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Chapter X

Manifolds

47. Locally Euclidean Spaces

⌈47′1⌋ De�nition of Locally Euclidean Space

Let n be a non-negative integer. A topological space X is called a locally
Euclidean space of dimension n if each point of X has a neighborhood home-
omorphic either to Rn or Rn+. Recall that Rn+ = {x ∈ Rn : x1 ≥ 0}, it is
de�ned for n ≥ 1.

47.A The notion of 0-dimensional locally Euclidean space coincides with
the notion of discrete topological space.

Proof. Each point in a 0-dimensional locally Euclidean space has a neighborhood home-
omorphic to R0 and hence consisting of a single point. Therefore each point is open. □□□

47.B Prove that the following spaces are locally Euclidean:

(1) Rn,

(2) any open subset of Rn,

(3) the n-sphere Sn = {x ∈ Rn+1 | |x| = 1},

(4) real projective space RPn = Sn/x ∼ −x,

(5) complex projective space CPn = Cn+1 ∖ 0/x ∼ y if ∃ζ ∈ C : y = ζx,

(6) Rn+,

(7) any open subset of Rn+,

(8) the n-ball Dn = {x ∈ Rn | |x| ≤ 1},
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288 X. Manifolds

(9) torus S1 × S1,

(10) a handle (a torus with a hole),

(11) a sphere with holes,

(12) a sphere with handles,

(13) the Klein bottle S1 × I/(z, 0) ∼ (z̄, 1),

(14) the n-cube In,

Proof. (1) Obvious
(2) In any open subset of Rn each point has a ball neighborhood. An open ball in

Rn is homeomorphic to the whole Rn.
(3) The complement of a point in Sn is homeomorphic to Rn.
(4) An Euclidean neighborhood of a point is the image of the complement of a

hyperplane which does not contain the corresponding pair of antipodal points.
The complement of a hyperplane in Sn consists of two hemispheres. Each of
them is homeomorphic to Rn.

(5) At least one of the homogeneuous coordinates zi of a point [z0:Z1: . . . :zn] is
not zero. The set of points for which the same zi does not vanish is a neigh-
borhood of this point. Indeed, it is open in CPn, because it has the preimage
in S2n+1 that is the complement of the hyperplane zi = 0. This neighbor-
hood is homeomorphic to Cn = R2n, the homeomorphism is de�ned by formula
[z0:z1: . . . :zn] 7→ (z0/zi, z1/z0, . . . zn/zi).

(6) Obvious.
(7) Each point in an open subset of Rn

+ has a ball neighborhood. If the point lies
on the boundary hyperplane and the radius is su�ciently small, then the ball
is an open half-ball and is homeomorphic to Rn

+. Otherwise, by a choice of
su�ciently small radius it can be made the entire ball of Rn.

(8) Hint: an inversion centered at boundary point turns Dn into Rn
+. In the 2-

dimensional examples, please, draw Euclidean neighbohoods.

□□□

47.1 Prove that an open subspace of a locally Euclidean space of dimension n is a
locally Euclidean space of dimension n.

47.2 Prove that a bouquet of two circles is not locally Euclidean.

47.C If X is a locally Euclidean space of dimension p and Y is a locally
Euclidean space of dimension q then X × Y is a locally Euclidean space of
dimension p+ q.

Proof. Let (a, b) ∈ X × Y . Then a ∈ X has a neighborhood U homeomorphic either to
Rp or Rp

+ and b ∈ Y has a neighborhood V homeomorphic either to Rq or to Rq
+. Then

(a, b) has a neighborhood U × V in X × Y . Let us check if it is homeomorphic either to

Rp+q or to Rp+q
+ .

For this, it would su�ce to prove that

• Rp × Rq is homeomorphic to Rp+q,
• Rp × Rq

+ is homeomorphic to Rp+q
+ ,
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• Rp
+ × Rq is homeomorphic to Rp+q

+ ,

• Rp
+ × Rq

+ is homeomorphic to Rp+q
+ .

The homeomorphisms come from homeomorphisms establishing associativity and com-
mutativity of the cartesian product, because Rn = (R)n and Rn

+ = (R)n−1 × R+. The
existence of last homeomorphism is reduced by the same arguments to existence of a
homeomorphism R+ × R+ → R2

+. The product R+ × R+ is identi�ed with the quadrant
{(x, y) ∈ R2 | x ≥ 0, y ≥ 0}. The quadrant is mapped homeomorphically to the half-plane
R2

+ = {(x, y) ∈ R2 | y ≥ 0} by the restriction of map C → C : x+ iy 7→ (x+ iy)2. □□□

⌈47′2⌋ Dimension

47.D Can a topological space be simultaneously a locally Euclidean space
of dimension both 0 and n > 0?

Proof. No. In a locally Euclidean space of dimension 0 each point is open, see 47.A.
In a locally Euclidean space of dimension n there are points which have a neighborhood
homeomorphic to Rn, and in Rn with n > 0 points are not open. □□□

47.E Can a topological space be simultaneously a locally Euclidean space
of dimension both 1 and n > 1?

Proof. No. Assume there exists a locally Euclidean space X of dimensions 1 and n > 1.
Let a ∈ X. It has a neighborhood homeomorphic to R1 or R1

+. In R1
+ each point except

0 has a neighborhood homeomorphic to R1. Therefore without loss of generality we may
assume that a has a neighborhood, say U , homeomorphic to R1. Notice that for any point
of U , U is a neighborhood, therefore any point in U has a neighborhood homeomorphic
to R1.

Since X is locally Euclidean of dimension n > 0, there exists a neighborhood of a home-
omorphic either Rn or Rn

+. In Rn
+ any point which does not belong to the boundary

hyperplane has a neighborhood {x ∈ Rn | x1 > 0} homeomorphic to Rn. Therefore
without loss of generality we may assume that a has a neighborhood homeomorphic to
Rn.

In Rn open balls form a base of neighborhoods. Therefore any neighborhood of a contains
a neighborhood homeomorphic to Rn. Hence there exists a neighborhood V ⊂ U of a
homeomorphic to Rn. In turn, in U which is homeomorphic to R1 there is a base of
neighborhoods homeomorphic to R1. There exists an element W of this base which is
contained in V .

Now consider U ∖ a ⊃ V ∖ a ⊃ W ∖ a. The set U ∖ a has two connected components,
V ∖ a is connected. Therefore V ∖ a is contained in one of the connected components of
U ∖ a. On the other hand, W ∖ a has two connected components, and a homeomorphism
U → R1 maps them to open intervals adjacent to the image of a from opposite sides. The
component of W ∖ a do not �t to a single connected component of U ∖ a. However, being
subsets of a connected V ∖ a ⊂ U ∖ a, they must �t in a singleconnected component of
U ∖ a. Contradiction.

Another proof isindicated in problems 47.3 and 47.4. □□□
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47.3 Prove that any nonempty open connected subset of a locally Euclidean space of
dimension 1 can be made disconnected by removing two points.

47.4 Prove that any nonempty locally Euclidean space of dimension n > 1 contains a
nonempty open set, which cannot be made disconnected by removing any two points.

47.F Can a topological space be simultaneously a locally Euclidean space
of dimension both 2 and n > 2?

47.F.1 Let U be an open subset of R2 and a p ∈ U . Prove that π1(U ∖
{p}) admits an epimorphism onto Z.
47.F.2 Deduce from 47.F.1 that a topological space cannot be simulta-
neously a locally Euclidean space of dimension both 2 and n > 2.

We see that dimension of locally Euclidean topological space is a topological
invariant at least for the cases when it is not greater than 2. In fact, this
holds true without that restriction. However, one needs some technique to
prove this. One possibility is provided by dimension theory, see, e.g., W.
Hurewicz and H. Wallman, Dimension Theory Princeton, NJ, 1941. Other
possibility is to generalize the arguments used in 47.F.2 to higher dimensions.
However, this demands a knowledge of high-dimensional homotopy groups.

47.5 Deduce that a topological space cannot be simultaneously a locally Euclidean
space of dimension both n and p > n from the fact that πn−1(S

n−1) = Z. Cf. 47.F.2

⌈47′3⌋ Interior and Boundary

A point a of a locally Euclidean space X is said to be an interior point of X
if a has a neighborhood (in X) homeomorphic to Rn. A point a ∈ X, which
is not interior, is called a boundary point of X.

47.6 Which points of Rn
+ have a neighborhood homeomorphic to Rn

+?

47.G Formulate a de�nition of boundary point independent of a de�nition
for interior point.

Proof. A point of a locally Euclidean space of dimension n is a boundary point if it has
no neighborhood homeomorphic to Rn.

(A usual mistake is to say that a point is boundary if it has a neighborhood homeomorphic

to Rn
+. Why this is not correct can be seen already in the case of Rn

+: in this space each

point has a neighborhood homeomorphic to Rn
+, the whole space.) □□□

Let X be a locally Euclidean space of dimension n. The set of all interior
points of X is called the interior of X and denoted by intX. The set of all
boundary points of X is called the boundary of X and denoted by ∂X.
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These terms (interior and boundary) are used also with di�erent meaning.
The notions of boundary and interior points of a set in a topological space and
the interior part and boundary of a set in a topological space are introduced
in general topology, see, e.g., Section 6. They have almost nothing to do with
the notions discussed here. In both senses the terminology is classical, which
is impossible to change. This does not create usually a danger of confusion.

Notations are not as commonly accepted as words. We take an easy op-
portunity to select unambiguous notations: we denote the interior part of
a set A in a topological space X by IntX A or IntA, while the interior of
a locally Euclidean space X is denoted by intX; the boundary of a set in
a topological space is denoted by symbol Fr, while the boundary of locally
Euclidean space is denoted by symbol ∂.

47.H For a locally Euclidean space X the interior intX is an open dense
subset of X, the boundary ∂X is a closed nowhere dense subset of X.

47.I The interior of a locally Euclidean space of dimension n is a locally Eu-
clidean space of dimension n without boundary (i.e., with empty boundary;
in symbols: ∂(intX) = ∅).

47.J The boundary of a locally Euclidean space of dimension n is a locally
Euclidean space of dimension n − 1 without boundary (i.e., with empty
boundary; in symbols: ∂(∂X) = ∅).

47.K intRn+ ⊃ {x ∈ Rn : x1 > 0} and

∂Rn+ ⊂ {x ∈ Rn : x1 = 0}.

47.7 For any x, y ∈ {x ∈ Rn : x1 = 0}, there exists a homeomorphism f : Rn
+ → Rn

+

with f(x) = y.

47.L Either ∂Rn+ = ∅ (and then ∂X = ∅ for any locally Euclidean space
X of dimension n), or ∂Rn+ = {x ∈ Rn : x1 = 0}.

In fact, the second alternative holds true. However, this is not easy to prove
for all dimensions. Let us start with the lowest ones.

47.M Prove that ∂R1
+ = {0}.

Proof. We have to prove that 0 has no neighborhood homeomorphic to R in R1
+. Assume,

it has. Let U be such a neighborhood. Since [0, ε) is a base of neighborhoods of 0 in
R1

+, there exists neighborhood V from this base contained in U . In turn, there is a
neighborhood W ⊂ V which is homeomorphic to R, since in R (a− ε, a+ ε) constitute a
base of neighborhoods of a ∈ R.

Consider inclusions W ∖ a ⊂ V ∖ a ⊂ U ∖ a. The middle set is connected, hence it is

contained in one of the connected components of U∖a. Hence, both connected components
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ofW ∖a are contained in one connected component of U∖a. However, a homeomorphism

U → R maps W onto an open interval and connected components of W ∖ a are contained
in di�erent connected components of U ∖ a. Cf. proof of 47.E. □□□

47.N Prove that ∂R2
+ = {x ∈ R2 : x1 = 0}. (Cf. 47.F.1.)

47.8 Deduce that a ∂Rn
+ = {x ∈ Rn : x1 = 0} from πn−1(S

n−1) = Z. (Cf. 47.N,
47.5)

47.O Deduce from ∂Rn+ = {x ∈ Rn : x1 = 0} for all n ≥ 1 that

int(X × Y ) = intX × intY

and

∂(X × Y ) = (∂(X)× Y ) ∪ (X × ∂Y ).

The last formula resembles Leibniz formula for derivative of a product.

47.P Riddle. Can this be just a coincidence?

47.Q Prove that

(1) ∂(I × I) = (∂I × I) ∪ (I × ∂I),

(2) ∂Dn = Sn−1,

(3) ∂(S1 × I) = S1 × ∂I = S1 ⨿ S1,

(4) the boundary of Möbius strip is homeomorphic to circle.

47.R Corollary. Möbius strip is not homeomorphic to cylinder S1 × I.

48. Manifolds

⌈48′1⌋ De�nition of Manifold

A topological space is called a manifold of dimension n if it is

• locally Euclidean of dimension n,

• second countable,

• Hausdor�.

A manifold of dimension d is called also a d-manifold.

48.A Prove that the three conditions of the de�nition are independent.
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What does 48.A mean? In what sense the conditions may be indepen-
dent? The strongest independence here means that for any of the condi-
tions there exists a space not satisfying this condition, but satisfying the
other two.

For two of the conditions, one can easily �nd lots of required examples.
For the Hausdor� property it is not that obvious.

48.A.1 Prove that R ∪i R, where i : {x ∈ R : x < 0} → R is the
inclusion, is a non-Hausdor� second countable locally Euclidean space of
dimension one.

48.B Check whether the spaces listed in Problem 47.B are manifolds.

A compact manifold without boundary is said to be closed.

As in the case of interior and boundary, this term coincides with one of the
basic terms of general topology. Of course, the image of a closed manifold
under embedding into a Hausdor� space is a closed subset of this Haus-
dor� space (as any compact subset of a Hausdor� space). However absence
of boundary does not work here, and even non-compact manifolds may be
closed subsets. They are closed in themselves, as any space. Here we meet
again an ambiguity of classical terminology. In the context of manifolds the
term closed relates rather to the idea of a closed surface.

⌈48′2⌋ Components of Manifold

48.C A connected component of a manifold is a manifold.

Proof. Any subspace of a manifold is second countable and Hausdor�, because these
properties are hereditary. Property of being locally Euclidean is not hereditary. However,
the neighborhoods of a point that are homeomorphic Rn or Rn

+ are connected and are
contained in the connected component. □□□

48.D A connected component of a manifold is path-connected.

Proof. In a manifold each point has a path-connected neighborhood (namely, a neighbor-
hood homeomorphic to Rn or Rn

+). Therefore by Theorem 14.T connected components of
a manifold are path-connected. □□□

48.E A connected component of a manifold is open in the manifold.

Proof. In a manifold each point has a neighborhood homeomorphic to Rn or Rn
+, this

neighborhood is connected and therefore it is contained in a connected component. Hence
each point is interior for the connected component containing it. □□□

48.F A manifold is the sum of its connected components.
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Proof. Any connected component is closed by Theorem 12.K and open by Theorem 48.E.
A space partitioned into sets each of which is both open and closed is the sum of the
elements of the partition. □□□

48.G The set of connected components of any manifold is countable. If the
manifold is compact, then the number of the components is �nite.

Proof. By Theorem 48.E connected components form an open cover of the manifold. Since
a manifold is second countable, by the Lindelöf Theorem this cover contains a countable
subcover. If the manifold is compact, it contains a �nite subcover. □□□

48.1 Prove that a manifold is connected, i� its interior is connected.

48.2 The fundamental group of a manifold is countable.

⌈48′3⌋ Making New Manifolds out of Old Ones

48.H Open subset. Prove that an open subspace of a manifold of dimension
n is a manifold of dimension n.

48.I Interior. The interior of a manifold of dimension n is a manifold of
dimension n without boundary.

48.J Boundary. The boundary of a manifold of dimension n is a manifold
of dimension n− 1 without boundary.

48.3 Boundary of Compact Manifold. The boundary of a compact manifold of dimen-
sion n is a closed manifold of dimension n− 1.

48.K Product. If X is a manifold of dimension p and Y is a manifold of
dimension q then X × Y is a manifold of dimension p+ q.

48.L Covering Space. Prove that a covering space (in narrow sense) of a
manifold is a manifold of the same dimension.

48.M Covered Space. Prove that if the total space of a covering is a
manifold then the base is a manifold of the same dimension.

48.N Gluing along Components of Boundary. Let X and Y be manifolds
of dimension n, A and B components of ∂X and ∂Y respectively. Then for
any homeomorphism h : B → A the space X∪hY is a manifold of dimension
n.

48.N.1 Prove that the result of gluing of two copies of Rn+ by the identity
map of the boundary hyperplane is homeomorphic to Rn.

48.O Riddle. Can a manifold be embedded into a manifold of the same
dimension without boundary?
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Let X be a manifold. Denote by DX the space X ∪id∂X X obtained by
gluing of two copies of X by the identity mapping id∂X : ∂X → ∂X of the
boundary. DX is called the double of X.

48.P Double. Prove that DX is a manifold without boundary of the same
dimension as X.

48.Q Double of a Compact Manifold. Prove that a double of a manifold
is compact, i� the original manifold is compact.

⌈48′4⌋ Collars and Bites

Let X be a manifold. An embedding c : ∂X × I → X such that c(x, 0) = x for each
x ∈ ∂X is called a collar of X. A collar can be thought of as a neighborhood of the
boundary presented as a cylinder over boundary.

48.4 Existence Collar Theorem. Every manifold has a collar.

Let U be an open set in the boundary of a manifold X. For a continuous function
φ : ∂X → R+ with φ−1(0,∞) = U set

Bφ = {(x, t) ∈ ∂X × R+ : t ≤ φ(x)}.
A bite on X at U is an embedding b : Bφ → X with some φ : ∂X → R+ such that
b(x, 0) = x for each x ∈ ∂X.

This is a generalization of collar. Indeed, a collar is a bite at U = ∂X with φ = 1.

48.4.1 Prove that if U ⊂ ∂X is contained in an open subset of X homeomorphic
to Rn

+, then there exists a bite of X at U .

48.4.2 Prove that for any bite b : B → X of a manifold X the closure of X ∖ b(B)
is a manifold.

48.4.3 Let b1 : B1 → X be a bite of X and b2 : B2 → Cl(X ∖ b1(B1)) be a bite of
Cl(X ∖ b1(B1)). Construct a bite b : B → X of X with b(B) = b1(B1) ∪ b2(B2).

48.4.4 Prove that if there exists a bite of X at ∂X then there exists a collar of X.

48.5 Uniqueness Collar Theorem. For any two collars c1, c2 : ∂X × I → X there exists

a homeomorphism h : X → X with h(x) = x for x ∈ ∂X such that h ◦ c1 = c2.

This means that a collar is unique up to homeomorphism.

48.5.1 For any collar c : ∂X × I → X there exists a collar c′ : ∂X × I → X such
that c(x, t) = c′(x, t/2).

48.5.2 For any collar c : ∂X × I → X there exists a homeomorphism

h : X → X ∪x 7→(x,1) ∂X × I

with h(c(x, t)) = (x, t).

48.R Gluing along a Manifold with Boundary. Let X and Y be manifolds
of dimension n, A and B closed subsets of ∂X and ∂Y respectively. If A and
B are manifolds of dimension n−1 then for any homeomorphism h : B → A
the space X ∪h Y is a manifold of dimension n.
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49. Isotopy

⌈49′1⌋ Isotopy of Homeomorphisms

Let X and Y be topological spaces, h, h′ : X → Y homeomorphisms.

A homotopy ht : X → Y , t ∈ [0, 1] connecting h and h′ is called an
isotopy between h and h′ if ht is a homeomorphism for each t ∈ [0, 1].

h, h′ are said to be isotopic if there exists an isotopy between h and h′.

49.A Being isotopic is an equivalence relation on the set of homeomorphisms
X → Y .

49.B Isotopy vs. Homotopy. Find a topological space X such that homo-
topy between homeomorphisms X → X does not imply isotopy.

Existence of suchX means that the isotopy classi�cation of homeomorphisms
can be more re�ned than the homotopy classi�cation of them.

49.1 Classify homeomorphisms of circle S1 to itself up to isotopy.

49.2 Classify homeomorphisms of line R1 to itself up to isotopy.

The set of isotopy classes of homeomorphisms X → X (i.e. the quotient
of the set of self-homeomorphisms of X by isotopy relation) is called the
mapping class group or homeotopy group of X.

49.C For any topological space X, the mapping class group of X is a group
under the operation induced by composition of homeomorphisms.

49.3 Find the mapping class group of the union of the coordinate lines in the plane.

49.4 Find the mapping class group of the union of bouquet of two circles.

⌈49′2⌋ Isotopy of Embeddings

Homeomorphisms are topological embeddings of special kind. The notion
of isotopy of homeomorphism is extended in an obvious way to the case of
embeddings.

LetX and Y be topological spaces, h, h′ : X → Y topological embeddings.

A homotopy ht : X → Y , t ∈ [0, 1] connecting h and h′ is called an
(embedding) isotopy between h and h′ if ht is an embedding for each t.
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Embeddings h, h′ are said to be isotopic
if there exists an isotopy between h and h′.

49.D Being isotopic is an equivalence relation on the set of embeddings
X → Y .

⌈49′3⌋ Isotopy of Sets

A family At, t ∈ I of subsets of a topological space X is called an isotopy
of the set A = A0, if the graph Γ = {(x, t) ∈ X × I |x ∈ At} of the
family is �brewise homeomorphic to the cylinder A× I, i. e. there exists a
homeomorphism A× I → Γ mapping A×{t} to Γ∩X ×{t} for any t ∈ I.

Such a homeomorphism gives rise to an isotopy of embeddings Φt : A→ X,
t ∈ I with Φ0 = in, Φt(A) = At. An isotopy of a subset is also called a
subset isotopy. Subsets A and A′ of the same topological space X are said to
be isotopic in X, if there exists a subset isotopy At of A with A′ = A1.

49.E This is an equivalence relation on the set of subsets of X.

As it follows immediately from the de�nitions, any embedding isotopy deter-
mines an isotopy of the image of the initial embedding and any subset isotopy
is accompanied with an embedding isotopy. However the relation between
the notions of subset isotopy and embedding isotopy is not too close because
of the following two reasons:

(1) an isotopy Φt accompanying a subset isotopy At starts with the
inclusion of A0 (while arbitrary isotopy may start with any embed-
ding);

(2) an isotopy accompanying a subset isotopy is determined by the
subset isotopy only up to composition with an isotopy of the iden-
tity homeomorphism A → A (an isotopy of a homeomorphism is a
special case of embedding isotopies, since homeomorphisms can be
considered as a sort of embeddings).

⌈49′4⌋ Ambient Isotopy

An isotopy of a subset A in X is said to be ambient, if it may be accompanied
with an embedding isotopy Φt : A→ X extendible to an isotopy Φ̃t : X → X
of the identity homeomorphism of the space X. The isotopy Φ̃t is said to
be ambient for Φt. This gives rise to obvious re�nements of the equivalence
relations for subsets and embeddings introduced above.

49.F Find isotopic, but not ambiently isotopic sets in [0, 1].
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49.G If sets A1, A2 ⊂ X are ambiently isotopic, then the complements
X ∖A1 and X ∖A2 are homeomorphic and hence homotopy equivalent.

49.5 Find isotopic, but not ambiently isotopic sets in R.

49.6 Prove that any isotopic compact subsets of R are ambiently isotopic.

49.7 Find isotopic, but not ambiently isotopic compact sets in R3.

49.8 Prove that any two embeddings S1 → R3 are isotopic. Find embeddings S1 → R3

that are not ambiently isotopic.

⌈49′5⌋ Isotopies and Attaching

49.9 Any isotopy ht : ∂X → ∂X extends to an isotopy Ht : X → X.

49.10 Let X and Y be manifolds of dimension n, A and B components of ∂X and
∂Y respectively. Then for any isotopic homeomorphisms f, g : B → A the manifolds
X ∪f Y and X ∪g Y are homeomorphic.

49.11 Let X and Y be manifolds of dimension n, let B be a compact subset of ∂Y . If
B is a manifold of dimension n− 1 then for any embeddings f, g : B → ∂X ambiently
isotopic in ∂X the manifolds X ∪f Y and X ∪g Y are homeomorphic.

⌈49′6⌋ Connected Sums

49.H Let X and Y be manifolds of dimension n, and φ : Rn → X, ψ : Rn →
Y be embeddings. Then

X ∖ φ(IntDn) ∪ψ(Sn)→X∖φ(IntDn):ψ(a)7→φ(a) Y ∖ ψ(IntDn)

is a manifold of dimension n.

This manifold is called a connected sum of X and Y .

49.12 Find pairs of manifolds connected sums of which are homeomorphic to

(1) S1,
(2) Klein bottle,
(3) sphere with three crosscaps.

The term connected sum somehow alludes on its connectedness and dis-
tinction from disjoint sum. However, a connected sum is not necessarily
connected. It is not connected if at least one of the summands is not.

49.13 Find a disconnected connected sum of connected manifolds. Describe, under
what circumstances this can happen.

49.I Show that the topological type of the connected sum of X and Y
depends not only on the topological types of X and Y .
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Hint. Consider connected sums of R1
+ with itself. □□□

49.J Let X and Y be manifolds of dimension n, and φ : Rn → X, ψ :
Rn → Y be embeddings. Let h : X → X be a homeomorphism. Then the
connected sums of X and Y de�ned via ψ and φ, on one hand, and via ψ
and h ◦ φ, on the other hand, are homeomorphic.



Chapter XI

Manifolds of Low

Dimensions

In di�erent geometric subjects there are di�erent ideas which dimensions are
low and which high. In topology of manifolds low dimension means at most
4. However, in this chapter only dimensions up to 2 will be considered, and
even most of two-dimensional topology will not be touched. Manifolds of
dimension 4 are the most mysterious objects in the �eld. Dimensions higher
than 4 are easier: there is enough room for most of the constructions that
topology needs.

50. One-Dimensional Manifolds

⌈50′1⌋ Zero-Dimensional Manifolds

This section is devoted to topological classi�cation of manifolds of dimension
one. We could skip the case of 0-manifolds due to triviality of the problem.

50.A Topological Classi�cation of 0-Manifolds. Two 0-dimensional man-
ifolds are homeomorphic i� they have the same number of points.

Proof. Indeed, any 0-manifold is just a countable discrete topological space, and the only
topological invariant needed for topological classi�cation of 0-manifolds is the number of
points. □□□

300
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The case of 1-manifolds is also simple, but requires more detailed consider-
ations. Surprisingly, many textbooks manage to ignore 1-manifolds entirely.

⌈50′2⌋ Reduction to Connected Manifolds

50.B Two manifolds are homeomorphic i� there exists a one-to-one corre-
spondence between their components such that the corresponding compo-
nents are homeomorphic.

Proof. Each manifold is the sum of its connected components. □□□

Thus, for topological classi�cation of n-dimensional manifolds it su�ces to
classify only connected n-dimensional manifolds.

⌈50′3⌋ Examples

50.C What connected 1-manifolds do you know?

(1) Do you know any closed connected 1-manifold?

(2) Do you know a connected compact 1-manifold, which is not closed?

(3) What non-compact connected 1-manifolds do you know?

(4) Is there a non-compact connected 1-manifolds with boundary?

⌈50′4⌋ How to Distinguish Them From Each Other?

50.D Fill the following table with pluses and minuses.

Manifold X Is X compact? Is ∂X empty?

S1

R1

I

R1
+

⌈50′5⌋ Statements of Main Theorems

50.E Any connected 1-manifold is homeomorphic to one of the following:

• circle S1,

• line R1,

• interval I,

• half-line R1
+.
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This theorem splits into the following four theorems:

50.F Any closed connected 1-manifold is homeomorphic to S1.

50.G Any non-compact connected 1-manifold without boundary is homeo-
morphic to R1.

50.H Any compact connected 1-manifold with nonempty boundary is home-
omorphic to I.

50.I Any non-compact connected 1-manifold with nonempty boundary is
homeomorphic to R1

+.

⌈50′6⌋ Lemma on 1-Manifold Covered with Two Lines

50.J Lemma. Any connected manifold of dimension 1 covered with two open
sets homeomorphic to R1 is homeomorphic either to R1, or S1.

Let X be a connected manifold of dimension 1 and U, V ⊂ X be its open
subsets homeomorphic to R. Denote by W the intersection U ∩ V . Let
φ : U → R and ψ : V → R be homeomorphisms.

50.J.1 Prove that each connected component of φ(W ) is either an open
interval, or an open ray, or the whole R.

Proof. This is exactly what a connected open subset of the line can be. See 12.U. □□□

50.J.2 Prove that a homeomorphism between two open connected sub-
sets of R is a (strictly) monotone continuous function.

Proof. See 11.M, 11.N and 11.4. □□□

50.J.3 Prove that if a sequence xn of points of W converges to a point
a ∈ U ∖W then it does not converge in V .

Proof. Because a sequence of points in a Hausdor� space has at most one limit, see
15.D. □□□

50.J.4 Prove that if there exists a bounded connected component C of
φ(W ), then C = φ(W ), V = W , X = U and hence X is homeomorphic
to R.

Proof. A bounded component C of φ(W ) is an open interval. Both of its end points
are limits of monotone sequences of its points. By Lemma 50.J.3 the corresponding
monotone sequences of points in ψ(W ) have no limits. Hence the component ψφ−1(C)
of ψ(W ) is unbounded both from above and below, and coincides with the whole
line. □□□

50.J.5 In the case of connected W and U ̸= V , construct a homeomor-
phism X → R which takes:
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• W to (0, 1),

• U to (0,+∞), and

• V to (−∞, 1).

0 1 +∞−∞
R

W

φ
ψ

V ∖W U ∖W
X

R

R

50.J.6 In the case of W consisting of two connected components, con-
struct a homeomorphism X → S1, which takes:

• W to {z ∈ S1 : −1/
√
2 < Im(z) < 1/

√
2},

• U to {z ∈ S1 : −1/
√
2 < Im(z)}, and

• V to {z ∈ S1 : Im(z) < 1/
√
2}.

W

R

R

W

V ∖W S1

X

U ∖W

⌈50′7⌋ Without Boundary

50.F.1 Deduce Theorem 50.F from Lemma 50.I.

Proof. Consider a cover of X by open sets homeomorphic to R. Since X is compact, it
contains a �nite subcover U1, U2, . . . Un. The number n of its elements is greater than
1, because if n = 1 thenX = U1 would be homeomorphic to R and hence non-compact,
which would contradict the assumption that X is closed. If n = 2, then by Lemma 50.I
X is homeomorphic either to R or to S1, and by the assumption the former cannot
happen.

Assume that the statement has been proven for n ≤ k and prove it for n = k+1. Since
X is connected, Uk+1 ∩ (U1 ∪ · · · ∪ Uk) ̸= ∅. By changing the numeration, we may
assume that Uk+1 ∩ Uk ̸= ∅. Then V = Uk+1 ∪ Uk satis�es the conditions of Lemma
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50.I. By Lemma 50.I, V is homeomorphic either to S1 or R. In the former case V is a
closed subset of X (as a compact subset in Hausdor� X). It is also open, and hence
V = X, by connectedness of X. Therefore in this case X is homeomorphic to S1. In
the case if V is homeomorphic to R, the sets U1, U2, . . . , Uk−1, V form a cover of X
consisting of k open sets homeomorphic to R. Then, by the inductive assumption, X
is homeomorphic to S1. □□□

50.G.1 Deduce Theorem 50.G from Lemma 50.I.

Proof. Consider a cover of X by open sets homeomorphic to R. Due to second count-
ability of X, by the Lindelöf theorem this cover contains a countable subcover. Let
U1, U2, . . . , Un . . . be such subcover. By connectedness of X, we can renumerate the
elements of this subcover in such a way that Un ∩ (U1 ∪ · · · ∪ Un−1) ̸= ∅ for any n.
Then all Vn = U1 ∪ · · · ∪ Un are open connected sets.

Choose a homeomorphism of V1 = U1 onto a unit open interval on R. Assume that
we have proved that Vk is homeomorphic to R, and moreover, have constructed a
homeomorphism of Vk onto an open interval of length at most k on the line. By
Lemma 50.I the union Vk+1 = Vk ∪ Uk+1 is homeomorphic either to S1 or to R.
In the former case, Vk+1 would be closed and open in X, hence it would coincide
with X, which would contradict the assumption that X is not compact. Thus Vk+1

is homeomorphic to R. The set Vk is an open connected subset in Vk+1, and any
homeomorphism Vk+1 → R maps it to a convex open set, that is either onto an open
interval, or an open ray or the whole R. In any of these cases, the homeomorphism of
Vk onto an open interval of length at most k can be extended to a homeomorphism of
Vk+1 onto an open interval of length at most k + 1.

This inductive construction gives a homeomorphism of X = ∪nVn onto a union of
increasing sequence of open intervals. This union is an open connected set on R and
hence it is homeomorphic to R. □□□

⌈50′8⌋ With Boundary

50.H.1 Prove that any compact connected 1-manifold with boundary
can be embedded into S1.

Proof. Any compact connected 1-manifold X with boundary is embedded into its double
DX. The double of a compact manifold is a closed manifold, the double of a connected
manifold with non-empty boundary is connected. Thus DX is a closed connected 1-
manifold. By Theorem 50.F, DX is homeomorphic to S1. □□□

50.H.2 List all connected compact subsets of S1.

Proof. A connected compact subset A of S1 is either S1, or a closed arc, or a point. Indeed,
if A ̸= S1, then by a stereographic projection from any point of its complement, A is
mapped homeomorphically to a compact connected subset of R. Connectedness in R
implies convexity, a subsets of R is compact i� it is closed and bounded. This gives
either a closed interval or a point. □□□

50.H.3 Deduce Theorem 50.H from 50.H.2, and 50.H.1.
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50.I.1 Prove that any non-compact connected 1-manifold with non-
empty boundary can be embedded into R1.

Proof. Any non-compact connected 1-manifold X is embedded into its double DX. The
double of non-compact manifold is a non-compact manifold without boundary, the
double of a connected manifold with non-empty boundary is connected. Thus DX
is a non-compact connected 1-manifold without boundary. By Theorem 50.G, DX is
homeomorphic to R. □□□

50.I.2 Deduce Theorem 50.I from 50.I.1.

⌈50′9⌋ Corollaries of Classi�cation

50.K Prove that connected sum of closed 1-manifolds is de�ned up home-
omorphism by topological types of summands.

50.L Which 0-manifolds bound a compact 1-manifold?

Proof. A 0-manifold X bounds a compact 1-manifold i� the number of point of X is even.
Indeed, a compact 1-manifold has a �nite number of connected components, and each of
them is homeomorphic either to S1 or I. □□□

⌈50′10⌋ Orientations of 1-manifolds

Orientation of a connected non-closed 1-manifold is a linear order on the
set of its points such that the corresponding interval topology (see, e.g., 7.P.
) coincides with the topology of this manifold.

Orientation of a connected closed 1-manifold is a cyclic order on the set of
its points such that the topology of this cyclic order (see 8′3) coincides with
the topology of the 1-manifold.

Orientation of an arbitrary 1-manifold is a collection of orientations of its
connected components (each component is equipped with an orientation).

50.M Orientability. Any 1-manifold admits an orientation.

50.N An orientation of 1-manifold induces an orientation (i.e., a linear
ordering of points) on each subspace homeomorphic to R or R+. Vice versa,
an orientation of a 1-manifold is determined by a collection of orientations
of its open subspaces homeomorphic to R or R+, if the subspaces cover the
manifold and the orientations agree with each other: the orientations of any
two subspaces de�ne the same orientation on each connected component of
their intersection.

50.O Let X be a cyclicly ordered set, a ∈ X and B ⊂ X ∖ {a}. De�ne in
X ∖ {a} a linear order induced, as in 8.8, by the cyclic order on X ∖ {a},
and equip B with the linear order induced by this linear order on X ∖ {a}.
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Prove that if B admits a bijective monotone map onto R, or [0; 1], or [0; 1),
or (0; 1], then this linear order on B does not depend on a.

The construction of 50.O allows one to de�ne an orientation on any 1-
manifold which is a subspace of an oriented closed 1-manifold. A 1-manifold,
which is a subspace of an oriented non-closed 1-manifold X, inherits from X
an orientation as a linear order. Thus, any 1-manifold, which is a subspace of
an oriented 1-manifold X, inherits from X an orientation. This orientation
is said to be induced by the orientation of X.

A topological embedding X → Y of an oriented 1-manifold to another one
is said to preserve the orientation if it maps the orientation of X to the
orientation induced on the image by the orientation of Y .

50.P Any two orientation preserving embeddings of an oriented connected
1-manifold X to an oriented connected 1-manifold Y are isotopic.

50.Q If two embeddings of an oriented 1-manifold X to an oriented 1-
manifold Y are isotopic and one of the embeddings preserves the orientation,
then the other one also preserves the orientation

50.R Corollary. Orientation of a closed segment is determined by the order-
ing of its end points.

An orientation of a segment is shown by an arrow directed from the initial
end point to the �nal one. In order to show an orientation of a 1-manifold,
one usually equips each connected component with an arrow, as an arrow
shows an oriented closed segment embedded into the component.

50.S A connected 1-manifold admits two orientations. A 1-manifold con-
sisting of n connected components admits 2n orientations.

⌈50′11⌋ Mapping Class Groups

50.T Find the mapping class groups of
(1) S1, (2) R1, (3) R1

+,
(4) [0, 1], (5) S1 ⨿ S1, (6) R1

+ ⨿ R1
+.

50.1 Find the mapping class group of an arbitrary 1-manifold with �nite number of
components.

⌈50′12⌋ Involutions

Recall that a non-identity continuous map f : X → X is called an involution
if f2 = idX .

50.U A continuous involution of a topological space is a homeomorphism.
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50.2 Prove that an involution of a non-closed connected 1-manifold reverses orientation.

50.3 Riddle. Relate the preceding problem with the fact that any 1-manifold is ori-

entable.

50.4 Does Theorem 50.2 generalize to any periodic homeomorphism of a non-closed
connected manifold?

50.5 Does a non-closed connected 1-manifold admit a homeomorphism f ̸= id with
f9 = id?

50.6 Prove that an orientation preserving involution of a 1-manifold has no �xed
points.

Involutions f, g : X → X are said to be equivalent if there exists a home-
omorphism h : X → X such that hg = fh. In other words, equivalence of
involutions is conjugacy in the group of all homeomorphisms of X.

An involution is said to be trivial if it is the identity map.

50.V Classi�cation of involutions on connected 1-manifolds.

(1) Any non-trivial involution of S1 is equivalent either to the antipodal
symmetry z 7→ −z, or symmetry against a line z 7→ z.

(2) Any non-trivial involution of R is equivalent to the symmetry with respect
to the origin x 7→ −x.

(3) Any non-trivial involution of I is equivalent to the symmetry with respect
to the midpoint x 7→ 1

2 − x.

(4) Half-line R+ admits no non-trivial involution.

50.7 Classify involutions up to equivalence on an arbitrary 1-manifold.

51. Two-Dimensional Manifolds: General

Picture

Examples of 2-manifolds and various information about 2-manifolds are scat-
tered throughout the whole book. Here we repeat the most important of this
information and then formulate the main results, postponing technical proofs
to forthcoming sections.
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⌈51′1⌋ Examples

Recall (see Section 22'14) that by deleting from the torus S1×S1 the interior
of an embedded closed disk, we obtain a space called handle. Similarly, by
deleting from the 2-sphere the interior of n disjoint embedded disks, we
obtain a sphere with n holes.

51.A A sphere with a hole is homeomorphic to the disk D2.

Proof. For example, the stereographic projection from an inner point of the hole maps
the sphere with a hole onto a disk homeomorphically. □□□

51.B A sphere with two holes is homeomorphic to the cylinder S1 × I.

Proof. The stereographic projection from an inner point of one of the holes homeomor-
phically maps the sphere with two holes onto a disk with a hole. Prove that the latter is
homeomorphic to a cylinder. (Another option: if we take the center of the projection in
the hole in an appropriate way, then the projection maps the sphere with two holes onto
a circular ring, which is obviously homeomorphic to a cylinder.) □□□

∼
=

∼
=

A sphere with three holes has a special name. It is called a pair of pants .

∼
=

The result of attaching p copies of a handle to a sphere with p holes via
embeddings homeomorphically mapping the boundary circles of the handles
onto those of the holes is a sphere with p handles, or, in a more ceremonial
way (and less understandable, for a while), an orientable connected closed
surface of genus p.

51.1 Prove that a sphere with p handles is well-de�ned up to homeomorphism (i.e., the
topological type of the result of gluing does not depend on the attaching embeddings).
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51.C A sphere with one handle is homeomorphic to the torus S1 × S1.

Proof. By de�nition, the handle is homeomorphic to a torus with a hole, while the sphere
with a hole is homeomorphic to a disk, which precisely �lls in the hole. □□□

∼
=

51.D A sphere with two handles is homeomorphic to the result of gluing
together two copies of a handle via the identity map of the boundary circle.

Proof. Cut a sphere with two handles into two symmetric parts each of which is homeo-
morphic to a handle.

Another, more formal proof: a sphere with two holes is homeomorphic to the cylinder
S1 × I, see 51.B. Attaching a cylinder by a homeomorphism of one of its boundary circles
to a component C of a boundary of any 2-manifoldM results a 2-manifold homeomorphic
to the same M . Indeed, C has a collar C × I ⊂ M (see Section 48'4) and the result
S1 × I ∪h:S1×{1}→C×{0} C × I of attaching a cylinder S×I to C × I is homeomorphic to
C × I via the homeomorphism.

S1 × I ∪h:S1×{1}→C×{0} C × I → C × I

which is de�ned on S1 × I by (x, t) 7→ (h(x), 1
2
t) and on C × I by (x, t) 7→ (x, 1

2
(t + 1)).

Observe that the restriction of this homeomorphism to C × {1} is the identity. Therefore
we can extend it to a homeomorphism S1×I∪hM →M by the identity onM∖(C×I). □□□

∼
=

A sphere with two handles is called a pretzel . Sometimes, this word also
denotes a sphere with more handles.

The Möbius strip or Möbius band is de�ned as I2/[(0, t) ∼ (1, 1− t)]. In

other words, this is the quotient space of the square I2 by the partition into
centrally symmetric pairs of points on the vertical edges of I2, and singletons
that do not lie on the vertical edges. The Möbius strip is obtained, so to
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speak, by identifying the vertical sides of a square in such a way that the
directions shown on them by arrows are superimposed:

51.E Prove that the Möbius strip is homeomorphic to the surface that is
swept in R3 by a segment rotating in a half-plane around the midpoint, while
the half-plane rotates around its boundary line. The ratio of the angular
velocities of these rotations is such that the rotation of the half-plane through
360◦ takes the same time as the rotation of the segment through 180◦. See
Figure.

Proof. To simplify the formulas, we replace the square I2 by a rectangle. Here is a formal
argument: consider the map

φ : [0, 2π]× [− 1
2
, 1
2
] → R3 : (x, y) 7→ (

(1 + y sin x
2
) cosx, (1 + y sin x

2
) sinx, y cos x

2

)
.

Check that φ really maps the square onto the Möbius strip and that S(φ) is the given
partition. Certainly, the starting point of the argument is not a speci�c formula. First
of all, you should imagine the required map. We map the horizontal midline of the unit
square onto the mid-circle of the Möbius strip, and we map each of the vertical segments
of the square onto a segment of the strip orthogonal to the mid-circle. This mapping
maps the vertical sides of the square to one and the same segment, but here the opposite
vertices of the square are identi�ed with each other (check this). □□□

The space obtained from a sphere with q holes by attaching q copies of the
Möbius strip via embeddings of the boundary circles of the Möbius strips
onto the boundary circles of the holes (the boundaries of the holes) is a
sphere with q cross-caps, or a non-orientable connected closed surface of genus
q.

51.2 Prove that a sphere with q cross-caps is well de�ned up to homeomorphism
(i.e., the topological type of the result of gluing does not depend on the attaching
embeddings).
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51.F A sphere with a cross-cap is homeomorphic to the projective plane.

Proof. Combine the results of 51.A and 22.J. □□□

Klein bottle is I2/[(t, 0) ∼ (t, 1), (0, t) ∼ (1, 1− t)]. In other words, this is

the quotient space of square I2 by the partition into

• singletons in its interior,

• pairs of points (t, 0), (t, 1) on horizontal edges that lie on the same
vertical line,

• pairs of points (0, t), (1, 1− t) symmetric with respect to the center
of the square that lie on the vertical edges, and

• the quadruple of vertices.

51.3 Present the Klein bottle as a quotient space of

(1) a cylinder;
(2) the Möbius strip.

51.4 Prove that S1 × S1/[(z, w) ∼ (−z, w̄)] is homeomorphic to the Klein bottle. (Here

w̄ denotes the complex number conjugate to w.)

51.5 Embed the Klein bottle in R4 (cf. 51.E and 51.3).

51.6 Embed the Klein bottle in R4 so that the image of this embedding under the
orthogonal projection R4 → R3 would look as follows:

51.G A sphere with two cross-caps is homeomorphic to the Klein bottle.

Proof. Consider the Klein bottle as a quotient space of a square and cut the square into 5
horizontal (rectangular) strips of equal width. Then the quotient space of the middle strip
is a Möbius band, the quotient space of the union of the two extreme strips is one more
Möbius band, and the quotient space of the remaining two strips is a ring, i.e., precisely
a sphere with two holes. (Here is another, maybe more visual, description. Look at the
picture of the Klein bottle: it has a horizontal plane of symmetry. Two horizontal planes
close to the plane of symmetry cut the Klein bottle into two Möbius bands and a ring.) □□□

A sphere, spheres with handles, and spheres with cross-caps are basic sur-
faces.
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51.H Prove that a sphere with p handles and q cross-caps is homeomorphic
to a sphere with 2p+ q cross-caps (here q > 0).

Proof. The most visual approach here is as follows: single out one of the handles and one
of the cross-caps. Replace the handle by a �tube� whose boundary circles are attached to
those of two holes on the sphere, which should be su�ciently small and close to each other.
After that, start moving one of the holes. (The topological type of the quotient space does
not change in the course of such a motion.) First, bring the hole to the boundary of the
Möbius strip, then shift it onto the Möbius strip, drag it once along the Möbius strip, shift
it from the Möbius strip, and, �nally, return the hole to the initial spot. As a result, we
transform the initial handle (a torus with a hole) into a Klein bottle with a hole, which
splits into two Möbius strips (see Problem 22.U). □□□

51.7 Classify up to homeomorphism those spaces which are obtained by attaching p
copies of S1 × I to a sphere with 2p holes via embeddings of the boundary circles of
the cylinders onto the boundary circles of the sphere with holes.

51.I What connected 2-manifolds do you know?

(1) List closed connected 2-manifold that you know.

(2) Do you know a connected compact 2-manifold, which is not closed?

(3) What non-compact connected 2-manifolds do you know?

(4) Is there a non-compact connected 2-manifolds with non-empty bound-
ary?

51.8 Construct non-homeomorphic non-compact connected manifolds of dimension
two without boundary and with isomorphic in�nitely generated fundamental group.

For notions relevant to this problem see what follows.

⌈51′2⌋ Ends and Odds

Let X be a non-compact Hausdor� topological space, which is a union of an increasing
sequence of its compact subspaces

C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ X.

Each connected component U of X ∖Cn is contained in some connected component of
X ∖Cn−1. A decreasing sequence U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃ . . . of connected components
of

(X ∖ C1) ⊃ (X ∖ C2) ⊃ · · · ⊃ (X ∖ Cn) ⊃ . . .

respectively is called an end of X with respect to C1 ⊂ · · · ⊂ Cn ⊂ . . . .

51.9 Let X and Cn be as above, D be a compact set in X and V a connected
component of X ∖D. Prove that there exists n such that D ⊂ Cn.

51.10 Let X and Cn be as above, Dn be an increasing sequence of compact sets of X
with X = ∪∞

n=1Dn. Prove that for any end U1 ⊃ · · · ⊃ Un ⊃ . . . of X with respect to
Cn there exists a unique end V1 ⊃ · · · ⊃ Vn ⊃ . . . of X with respect to Dn such that
for any p there exists q such that Vq ⊂ Up.
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51.11 Let X, Cn and Dn be as above. Then the map of the set of ends of X with
respect to Cn to the set of ends of X with respect to Dn de�ned by the statement of
?? is a bijection.

Theorem 51.11 allows one to speak about ends of X without specifying a system of
compact sets

C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ X

with X = ∪∞
n=1Cn. Indeed, 51.10 and 51.11 establish a canonical one-to-one corre-

spondence between ends of X with respect to any two systems of this kind.

51.12 Prove that R1 has two ends, Rn with n > 1 has only one end.

51.13 Find the number of ends for the universal covering space of the bouquet of two
circles.

51.14 Does there exist a 2-manifold with a �nite number of ends which cannot be
embedded into a compact 2-manifold?

Proof. Yes, for example, a plane with in�nite number of handles. □□□

51.15 Prove that for any compact set K ⊂ S2 with connected complement S2 ∖ K
there is a natural map of the set of ends of S2 ∖K to the set of connected components
of K.

Let W be an open set of X. The set of ends U1 ⊃ · · · ⊃ Un ⊃ . . . of X such that
Un ⊂W for su�ciently large n is said to be open.

51.16 Prove that this de�nes a topological structure in the set of ends of X.

The set of ends of X equipped with this topological structure is called the space of
ends of X. Denote this space by E(X).

51.8.1 Construct non-compact connected manifolds of dimension two without
boundary and with isomorphic in�nitely generated fundamental group, but with
non-homeomorphic spaces of ends.

51.8.2 Construct non-compact connected manifolds of dimension two without
boundary and with isomorphic in�nitely generated fundamental group, but with
di�erent number of ends.

51.8.3 Construct non-compact connected manifolds of dimension two without
boundary with isomorphic in�nitely generated fundamental group and the same
number of ends, but with di�erent topology in the space of ends.

51.8.4 Let K be a completely disconnected closed set in S2. Prove that the map
E(S2 ∖K) → K de�ned in 51.15 is continuous.

51.8.5 Construct a completely disconnected closed set K ⊂ S2 such that this map
is a homeomorphism.

51.17 Prove that there exists an uncountable family of pairwise nonhomeomorphic
connected 2-manifolds without boundary.

The examples of non-compact manifolds dimension 2 presented above show
that there are too many non-compact connected 2-manifolds. This makes im-
possible any really useful topological classi�cation of non-compact 2-manifolds.



314 XI. Manifolds of Low Dimensions

Theorems reducing the homeomorphism problem for 2-manifolds of this type
to the homeomorphism problem for their spaces of ends do not seem to be
useful: spaces of ends look not much simpler than the surfaces themselves.

However, there is a special class of non-compact 2-manifolds, which admits a
simple and useful classi�cation theorem. This is the class of simply connected
non-compact 2-manifolds without boundary. We postpone its consideration
to section 54′4. Now we turn to the case, which is the simplest and most
useful for applications.

⌈51′3⌋ Homeomorphism and Homotopy Classi�cations

of Basic Surfaces

51.J The fundamental group of a sphere with g handles admits the following
presentation:

⟨a1, b1, a2, b2, . . . ag, bg | a1b1a−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g = 1⟩.

Proof. See, for example, Section 46. □□□

51.K The fundamental group of a sphere with g cross-caps admits the fol-
lowing presentation:

⟨a1, a2, . . . ag | a21a22 . . . a2g = 1⟩.

Proof. See, for example, Section 46. □□□

51.L Spheres with di�erent numbers of handles have non-isomorphic funda-
mental groups.

When we want to prove that two �nitely presented groups are not isomor-
phic, one of the �rst natural moves is to abelianize the groups. (Recall that
to abelianize a group G means to quotient G out by the commutator sub-
group. The commutator subgroup [G,G] is the normal subgroup generated
by the commutators a−1b−1ab for all a, b ∈ G. Abelianization means adding
relations ab = ba for any a, b ∈ G.)

Abelian �nitely generated groups are well known. Any �nitely generated
Abelian group is isomorphic to a product of a �nite number of cyclic groups.
If the abelianized groups are not isomorphic, then the original groups are
not isomorphic as well.

51.L.1 The abelianized fundamental group of a sphere with g handles is
a free Abelian group of rank 2g (i.e., is isomorphic to Z2g).

Proof. Indeed, the single relation in the fundamental group of the sphere with g handles
means that the product of g commutators of the generators ai and bi equals 1, and so
it �vanishes� after the abelianization. □□□
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51.M Fundamental groups of spheres with di�erent numbers of cross-caps
are not isomorphic.

51.M.1 The abelianized fundamental group of a sphere with g cross-caps
is isomorphic to Zg−1 × Z2.

Proof. Taking the elements a1, . . . , ag−1, and b = a1a2 . . . ag as generators in the

commuted group, we obtain an Abelian group with g generators and a single relation

b2 = 1. □□□

51.N Homotopy Classi�cation of Basic Surfaces.

Spheres with di�erent numbers of handles are not homotopy equivalent.

Spheres with di�erent numbers of cross-caps are not homotopy equivalent.

A sphere with handles is not homotopy equivalent to a sphere with cross-
caps.

Proof. The �rst statement follows from 51.L.1, the second from 51.M.1 and the third one,
from 51.L.1 and 51.M.1. □□□

If X is a path-connected space, then the abelianized fundamental group of X
is the 1-dimensional (or �rst) homology group of X and denoted by H1(X). If
X is not path-connected, then H1(X) is the direct sum of the �rst homology
groups of all path-connected components ofX. Thus 51.L.1 can be rephrased
as follows: if Fg is a sphere with g handles, then H1(Fg) = Z2g.

⌈51′4⌋ Closed Surfaces

51.O Any connected closed manifold of dimension two is homeomorphic
either to sphere S2, or sphere with handles, or sphere with crosscaps.

Recall that according to Theorem 51.N the basic surfaces represent pair-
wise distinct topological (and even homotopy) types. Therefore, 51.N and
51.O together give topological and homotopy classi�cations of closed two-
dimensional manifolds.

We do not recommend to have a try at proving Theorem 51.O immediately
and, especially, in the form given above. All known proofs of 51.O can be
decomposed into two main stages: �rstly, a manifold under consideration is
equipped with some additional structure (like triangulation or smooth struc-
ture); then using this structure a required homeomorphism is constructed.
Although the �rst stage appears in the proof necessarily and is rather di�-
cult, it is not useful outside the proof. Indeed, any closed 2-manifold, which
we meet in a concrete mathematical context, is either equipped, or can be
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easily equipped with the additional structure. The methods of imposing the
additional structure are much easier, than a general proof of existence for
such a structure in an arbitrary 2-manifold.

Therefore, we suggest for the �rst case to restrict ourselves to the second
stage of the proof of Theorem 51.O, prefacing it with general notions related
to the most classical additional structure, which can be used for this purpose.

⌈51′5⌋ Compact Surfaces with Boundary

As in the case of one-dimensional manifolds, classi�cation of compact two-
dimensional manifolds with boundary can be easily reduced to the classi�ca-
tion of closed manifolds. In the case of one-dimensional manifolds it was very
useful to double a manifold. In two-dimensional case there is a construction
providing a closed manifold related to a compact manifold with boundary
even closer than the double.

51.P Contracting to a point each connected component of the boundary of
a two-dimensional compact manifold with boundary gives rise to a closed
two-dimensional manifold.

51.18 A space homeomorphic to the quotient space of 51.P can be constructed by
attaching copies of D2 one to each connected component of the boundary.

51.Q Any connected compact manifold of dimension 2 with nonempty boun-
dary is homeomorphic either to sphere with holes, or sphere with handles
and holes, or sphere with crosscaps and holes.

52. Triangulations

⌈52′1⌋ Triangulations of Surfaces

By an Euclidean triangle we mean the convex hall of three non-collinear points
of Euclidean space. Of course, it is homeomorphic to disk D2, but it is not
solely the topological structure that is relevant now. The boundary of a
triangle contains three distinguished points, its vertices, which divide the
boundary into three pieces, its edges. A topological triangle in a topological
space X is an embedding of an Euclidean triangle into X. A vertex (re-
spectively, edge) of a topological triangle T → X is the image of a vertex (
respectively, an edge) of T in X.

A set of topological triangles in a 2-manifold X is a triangulation of X pro-
vided the images of these triangles form a fundamental cover of X and any
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two of the images either are disjoint or intersect in a common side or in a
common vertex.

52.A Prove that in the case of compact X the former condition (about
fundamental cover) means that the number of triangles is �nite.

52.B Prove that the condition about fundamental cover means that the
cover is locally �nite.

52.C Triangulation as a Cellular Decomposition. A triangulation of a 2-
manifold turns it into a cellular space, 0-cells of which are the vertices of
all triangles of the triangulation, 1-cells are the sides of the triangles, and
2-cells are the interiors of the triangles. □□□
This statement allows us to apply all the terms introduced above for cellular
spaces. In particular, we can speak about skeletons, cellular subspaces and
cells. However, in the latter two cases we rather use terms triangulated sub-
space and simplex. Triangulations and terminology related to them appeared
long before cellular spaces. Therefore in this context the adjective cellular is
replaced usually by adjectives triangulated or simplicial.

⌈52′2⌋ Two Properties of Triangulations of Surfaces

52.D Unrami�ed. Let E be a side of a triangle involved into a triangu-
lation of a 2-manifold X. Then there exist at most two triangles of this
triangulation for which E is a side.

Hint. Cf. 47.F.1, 47.F.2 and 47.N. □□□

52.E Local strong connectedness. Let V be a vertex of a triangle involved
into a triangulation of a 2-manifold X and T , T ′ be two triangles of the trian-
gulation adjacent to V . Then there exists a sequence T = T1, T2, . . . , Tn = T ′

of triangles of the triangulation such that V is a vertex of each of them and
triangles Ti, Ti+1 have common side for each i = 1, . . . , n− 1.

Proof. Consider the union S of all the triangles in the triangulation adjacent to V . The
statement that we are going to prove means that S ∖ {V } is connected. Assume the
contrary. The interior IntS of S is a neighborhood of V . Removing V makes it non-
connected. Moreover, in this neighborhood there is a base of neighborhoods of V with the
same property. It consists of the results of contracting IntS towards V using the geometry
of the triangles.

On the other hand, since X is a locally Euclidean space of dimension 2, V has a base of
neighborhoods each of which is not separated by V . The arguments used in the proofs of
47.E and 47.M lead to a contradiction. □□□
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⌈52′3⌋ Homotopy Type of Compact Surface with Non-

Empty Boundary

52.F Any compact connected triangulated 2-manifold with non-empty bound-
ary collapses1 to a one-dimensional simplicial subspace.

Proof. A triangle adjacent to the boundary can be collapsed through its edge which lies
on the boundary. If after some chain of elementary collapses of pairs edge-triangle the
triangulation would still contain triangles, then the union of these triangles would be a 2-
manifold without boundary, because each edge in the union would belong to two triangles
- more than two is prohibited by 52.D, less (one triangle) would allow a further collapse.
This union would be a closed 2-manifold. Hence it would be closed subset of the original
manifold. By 52.D and 52.E it would be also open. By connectedness of the original
2-manifold, it would coincide with it, but this would contradict to the assumption of
non-empty boundary. □□□

52.G Corollary. Any compact connected triangulated 2-manifold with non-
empty boundary is homotopy equivalent to a bouquet of circles.

Proof. By Theorem 43.A, any connected �nite 1-dimensional cellular space is homotopy
equivalent to a bouquet of circles. □□□

⌈52′4⌋ The Euler Characteristic of a Compact Surface

52.H The Euler characteristic of a triangulated compact connected 2-manifold
X with non-empty boundary does not depend on triangulation. It is equal
to 1− r, where r is the rank of the one-dimensional homology group of the
2-manifold.

Proof. Collapsing does not change the Euler characteristic. Therefore, by Theorem 52.F it
is equal to the Euler characteristic of its one-dimensional simplicial subspace. By Theorem
45.B, the fundamental group of this subspace (and the whole 2-manifold as they are
homotopy equivalent) is free of rank r = 1− χ(X). Thus χ(X) = 1− r. □□□

52.I Corollary. The Euler characteristic of a triangulated compact connected
2-manifold with non-empty boundary is not greater than 1. □□□
52.J Corollary. The Euler characteristic of a triangulated closed connected
2-manifold with non-empty boundary is not greater than 2. □□□

53. Topological Classi�cation of Compact

Surfaces

In this section we consider a classical solution of the topological classi�cation
problem for compact surfaces. We classify compact triangulated 2-manifolds

1For a de�nition of collapse see Section 44'2.
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in a way which provides also an algorithm for building a homeomorphism
between a given surface and one of the standard surfaces. Another proof is
outlined in the last Section.

⌈53′1⌋ Families of Polygons

Triangulations provide a combinatorial description of 2-dimensional mani-
folds, but this description is usually too bulky. Here we will study other,
more practical way to present 2-dimensional manifolds combinatorially. The
main idea is to use larger building blocks.

Let F be a collection of convex polygons P1, P2, . . . . Let the sides of these
polygons be oriented and paired o�. Then we say that this is a family of

polygons. There is a natural quotient space of the sum of polygons involved
in a family: one identi�es each side with its pair-mate by a homeomorphism,
which respects the orientations of the sides. This quotient space is called
just the quotient of the family.

53.A The quotient of a family of polygons is a 2-manifold without boundary.
□□□

53.B The topological type of the quotient of a family does not change when
the homeomorphism between the sides of a distinguished pair is replaced by
other homeomorphism which respects the orientations.

Hint. See 49'5. □□□

53.C Any triangulation of a 2-manifold gives rise to a family of polygons
whose quotient is homeomorphic to the 2-manifold.

Hint. Use Theorems 52.D and 52.E. □□□

A family of polygons can be described combinatorially: Assign a letter to
each distinguished pair of sides. Go around the polygons writing down the
letters assigned to the sides and equipping a letter with exponent −1 if the
side is oriented against the direction in which we go around the polygon. At
each polygon we write a word. The word depends on the side from which
we started and on the direction of going around the polygon. Therefore it
is de�ned up to cyclic permutation and inversion. The collection of words
assigned to all the polygons of the family is called a phrase associated with

the family of polygons. It describes the family to the extend su�cient to
recovering the topological type of the quotient.

53.1 Prove that the quotient of the family of polygons associated with phrase aba−1b−1

is homeomorphic to S1 × S1.
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53.2 Identify the topological type of the quotient of the family of polygons associated
with phrases

(1) aa−1;
(2) ab, ab;
(3) aa;
(4) abab−1;
(5) abab;
(6) abcabc;
(7) aabb;
(8) a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g ;
(9) a1a1a2a2 . . . agag.

53.D A collection of words is a phrase associated with a family of polygons,
i� each letter appears twice in the words.

A family of polygons is called irreducible if the quotient is connected.

53.E A family of polygons is irreducible, i� a phrase associated with it does
not admit a division into two collections of words such that there is no letter
involved in both collections.

⌈53′2⌋ Operations on Family of Polygons

Although any family of polygons de�nes a 2-manifold, there are many fami-
lies de�ning the same 2-manifold. There are simple operations which change
a family, but do not change the topological type of the quotient of the family.
Here are the most obvious and elementary of these operations.

(1) Simultaneous reversing orientations of sides belonging to one of the
pairs.

(2) Select a pair of sides and subdivide each side in the pair into two

a a

b

c

b

c

sides. The orientations of the original sides de�ne the orderings of
the halves. Unite the �rst halves into one new pair of sides, and
the second halves into the other new pair. The orientations of the
original sides de�ne in an obvious way orientations of their halves.
This operation is called 1-subdivision. In the quotient it e�ects in
subdivision of a 1-cell (which is the image of the selected pair of



53. Topological Classi�cation of Compact Surfaces 321

sides) into two 1-cells. This 1-cells is replaced by two 1-cells and
one 0-cell.

(3) The inverse operation to 1-subdivision. It is called 1-consolidation.

(4) Cut one of the polygons along its diagonal into two polygons.

The sides of the cut constitute a new pair. They are equipped with
an orientation such that gluing the polygons by a homeomorphism
respecting these orientations recovers the original polygon. This
operation is called 2-subdivision. In the quotient it e�ects in subdi-
vision of a 2-cell into two new 2-cells along an arc whose end-points
are 0-cells (may be coinciding). The original 2-cell is replaced by
two 2-cells and one 1-cell.

(5) The inverse operation to 2-subdivision. It is called 2-consolidation.

⌈53′3⌋ Topological and Homotopy Classi�cation of Closed

Surfaces

53.F Reduction Theorem. Any �nite irreducible family of polygons can be
reduced by the �ve elementary operations to one of the following standard
families:

(1) aa−1

(2) a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g

(3) a1a1a2a2 . . . agag for some natural g.

53.G Corollary, see 51.O. Any triangulated closed connected manifold of
dimension 2 is homeomorphic to either sphere, or sphere with handles, or
sphere with crosscaps.

Theorems 53.G and 51.N provide classi�cations of triangulated closed con-
nected 2-manifolds up to homeomorphisms and homotopy equivalence.

53.F.1 Reduction to Single Polygon. Any �nite irreducible family of
n polygons can be reduced by a sequence of n − 1 2-consolidations to a
family consisting of a single polygon. □□□
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53.F.2 Cancellation. A family of polygons consisting of a single poly-
gon that has at least 4 sides and corresponds to a word containing a
fragment aa−1 or a−1a, where a is any letter, can be transformed by a 2-
subdivision followed by 1-consolidation and 2-consolidation to a a family
corresponding to the word obtained from the original one by erasing this
fragment.

Proof. Since the number of sides is at least 4, the polygon has a diagonal which connects
the vertex separating the sides a and a−1 and a vertex which is not adjacent to any of
these sides. Cut the polygon along this diagonal (i.e., perform a 2-subdivision along it).

a

b

aa

b

a

Now make 1-consolidation uniting the new sides which came from the diagonal with
the sides that we want to eliminate:

c
b

aa

b
c

Finally, make 2-consolidation:

c c

□□□

53.F.3 Reduction to Single Vertex. An irreducible family of polygons
consisting of a single polygon with r ≥ 4 sides to which the cancellation
procedure of Lemma 53.F.2 cannot be applied any more can be turned
by elementary transformations to a polygon such that all its vertices are
projected to a single point of the quotient.

Proof. Assign di�erent letters to the images of vertices in the quotient space, and assign
the same letters to the vertices. So, the vertices of the polygon projected to the same
point are assigned with the same letter, and vertices projected to di�erent points are
assigned with di�erent letters.

If there are vertices projected to di�erent points, then there is a side with vertices
which are assigned with di�erent letters, say P and Q. Below we describe a procedure
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which decreases by 1 the number of vertices with letter P and increases by 1 the
number of vertices with letter Q. Denote the side PQ by a. Let b = PR be the other
side adjacent to P .

The sides a and b are not pair-mates. Indeed, b cannot be a−1, because by the as-
sumption the procedure of Lemma 53.F.2 cannot be applied. On the other hand, b
cannot be identi�ed under factorization with a, because in such a case Q being an
initial point of the side QP = a were projected to the same point as P which is the
initial point of the next side PR = a.

Q

P

R
aa

Draw the diagonal d = QR and make 2-subdivision along it. Then make 2-consolidation
along the side b and its pair-mate.

R Q

R

c

Q

ac

b P
Q

P

R
ab

bR P

Q

P

R
ab

R Q

bR P

c

c

As promised, the number of P -vertices decreased by 1, while the number of Q-vertices
increased by 1. By applying this procedure, and, under each opportunity, applying
the procedure of Lemma 53.F.2, one can make all the vertices projecting to the same
point. □□□

53.F.4 Separation of a Crosscap. A family corresponding to a phrase
consisting of a single word XaY a, where X and Y are words and a is
a letter, can be transformed to the family corresponding to the word
bbY −1X.

Proof. It is done by a 2-subdivision along the diagonal connecting the initial points of the
a-sides followed by 2-consolidation gluing the a-sides:

a
a

a b
a

b

X

Y
Y

b
b

XY

X

□□□

53.F.5 If a family corresponds to a phrase consisting of a word XaY a−1,
where X and Y are nonempty words and a is a letter, the quotient of
this family has a single vertex in the natural cell decomposition, and
there is no possibility for applying the procedure of Lemma 53.F.4, then
X = UbU ′ and Y = V b−1V ′.
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53.F.6 Separation of Handle. A family corresponding to a phrase con-
sisting of a word UbU ′aV b−1V ′a−1, where U , U ′, V , and V ′ are words
and a, b are letters, can be transformed to the family presented by phrase
dcd−1c−1UV ′V U ′.

Proof. First, draw the diagonal connecting the end points of the a-sides, make 2-subdivision
along it and then 2-consolidation along b-sides:

a

b

a

V

b b

a

a

a

a

c cc b c

V

V ′

U′

V ′

U′

UU

U′ V

V ′

U

In the result draw the diagonal connecting the end points of the new pair of sides,
make 2-subdivision along the diagonal and 2-consolidation along the a-sides.

c

d

d
c c

c c
UV ′a

a V U ′

c

a V U ′

UV ′a

d

V U ′

UV ′

d

□□□

53.F.7 Handle plus Crosscap Equals 3 Crosscaps. A family corre-
sponding to phrase aba−1b−1XccY can be transformed by elementary
transformations to the family corresponding to phrase uuvvwwY −1X−1.

Proof. Eight elementary transformations are needed. We present them in four pairs. Each
pair is a 2-subdivision followed by a 2-consolidation. We conclude each pair with re-
shaping of the resulted non-convex octagon into a nice convex form. First we make
2-subdivision along the diagonal connecting the middle vertices of the part cc repre-
senting the Möbius band and the part aba−1b−1 representing the handle. Then we
make 2-consolidation along c.

ba

Y

d

a b

X

d

c

cc

Y

a

b a

b

X

d

c

a

b

X

d
c

Y

a

b

d

a

b

X

d

c

Y

a

b

d

We have obtained three pairs of sides, a, b and d, oriented coherently. The rest of
the proof consists of three applications of the crosscap separation from the proof of
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Lemma 53.F.4. We do need to separate three crosscaps. However, we cannot just to
refer to Lemma 53.F.4, because its application could destroy pairs of sides needed for
the next application. It requires at least special proof that one can avoid this. Instead,
we just separate 3 crosscaps thoughtlessly.

First, we draw the diagonal connecting the initial points of b sides, make 2-subdivision
along it, and then 2-consolidation along b sides.

ba

Y

d

a b

X

d
u

b

X

d
u

a

Y

d

a b

u

X

d
u

a

Y

d

a

u

b

aY

d

a

d X

u

u

b

Connect the arrowheads of a sides with diagonal and make 2-subdivision along it fol-
lowed by 2-consolidation along a sides.

aY

d

a

d X

u

u
v

aY

d
v

a

d X

u

u
v

d X

u

u
v

a

Y

d

v

uv

v

d

Y d

X

u

a

Finally, make 2-subdivision along the diagonal connecting the arrowheads of d sides
followed by 2-consolidation along d sides:

uv

v

d

Y d

X

u

w d

Y

w

uv

d

X

u

w

v v

w

uv

X

u

w

d
Y

uv

v

w

w Y

X

u

d

□□□

54. Recognizing Closed Surfaces

54.A What is the topological type of the 2-manifold, which can be obtained
as follows: Take two disjoint copies of disk. Attach three parallel strips con-
necting the disks and twisted by π. The resulting surface S has a connected
boundary. Attach a copy of disk along its boundary by a homeomorphism
onto the boundary of the S. This is the space to recognize.

54.B Euler characteristic of the cellular space obtained as quotient of a
family of polygons is invariant under homotopy equivalences.
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54.1 How can 54.B help to solve 54.A?

54.2 Let X be a closed connected surface. What values of χ(X) allow to recover the
topological type of X? What ambiguity is left for other values of χ(X)?

⌈54′1⌋ Orientations

By an orientation of a polygon one means orientation of all its sides such
that each vertex is the �nal end point for one of the adjacent sides and initial
for the other one. Thus an orientation of a polygon includes orientation of
all its sides. Each segment can be oriented in two ways, and each polygon
can be oriented in two ways.

An orientation of a family of polygons is a collection of orientations of all the
polygons comprising the family such that for each pair of sides one of the
pair-mates has the orientation inherited from the orientation of the polygon
containing it while the other pair-mate has the orientation opposite to the
inherited orientation. A family of polygons is said to be orientable if it
admits an orientation.

54.3 Which of the families of polygons from Problem 53.2 are orientable?

54.4 Prove that a family of polygons associated with a word is orientable i� each
letter appear in the word once with exponent −1 and once with exponent 1.

54.C Orientability of a family of polygons is preserved by the elementary
operations.

A surface is said to be orientable if it can be presented as the quotient of an
orientable family of polygons.

54.D A surface S is orientable, i� any family of polygons whose quotient is
homeomorphic to S is orientable.

54.E Spheres with handles are orientable. Spheres with crosscaps are not.

⌈54′2⌋ More About Recognizing Closed Surfaces

54.5 How can the notion of orientability and 54.C help to solve 54.A?

54.F Two closed connected manifolds of dimension two are homeomorphic
i� they have the same Euler characteristic and either are both orientable or
both non-orientable.
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⌈54′3⌋ Recognizing Compact Surfaces with Boundary

54.G Riddle. Generalize orientabilty to the case of nonclosed manifolds of
dimension two. (Give as many generalization as you can and prove that
they are equivalent. The main criterium of success is that the generalized
orientability should help to recognize the topological type.)

54.H Two compact connected manifolds of dimension two are homeomor-
phic i� they have the same Euler characteristic, are both orientable or both
nonorientable and their boundaries have the same number of connected com-
ponents.

⌈54′4⌋ Simply Connected Surfaces

54.6 Theorem∗. Any simply connected non-compact manifold of dimension two without

boundary is homeomorphic to R2.

54′4.1 Any simply connected triangulated non-compact manifold without bound-
ary can be presented as the union of an increasing sequence of compact simplicial
subspaces C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ . . . such that each of them is a 2-manifold
with boundary and IntCn ⊂ Cn+1 for each n.

54′4.2 Under conditions of 54′4.1 the sequence Cn can be modi�ed in such a way
that each Cn becomes simply connected.

54.7 Corollary. The universal covering of any surface with empty boundary and in�nite

fundamental group is homeomorphic to R2.

55. Combinatorics and Subdivisions of

Triangulations

⌈55′1⌋ Scheme of Triangulation

Triangulations allow to describe a surface by a simple combinatorial object.

Let X be a 2-manifold and T a triangulation of X. Denote the set of vertices of T by
V . Denote by Σ2 the set of triples of vertices, which are vertices of a triangle of T .
Denote by Σ1 the set of pairs of vertices, which are vertices of a side of T . Put Σ0 = S.
This is the set of vertices of T . Put Σ = Σ2 ∪ Σ1 ∪ Σ0. The pair (V,Σ) is called the
(combinatorial) scheme of T .

55.1 Prove that the combinatorial scheme (V,Σ) of a triangulation of a 2-manifold
has the following properties:

(1) Σ is a set consisting of subsets of V ,
(2) each element of Σ consists of at most 3 elements of V ,
(3) three-element elements of Σ cover V ,
(4) any subset of an element of Σ belongs to Σ,
(5) intersection of any collection of elements of Σ belongs to Σ,
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(6) for any two-element element of Σ there exist exactly two three-element ele-
ments of Σ containing it.

Recall that objects of this kind appeared above, in Section 24′3. Let V be a set and Σ
is a set of �nite subsets of V . The pair (V,Σ) is called a triangulation scheme if

• any subset of an element of Σ belongs to Σ,
• intersection of any collection of elements of Σ belongs to Σ,
• any one element subset of V belongs to Σ.

For any simplicial scheme (V,Σ) in 24′3 a topological space S(V,Σ) was constructed.
This is, in fact, a cellular space, see 42.14.

55.2 Prove that if (V,Σ) is the combinatorial scheme of a triangulation of a 2-manifold
X then S(V,Σ) is homeomorphic to X.

55.3 Let (V,Σ) be a triangulation scheme such that

(1) V is countable,
(2) each element of Σ consists of at most 3 elements of V ,
(3) three-element elements of Σ cover V ,
(4) for any two-element element of Σ there exist exactly two three-element ele-

ments of Σ containing it

Prove that (V,Σ) is a combinatorial scheme of a triangulation of a 2-manifold.

⌈55′2⌋ Examples

55.4 Consider the cover of torus obtained in the obvious way from the cover of the
square by its halves separated by a diagonal of the square.

Is it a triangulation of torus? Why not?

55.5 Prove that the simplest triangulation of S2 consists of 4 triangles.

55.6* Prove that a triangulation of torus S1 × S1 contains at least 14 triangles, and a

triangulation of the projective plane contains at least 10 triangles.

⌈55′3⌋ Subdivision of a Triangulation

A triangulation S of a 2-manifold X is said to be a subdivision of a triangu-
lation T , if each triangle of S is contained in some triangle2 of T . Then S is
also called a re�nement of T .

2Although triangles which form a triangulation of X have been de�ned as topological em-

beddings, we hope that a reader guess that when one of such triangles is said to be contained in

another one this means that the image of the embedding which is the former triangle is contained

in the image of the other embedding which is the latter.
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There are several standard ways to subdivide a triangulation. Here is one
of the simplest of them. Choose a point inside a triangle τ , call it a new
vertex, connect it by disjoint arcs with vertices of τ and call these arcs
new edges. These arcs divide τ to three new triangles. In the original
triangulation replace τ by these three new triangles. This operation is called
a star subdivision centered at τ . See Figure 1.

τ

Figure 1. Star subdivision centered at triangle τ

.

55.7 Give a formal description of a star subdivision centered at a triangle τ . I.e.,
present it as a change of a triangulation thought of as a collection of topological trian-
gles. What three embeddings of Euclidean triangles are to replace τ? Show that the
replacement gives rise to a triangulation. Describe the corresponding operation on the
combinatorial scheme.

Here is another subdivision de�ned locally. One adds a new vertex taken
on an edge ε of a given triangulation. One connects the new vertex by two
new edges to the vertices of the two tringles adjacent to ε. The new edges
divide these triangles, each to two new triangles. The rest of triangles of
the original triangulation are not a�ected. This operation is called a star
subdivision centered at ε. See Figure 2.

ε

Figure 2. Star subdivision centered at edge ε.



330 XI. Manifolds of Low Dimensions

55.8 Give a formal description of a star subdivision centered at edge ε. What four
embeddings of Euclidean triangles are to replace the topological triangles with edge ε?
Show that the replacement gives rise to a triangulation. Describe the corresponding
operation on the combinatorial scheme.

55.9 Find a triangulation and its subdivision, which cannot be presented as a com-
position of star subdivisions at edges or triangles.

55.10* Prove that any subdivision of a triangulation of a compact surface can be

presented as a composition of a �nite sequences of star subdivisions centered at edges

or triangles and operations inverse to such subdivisions.

By a baricentric subdivision of a triangle we call a composition of a star
subdivision centered at this tringle followed by star subdivisions at each of
its edges. See Figure 3.

Figure 3. Baricentric subdivision of a triangle.

Baricentric subdivision of a triangulation of 2-manifold is a subdivision which
is a simultaneous baricentric subdivision of all triangles of this triangulation.
See Figure 4.

ε

Figure 4. Baricentric subdivision of a triangulation.

55.A Establish a natural one-to-one correspondence between vertices of a
baricentric subdivision a simplices (i.e., vertices, edges and triangles) of the
original tringulation.

55.B Establish a natural one-to-one correspondence between triangles of a
baricentric subdivision and triples each of which is formed of a triangle of
the original triangulation, an edge of this triangle and a vertex of this edge.
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The expression baricentric subdivision has appeared in a diiferent context, see Section
21. Let us relate the two notions sharing this name .

55.11 Baricentric subdivision of a triangulation and its scheme. Prove that the combina-
torial scheme of the baricentric subdivision of a triangulation of a 2-manifold coincides
with the baricentric subdivision of the scheme of the original triangulation (see 24′4).

⌈55′4⌋ Triangulations in dimension one

By an Euclidean segment we mean the convex hall of two di�erent points
of a Euclidean space. It is homeomorphic to I. A topological segment or
topological edge in a topological space X is a topological embedding of an
Euclidean segment into X. A set of topological segments in a 1-manifold X
is a triangulation of X if the images of these topological segments constitute
a fundamental cover of X and any two of the images either are disjoint or
intersect in one common end point.

Traingulations of 1-manifolds are similar to triangulations of 2-manifolds
considered above.

55.C Find counter-parts for theorems above. Which of them have no
counter-parts? What is a counter-part for the property 52.D? What are
counter-parts for star and baricentric subdivisions?

55.D Find homotopy classi�cation of triangulated compact 1-manifolds us-
ing arguments similar to the ones from Section 52′3. Compare with the
topological classi�cation of 1-manifolds obtained in Section 50.

55.E What values take the Euler characteristic on compact 1-manifolds?

Proof. All non-negative inetegers. □□□

55.F What is relation of the Euler characteristic of a compact triangulated
1-manifold X and the number of points in ∂X?

Proof. χ(X) = 1
2
χ(∂X) = 1

2
♯(∂X). To prove this, consider double DX of X, and observe

that χ(DX) = 2χ(X)− χ(∂X), while χ(DX) = 0, since DX is a closed 1-manifold. □□□

55.G Triangulation of a 2-manifold X gives rise to a triangulation of its
boundary ∂X. Namely, the edges of the triangualtion of ∂X are the sides of
triangles of the original triangulation which lie in ∂X.

⌈55′5⌋ Triangualtions in higher dimensions

55.H Generalize everything presented above in this section to the case of
manifolds of higher dimensions.
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56. Handle Decompositions

⌈56′1⌋ Handles and Their Anatomy

Together with triangulations, it is useful to consider representations of a
manifold as a union of balls of the same dimension, but adjacent to each
other as if they were thickening of cells of a cellular space

A space Dp ×Dn−p is called a (standard) handle of dimension n and index p.
Its subset Dp × {0} ⊂ Dp × Dn−p is called the core of handle Dp × Dn−p,
and a subset {0} ×Dn−p ⊂ Dp ×Dn−p is called its cocore. The boundary
∂(Dp ×Dn−p) = of the handle Dp ×Dn−p can be presented as union of its
base Dp × Sn−p−1 and cobase Sp−1 ×Dn−p.

56.A Draw all standard handles of dimensions ≤ 3.

A topological embedding h of the standard handle Dp ×Dn−p of dimension
n and index p into a manifold of the same dimension n is called a handle of
dimension n and index p. The image under h of IntDp × IntDn−p is called
the interior of h, the image of the core h(Dp × {0}) of the standard handle
is called the core of h, the image h({0} ×Dn−p) of cocore, the cocore, etc.

⌈56′2⌋ Handle Decomposition of a Manifold

Let X be a manifold of dimension n. A collecton of n-dimensional handles
in X is called a handle decomposition of X, if

(1) the images of these handles constitute a locally �nite cover of X,

(2) the interiors of these handles are pairwise disjoint,

(3) the base of each of the handles is contained in the union of cobases
of the handles of smaller indices.

Let X be a manifold of dimension n with boundary. A collection of n-
dimensional handles in X is called a handle decomposion of X modulo bound-
ary, if

(1) the images of these handles constitute a locally �nite cover of X,

(2) the interiors of these handles are pairwise disjoint,

(3) the base of each of the handles is contained in the union of ∂X and
cobases of the handles of smaller indices.

A composition of a handle h : Dp×Dn−p → X with the homeomorphism of
transposition of the factors Dp ×Dn−p → Dn−p ×Dp turns the handle h of
index p into a handle of the same dimension n, but of the complementary
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index n− p. The core of the handle turns into the cocore, while the base, to
cobase.

56.B Composing each handle with the homeomorphism transposing the
factors turns a handle decomposition of manifold into a handle decomposition
modulo boundary of the same manifold. Vice versa, a handle decomposition
modulo boundary turns into a handle decomposition of the same manifold.

Handle decompositions obtained from each other in this way are said to be
dual to each other.

56.C Riddle. For an n-manifold whose boundary splits into two (n − 1)-
manifolds with disjoint closures, de�ne handle decomposition modulo one
of these (n − 1)-manifolds so that the dual handle decomposition would be
modulo the complementary part of the boundary.

56.1 Find handle decompositions with a minimal number of handles for the following
manifolds:
(a) circle S1; (b) sphere Sn; (c) ball Dn

(d) torus S1 × S1; (e) handle; (f) cylinder S1 × I;
(g) Möbius band; (h) projective plane

RP 2;
(i) projective space

RPn;
(j) sphere with p

handles;
(k) sphere with p

cross-caps;
(l) sphere with n

holes.

⌈56′3⌋ Handle Decomposition and Triangulation

Let X be a 2-manifold, τ its triangulation, τ ′ its baricentric subdivision, and
τ ′′ the baricentric subdivision of τ ′. For each simplex S of τ denote by HS

the union of all simplices of τ ′′ which contain the unique vertex of τ ′ that
lies in intS. Thus, if S is a vertex then HS is the union of all triangles of
τ ′′ containing this vertex, if S is an edge then HS is the union all of the
triangles of τ ′′ which intersect with S but do not contain any of its vertices,
and, �nally, if S is a triangle of τ then HS is the union of all triangles of τ ′′

which lie in S but do not intersect its boundary.

56.D Handle Decomposition out of a Triangulation. Sets HS constitute a
handle decomposition of X. The index of HS equals the dimension of S.

56.2 Can every handle decomposition of a 2-manifold be constructed from a triangu-
lation as indicated in 56.D?

56.3 How to triangulate a 2-manifold which is equipped with a handle decomposition?
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Figure 5. Construction of a handle decomposition from a triangulation.

⌈56′4⌋ Regular Neighborhoods

Let X be a 2-manifold, τ its triangulation, and A be a simplicial subspace of
X. The union of all those simplices of the double baricentric subdivision τ ′′

of τ which intersect A is called the regular or second baricentric neighborhood
of A (with respect to τ).

Of course, usually regular neighborhood is not open in X, since it is the
union of simplices, which are closed. So, it is a neighborhood of A only in
the broad sense (its interior contains A).

56.E A regular neighborhood of A in X is a 2-manifold. It coincides with
the union of handles corresponding to the simplices contained in A. These
handles constitute a handle decomposition of the regular neighborhood. □□□

56.F Collapse Induces Homemorphism. LetX be a triangulated 2-manifold
and A ⊂ X be its triangulated subspace. IfX ↘ A, thenX is homeomorphic
to a regular neighborhood of A.

56.G Corollary. In a triangulated 2-manifold, any triangulated subspace,
which is a tree, has regular neighborhood homeomorphic to disk. □□□

56.H Corollary. Any triangulated compact connected 2-manifold with non-
empty boundary is homeomorphic to a regular neighborhood of some of its
1-dimensional triangulated subspaces.

Proof. This follows from Theorems 52.F and 56.F. □□□

56.I In a triangulated 2-manifold, any triangulated subspace homeomorphic
to circle has a regular neighborhood homeomorphic either to the Möbius
band or cylinder S1 × I.

Proof. The regular neighborhood is the union of a circular sequence of handles of indices
0 and 1. In this sequence the indices of handles alternate.
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□□□

In the case of Möbius band the circle is said to be one-sided, in the case of
cylinder, two-sided.

⌈56′5⌋ Cutting 2-Manifold Along a Curve

56.J Cut Along a Curve. Let F be a triangulated surface and C ⊂ F be
a compact one-dimensional manifold contained in the 1-skeleton of F and
satisfying condition ∂C = ∂F ∩ C. Prove that there exists a 2-manifold T
and surjective map p : T → F such that:

(1) p| : T ∖ p−1(C) → F ∖ C is a homeomorphism,

(2) p| : p−1(C) → C is a two-fold covering.

56.K Uniqueness of Cut. The 2-manifold T and map p which exist ac-
cording to Theorem 56.J, are unique up to homeomorphism: if T̃ and p̃ are
other 2-manifold and map satisfying the same hypothesis then there exists
a homeomorphism h : T̃ → T such that p ◦ h = p̃.

The 2-manifold T described in 56.J is called the result of cutting of F along C.
It is denoted by F C. This is not at all the complement F ∖C, although a
copy of F ∖C is contained in F C as a dense subset homotopy equivalent
to the whole F C.

56.L Triangulation of Cut Result. F C possesses a unique triangulation
such that the natural map F C → F maps homeomorphically edges and
triangles of this triangulation onto edges and, respectivly, triangles of the
original triangulation of F .

56.M Let X be a triangulated 2-manifold, C be its triangulated subspace
homeomorphic to circle, and let F be a regular neighborhood of C in X.
Prove

(1) F C consists of two connected components, if C is two-sided on
X, it is connected if C is one-sided;

(2) the inverse image of C under the natural map X C → X consists
of two connected components if C is two-sided on X, it is connected
if C is one-sided on X.
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This proposition discloses the meaning of words one-sided and two-sided
circle on a 2-manifold. Indeed, both connected components of the result of
cutting of a regular neighborhood, and connected components of the inverse
image of the circle can claim its right to be called a side of the circle or a
side of the cut.

56.4 Describe the topological type of F C for the following F and C:

(1) F is sphere S2, and C is its equator;
(2) F is a Möbius strip, and C is its middle circle (deformation retract);
(3) F = S1 × S1, C = S1 × 1;
(4) F is torus S1 × S1 standardly embedded into R3, and C is the trefoil knot

lying on F , that is {(z, w) ∈ S1 × S1 | z2 = w3};
(5) F is a Möbius strip, C is a segment: �ndtwo topologically di�erent position

of C on F and describe F C for each of them;

(6) F = RP 2, C = RP 1.
(7) F = RP 2, C is homeomorphic to circle: �nd two topologically di�erent

position C on F and describe F C for each of them.

56.N Euler Characteristic and Cut. Let F be a triangulated compact 2-
manifold and C ⊂ intF be a closed one-dimensional contained in the 1-
skeleton

of the triangulation of F . Then χ(F C) = χF .

56.O Find the Euler characteristic of F C, if ∂C ̸= ∅.

56.P Generalized Cut (Incise). Let F be a triangulated 2-manifold and
C ⊂ F be a compact 1-dimensional manifold contained in 1-skeleton of F
and satisfying condition ∂F ∩C ⊂ ∂C. Let D = C∖ (∂C∖∂F ). Prove that
there exist a 2-manifold T and sujective continuous map p : T → F such
that:

(1) p| : T ∖ p−1(D) → F ∖D is a homeomorphism,

(2) p| : p−1(D) → D is a two-fold covering.

56.Q Uniqueness of Cut. The 2-manifold T and map p, which exist ac-
cording to Theorem 56.P, ae unique up to homeomorphism: if T̃ and p̃ are
other 2-manifold and map satisfying the same hypothesis then there exists
a homeomorphism h : T̃ → T such that p ◦ h = p̃.

The 2-Manifold T described in 56.P is also called the result of cutting of F
along C and denoted by F C.

56.5 Show that if C is a segment contained in the interior of a 2-manifold F then
F C is homeomorphic to F ∖ IntB, where B is the subset of intF homeomorphic
to disk.
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56.6 Show that if C is a segment such that one of its end points is in intF and the
other one is on ∂F then F C is homeomorphic to F .

⌈56′6⌋ Orientations

Recall that an orientation of a segment is a linear order of the set of its points.
It is determined by its restriction to the set of its end points, see 50.R. To
describe an orientation of a segment it su�ces to say which of its end points
is initial and which is �nal.

Similarly, orientation of a triangle can be described in a number of ways,
each of which can be chosen as the de�nition. By an orientation of a triangle
one means a collection of orientations of its edges such that each vertex of the
triangle is the �nal point for one of the edges adjacent to it and initial point
for the other edge. Thus, an orientation of a triangle de�nes an orientation
on each of its sides.

A segment admits two orientations. A triangle also admits two orientations:
one is obtained from another one by change of the orientation on each side
of the triangle. Therefore an orientation of any side of a triangle de�nes an
orientation of the triangle.

Vertices of an oriented triangle are cyclicly ordered: a vertex A follows im-
mediately the vertex B which is the initial vertex of the edge which �nishes
at A. Similarly the edges of an oriented triangle are cyclicly ordered: a side
a follows immediately the side b which �nal end point is the initial point of
a.

Vice versa, each of these cyclic orders de�nes an orientation of the triangle.

An orientation of a triangulation of a 2-manifold is a collection of orientations
of all triangles constituting the triangulation such that for each edge the
orientations de�ned on it by the orientations of the two adjacent triangles
are opposite to each other. A triangulation is said to be orientable, if it
admits an orientation.

56.R Number of Orientations. A triangulation of a connected 2-manifold
is either non-orientable or admits exactly two orientations. These two orien-
tations are opposite to each other. Each of them can be recovered from the
orientation of any triangle involved in the triangulation.

56.S Lifting of Triangulation. Let B be a triangulated surface and p : X →
B be a covering. Can you equip X with a triangulation?

56.T Lifting of Orientation. Let B be an oriented triangulated surface and
p : X → B be a covering. Equip X with a triangulation such that p maps
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each simplex of this triangulation homeomorphically onto a simplex of the
original triangulation of B. Is this triangulation orientable?

Proof. Yes, it is orientable. An orientation can be obtain by taking on each triangle of X

the orientation which is mapped by p to the orientation of its image. □□□

56.U Let X be a triangulated surface, C ⊂ X be a 1-dimensional manifold
contained in 1-skeleton of X. If the triangulation of X is orientable, then C
is two-sided.

57. Another Topological Classi�cation of

Compact Triangulated 2-Manifolds

Topological classi�cation of compact 2-manifolds given in Section 53 above
is classical. In Section 53 we followed the classical textbook of topology
by Seifert and Threlfall. There are many other proofs of this fundamental
result. In particular there have been attempts to provide a shorter proof.
John H. Conway in several lectures proposed his ZIP proof (Zero Irrelevance
Proof) of this theorem, it was published in 1999 in American Mathematical
Monthly by George K. Francis and Je�rey R. Weeks.

Below we outline yet another proof. Its distinctive feature is reliance to the
notions that have proved their usefulness in higher dimensions.

⌈57′1⌋ Spines and Their Regular Neighborhoods

Let X be a triangulated compact connected 2-manifold with non-empty
boundary. A simplicial subspace S of the 1-skeleton of X is a spine of X if
X collapses to S.

57.A LetX be a triangulated compact connected 2-manifold with non-empty
boundary. Then a regular neighborhood of its spine is homeomorphic to X.

57.B Corollary. A triangulated compact connected 2-manifold with non-
empty boundary admits a handle decomposition without handles of index
2.

A spine of a closed connected 2-manifold is a spine of this manifold with an
interior of a triangle from the triangulation removed.

57.C A triangulated closed connected 2-manifold admits a handle decompo-
sition with exactly one handle of index 2.

57.D A spine of a triangulated closed connected 2-manifold is connected.
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57.E Corollary. The Euler characteristic of a closed connected triangulated
2-manifold is not greater than 2. If it is equal to 2, then the 2-manifold is
homeomorphic to S2.

57.F Corollary: Extremal Case. Let X be a closed connected triangulated
2-manifold X. If χ(X) = 2, then X is homeomorphic to S2.

⌈57′2⌋ Simply connected compact 2-manifolds

57.G A simply connected compact triangulated 2-manifold with non-empty
boundary collapses to a point.

57.H Corollary. A simply connected compact triangulated 2-manifold with
non-empty boundary is homeomorphic to disk D2.

57.I Corollary. Let X be a compact connected triangulated 2-manifold X
with ∂X ̸= ∅. If χ(X) = 1, then X is homeomorphic to D2.

⌈57′3⌋ Splitting o� crosscaps and handles

57.J A non-orientable triangulated 2-manifold X is a connected sum of RP 2

and a triangulated 2-manifold Y . IfX is connected, then Y is also connected.

57.K Under conditions of Theorem 57.J, if X is compact then Y is compact
and χ(Y ) = χ(X) + 1.

57.L If on an orientable connected triangulated 2-manifold X there is a
simple closed curve C contained in the 1-skeleton of X such that X ∖ C
is connected, then C is contained in a simplicial subspace H of X homeo-
morphic to torus with a hole and X is a connected sum of a torus and a
triangulated connected orientable 2-manifold Y .

If X is compact, then Y is compact and χ(Y ) = χ(X) + 2.

57.M A compact connected triangulated 2-manifold with non-empty con-
nected boundary is a connected sum of a disk and some number of copies of
the projective plane and/or torus.

57.N Corollary. A simply connected closed triangulated 2-manifold is home-
omorphic to S2.

57.O A compact connected triangulated 2-manifold with non-empty bound-
ary is a connected sum of a sphere with holes and some number of copies of
the projective plane and/or torus.

57.P A closed connected triangulated 2-manifold is a connected sum of some
number of copies of the projective plane and/or torus.
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⌈57′4⌋ Splitting of a Handle on a Non-Orientable 2-Manifold

57.Q A connected sum of torus and projective plane is homeomorphic to a
connected sum of three copies of the projective plane.

57.Q.1 On torus there are 3 simple closed curves which meet at a single
point transversal to each other.

Proof. Represent the torus as the quotient space of the unit square. Take the images

of a diagonal of the square and the two segments connecting the midpoints of the

opposite sides of the square. □□□

57.Q.2 A connected sum of a surface S with RP 2 can be obtained by
deleting an open disk from S and identifying antipodal points on the
boundary of the hole.

57.Q.3 On a connected sum of torus and projective plane there exist
three disjoint one-sided simple closed curves.


