Stony Brook University
Mathematics Department
Oleg Viro

Advanced Topology, Geometry I
MAT 540
August 28, 2020

Homework 1

1. Prove that continuous maps $f, g: \mathbb{R}^{n} \rightarrow X$ are homotopic iff $f(0)$ and $g(0)$ belong to the same path-connected component of X.
2. Let $f, g: X \rightarrow S^{n}$ be continuous maps. Prove that if $f(x) \neq g(x)$ for each $x \in X$, then g is homotopic to the map $X \rightarrow S^{2}: x \mapsto-f(x)$.
3. Prove that the set of connected components of an open set on the plane R^{2} is countable.
4. Prove that the graph of any continuous function $[0,1] \rightarrow \mathbb{R}$ is closed, connected, path-connected, Hausdorff and compact.
5. Let X and Y be topological spaces, and Y be compact and Hausdorff. Prove that $f: X \rightarrow Y$ is continuous if and only if its graph $\Gamma_{f}=\{(x, y) \in X \times Y \mid y=f(x)\}$ is closed.
