3.

14. Prove that z1z3 = 71 Z3.
*15. Solve 823 — 6z — 1 =0.

16. Evaluate ) ;7 S;ka

17. Evaluate ) -, 882k

18. Prove absolute convergence of Y 7o Z,'C—I: for any z.

® X SoRwN =

Evaluate

19. For which z the series Y ;- % absolutely converges?
20. Multiply a geometric series onto itself several times applying Cauchy formula.
21. Find series for v/1 + x by method of indefinite coefficients.

22. Does series S o0 Stk ahsolutely converge?
k=1 & y

23. Does series > oo, Siknf absolutely converge?




