Stony Brook University Mathematics Department Oleg Viro

Homework 2

1. Let $f: X \to Y$ and $g: Y \to X$ are continuous maps homotopy inverse to each other and M_f be the mapping cylinder of f. Let $H: X \times I \to X$ be a homotopy between $g \circ f$ and id_X and $G: Y \times I \to Y$ a homotopy between $f \circ g$ and id_Y . Construct a deformation retraction $M_f \to X$ and homotopy which proves that this is a deformation retraction.

2. Find a homotopy equivalence between S^1 and the space of quadratic polynomials $x^2 + px + q$ with complex p and q and no double root.

3. Are $S^2 \setminus \{a, b, c\}$ and $S^1 \setminus \{e, f\}$, where a, b, c, e, f are pairwise different points, homotopy equivalent?

4 Riddle. Use Gram-Schmidt orthogonalization process to deduce a theorem which claims existing of a deformation retraction.